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LOCAL HÖLDER CONTINUITY OF WEAK SOLUTIONS

FOR AN ANISOTROPIC ELLIPTIC EQUATION

AGNESE DI CASTRO

Abstract: We prove, following DiBenedetto’s intrinsic scaling method, that the
weak solution of the problem











−

N
∑

i=1

∂

∂xi

[

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2 ∂u

∂xi

]

= f in Ω

u = 0 on ∂Ω

is locally Hölder continuous, where f is a bounded given function and pi ≥ 2, for
any i = 1, ..., N .

1. Introduction

In this paper we identify a class of anisotropic second-order elliptic equa-
tions for which the Hölder continuity can be established, following DiBenedet-
to’s method of intrinsic scaling. More precisely we prove that the weak solu-
tion u of problem
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(1)

belongs to C0,α
loc (Ω) for some α ∈ (0, 1), where f is a given function belonging

to L∞(Ω), Ω is a smooth, bounded domain of RN , N ≥ 2 and pi ≥ 2 for
any i = 1, ..., N . Without loss of generality, we can assume that the pi’s are
ordered, that is

2 ≤ p1 ≤ ... ≤ pN ;

thus,

p1 = min
i
{pi} and pN = max

i
{pi}.
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2 A. DI CASTRO

Moreover, we suppose that p < N , where p is the harmonic mean of the pi’s,
that is

1

p
=

1

N

N
∑

i=1

1

pi
;

otherwise, the weak solution of the problem (1) is C0,α
loc (Ω) by the anisotropic

Sobolev embeddings (see [28], and also [14], [26]).
The interest in various types of anisotropic operators grew in the last few

years, not only for a humongous number of applications (in modeling electro-
rheological fluids, image processing and the theory of elasticity) but also for
mathematical reasons involved: it is necessary to perform essential modifica-
tions to the classical methods in the analysis, because of the nonlinear and
non homogeneous nature of the considered operators.
The regularity theory for elliptic equations and for integrals of the calculus

of variations with non-standard growth was considered in many papers. We
recall some of these, without hope to be complete, in which local bounded-
ness and local Lipschitz regularity for the solutions and their gradients, are
treated, [1], [11], [12], [17], [18], [21], [22], [23].
Also with respect to the local Hölder continuity for solutions of elliptic

equations (and the corresponding minimization problems), in particular as-
sociated to operators having p(x)-growth and p,q type conditions, there are
many papers, for example [2], [4], [9], [20], [25]. The qualitative theory of
equations of the type (1) has not yet been developed to the same extent.
There is however a recent paper about this problem. In [19], the authors
establish the local Hölder continuity for solutions of equations as that in (1),
assuming

p1 = 2 < p2 = ... = pN = p

and

pN < p∗ =
Np

N − p
.

As seen from the structure, the x1 variable is separated from the others
and so it was treated similarly to the time variable in the corresponding
studies of parabolic equations. The main novelty of that note is to use
the DiBenendetto intrinsic scaling method for proving Hölder continuity of
weak solutions for a class of anisotropic quasi-linear elliptic equations. This
method is a powerful technique introduced in the 1980’s (see [6] and more
recently [7], [29] and references therein) that helped understanding the local
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behavior of weak solutions of singular and degenerate PDEs. It was originally
created for studying the evolutionary p-Laplace equation.
In this paper we also use the method of intrinsic scaling but in a simpler way

and we treat the general case in which all the pi’s are different. Moreover,
another novelty of this work is that we don’t need to assume pN < p∗,
since we are taking homogeneous Dirichlet boundary conditions. Indeed this
assumption assures that the weak solution of problem (1) is bounded without
further hypothesis on the pi’s, as showed in [8] (see also [27]). If we do not
assume Dirichlet boundary conditions the result of this paper is still true,
but we have to add the hypothesis that the solutions are bounded and hence
pN < p∗. As a matter of fact there exists an example of unbounded solutions
due to Marcellini (see [24] and also [13]) when no boundary assumptions are
given.
The main result of this paper is the following.

Theorem 1.1. Let u the weak solution of problem (1) with f ∈ L∞(Ω) and
M = ‖u‖L∞(Ω). Then u is locally Hölder continuous in Ω, that is there exists
a constant γ > 1 and α ∈ (0, 1) depending only on the data such that for
every compact K ⊂⊂ Ω the inequality

|u(x1)− u(x2)| ≤ γM

(

∑N
i=1 |x1,i − x2,i|

pi
pN M

pN−pi
pN

dist(K, ∂Ω)

)α

holds for any x1, x2 ∈ K.

Here dist(K, ∂Ω) is the distance from K to the boundary of Ω, defined by

dist(K, ∂Ω) = inf
x∈K
y∈∂Ω

(

N
∑

i=1

|xi − yi|
pi
pN M

pi−pN
pN

)

.

The rest of the paper contains the proof of the above theorem, after a first
section in which definitions, notations and some already known results are
given.
In the following we will denote ∂i := ∂/∂xi. We will write C to denote

positive constants, the value of which may vary from line to line, depending
on the data, that is they will be fixed in the assumptions we will make, as
the dimension N , the set Ω, the exponents pi, etc.
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2. Definitions, notations and basic tools

It is well-known (see [16], and also [8] and [3]) that, for any N -vector of
real numbers

2 ≤ p1 ≤ ... ≤ pN

and for any f ∈ L∞(Ω), there exists a unique weak solution of problem (1),

that is a function u ∈ W
1,(pi)
0 (Ω) such that

N
∑

i=1

∫

Ω

|∂iu|
pi−2∂iu∂iv =

∫

Ω

fv, ∀ v ∈ W
1,(pi)
0 (Ω), (2)

where W
1,(pi)
0 (Ω) denotes the closure of C∞(Ω) with respect to the norm

‖v‖1,(pi) :=
N
∑

i=1

‖∂iv‖Lpi(Ω)

or, equivalently,

W
1,(pi)
0 (Ω) =

{

v ∈ W 1,p1
0 (Ω) : ∂iv ∈ Lpi(Ω), i = 1, ..., N

}

.

