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1. Introduction
Recently, so-called alpha-models of fluid mechanics have attracted atten-

tion of many researchers, see e.g. [2, 7, 8, 14, 15, 18, 19, 20, 21, 23, 26, 37]
and references therein. These models turned out to be rather ubiquitous,
being relevant in such issues as turbulence and large eddy simulations, and,
on the other hand, being related to the second grade fluids.

In this work, we study the initial boundary value problem for the corota-
tional Maxwell-alpha viscoelastic fluid flow:

∂v

∂t
+

n∑
i=1

ui
∂v

∂xi
+

n∑
i=1

vi∇ui +∇p = Div σ, (1.1)

σ + λ

(
∂σ

∂t
+

n∑
i=1

ui
∂σ

∂xi
+ σW −Wσ

)
= 2ηE , (1.2)

v = u− α2∆u, (1.3)

div u = 0, (1.4)

u
∣∣∣
∂Ω

= 0, (1.5)

u|t=0 = a, σ|t=0 = σ0. (1.6)
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2 D.VOROTNIKOV

Here, Ω is a domain in the space Rn, n = 2, 3, u is an unknown velocity
vector, p is an unknown modified pressure, σ is an unknown deviatoric stress
tensor, v is an auxiliary variable (all of them depend on points x in the
domain Ω, and on time t);

E = E(u) = (Eij(u)), Eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

is the strain velocity tensor,

W = W (u) = (Wij(u)), Wij(u) =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
,

is the vorticity tensor, η > 0 is the Maxwellian viscosity of the fluid, λ > 0 is
the relaxation time, α > 0 is a scalar parameter, a and σ0 are given functions.
The external force is, for simplicity, assumed to be zero.

Equation (1.1) is the Lagrangian averaged (Euler-alpha-like) Cauchy’s equa-
tion of motion, (1.2) is the corotational Maxwell constitutive law [22], (1.4)
is the equation of continuity, and (1.5) is the no-slip condition. When α = 0,
(1.1) – (1.6) becomes the initial-boundary value problem for the equations of
motion for the corotational Maxwell viscoelastic fluid [17, 22, 30, 44]. Thus,
(1.1) – (1.6) can be considered as an appropriate α-model for the corotational
Maxwell fluid.

In the particular case η = 0 and σ0 = 0, we recover the Dirichlet problem
for the celebrated Euler-α model:

∂v

∂t
+

n∑
i=1

ui
∂v

∂xi
+

n∑
i=1

vi∇ui +∇p = 0, (1.7)

v = u− α2∆u, (1.8)

div u = 0, (1.9)

u
∣∣∣
∂Ω

= 0, (1.10)

u|t=0 = a, σ|t=0 = σ0. (1.11)

The Euler-alpha (also known as Lagrangian averaged Euler and inviscid
Camassa-Holm) equations were introduced and derived in [19, 20]. They
are well-posed on small time intervals [18, 37, 26]. However, neither strong
nor weak general global solvability result has been known for the three-
dimensional domains. A sort of a Beale-Kato-Majda criterion for these
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equations was proposed in [21]. Some reviews of mathematical results on
the Euler-α model and many references may be found in [2, 7, 14, 23].

The Maxwell model is one of the basic and classical models of a viscoelas-
tic material. Its mechanical analogy is comprised of a spring and a dash-
pot connected in series [30]. The multidimensional Maxwell models generate
complicated systems of PDEs due the frame-indifference restrictions and con-
secutive involvement of objective derivatives [22, 44]. The simplest objective
derivative is the corotational (Jaumann) one, in the incompressible case its
use yields (1.1)–(1.4) with α = 0.

Very few mathematical results are known for the corotational Maxwell fluid
equations (see [17, 33, 32]). In particular, there is no global solvability the-
orem, even in 2D. Moreover, there are evidences of non-existence of smooth
solutions [32, 17]. Let us also mention paper [35] with some numerical issues
regarding the corotational Maxwell fluid.

In these circumstances, if we want the problem to be solvable globally, a
possible way out is to consider a kind of a generalized solution different from
the standard hydrodynamical weak solution framework. We are going to use
the concept of dissipative solution due to P.-L. Lions. It was suggested in [25]
for the Euler equations of ideal fluid flow, which are still not proven to have
global weak solvability. Some properties of these solutions are discussed in [3,
34]. Later, existence of dissipative solutions was established for Boltzmann’s
equation [24] (see also [16]) and for viscoelastic diffusion equations [43].

The notion of dissipative solution plays a key role in the problem of tran-
sition from kinetic theory to hydrodynamics. In the Euler hydrodynamic
limit, the renormalized solutions of Boltzmann’s equation tend to dissipative
solutions of Euler’s one [4, 34, 40]. Other issues concerning relevance of dis-
sipative solutions for the Euler equations and relation of this concept to the
weak and measure-valued solutions may be encountered in [5, 9].

In math literature, the expression ”dissipative solution” has various mean-
ings. In particular, the notion that we use differs from the ones from [6, 10,
27, 28, 29].

The objective of our paper is to introduce dissipative solutions for the
corotational Maxwell-alpha problem (1.1) – (1.6), and to show their existence
and basic properties. These solutions are always global in time. In the
appendix to the paper, we present the skeleton of the idea of dissipative
solution via considering it in an abstract Hilbert space setting.
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Throughout the paper, for definiteness, we assume η > 0. However, the
results remain valid in the Euler-alpha case, and the proofs are similar but
simplified (see also Remark 2.1).

Our approach is not directly applicable to the corotational Maxwell fluid
(α = 0), but it allows us to construct some ”ultra-generalized” solutions for
that model (see Remark 3.3).

The paper is organized in the following way. The next section contains
preliminary material which is required for the formulation of the main result
(Theorem 2.1). The proof of the theorem is provided in the third section,
which also contains some discussion of related open problems. The appendix
with a general explanatory approach to dissipative solutions is rather an
illustration than a collection of results, therefore its framework is not general
enough to encompass the Maxwell-alpha or Euler equations.

2. Preliminaries, notation and the main result
By Rn×n, we denote the space of n × n-matrices with the following scalar

product: for A = (Aij), B = (Bij),

A : B =
n∑

i,j=1

AijBij,

and let Rn×n
S be its subspace of symmetric matrices.