Moreover u ∈ L∞(Ω) by the assumption on f . The same result holds under
less stringent assumptions on the regularity of the given function f , namely
f ∈ Lm(Ω), m > N/p, p defined below (see [3], [8], [27]).
In [14], [26] and [28], the theory of anisotropic Sobolev spaces is devel-

oped and, in particular, the corresponding Sobolev embeddings theorems are
studied. Let

p∗ =
Np

N − p
, for p < N and

1

p
=

1

N

N
∑

i=1

1

pi
. (3)

In [28] it is proved that if p < N , then

W
1,(pi)
0 (Ω) →֒ Lr(Ω), ∀ r ∈ [1, p∗].

This embedding is continuous and also compact if r < p∗. The following
Sobolev type inequality is also proved: there exists a positive constant C,
depending only on Ω, such that

‖v‖Lr(Ω) ≤ C

N
∏

i=1

‖∂iv‖
1
N

Lpi(Ω), ∀ r ∈ [1, p∗], (4)
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for any v ∈ C1(Ω). By density, (4) also holds for any v ∈ W
1,(pi)
0 (Ω). The

inequality (4) also implies that

‖v‖Lr(Ω) ≤ C
N
∑

i=1

‖∂iv‖Lpi(Ω), ∀ r ∈ [1, p∗].

Subsequently, in [10], it is proved that the critical exponent depends on the
kind of anisotropy. If the pi’s are not too far apart (i.e. the anisotropy is
concentrated) the critical exponent is p∗, as in [28], that is the usual critical
exponent related to the harmonic mean p of the pi’s. While if the pi’s are
too spread out, it coincides with the maximum of the pi’s, i.e., pN . We also

remind a Poincaré type inequality, valid for all v ∈ W
1,(pi)
0 (Ω):

‖v‖Lr(Ω) ≤ C(|Ω|)r‖∂iv‖Lr(Ω), ∀ r ≥ 1, ∀ i = 1, ..., N, (5)

see [10].
We recall in this section some technical (and by now classical) tools that

are essential in establishing our regularity result.
Given a continuous function u : Ω → R and two real numbers k < l, let

Al,S := {x ∈ S : u(x) > l} (6)

Bk,S := {x ∈ S : u(x) < k} (7)

Ak,S ∩Bl,S := {x ∈ S : k < u(x) < l} (8)

for S ⊆ Ω. Moreover |S| is the measure of the set S.

Lemma 2.1 (De Giorgi). Let u ∈ W 1,1(Kρ(x0)) ∩ C(Kρ(x0)) with ρ > 0,
x0 ∈ R

N , Kρ(x0) an arbitrary sphere of radius ρ and centre x0 and l > k ∈ R.
There exists a constant C, depending only on N (and thus independent of ρ,
x0, u, k and l), such that

(l − k)|Al,Kρ(x0)| ≤ C
ρN+1

|Bk,Kρ(x0)|

∫

Ak,Kρ(x0)
∩Bl,Kρ(x0)

|∇u|.

Proof : See [5]. (See also [15], Lemma 3.4 and 3.5, pp. 54-56).

Remark 2.2. The conclusion of this lemma remains valid for functions u ∈
W 1,1(Ω)∩C(Ω), provided Ω is a convex region of diameter 2ρ. We will use it
in the case Ω is a parallelepiped. We also underline that the continuity is not
essential for the result to hold. For a function merely in W 1,1(Ω), we define
the previous sets through any representative in the equivalence class. It can
be shown that the conclusion of the lemma is independent of this choice.
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The next lemma concerns the geometric convergence of some sequences of
real numbers.

Lemma 2.3. Suppose that a sequence yh, for h = 0, 1, 2, ..., of nonnegative
real numbers, satisfies the recurrence relation

yh+1 ≤ C bhy1+ε
h , h = 0, 1, 2, ...

where C, ε and b are positive constants and b > 1. Then

yh ≤ C
(1+ε)h−1

ε b
(1+ε)h−1

ε2
−h

ε y
(1+ε)h

0 , h = 0, 1, 2, ...

In particular, if y0 ≤ θ = C− 1
ε b−

1
ε2 then yh ≤ θb−

h
ε and consequently yh → 0

as h → +∞.

Proof : See Lemma 4.7, p. 66 of [15].

Before starting with the main result of this paper, we want to give some
notations that we will use in the following pages. Let QN

ρ be the cube in R
N

of side 2ρ and center at the origin, whose sides are parallel to the coordinate
axes, defined by

QN
ρ = (−ρ, ρ)× ...× (−ρ, ρ) =

N
∏

i=1

(−ρ, ρ). (9)

Let also Qρ,a,(pi) be the parallelepiped in R
N , whose sides are parallel to the

coordinate axes, that is

Qρ,a,(pi) = (−a
p1−pN

p1 ρ
pN
p1 , ρ

pN
p1 a

p1−pN
p1 )× ...

× (−a
pN−1−pN

pN−1 ρ
pN

pN−1 , ρ
pN

pN−1a
pN−1−pN

pN−1 )× (−ρ, ρ)

=
N
∏

i=1

(−a
pi−pN

pi ρ
pN
pi , ρ

pN
pi a

pi−pN
pi ), (10)

for some a > 0. We have

|Qρ,a,(pi)| = 2a
p1−pN

p1 ρ
pN
p1 × ...× 2a

pN−1−pN
pN−1 ρ

pN
pN−1 × 2ρ

= 2Na
∑N

i=1
pi−pN

pi ρ
∑N

i=1
pN
pi = 2NaN−

NpN
p ρ

NpN
p , (11)

with p defined in (3).
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Remark 2.4. We note that if pi = p for any i, that is if we consider the
isotropic problem, Qρ,a,(pi) = QN

ρ , the usual cube in R
N defined in (9). More-

over Qρ,a(pi) ⊂ QN
ρ if, and only if,

a
pi−pN

pi ρ
pN
pi < ρ, ∀ i = 1, ..., N,

that is a > ρ.

We also denote

1

2
Qρ,a,(pi) =

N
∏

i=1

(

−
1

2
ρ

pN
pi a

pi−pN
pi ,

1

2
ρ

pN
pi a

pi−pN
pi

)

. (12)

3. Energy estimates

As it is well known, the building blocks of the method of intrinsic scaling are
a priori estimates for weak solutions. Once established the energy estimates
we can forget the equation and the problem becomes a problem in analysis.
So in this section we prove integral inequalities on the level sets that measure
the behavior of the weak solution near its infimum and its supremum in the
interior of an appropriate parallelepiped. Consider two cubes QN

ρ′ ⊂ QN
ρ ⊂ Ω

and let

ξ =
N
∏

i=1

ξpii , with 0 ≤ ξi = ξ(xi) ≤ 1, ∀ i = 1, ..., N,

be a nonnegative cutoff function, belonging to C1
0(Q

N
ρ ), that vanishes outside

of a set QN
ρ , is equal to unity in QN

ρ′ and

|ξ′i| ≤
C

ρ− ρ′
, ∀ i = 1, ..., N.

We also define

ξi =
N
∏

j=1,j 6=i

ξ
pj
j .

Proposition 3.1. Let u be the weak solution of problem (1) and k ∈ R.
There exists a constant C > 0 depending only on the data such that

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)−|
pj |ξ′j|

pjξj + |Bk,QN
ρ
|

]

. (13)
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Moreover for any i = 1, ..., N

∫

Ω

|∂i(u− k)−|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)−|
pj |ξ′j|

pjξj + |Bk,QN
ρ
|

]

, (14)

where Bk,QN
ρ
is defined in (7), QN

ρ in (9) and ξ as above.

Proof : We use, as a test function in (2), φ− = −(u− k)−ξ, where

(u− k)− = (k − u)+ = max{k − u, 0}.

We note that ∂iφ− = ξ∂i[−(u− k)−]− (u− k)−piξ
pi−1
i ξ′i ξi, so we get

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξ ≤ pN

N
∑

i=1

∫

Ω

|∂i(u− k)−|
pi−1|(u− k)−|ξ

pi−1
i |ξ′i|ξi

+

∫

Ω

|f ||(u− k)−|ξ.

We apply the ε-version of Young’s inequality to

|∂i(u− k)−|
pi−1|(u− k)−|ξ

pi−1
i |ξ′i|,

with pi and p′i, for any i = 1, ..., N ; we obtain

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξ ≤ Cε

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξpii ξi

+ C ′
ε

N
∑

i=1

∫

Ω

|(u− k)−|
pi|ξ′i|

piξi +

∫

Ω

|f ||(u− k)−|ξ.

Noting that ξpii ξi = ξ and choosing ε such that 1− Cε > 0, we arrive at

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξ ≤ C

N
∑

i=1

∫

Ω

|(u− k)−|
pi|ξ′i|

piξi + C

∫

Ω

|f ||(u− k)−|ξ.

We estimate the second term on the right hand side of the previous inequality
using Poincaré type inequality (5), with r = pi, the ε-version of Young’s
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inequality and the assumptions on f
∫

Ω

|f ||(u− k)−|ξ ≤ C ′
ε

N
∑

i=1

∫

B
k,QN

ρ

|f |p
′

i + C ′′
ε

N
∑

i=1

∫

Ω

|∂i((u− k)−ξ)|
pi

≤ C ′
ε

N
∑

i=1

‖f‖
p′i
L∞(Ω)|Bk,QN

ρ
|+ C ′′

ε

N
∑

i=1

∫

Ω

|∂i(u− k)−|
piξ

+ C ′′
ε

N
∑

i=1

∫

Ω

|(u− k)−|
pi|ξ′i|

piξi

where Bk,QN
ρ
is defined in (7). In conclusion, choosing ε conveniently, that

is such that 1− C
′′

ε > 0, we obtain (13); obviously also (14) follows, for any
i = 1, ..., N .

In a similar way it is also possible to prove the proposition below.

Proposition 3.2. Let u be the weak solution of problem (1) and k ∈ R.
There exists a constant C > 0 depending only on the data such that

N
∑

i=1

∫

Ω

|∂i(u− k)+|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)+|
pj |ξ′j|

pjξj + |Ak,QN
ρ
|

]

, (15)

Moreover for any i = 1, ..., N
∫

Ω

|∂i(u− k)+|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)+|
pj |ξ′j|

pjξj + |Ak,QN
ρ
|

]

, (16)

where Ak,QN
ρ
is defined in (6), QN

ρ in (9) and ξ as before.