Below in the paper, Ω is considered to be a domain (i.e. an open set in
Rn, n = 2, 3) possessing the cone property [1]. We use the standard notations

Lp(Ω, F ), W β
p (Ω, F ), Hβ(Ω, F ) = W β

2 (Ω, F ), Hβ
0 (Ω, F ) =

◦
W

β
2 (Ω, F ) (β > 0)

for the Lebesgue and Sobolev spaces of functions with values in a finite-
dimensional space F . In this notation, sometimes we only keep the function
space symbol and omit Ω and F , especially when F = Rn×n

S .
The Euclidean norm in finite-dimensional spaces F is denoted as | · |. The

symbol ‖ · ‖ will stand for the Euclidean norm in L2(Ω, F ), and ‖ · ‖β will
stand for the same thing in Hβ(Ω, F ). The corresponding scalar products
are denoted (·, ·) and (·, ·)β, resp.

Let V be the set of smooth, divergence-free, compactly supported in Ω
functions with values in Rn. The symbols H and V denote the closures of V
in L2 and H1, resp. We also use the spaces Vi = V ∩H i, i = 2, 3, with the
scalar product inherited from H i.
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There exists a continuous Leray projection

P : L2(Ω,R3)→ H.

Let us introduce the operator

∆α = I − α2∆,

where α is the same as in (1.3), and I is the identity map.
In the space V , along with the scalar product (·, ·)1, we use another one

(u, v)V = (u, v) + (α∇u, α∇v),

and the corresponding Euclidean norm ‖ · ‖V . Let us mention the inequality

‖u‖1 ≤ max{1, 1/α}‖u‖V .

We recall the following abstract observation [39, 44]. Assume that we have
two Hilbert spaces, X ⊂ Y, with continuous embedding operator i : X → Y ,
and i(X) is dense in Y . The adjoint operator i∗ : Y ∗ → X∗ is continuous
and, since i(X) is dense in Y , one-to-one. Since i is one-to-one, i∗(Y ∗) is
dense in X∗, and one may identify Y ∗ with a dense subspace of X∗. Due
to the Riesz representation theorem, one may also identify Y with Y ∗. We
arrive at the chain of inclusions:

X ⊂ Y ≡ Y ∗ ⊂ X∗. (2.1)

Both embeddings here are dense and continuous. Observe that in this situa-
tion, for f ∈ Y, u ∈ X, their scalar product in Y coincides with the value of
the functional f from X∗ on the element u ∈ X:

(f, u)Y = 〈f, u〉. (2.2)

Such triples (X, Y,X∗) are called Lions triples.
We use the Lions triples (V3, V, V

∗
3 ) and (H2, L2, H

−2
N ). In the first triple,

the structure on V is determined by the scalar product (·, ·)V . In the sec-
ond one, we write H−2

N for (H2)∗ due to relation of this space to Neumann
boundary value problems [42].

The symbols C(J ;E), Cw(J ;E), L2(J ;E) etc. denote the spaces of
continuous, weakly continuous, quadratically integrable etc. functions on
an interval J ⊂ R with values in a Banach space E. We recall that a func-
tion u : J → E is weakly continuous if for any linear continuous functional
g on E the function g(u(·)) : J → R is continuous.
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We require the following spaces

W1 = W1(Ω, T ) = {τ ∈ L2(0, T ;V3), τ
′ ∈ L2(0, T ;V ∗3 )},

‖τ‖W1
= ‖τ‖L2(0,T ;V3) + ‖τ ′‖L2(0,T ;V ∗3 ),

W2 = W2(Ω, T )

= {τ ∈ L2(0, T ;H2(Ω,Rn×n
S )), τ ′ ∈ L2(0, T ;H−2

N (Ω,Rn×n
S ))},

‖τ‖W2
= ‖τ‖L2(0,T ;H2) + ‖τ ′‖L2(0,T ;H−2N ).

Note that
W1 ⊂ C([0, T ];V ), W2 ⊂ C([0, T ];L2),

d

dt
(u, u)V = 2 〈u′, u〉 , u ∈ W1, (2.3)

d

dt
(u, u) = 2 〈u′, u〉 , u ∈ W2, (2.4)

and
d

dt
(u, φ)V = 〈u′, φ〉 , u ∈ W1, φ ∈ V3. (2.5)

d

dt
(u, φ) = 〈u′, φ〉 , u ∈ W2, φ ∈ H2, (2.6)

these facts are consequences of e.g. [44, Lemmas 2.2.7 and 2.2.8] and formula
(2.2) above.

Let us introduce the operators

A3 : W1 → V ∗3 , 〈A3u, ϕ〉 = (u, ϕ)3,

and
A2 : W2 → H−2

N , 〈A2σ,Φ〉 = (σ,Φ)2,

where ϕ and Φ are arbitrary elements of V3 and H2, resp.
Finally, consider the following formal expressions, where w and τ are

vector- and matrix-valued functions of time, resp., and δ is a positive number:

E1(w, τ)

= −∂∆αw

∂t
− P

n∑
i=1

wi
∂∆αw

∂xi
− P

n∑
i=1

(∆αw)i∇wi + PDiv τ, (2.7)

E2(w, τ)

= −τ
λ
− ∂τ

∂t
−

n∑
i=1

wi
∂τ

∂xi
− τW (w) +W (w)τ + 2µE(w). (2.8)

E1(w, τ, δ)
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= −∂∆αw

∂t
− δP

n∑
i=1

wi
∂∆αw

∂xi
− δP

n∑
i=1

(∆αw)i∇wi + δPDiv τ, (2.9)

E2(w, τ, δ)

= −δτ
λ
− ∂τ

∂t
− δ

n∑
i=1

wi
∂τ

∂xi
− δτW (w) + δW (w)τ + 2δµE(w). (2.10)

The symbol C will stand for a generic positive constant that can take
different values in different lines. We shall sometimes write CΩ to specify
that the constant depends on the domain Ω only.

Let us recall the well-known inequalities

‖uv‖ ≤ CΩ‖u‖2‖v‖, u ∈ H2, v ∈ L2, (2.11)

‖uv‖ ≤ CΩ‖u‖1‖v‖1, u, v ∈ H1 (2.12)

(see e.g. [44, Corollary 2.1.1]).
The following Gronwall-like lemma will be useful.