Proof : We proceed as in the previous proposition but we use as a test function
in the weak formulation of (1), φ+ = (u−k)+ξ instead of φ− = −(u−k)−ξ.

4. Auxiliary lemmas

We consider 0 < ρ < 1, sufficiently small so that QN
ρ ⊂ Ω, and we define

the essential oscillation of the weak solution u in QN
ρ

ω = ess osc
QN

ρ

u = µ+ − µ−,

where
µ+ = ess sup

QN
ρ

u and µ− = ess inf
QN

ρ

u.
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Then, we construct the rescaled parallelepiped Qρ, ω

2λ
,(pi), defined in (10), with

a = ω/2λ, where λ > 1 is to be fixed later, depending only on the data (see
(29)). We assume, without loss of generality, that

ρ <
ω

2λ
. (17)

Instead, if this is not true, we have ω ≤ 2λρ and there is nothing to prove
because the oscillation is comparable to the ”radius”. Now (17) implies that

Qρ, ω

2λ
,(pi) ⊂ QN

ρ ,

see Remark 2.4, and the relation

ess osc
Qρ, ω

2λ
,(pi)

u ≤ ω,

which will be the starting point of an iteration process that leads to the main
result. We consider a subparallelepiped of Qρ, ω

2λ
,(pi), namely

Qρ,ω2 ,(pi)
⊂ Qρ, ω

2λ
,(pi) ⊂ QN

ρ ⊂ Ω.

The proof of the Hölder continuity of the weak solution u of (1) now follows
from the analysis of two complementary cases. For Qρ,ω2 ,(pi)

either
The First Alternative: there exists ν0 ∈ (0, 1) such that

∣

∣

∣

{

x ∈ Qρ,ω2 ,(pi)
: u(x) < µ− +

ω

2

}∣

∣

∣
≤ ν0|Qρ,ω2 ,(pi)

|, (18)

or this does not hold. Then for any ν ∈ (0, 1),
The Second Alternative holds:

∣

∣

∣

{

x ∈ Qρ,ω2 ,(pi)
: u(x) < µ− +

ω

2

}∣

∣

∣
> ν|Qρ,ω2 ,(pi)

|. (19)

Since µ+ − ω
2 = µ− + ω

2 , (19) is equivalent to
∣

∣

∣

{

x ∈ Qρ,ω2 ,(pi)
: u(x) ≥ µ+ −

ω

2

}∣

∣

∣
≤ (1− ν)|Qρ,ω2 ,(pi)

| = ν1|Qρ,ω2 ,(pi)
|, (20)

for any ν1 ∈ (0, 1).
Now we start the analysis assuming that (18) holds in Qρ,ω2 ,(pi)

for some
ν0 ∈ (0, 1), that will be determined depending only on the data, that is u is
essentially away from its infimum. We show that going down to a smaller
parallelepiped the oscillation decreases by a small factor that we can exhibit.
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Lemma 4.1. Assume (17) is in force. There exists a ν0 ∈ (0, 1) such that if
(18) holds, then

u(x) > µ− +
ω

4
, a.e. in Q ρ

2 ,
ω
2 ,(pi)

.

Proof : We consider a sequence of parallelepipeds Qh = Qρh,
ω
2 ,(pi)

where

ρh =
ρ

2
+

ρ

2h+1
, h = 0, 1, .... (21)

We note that Qh ⊂ Ω, for any h, since the sequence {ρh} is decreasing and

lim
h→∞

ρh =
ρ

2
< ρh ≤ ρ0 = ρ.

Let us also consider a sequence

kh = µ− +
ω

4
+

ω

2h+2
, h = 0, 1, ..., (22)

and cutoff functions, ξh, defined as followed

ξh =
N
∏

i=1

ξpih,i, with ξh,i = ξh(xi), ∀ i = 1, ..., N.

ξh ∈ C1
0(Qh) is a nonnegative function, 0 ≤ ξh,i ≤ 1, for any i = 1, ..., N , that

vanishes outside of the set Qh, is equal to unity in Qh+1 and

|ξ′h,i| ≤
2
(h+1)

pN
pi

ρ
pN
pi

(

ω
2

)

pi−pN
pi

, ∀ i = 1, ..., N. (23)

By the definitions of kh, the sets Bkh,Qh
and ξh, we have

( ω

2h+3

)p

|Bkh+1,Qh+1| = (kh − kh+1)
p|Bkh+1,Qh+1|

=

∫

Bkh+1,Qh+1

(kh − kh+1)
p ≤

∫

Bkh+1,Qh+1

(kh − u)p

≤

∫

Bkh,Qh+1

(kh − u)p ξph =

∫

Ω

(u− kh)
p
− ξph.

Now we use Hölder’s inequality with exponents N/(N − p) > 1 and N/p to
obtain

( ω

2h+3

)p

|Bkh+1,Qh+1
| ≤

(
∫

Ω

(u− kh)
p∗

− ξp
∗

h

)
N−p
N

|Bkh,Qh
|
p
N ,
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where p∗ is defined in (3). So, by the anisotropic Sobolev inequality (4), we
have

( ω

2h+3

)p

|Bkh+1,Qh+1
| ≤ C

{

N
∏

i=1

(
∫

Ω

|∂i[(u− kh)−ξh]|
pi

)
p

piN

}

|Bkh,Qh
|
p
N

≤ C

{

N
∏

i=1

(
∫

Ω

|∂i(u− kh)−|
piξh +

∫

Ω

(u− kh)
pi
−|ξ

′
h,i|

piξhi

)
p

piN

}

|Bkh,Qh
|
p
N ,

recalling that ξh,i ≤ 1, pi ≥ 2 for any i and

∂iξh,i = ξpi−1
h,i ξ′h,i ξhi.

Now we use (14) with k = kh and ξ = ξh to estimate the first terms of the
product in the right hand side of the previous inequality. We obtain

( ω

2h+3

)p

|Bkh+1,Qh+1
| ≤

≤ C







N
∏

i=1

[

N
∑

j=1

∫

Ω

(u− kh)
pj
− |ξ

′
h,j|

pjξhj + |Bkh,Qh
|

]

p
piN







|Bkh,Qh
|
p
N

= C

[

N
∑

j=1

∫

Ω

(u− kh)
pj
− |ξ

′
h,j|

pjξhj + |Bkh,Qh
|

]

|Bkh,Qh
|
p
N .

By (23), the definition of (u− kh)− and ξh we have

N
∑

j=1

∫

Ω

(u− kh)
pj
− |ξ

′
h,j|

pjξhj ≤
N
∑

j=1

∫

Bkh,Qh

(kh − u)pj |ξ′h,j|
pj

≤

N
∑

j=1

(ω

2

)pj C 2(h+1)pN

ρpN
(

ω
2

)pj−pN
|Bkh,Qh

|.

We note that
kh − u = µ− +

ω

4
+

ω

2h+2
− u ≤

ω

2
.

We arrive at
( ω

2h+3

)p

|Bkh+1,Qh+1
| ≤ C

[

(ω

2

)pN 2(h+1)pN

ρpN
+ 1

]

|Bkh,Qh
|1+

p
N

≤ C
2(h+2)pN

ρpN

(ω

2

)pN
|Bkh,Qh

|
p
N
+1,
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by the assumption (17). Simplifying

|Bkh+1,Qh+1
| ≤ C

2(h+3)(pN+p)

ρpN

(ω

2

)pN−p

|Bkh,Qh
|
p
N
+1.

Now we divide both terms of the previous inequality by

|Qh+1| = 2N
(ω

2

)N−
NpN

p

ρ
NpN

p

h+1 ,

defined in (11), to get

|Bkh+1,Qh+1
|

|Qh+1|
≤ C2(pN+p)h 1

ρpN
ρ

NpN
p (1+ p

N )
h

ρ
NpN

p

h+1

(

|Bkh,Qh
|

|Qh|

)1+ p
N

.

We note that, by (21),

1

ρpN
ρ

NpN
p (1+ p

N )
h

ρ
NpN

p

h+1

=
1

ρpN
ρ

NpN
p

+pN

ρ
NpN

p

(

1
2 +

1
2h+1

)

NpN
p

+pN

(

1
2 +

1
2h+2

)

NpN
p

≤ 2
NpN

p .

In conclusion, we arrive at the following inequality

|Bkh+1,Qh+1
|

|Qh+1|
≤ C 2h(pN+p)

(

|Bkh,Qh
|

|Qh|

)1+ p
N

,

where the constant C depends only upon the data. So we can use Lemma
2.3 if we define

yh =
|Bkh,Qh

|

|Qh|
, b = 2pN+p > 1 and ε =

p

N

and we have that if

y0 ≤ C−N
p 2

−(pN+p)N
2

p2 (24)

then yh → 0 as h → ∞. We observe, by (21) and (22), that

y0 =
|Bk0,Q0

|

|Q0|
=

|Bk,Qρ,ω2 ,(pi)
|

|Qρ,ω2 ,(pi)
|

Therefore, we can take

ν0 ≤ C−N
p 2

−(pN+p)N
2

p2

and so (24) is equivalent to the assumption (18). This complete the proof of
the Lemma.
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Now we prove another lemma, useful to prove the Hölder continuity of the
weak solution of problem (1). This lemma states that, if (18) does not hold,
then u is strictly below its supremum µ+ in a smaller parallelepiped.

Lemma 4.2. Assume (17) is in force. If (19), or equivalently (20) holds,
then there exists λ > 1, depending only on the data such that

u ≤ µ+ −
ω

2λ+1
, a.e. in

1

2
Q ρ

2 ,
ω

2λ
,(pi)

where 1
2 Q ρ

2 ,
ω

2λ
,(pi) is defined in (12).

Proof : We proceed as before. We consider a sequence

ρh =
ρ

2
+

ρ

2h+1
, h = 0, 1, 2, ....

and a sequence of parallelepipeds Qh =
1
2 Qρh,

ω

2λ
,(pi). Let us consider

kh = µ+ −
ω

2λ+1
−

ω

2λ+1+h
, h = 0, 1, ....

an increasing sequence, that is

k0 = µ+ −
ω

2λ
≤ kh < lim

h→+∞
kh = µ+ −

ω

2λ+1

and cutoff functions, ξh, defined as follows

ξh =
N
∏

i=1

ξpih,i, with ξh,i = ξh(xi) ∀ i = 1, ..., N,

ξh ∈ C1
0(Qh) is a nonnegative function, 0 ≤ ξh,i ≤ 1, for any i = 1, ..., N , that

vanishes outside of the set Qh, is equal to unity in Qh+1 and

|ξ′h,i| ≤
2
(h+3)

pN
pi

ρ
pN
pi

1
2

(

ω
2λ

)

pi−pN
pi

, ∀ i = 1, ..., N.