Lemma 2.1. ([43, Lemma 3.1]) Let f, χ, L,M : [0, T ] → R be scalar func-
tions, χ, L,M ∈ L1(0, T ), and f ∈ W 1

1 (0, T ) (i.e. f is absolutely continuous).
If

χ(t) ≥ 0, L(t) ≥ 0 (2.13)

and

f ′(t) + χ(t) ≤ L(t)f(t) +M(t) (2.14)

for a.a. t ∈ (0, T ), then

f(t) +

t∫
0

χ(s) ds ≤

exp

 t∫
0

L(s)ds

f(0) +

t∫
0

exp

 0∫
s

L(ξ)dξ

M(s) ds

 (2.15)

for all t ∈ [0, T ].

Let µ = η/λ. Now we can give
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Definition 2.1. Let a ∈ V , σ0 ∈ L2(Ω,Rn×n
S ). A pair of functions (u, σ)

from the class

u ∈ Cw([0,∞);V ), σ ∈ Cw([0,∞);L2(Ω,Rn×n
S )), (2.16)

is called a dissipative solution to problem (1.1) – (1.6) if, for all test func-
tions ζ ∈ C1([0,∞);V3), θ ∈ C1([0,∞);H2(Ω,Rn×n

S )) and all non-negative
moments of time t, one has

2µ‖u(t)− ζ(t)‖2
V + ‖σ(t)− θ(t)‖2

≤ exp

 t∫
0

Γ(s)ds

{2µ‖a− ζ(0)‖2
V + ‖σ0 − θ(0)‖2

+

t∫
0

exp

 0∫
s

Γ(ξ)dξ

[4µ(E1(ζ, θ)(s), u(s)− ζ(s)
)

+2
(
E2(ζ, θ)(s), σ(s)− θ(s)

)]
ds
}

(2.17)

where

Γ(t) = γmax{1, 1/α2}

×
(
‖∆αζ(t)‖1 + ‖ζ(t)‖1 + α2‖ζ(t)‖3 +

(1 + µ)‖θ(t)‖2

µ

)
, (2.18)

and γ is a certain constant depending only on the properties of the domain
Ω.

Observe that the dissipative solutions satisfy the initial condition (1.6).
Indeed, at t = 0, inequality (2.17) becomes

2µ‖u(0)− ζ(0)‖2
V + ‖σ(0)− θ(0)‖2 ≤ 2µ‖a− ζ(0)‖2

V + ‖σ0 − θ(0)‖2 (2.19)

This easily yields (1.6) (see a similar reasoning below, in the proof of Propo-
sition 4.1).

Moreover, these solutions obey the following ”dissipative” estimate

2µ‖u(t)‖2
V + ‖σ(t)‖2 ≤ 2µ‖u(0)‖2

V + ‖σ(0)‖2, ∀t > 0. (2.20)

It follows from (1.6) and (2.17) with identically zero ζ and θ.
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Remark 2.1. In the Euler-alpha case, the definition is much simpler: a
function u ∈ Cw([0,∞);V ) is called a dissipative solution to problem (1.7)
– (1.11) if, for all test functions ζ ∈ C1([0,∞);V3), and all non-negative
moments of time t, one has

‖u(t)− ζ(t)‖2
V ≤ exp

 t∫
0

Γ(s)ds

{‖a− ζ(0)‖2
V

+2

t∫
0

exp

 0∫
s

Γ(ξ)dξ

(E1(ζ, 0)(s), u(s)− ζ(s)
)
ds
}

(2.21)

where

Γ(t) = γmax{1, 1/α2}
(
‖∆αζ(t)‖1 + ‖ζ(t)‖1 + α2‖ζ(t)‖3

)
,

and γ is a certain constant depending only on Ω. Obviously, (2.20) becomes

‖u(t)‖2
V ≤ ‖u(0)‖2

V , ∀t > 0. (2.22)

Our main result provides existence of dissipative solutions and their relation
with the strong ones:

Theorem 2.1. Let Ω be a bounded domain having the cone property. a)
Given a ∈ V , σ0 ∈ L2, there is a dissipative solution to problem (1.1) –
(1.6).

b) If, for some a ∈ V , σ0 ∈ L2, there exist T > 0 and a strong solution
(uT , σT ) ∈ C1([0, T ];V3) × C1([0, T ];H2) to problem (1.1) – (1.6), then the
restriction of any dissipative solution (with the same initial data) to [0, T ]
coincides with (uT , σT ).

c) Every strong solution (u, σ) ∈ C1([0,∞);V3)×C1([0,∞);H2) is a (unique)
dissipative solution.

3. A regularization and passage to the limit
In order to prove Theorem 2.1 via approximation, we consider the following

auxiliary problem:

∂v

∂t
+ δ

n∑
i=1

ui
∂v

∂xi
+ δ

n∑
i=1

vi∇ui +∇p+ εA3u = δDiv σ, (3.1)
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δσ + λ

(
∂σ

∂t
+ δ

n∑
i=1

ui
∂σ

∂xi
+ δσW − δWσ + εA2σ

)
= 2δηE , (3.2)

v = ∆αu, (3.3)

div u = 0, (3.4)

u
∣∣∣
∂Ω

= 0, (3.5)

u|t=0 = δa, σ|t=0 = δσ0. (3.6)

Here, ε > 0 and 0 ≤ δ ≤ 1 are parameters. We keep assuming a ∈ V,
σ0 ∈ L2.

The weak formulation of (3.1) – (3.6) is as follows.

Definition 3.1. A pair of functions (u, σ) from the class

u ∈ W1, σ ∈ W2 (3.7)

is a weak solution to problem (3.1) – (3.6) if the equalities

d

dt
(u, ϕ)V − δ

n∑
i=1

(uiv,
∂ϕ

∂xi
) + δ

n∑
i=1

(vi∇ui, ϕ)

+ε(u, ϕ)3 + δ(σ,∇ϕ) = 0, (3.8)

and

d

dt
(σ,Φ) +

δ

λ
(σ,Φ)− δ

n∑
i=1

(uiσ,
∂Φ

∂xi
)

+δ(σW −Wσ,Φ) + ε(σ,Φ)2 = 2δµ(∇u,Φ). (3.9)

are satisfied for all ϕ ∈ V3, Φ ∈ H2(Ω,Rn×n
S ) a.e. in (0, T ), and (3.3) and

(3.6) hold.