Using the same tools of the previous lemma, and (16) instead of (14), we
arrive at the following inequality

( ω

2λ+h+2

)p

|Akh+1,Qh+1
| ≤ C

[

N
∑

j=1

∫

Ω

(u− kh)
pj
+ |ξ

′
h,j|

pjξhj + |Akh,Qh
|

]

|Akh,Qh
|
p
N .

We note that
u− kh = u− µ+ +

ω

2λ+1
+

ω

2λ+1+h
≤

ω

2λ
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and by the choice of ξh and (17) we obtain

( ω

2λ+h+2

)p

|Akh+1,Qh+1
| ≤ C

( ω

2λ

)pN 2pN(h+4)

ρpN
|Akh,Qh

|1+
p
N ,

and so

|Akh+1,Qh+1
|

|Qh+1|
≤ C2h(pN+p)

(

|Akh,Qh
|

|Qh|

)1+ p
N

.

So we can use Lemma 2.3 if we define

yh =
|Akh,Qh

|

|Qh|
, b = 2pN+p > 1 and ε =

p

N

and we have that if

y0 ≤ C−N
p 2

−(pN+p)N
2

p2 := ν∗ (25)

then yh → 0 as h → ∞. We observe, by the definition of {ρh} and {kh}, that

y0 =
|Ak0,Q0

|

|Q0|
=

∣

∣

∣

∣

Ak, 12 Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

∣

∣

∣

1
2 Qρ, ω

2λ
,(pi)

∣

∣

∣

.

So if we show that
∣

∣

∣

∣

{

x ∈
1

2
Qρ, ω

2λ
,(pi) : u > µ+ −

ω

2λ

}∣

∣

∣

∣

≤ ν∗

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

, (26)

for some λ > 1, depending only on the data, the lemma is proved.
We use (16) with

ξ =

N
∏

i=1

ξpii , ξi = ξ(xi), 0 ≤ ξi ≤ 1, ∀ i = 1, ..., N,

ξ ∈ C1
0(Q2ρ, ω

2λ
,(pi)) vanishes outside of the set Q2ρ, ω

2λ
,(pi) and is equal to unity

in 1
2 Qρ, ω

2λ
,(pi),

|ξ′i| ≤
2

(

ω
2λ

)

pi−pN
pi ρ

pN
pi

, ∀ i = 1, ..., N,

and

k = µ+ −
ω

2s
.
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We have
∫

A
k, 12 Q

ρ, ω

2λ
,(pi)

|∂iu|
pi ≤ C

{

N
∑

i=1

∫

Ω

(u− k)pi+|ξ
′
i|
piξi + |Ak,Q2ρ, ω

2λ
,(pi)

|

}

≤ C

{

N
∑

i=1

(ω

2s

)pi ( ω

2λ

)pN−pi 2pN

ρpN
+ 1

}

|Ak,Q2ρ, ω

2λ
,(pi)

|

≤ C
(ω

2s

)pN 2pN

ρpN
|Ak,Q2ρ, ω

2λ
,(pi)

|, (27)

for all i = 1, ..., N and for any s ≤ λ, by the fact that

u− k = u− µ+ +
ω

2s
<

ω

2s

1

2s
≥

1

2λ
and

ω

2sρ
> 1,

since s ≤ λ and (17) holds. Now we apply Lemma 2.1 to the one variable
function u(x1, ..., xN−1, ·) for the levels

k = µ+ −
ω

2s
and l = µ+ −

ω

2s+1
,

and Al,Q1
ρ
2

, Bk,Q1
ρ
2

, Ak,Q1
ρ
2

∩Bl,Q1
ρ
2

, subsets of R, defined respectively in (6), (7)

and (8), with

Q1
ρ
2
=
(

−
ρ

2
,
ρ

2

)

.

and

−
1

2
ρ

pN
pi

( ω

2λ

)

pi−pN
pi ≤ xi ≤

1

2
ρ

pN
pi

( ω

2λ

)

pi−pN
pi , ∀ i = 1, ..., N − 1.

So we obtain

ω

2s+1
|Al,Q1

ρ
2

| ≤ C
ρ2

|Bk,Q1
ρ
2

|

∫

A
k,Q1

ρ
2

∩B
l,Q1

ρ
2

|∂Nu|dxN .

We can suppose that

|Bk,Q1
ρ
2

| ≥
1

2
|Q1

ρ
2
| =

ρ

2
.

In fact, if this is not true,

|Bk,Q1
ρ
2

| <
ρ

2
⇒ |Ak,Q1

ρ
2

| >
ρ

2
, (28)
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where A = A ∪ ∂A, for some set A. Let ai = ρpN/pi(ω/2)(pi−pN)/pi for any
i = 1, ..., N , then

∣

∣

∣

{

x ∈ Qρ,ω2 ,(pi)
: u(x) ≥ µ+ −

ω

2

}∣

∣

∣
=

∫ a1

−a1

dx1

∫ a2

−a2

dx2...

...

∫ aN−1

−aN−1

∣

∣

∣

{

xN ∈ (−ρ, ρ) : u(x1, ..., xN) ≥ µ+ −
ω

2

}∣

∣

∣
dxN−1

≥

∫ a1

−a1

dx1...

∫ aN−1

−aN−1

∣

∣

∣

{

xN ∈ (−ρ, ρ) : u(x) ≥ µ+ −
ω

2s

}∣

∣

∣
dxN−1

≥

∫ a1

−a1

dx1...

∫ aN−1

−aN1

∣

∣

∣

{

xN ∈
(

−
ρ

2
,
ρ

2

)

: u(x) ≥ µ+ −
ω

2s

}∣

∣

∣
dxN−1

since

µ+ −
ω

2
≤ µ+ −

ω

2s
if s ≥ 1 and

ρ

2
< ρ.

So, using (28), we arrive at
∣

∣

∣

{

x ∈ Qρ,ω2 ,(pi)
: u(x) ≥ µ+ −

ω

2

}∣

∣

∣
≥

1

4
|Qρ,ω2 ,(pi)

|

and this inequality contradicts the second alternative (20). Hence we obtain

ω

2s+1
|Al,Q1

ρ
2

| ≤ Cρ

∫

A
k,Q1

ρ
2

∩B
l,Q1

ρ
2

|∂Nu|dxN .

Integrating over x1, ..., xN−1 the previous inequality, we arrive at

ω

2s+1
|Al, 12Qρ, ω

2λ
(pi)

| ≤ Cρ

∫

A
k, 12Qρ, ω

2λ
,(pi)

∩B
l, 12Qρ, ω

2λ
,(pi)

|∂Nu|dx.

By Hölder’s inequality with exponents pN and p′N , we get

ω

2s+1
|Al, 12Qρ, ω

2λ
,(pi)

| ≤

≤ Cρ







∫

A
k, 12Qρ, ω

2λ
,(pi)

∩B
l, 12Qρ, ω

2λ
,(pi)

|∂Nu|
pN







1
pN

|Ak, 12Qρ, ω

2λ
,(pi)

∩ Bl, 12Qρ, ω

2λ
,(pi)

|
1− 1

pN
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≤ Cρ







∫

A
k, 12Qρ ω

2λ
,(pi)

|∂Nu|
pN







1
pN

|Ak, 12Qρ, ω

2λ
,(pi)

∩Bl, 12Qρ, ω

2λ
,(pi)

|
1− 1

pN .

Now we use inequality (27), with i = N , and arrive at

ω

2s+1
|Al, 12Qρ, ω

2λ
,(pi)

| ≤ Cρ
2ω

2sρ
|Ak,Q2ρ, ω

2λ
,(pi)

|
1

pN |Ak, 12Qρ, ω

2λ
,(pi)

∩Bl, 12Qρ, ω

2λ
,(pi)

|
1− 1

pN

and so

|Al, 12Qρ, ω

2λ
,(pi)

| ≤ C|Ak, 12Qρ, ω

2λ
,(pi)

∩Bl, 12Qρ, ω

2λ
,(pi)

|
1− 1

pN

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

1
pN

,

using the facts that

|Ak,Q2ρ, ω

2λ
,(pi)

| ≤ |Q2ρ, ω

2λ
,(pi)| and |Q2ρ, ω

2λ
,(pi)|

1
pN = 2

N
(

1
pN

+ 1
p

)

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

1
pN

.

On the left hand side we replace |Aµ+−
ω

2s+1 ,
1
2Qρ, ω

2λ
,(pi)

| by the smaller quantity

|Aµ+−
ω

2λ
, 12Qρ, ω

2λ
,(pi)

|, taking 1 ≤ s ≤ λ− 1 and so λ ≥ 2, to obtain

|Aµ+−
ω

2λ
, 12Qρ, ω

2λ
,(pi)

|
pN

pN−1 ≤ C

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

1
pN−1

|Ak, 12Qρ, ω

2λ
,(pi)

∩Bl, 12Qρ, ω

2λ
,(pi)

|,

for s = 1, ..., λ− 1. Let us sum with respect to s and replace the right side
of the resulting inequality by the larger quantity |12Qρ, ω

2λ
,(pi)|, to get

(λ− 1)|Aµ+−
ω

2λ
, 12Qρ, ω

2λ
,(pi)

|
pN

pN−1 ≤ C

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

pN
pN−1

⇓

|Aµ+−
ω

2λ
, 12Qρ, ω

2λ
,(pi)

| ≤

(

C

λ− 1

)

pN−1

pN

∣

∣

∣

∣

1

2
Qρ, ω

2λ
,(pi)

∣

∣

∣

∣

.

We obtain (26) if λ is chosen so large that

(

C

λ− 1

)

pN−1

pN

≤ ν∗ and λ ≥ 2, (29)

where ν∗ defined in (25). This conclude the proof of (26) and so that of the
lemma.
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5. Recursive argument, main theorem and final remarks

Before proving the Hölder continuity of the weak solution of the problem
(1), we present two corollaries of the previous lemmas.

Corollary 5.1. If the First Alternative (18) is true and (17) is in force, then
there exists a constant σ0 ∈ (0, 1) such that

ess osc
Q ρ

4 , ω2 ,(pi)

u ≤ σ0ω.

Proof : By Lemma 4.1, we have

ess inf
Q ρ

2 , ω2 ,(pi)

u ≥ µ− +
ω

4

and so
ess inf
Q ρ

4 ,
ω
2 ,(pi)

u ≥ µ− +
ω

4
,

since
Q ρ

4 ,
ω
2 ,(pi)

⊂ Q ρ
2 ,

ω
2 ,(pi)

.

Hence

ess osc
Q ρ

4 , ω2 ,(pi)

u = ess sup
Q ρ

4 , ω2 ,(pi)

u− ess inf
Q ρ

4 , ω2 ,(pi)

u ≤ µ+ − µ− −
ω

4
=

3

4
ω.

Corollary 5.2. If the Second Alternative (19) holds and (17) is in force,
there exists a constant σ1 ∈ (0, 1), depending only on the data, such that

ess osc
1
2Qρ, ω

2λ
,(pi)

u ≤ σ1ω.