Remark 3.1. This notion of weak solution can be derived in a standard
framework of multiplying by a test function, integrating by parts and using
formula (2.6) (see e.g. [39] concerning the Navier-Stokes system, see also
[44, Section 6.1.1] for general remarks about weak formulation of equations).
Note that formula (2.5) should not be exploited on this stage.
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Lemma 3.1. Let Ω be any domain having the cone property. Let u, σ be
a weak solution to problem (3.1) – (3.6). Then, for all ζ ∈ C1([0,∞);V3),
θ ∈ C1([0,∞);H2) and 0 ≤ t ≤ T , one has

2µ‖u(t)− ζ(t)‖2
V + ‖σ(t)− θ(t)‖2

+2ε

t∫
0

(2µ‖u(s)− ζ(s)‖2
3 + ‖σ(s)− θ(s)‖2

2) ds

≤ exp

 t∫
0

δΓ(s)ds

{2µ‖δa− ζ(0)‖2
V + ‖δσ0 − θ(0)‖2

+

t∫
0

exp

 0∫
s

δΓ(ξ)dξ

[4µ(E1(ζ, θ, δ)(s), u(s)− ζ(s)
)

+2
(
E2(ζ, θ, δ)(s), σ(s)− θ(s)

)
− 4µε(ζ(s), u(s)− ζ(s))3

−2ε(θ(s), σ(s)− θ(s))2

]
ds
}

(3.10)

where Γ is as in (2.18).

Proof : Observe that

d

dt
(ζ, ϕ)V − δ

n∑
i=1

(ζi∆αζ,
∂ϕ

∂xi
) + δ

n∑
i=1

((∆αζ)i∇ζi, ϕ) + (E1(ζ, θ, δ), ϕ)

+ε(ζ, ϕ)3 + δ(θ,∇ϕ) = ε(ζ, ϕ)3, (3.11)

and

d

dt
(θ,Φ) +

δ

λ
(θ,Φ)− δ

n∑
i=1

(ζiθ,
∂Φ

∂xi
) + δ(θW (ζ)−W (ζ)θ,Φ)

+(E2(ζ, θ, δ),Φ) + ε(θ,Φ)2 = 2δµ(∇ζ,Φ) + ε(θ,Φ)2. (3.12)

for ϕ ∈ V3, Φ ∈ H2. Denote w = u − ζ and ς = σ − θ. For a.a. t ∈ (0, T ),
put ϕ = w(t) and Φ = ς(t). Multiply the difference between (3.8) and (3.11)
by 2µ, and add this with the difference between (3.9) and (3.12), arriving at

µ
d

dt
(w,w)V +

1

2

d

dt
(ς, ς)
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−2δµ
n∑
i=1

(ζi∆αw,
∂w

∂xi
)− 2δµ

n∑
i=1

(wi∆αζ,
∂w

∂xi
)− 2δµ

n∑
i=1

(wi∆αw,
∂w

∂xi
)

+2δµ
n∑
i=1

((∆αζ)i∇wi, w) + 2δµ
n∑
i=1

((∆αw)i∇ζi, w) + 2δµ
n∑
i=1

((∆αw)i∇wi, w)

+
δ

λ
(ς, ς)− δ

n∑
i=1

(uiς,
∂ς

∂xi
)− δ

n∑
i=1

(wiθ,
∂ς

∂xi
)

+δ(θW (w)−W (w)θ, ς) + δ(ςW (u)−W (u)ς, ς) + ε(ς, ς)2 + 2µε(w,w)3

= 2µ(E1(ζ, θ, δ), w) + (E2(ζ, θ, δ), ς)− 2µε(ζ, w)3 − ε(θ, ς)2. (3.13)

We will need the following equalities:

−
n∑
i=1

(κi∆ακ,
∂κ

∂xi
) +

n∑
i=1

(∆ακi∇κi, κ) = 0. (3.14)

n∑
i=1

(κiτ,
∂τ

∂xi
) = 0. (3.15)

Here κ ∈ V3 and τ ∈ H2. The first equality is trivial. The second one is
well-known and may be obtained via integration by parts.

Note that

(ςW (u)−W (u)ς, ς)(t) =
n∑

i,j,k=1

∫
Ω

(
ςij(t, x)Wjk(t, x)ςik(t, x)

−Wjk(t, x)ςki(t, x)ςji(t, x)
)
dx = 0, (3.16)

since ς is a symmetric matrix. Moreover,

−
n∑
i=1

(wi∆αw,
∂w

∂xi
) +

n∑
i=1

((∆αw)i∇wi, w) = 0, (3.17)

and
n∑
i=1

(uiς,
∂ς

∂xi
) = 0 (3.18)

(by (3.14) and (3.15), resp.).
Now, let us estimate the remaining nonlinear terms in (3.13). Integrating

by parts, we get
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n∑
i=1

(ζi∆αw,
∂w

∂xi
) =

n∑
i=1

(ζiw,
∂w

∂xi
) + α2

n∑
i,j=1

(∇ζi∇wj,
∂wj
∂xi

)

+α2
n∑

i,j=1

(ζi∇wj,
∂∇wj
∂xi

).

The first and the last terms vanish by (3.15). The second one, due to the
Cauchy-Buniakowski inequality and (2.11), does not exceed CΩα

2‖ζ‖3‖w‖2
1.

By (2.12),
n∑
i=1

(wi∆αζ,
∂w

∂xi
) ≤ CΩ‖∆αζ‖1‖w‖2

1,

and
n∑
i=1

((∆αζ)i∇wi, w) ≤ CΩ‖∆αζ‖1‖w‖2
1.

Then,
n∑
i=1

((∆αw)i∇ζi, w) =
n∑
i=1

(wi∇ζi, w)

+α2
n∑

i,j=1

(∇wi∇
∂ζi
∂xj

, wj) + α2
n∑

i,j=1

(∇wi
∂ζi
∂xj

,∇wj)

≤ CΩ‖ζ‖1‖w‖2
1 + CΩα

2‖ζ‖3‖w‖2
1.

Further,

−
n∑
i=1

(wiθ,
∂ς

∂xi
) =

n∑
i=1

(
∂wi
∂xi

θ, ς) +
n∑
i=1

(wi
∂θ

∂xi
, ς).

The first term is zero since w is divergence-free, and the second one, by
(2.12), is bounded by CΩ‖w‖1‖θ‖2‖ς‖. Finally, by (2.11),

(θW (w)−W (w)θ, ς) ≤ CΩ‖w‖1‖θ‖2‖ς‖.
Now, for certain γ depending on Ω only, (3.13) yields

d

dt
(2µ‖w‖2

V + ‖ς‖2) + 2ε(2µ‖w‖2
3 + ‖ς‖2

2)
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≤ 2δµCΩ‖∆αζ‖1‖w‖2
1 + 2δµCΩ‖ζ‖1‖w‖2

1

+2δµCΩα
2‖ζ‖3‖w‖2

1 + δCΩ‖w‖1‖θ‖2‖ς‖
+4µ(E1(ζ, θ, δ), w) + 2(E2(ζ, θ, δ), ς)− 4µε(ζ, w)3 − 2ε(θ, ς)2

≤ δγ

(
2µmax{1, 1/α2}‖w‖2

V

(
‖∆αζ‖1 + ‖ζ‖1 + α2‖ζ‖3 + ‖θ‖2

)
+ ‖ς‖2‖θ‖2

µ

)
+4µ(E1(ζ, θ, δ), w) + 2(E2(ζ, θ, δ), ς)− 4µε(ζ, w)3 − 2ε(θ, ς)2

≤ δΓ(2µ‖w‖2
V + ‖ς‖2)

+4µ(E1(ζ, θ, δ), w) + 2(E2(ζ, θ, δ), ς)− 4µε(ζ, w)3 − 2ε(θ, ς)2, (3.19)

with Γ from (2.18). It remains to apply Lemma 2.1 to this inequality.

Lemma 3.2. Let u, σ be a weak solution to problem (3.1) – (3.6). The
following estimates are valid:

2µ‖u‖L∞(0,T ;V ) + ‖σ‖L∞(0,T ;L2) ≤ 2µ‖a‖V + ‖σ0‖ = C, (3.20)

‖u‖L2(0,T ;V3) + ‖σ‖L2(0,T ;H2) ≤
C√
ε
, (3.21)

‖u′‖L2(0,T ;V ∗3 ) + ‖σ′‖L2(0,T ;H−2N ) ≤ C(1 +
√
ε). (3.22)

The constants C are independent of ε and δ, but depend on ‖a‖V , ‖σ0‖, T .

Proof : The estimates (3.20) and (3.21) are direct consequences of (3.10) with
ζ ≡ θ ≡ 0. It remains to estimate the time derivatives, expressing them from
(3.8) and (3.9), and taking into account (2.5) and (2.6):

‖〈u′, ϕ〉‖L2(0,T ) ≤ δ‖
n∑
i=1

(uiu,
∂ϕ

∂xi
)‖L2(0,T ) + δ‖

n∑
i=1

(ui∇ui, ϕ)‖L2(0,T )

+δα2‖
n∑
i=1

(ui∆u,
∂ϕ

∂xi
)‖L2(0,T ) + δα2‖

n∑
i=1

(∆ui∇ui, ϕ)‖L2(0,T )

+ε‖(u, ϕ)3‖L2(0,T ) + δ‖(σ,∇ϕ)‖L2(0,T ), (3.23)

and

‖〈σ′,Φ〉‖L2(0,T ) ≤
δ

λ
‖(σ,Φ)‖L2(0,T ) + δ‖

n∑
i=1

(uiσ,
∂Φ

∂xi
)‖L2(0,T )

+δ‖(σW −Wσ,Φ)‖L2(0,T )

+ε‖(σ,Φ)2‖L2(0,T ) + 2δµ‖(∇u,Φ)‖L2(0,T ). (3.24)
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Integration by parts implies
n∑
i=1

(
ui∆u,

∂ϕ

∂xi

)

= −
n∑

i,j=1

(
∂ui
∂xj

∂u

∂xj
,
∂ϕ

∂xi

)
−

n∑
i,j=1

(
ui
∂u

∂xj
,
∂2ϕ

∂xi∂xj

)
, (3.25)

and
n∑
i=1

(∆ui∇ui, ϕ) =

−
n∑

i,j,k=1

(
∂ui
∂xj

∂ui
∂xk

,
∂ϕk
∂xj

)
−

n∑
i,j,k=1

(
ϕk
∂ui
∂xj

,
∂2ui
∂xj∂xk

)
(3.26)

The second term is zero due to (3.15).
Using Hölder’s and Sobolev imbedding inequalities, we continue (3.23) as

follows:

‖〈u′, ϕ〉‖L2(0,T ) ≤ δ‖u‖2
L4(0,T ;L2)‖∇ϕ‖L∞

+δ‖u‖L∞(0,T ;L2)‖u‖L2(0,T ;V )‖∇ϕ‖L∞ + 2δα2‖u‖2
L4(0,T ;V )‖∇ϕ‖L∞

+δα2‖u‖L∞(0,T ;L4)‖u‖L2(0,T ;V )‖∇2ϕ‖L4

+ε‖u‖L2(0,T ;V3)‖ϕ‖3 + δ‖σ‖L2(0,T ;L2)‖∇ϕ‖L2

≤ C
(
‖u‖2

L∞(0,T ;V )‖ϕ‖3 + ε‖u‖L2(0,T ;V3)‖ϕ‖3 + ‖σ‖L∞(0,T ;L2)‖ϕ‖3

)
Now, (3.20) and (3.21) yield

‖〈u′, ϕ〉‖L2(0,T ) ≤ C(1 +
√
ε)‖ϕ‖3, (3.27)

which is equivalent to the required bound for u′.
Similarly, from (3.24) we derive the estimate for the time derivative of σ:

‖〈σ′,Φ〉‖L2(0,T ) ≤ C[‖σ‖L2(0,T ;L2)‖Φ‖
+‖u‖L∞(0,T ;L4)‖σ‖L2(0,T ;L2)‖∇Φ‖L4

+ ‖σ‖L2(0,T ;L2)‖u‖L∞(0,T ;V )‖Φ‖L∞
+ε‖σ‖L2(0,T ;H2)‖Φ‖2 + ‖u‖L2(0,T ;V )‖Φ‖]

≤ C[‖σ‖L∞(0,T ;L2)‖Φ‖2 + ‖u‖L∞(0,T ;V )‖σ‖L∞(0,T ;L2)‖Φ‖2

+ε‖σ‖L2(0,T ;H2)‖Φ‖2 + ‖u‖L∞(0,T ;V )‖Φ‖2]

≤ C(1 +
√
ε)‖Φ‖2. (3.28)
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Lemma 3.3. Given T > 0, a bounded domain Ω having the cone property,
and data a ∈ V, σ0 ∈ L2, there exists a weak solution to problem (3.1) – (3.6)
with δ = 1.