Proof : By Lemma 4.2, there exists λ > 1 such that

u ≤ µ+ −
ω

2λ+1
, a.e. in

1

2
Qρ, ω

2λ
,(pi).

Then
ess sup
1
2Qρ, ω

2λ
,(pi)

u ≤ µ+ −
ω

2λ+1
,

and so

ess osc
1
2Qρ, ω

2λ
,(pi)

u = ess sup
1
2Qρ, ω

2λ
,(pi)

u− ess inf
1
2Qρ, ω

2λ
,(pi)

u ≤ µ+ − µ− −
ω

2λ+1
=

(

1−
1

2λ+1

)

ω.
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We finally prove the Hölder continuity of weak solutions of problem (1)
through an iterative scheme. An immediate consequence of Corollaries 5.1
and 5.2 is the following

Proposition 5.3. There exists a constant σ ∈ (0, 1), that depends only on
the data, such that

ess osc
Q ρ

4 ,
ω
2 ,(pi)

u ≤ σω.

Proof : We note that

Q ρ
4 ,

ω
2 ,(pi)

⊆
1

2
Qρ, ω

2λ
,(pi)

and then
ess osc
Q ρ

4 ,
ω
2 ,(pi)

u ≤ σω,

where σ = max{σ0, σ1}.

Proposition 5.4. There exists a positive constant C, depending only on the
data, such that, defining the sequences

ρh = C−hρ and ωh = σhω, h = 0, 1, 2, ...,

where σ ∈ (0, 1) is given by the previous proposition, and constructing the
family of parallelepipedes Qh = Qρh,

ωh
2λ

,(pi)
, where λ > 1 is given in (29), we

have
Qh+1 ⊂ Qh and ess osc

Qh

u ≤ ωh, for all h = 0, 1, 2, ...

Proof : The starting relation

ess osc
Q0

u ≤ ω (30)

holds, since we are assuming (17). We find, for any i = 1, ..., N ,

(ω

2

)

pi−pN
pi

(ρ

4

)

pN
pi =

(ω

2

)

pi−pN
pi

(

2λ

ω1

)

pi−pN
pi
(ω1

2λ

)

pi−pN
pi ρ

pN
pi

4
pN
pi

=

(

ω

ω1

)

pi−pN
pi

(

2λ

2

)

pi−pN
pi
(ω1

2λ

)

pi−pN
pi ρ

pN
pi

4
pN
pi

= σ
pN−pi

pi 2(λ−1)
pi−pN

pi
−

2pN
pi

(ω1

2λ

)

pi−pN
pi ρ

pN
pi

=
(ω1

2λ

)

pi−pN
pi ρ

pN
pi

1 ,
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where

ρ1 = σ
pN−pi
pN 2

(λ−1)
pi−pN
pN

−2
ρ = C−1ρ,

C > 4. So Q1 ⊂ Q ρ
4 ,

ω
2 ,(pi)

. From Proposition 5.3, we conclude that

ess osc
Q1

u ≤ ess osc
Q ρ

4 ,
ω
2 ,(pi)

≤ σω = ω1,

which puts us back to the setting of (30). The entire process can now be
repeated inductively starting from Q1.

Lemma 5.5. There exist constants γ > 1 and α ∈ (0, 1), that can be deter-
mined a priori in terms of the data, such that, for all parallelepipeds

Qρ, ω

2λ
,(pi), with 0 < ρ ≤ ρ0,

we have

ess osc
Qρ, ω

2λ
,(pi)

u ≤ γ ω

(

ρ

ρ0

)α

.

Proof : See, for example, Lemma 4.9 of [29] (p. 45).

Now we have all the tools to prove the main result of this paper, namely
Theorem 1.1; for more details, see Theorem 4.10 of [29] (p. 46).

Remark 5.6. If we consider the isotropic case, that is all the pi’s are equal
to 2 (or, more generally all are equal to p), we essentially recover the now
classical proof of Hölder continuity of weak solutions for elliptic equations,
presented in [15].

Remark 5.7. We want also to underline that the result presented in this
work also holds for more general datum f . As we expect by the isotropic
case, Theorem 1.1 is also true if we suppose that f ∈ Lm(Ω), with m > N/p.
As a matter of fact if f belongs to Lm(Ω) with m > N/p it is known that
weak solutions of (1) are bounded (see [8] and [27]). We present the result
in the case of f bounded only for simplicity. To be complete, we want to
note that, in this general case, to prove the same result we have to slightly
change the proofs. For f in Lm(Ω), it is possible to prove the following energy
estimates, where the hypothesis m > N/p is necessary:

∫

Ω

|∂i(u− k)−|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)−|
pj |ξ′j|

pjξj + |Bk,QN
ρ
|1−

1
m

]

,
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∫

Ω

|∂i(u− k)+|
piξ ≤ C

[

N
∑

j=1

∫

Ω

|(u− k)+|
pj |ξ′j|

pjξj + |Ak,QN
ρ
|1−

1
m

]

,

for any i = 1, ..., N , instead of (14) and (16). Moreover we have to substitute
the assumption (17) with the following

ω

2λ
> ρ1−

N
mp .

But this fact does not substantially change the proofs. In fact, if it is not
true we always have that the oscillation of u is comparable to the ”radius” of
the set that we are considering and so there is nothing to prove. Moreover,
by the assumption on m, we also have

ω

2λ
> ρ

and it ensures that

Qρ, ω

2λ
,(pi) ⊂ QN

ρ ,

and the starting point of the iteration process that leads to the main result
is satisfied.
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