Proof : Observe that Lemma 3.2 yields the a priori estimate

‖u‖W1
+ ‖σ‖W2

≤ C, (3.29)

where C may depend on ε but does not depend on δ.
Let us rewrite the weak statement of (3.1) – (3.6) in the suitable operator

form
Ã(u, σ) = δQ(u, σ). (3.30)

For this purpose, we introduce the following operators. Here ϕ ∈ V3 and
Φ ∈ H2 are test functions.

N1 : W1 → L2(0, T ;V ∗3 ),

〈N1(u), ϕ〉 =
n∑
i=1

(ui∆αu,
∂ϕ

∂xi
),

N2 : W1 → L2(0, T ;V ∗3 ),

〈N2(u), ϕ〉 = −
n∑
i=1

(∆αui∇ui, ϕ),

N3 : W1 ×W2 → L2(0, T ;H−2
N ),

〈N3(u, σ),Φ〉 =
n∑
i=1

(uiσ,
∂Φ

∂xi
),

N4 : W1 ×W2 → L2(0, T ;H−2
N ),

〈N4(u, σ),Φ〉 = (Wσ − σW,Φ),

S1 : W2 → L2(0, T ;V ∗3 ), 〈S1σ, ϕ〉 = −(σ,∇ϕ),

S2 : W1 → L2(0, T ;H−2
N ), 〈S2u,Φ〉 = 2µ(∇u,Φ),

S3 : W2 → L2(0, T ;H−2
N ), S3σ = −σ

λ
,

Q : W1 ×W2 → L2(0, T ;V ∗3 )× L2(0, T ;H−2
N )× V × L2,
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Q(u, σ)

= (N1(u) +N2(u) + S1σ,N3(u, σ) +N4(u, σ) + S2u+ S3σ, a, σ0),

Ã : W1 ×W2 → L2(0, T ;V ∗3 )× L2(0, T ;H−2
N )× V × L2,

Ã(u, σ) = (u′ + εA3u, σ
′ + εA2σ, u|t=0, σ|t=0).

We have treated the time derivative terms with the help of (2.5) and (2.6).
Let us check that the operator Q is compact (and, hence, continuous, since

it consists of linear, bilinear and quadratic components). It suffices to show
compactness of S1, S2, S3, N1, N2, N3 and N4.

Since the embeddings V3 ⊂ V and H2 ⊂ L2 are compact, the embeddings
W1 ⊂ L2(0, T ;V ), W2 ⊂ L2(0, T ;L2) are also compact by the Aubin-Simon
theorem (see e.g. [38, 44] or [39, Theorem III.2.1]). Thus, S1, S2 and S3 are
compact as superpositions of compact embeddings with bounded operators.

Moreover, by [38, Corollary 8], the embeddings

W1 ⊂ Lp(0, T ;V ),W2 ⊂ Lp(0, T ;L2),

and

W1 ⊂ Lq(0, T ;V2)

are compact for any p <∞ and q < 4.
It remains to establish boundedness (and, therefore, continuity) of the bi-

linear operators

N3 : L4(0, T ;V )× L4(0, T ;L2)→ L2(0, T ;H−2
N ),

N4 : L4(0, T ;V )× L4(0, T ;L2)→ L2(0, T ;H−2
N ),

Ñ1 : L6(0, T ;V )× L3(0, T ;V2)→ L2(0, T ;V ∗3 ),

〈Ñ1(u,w), ϕ〉 =
n∑
i=1

(ui∆αw,
∂ϕ

∂xi
),

Ñ2 : L3(0, T ;V2)× L6(0, T ;V )→ L2(0, T ;V ∗3 ),
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〈Ñ2(u,w), ϕ〉 = −
n∑
i=1

(∆αui∇wi, ϕ).

This is straightforward, e.g. for Ñ2 one has

‖〈Ñ2(u,w), ϕ〉‖L2(0,T ) ≤ C‖∆αu‖L3(0,T ;L2)‖∇w‖L6(0,T ;L2)‖ϕ‖L∞
≤ C‖u‖L3(0,T ;V2)‖w‖L6(0,T ;V )‖ϕ‖3.

The linear operator Ã is invertible by [44, Lemma 3.1.3]. Thus, (3.31) can
be rewritten as

(u, σ) = δÃ−1Q(u, σ) (3.31)

in the space W1 ×W2.
By virtue of Schaeffer’s theorem [11, p. 539], the a priori estimate (3.29),

uniform in δ, guarantees existence of a fixed point of the map Ã−1Q, which
is the required solution.

We are now in a position to prove the main result.

Proof : (Theorem 2.1) Take an increasing sequence of positive numbers Tm →
∞ and a decreasing sequence of positive numbers εm → 0. By Lemma 3.3,
there is a pair (um, σm) which is a weak solution to problem (3.1) – (3.6) with
δ = 1, T = Tm, ε = εm. Denote by ũm and σ̃m the functions which are equal
to um and σm in [0, Tm] and are equal to zero on (Tm,+∞).

Lemma 3.1 implies that, for all ζ ∈ C1([0,∞);V3), θ ∈ C1([0,∞);H2) and
0 ≤ t ≤ T ≤ Tm, one has

2µ‖um(t)− ζ(t)‖2
V + ‖σm(t)− θ(t)‖2

≤ exp

 t∫
0

Γ(s)ds

{2µ‖a− ζ(0)‖2
V + ‖σ0 − θ(0)‖2

+

t∫
0

exp

 0∫
s

Γ(ξ)dξ

[4µ(E1(ζ, θ)(s), um(s)− ζ(s)
)

+2
(
E2(ζ, θ)(s), σm(s)− θ(s)

)
− 4µεm(ζ(s), um(s)− ζ(s))3

−2εm(θ(s), σm(s)− θ(s))2

]
ds
}
. (3.32)

Fix an arbitrary interval [0, T ]. Due to a priori estimate (3.20), without
loss of generality (passing to a subsequence if necessary) one may assume
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that there exist limits u = lim
m→∞

ũm, which is weak-* in L∞(0,∞;V ) and

weak in L2(0, T ;V ), and σ = lim
m→∞

σ̃m, which is weak-* in L∞(0,∞;L2) and

weak in L2(0, T ;L2).
Moreover, by (3.22), without loss of generality one may assume that ũ′m →

u′ in L2(0, T ;V ∗3 ), σ̃′m → σ′ in L2(0, T ;H−2
N ). This gives that u ∈ C([0, T ];V ∗3 ),

σ ∈ C([0, T ];H−2
N ), and, by a well-known Lions-Magenes lemma, see e.g. [44,

Lemma 2.2.6], u ∈ Cw([0, T ];V ), σ ∈ Cw([0, T ];L2).
Take the scalar product in L2(0, T ) of inequality (3.32) with a smooth scalar

function ψ with compact support in (0, T ) and with non-negative values, and
use (3.21) and Cauchy-Buniakowski inequality:

T∫
0

{
2µ‖um(t)− ζ(t)‖2

V + ‖σm(t)− θ(t)‖2
}
ψ(t) dt

≤
T∫

0

exp

 t∫
0

Γ(s)ds

{2µ‖a− ζ(0)‖2
V + ‖σ0 − θ(0)‖2

+

t∫
0

exp

 0∫
s

Γ(ξ)dξ

[4µ(E1(ζ, θ)(s), um(s)− ζ(s)
)

+2
(
E2(ζ, θ)(s), σm(s)− θ(s)

)]
ds+ C(

√
εm + εm)

}
ψ(t) dt. (3.33)

Passing to the inferior limit as m → ∞ in (3.33), and using the fact that
the norm of a weak limit of a sequence does not exceed the inferior limit of
the norms, we arrive at:

T∫
0

{
2µ‖u(t)− ζ(t)‖2

V + ‖σ(t)− θ(t)‖2
}
ψ(t) dt

≤
T∫

0

exp

 t∫
0

Γ(s)ds

{2µ‖a− ζ(0)‖2
V + ‖σ0 − θ(0)‖2

+

t∫
0

exp

 0∫
s

Γ(ξ)dξ

[4µ(E1(ζ, θ)(s), u(s)− ζ(s)
)
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+2
(
E2(ζ, θ)(s), σ(s)− θ(s)

)]
ds
}
ψ(t) dt. (3.34)

Since ψ and T were chosen arbitrarily, (3.34) yields (2.17), and we have
proven the existence of a dissipative solution. Note that (2.17) holds at
every non-negative moment of time owing to the weak continuity of u and σ.

Now, let (u, σ) be a dissipative solution with the same initial data as the
strong solution (uT , σT ). Putting ζ = uT , θ = σT in (2.17) for t ∈ [0, T ],
and taking into account that E1(uT , σT ) ≡ E2(uT , σT ) ≡ 0 on [0, T ], we get
that the right-hand side of (2.17) vanishes there, and we arrive at the claim
b) of Theorem 2.1. Observe that c) is a direct consequence of a) and b):
any strong solution should coincide with all dissipative solutions as long as
it exists (cf. [43]).

Remark 3.2. Remember that, in Lemmas 3.1 and 3.2, Ω can be an un-
bounded domain with the cone property. Moreover, the constants in (3.20)
and (3.21) do not depend on Ω. Then, in order to establish existence of a dis-
sipative solution to (3.1) – (3.6), one can try to approximate Ω with regular
bounded domains (cf. e.g. [41]) and pass to the limit, without generalizing
Lemma 3.3 onto the case of unbounded ones. However, some pitfalls appear,
in particular, we did not manage to prove the weak continuity of the limiting
function. So we leave the general ”unbounded” case as an open problem. In
the particular case Ω = Rn, Lemma 3.3 and Theorem 2.1 are valid since one
can replace the operators A3 and A2 and the spaces V3 and H2 with (I−∆)3,
(I −∆)2, the closure of V in H3, and H2

0 , resp., and approximate Ω with an
ascending sequence of concentric balls (see a similar reasoning in [43]).

Remark 3.3. Assume again a ∈ V, σ0 ∈ L2. Take a sequence of positive
numbers αm → 0. The dissipative bound (2.20) guarantees compactness of
any sequence {(um, σm)} of dissipative solutions to the Maxwell-αm problem
in the weak-* topology of L∞(0,∞;H × L2). The accumulation points of
{(um, σm)} can be considered as ”ultra-generalized” solutions to the IBVP
for motion of the Maxwell fluid, i.e. the problem (3.1) – (3.6) with α = 0.
However, the relevance of this notion is an open question.

Remark 3.4. A related open problem is whether our dissipative solutions
to the Euler-α problem converge in some sense to the dissipative solutions
to the Euler problem as α → 0. The convergence is known for the strong
solutions on the time interval where they exist [23].
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4. Appendix. Dissipative solutions to Cauchy problems
in Hilbert spaces

In this appendix we illustrate the idea of dissipative solution by considering
(a little bit informally) this notion for an abstract differential equation in a
Hilbert space. We point out that this is not a universal definition of dissi-
pative solution but just a guideline, which shows the essence of this concept.
Slight natural modifications of this approach (if necessary) may lead to def-
initions of dissipative solutions for particular PDEs, e.g. the corresponding
definitions from [25, 43] or Definition 2.1 of the current paper.

Let X be a Hilbert space with inner product (·, ·) and Euclidean norm
‖ · ‖, and F : [0,+∞) × X → X be a nonlinear operator, which can be
discontinuous. Assume that F satisfies the following condition:

(F (t, x)− F (t, y), x− y) ≤ d(t, y)‖x− y‖2, ∀x, y ∈ X, t ≥ 0, (4.1)

with some locally bounded function d(t, y) of t ≥ 0 and y ∈ X.

Remark 4.1. For example, (4.1) holds provided

(F (t, x), x) ≤ 0, ∀x ∈ X, t ≥ 0, (4.2)

and the operator F can be decomposed into a sum of a linear (in x) operator
A and a quadratic (with respect to x for fixed t) operator subject to a slight
boundedness assumption. Indeed, let

F (t, x) = A(t, x) + f(t, x, x)

be such a decomposition, with a bilinear with respect to x operator f satis-
fying the bound

‖f(t, x, y)‖ ≤ c(t)‖x‖‖y‖
with a locally bounded function c. Take any x, y ∈ X, and let z = x − y.
Then

(F (t, x)− F (t, y), z) = (F (t, z), z) + (f(t, y, z), z) + (f(t, z, y), z)

≤ 2c(t)‖y‖‖z‖2.

Consider the abstract Cauchy problem

u′(t) = F (t, u(t)), t > 0, (4.3)

u(0) = a ∈ X. (4.4)

Let R be some fixed set of continuous and time differentiable (in any sense)
functions from [0,+∞) to X. The solutions u ∈ R to (4.3),(4.4) will be called
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(sufficiently) regular. More generally, a solution u : [0, T ] → X, T > 0, is
said to be regular if it coincides with the restriction of a function from R to
this interval [0, T ]. We assume that R is sufficiently large, so that the set
{u(0)|u ∈ R} is dense in X.

Take a solution u ∈ R and any test function v ∈ R, and denote

E(t, v(t)) = −v′(t) + F (t, v(t)).

Then (4.3) implies

(u− v)′ = F (t, u)− F (t, v) + E(t, v). (4.5)

Hence,

(‖u− v‖2)′ = 2(u′− v′, u− v) = 2(F (t, u)−F (t, v), u− v) + 2(E(t, v), u− v)

≤ 2d(t, v(t))‖u− v‖2 + 2(E(t, v), u− v). (4.6)

An application of Lemma 2.1 yields

‖u(t)− v(t)‖2 ≤ exp

 t∫
0

2d(s, v(s))ds


×

‖a− v(0)‖2 + 2

t∫
0

exp

 0∫
s

2d(ξ, v(ξ))dξ

 (E(s, v(s)), u(s)− v(s)) ds

 .
(4.7)

Definition 4.1. A weakly continuous function u : [0,+∞) → X is called a
dissipative solution to problem (4.3),(4.4) provided (4.7) holds for all v ∈ R
and t ≥ 0.

The basic properties of these solutions are given by

Proposition 4.1. a) If, for some a ∈ X, there exist T > 0 and a regular
solution uT : [0, T ] → X to problem (4.3),(4.4), then the restriction of any
dissipative solution (with the same initial data) to [0, T ] coincides with uT .
b) Every regular solution u ∈ R is a (unique) dissipative solution. c) Any
dissipative solution satisfies the initial condition (4.4).

Proof : Let u be a dissipative solution with the same initial data as uT . There
exists ũT ∈ R coinciding with uT on [0, T ]. Putting v = ũT in (4.7) for
t ∈ [0, T ], and taking into account that E(t, ũT (t)) ≡ 0 on [0, T ], we conclude
that the right-hand side of (4.7) vanishes there. Thus we have a). The
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reasoning above which led us to the derivation of inequality (4.7) gives us b);
note that the uniqueness in b) follows from a). To show c), we put t = 0 in
(4.7) and get

‖u(0)− v(0)‖ ≤ ‖a− v(0)‖. (4.8)

Since the set of possible v(0) is dense in X, we have

‖u(0)− b‖ ≤ ‖a− b‖ ∀b ∈ X, (4.9)

and it remains to let b = a.

Remark 4.2. The uniqueness of dissipative solutions is not given a priori
but follows from the existence of a regular solution.

Remark 4.3. Consider the ”quasihomogeneous” case, i.e. when

F (·, 0) ≡ 0. (4.10)

If

d(·, 0) ≡ 0, (4.11)

then (4.7) with v ≡ 0 yields dissipative behaviour of solutions,

‖u(t)‖ ≤ ‖u(0)‖, t > 0. (4.12)

All this holds true, in particular, in the framework of Remark 4.1. A similar
situation happens for the homogeneous 3D Euler equation [3]. However,
Definition 4.1 may be useful without assumptions of this kind (cf. [43]).

A remarkable thing is that these dissipative solutions exist under minimal
assumptions on F . We are not going to formulate an existence theorem, but
we’ll try to explain why they exist.

The first point is an a priori estimate. The Cauchy-Buniakowski inequality
and (4.6) with v ≡ 0 yield

(‖u‖2)′ ≤ 2

(
d(t, 0) +

1

4

)
‖u‖2 + 2‖F (t, 0)‖2, (4.13)

so, by Lemma 2.1, we have the following bound:

‖u(t)‖2 ≤ exp

 t∫
0

2

(
d(s, 0) +

1

4

)
ds


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×

‖a‖2 + 2

t∫
0

exp

 0∫
s

2

(
d(ξ, 0) +

1

4

)
dξ

 ‖F (s, 0)‖2 ds

 . (4.14)

Now approximate F by smooth functions Fε, ε > 0, Fε(·, v(·))→ F (·, v(·))
in L1,loc(0,∞) for any fixed v ∈ R as ε → 0. The functions Fε satisfy
(4.1) with some dε (since they are smooth), and thus the solutions uε of
the corresponding systems (4.3),(4.4) are a priori bounded by analogues of
(4.14). The infinite-dimensional Picard-Lindelöf theorem (see e.g. [31, 36])
implies that the solutions uε exist (globally) and are unique. Assume that
there exists a function d̃(t, y) for which (4.1) is valid for any ε > 0. W.l.o.g.
d ≡ d̃ (if not, one can replace both of them by max[d, d̃] ). If the functions
Fε(·, 0) are locally square integrable in time, and the corresponding integrals
are uniformly (i.e. independently of ε) bounded, then the uniform a priori
estimate (4.14) holds for uε. Thus, any sequence {uεk}, εk → 0, is relatively
compact in the weak-* topology of L∞(0, T ;X) for any T > 0, so w.l.o.g.
there exists a limit u. A diagonal argument guarantees that the sequence
and the limit can be chosen so that they do not depend on T .

Suppose that there are a ”large” Banach space Y (so that X is continuously
embedded into it), and, say, a continuous function c : R2 → R such that

‖Fε(t, x)‖Y ≤ c(t, ‖x‖X), x ∈ X, t ≥ 0.

This assumption implies a uniform bound for the time derivatives

‖u′ε‖L∞(0,T ;Y ) ≤ C.

Thus, u′ ∈ L∞(0, T ;Y ), and, by [44, Lemma 2.2.6], u ∈ Cw([0, T ];X).
Now, remember that uεk are, in particular, dissipative solutions. Multiply-

ing by a smooth nonnegative function ψ(t) and integrating from 0 to T , we
can pass to the limit in (4.7) in the same way as it was done in the proof of
Theorem 2.1, and we conclude that u is a dissipative solution to the original
system (4.3),(4.4).

Remark 4.4. Let X be finite-dimensional. Then one can study system
(4.3),(4.4) via Filippov’s approach [12, 13]. Condition (4.1) locally implies
the so-called right Lipschitz condition

(F (t, x)− F (t, y), x− y) ≤ C‖x− y‖2,
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which guarantees uniqueness of Filippov solutions. On the other hand, it is
not clear whether the Filippov solution is always a dissipative one, or vice
versa (or at least whether dissipative solutions are unique in this case).
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