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ON CATEGORIES WITH SEMIDIRECT PRODUCTS

NELSON MARTINS-FERREIRA AND MANUELA SOBRAL

Abstract: We characterize pointed categories having semidirect products in the
sense of D. Bourn and G. Janelidze ([3]) providing necessary and sufficient condi-
tions for a pointed category to admit semidirect products and interpreting these
conditions in terms of protomodularity and exactness of certain split chains.
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1. Introduction

The categorical notion of semidirect product in an arbitrary category with
split pullbacks was introduced by D. Bourn and G. Janelidze in [3], gene-
ralizing the classical notion of semidirect product between a group B and a
B-group (X, ξ).
Semi-abelian categories ([5]) admit semidirect products. This is a conse-

quence of Theorem 3.4 in [3]. It is well known that semi-abelianess is not a
necessary condition for the existence of semidirect products. Indeed, trivially,
any additive category has semidirect products. Furthermore, the same holds
for protomodular topological models of semi-abelian varieties as proved in
[2], which are in general not exact categories. They are examples of homolo-
gical categories with binary coproducts that have semidirect products. Other
examples are provided in 4.9 below, where we describe a way to construct
categories satisfying these conditions that may not be exact.
The existence of a zero object is not necessary for that purpose (see Theo-

rem 3.4 in [3]). Also in [8] B. Metere and A. Montoli prove that it is enough
to assume the existence of an initial object and they construct semidirect
products for the category of internal groupoids.
In this paper we consider only the pointed case.
Necessary conditions on a category for defining semidirect products are

the existence of split pullbacks and split pushouts, in the sense of [3], and
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protomodularity. These are, obviously, far from being sufficient conditions.
Example 4.7 shows that even an homological category with binary coproducts
may not have semidirect products.
The points in a category C that are essentially semidirect products, (called

the “free split epimorphisms” in [6]), form a full coreflective subcategory of
the one of points and have a neat characterization.
The characterization of the full reflective subcategory of the category of

internal actions consisting of those actions which arise from points, in a
sense we make precise later, are one of the goals of this work.
In our search we identify a particular kind of action that we call strict

action. Assuming regularity of the category C these are exactly the type of
actions we are looking for. In particular, we prove that homological categories
with binary coproducts have semidirect products if and only if every internal
action is a strict action.

2. The setting

Let us recall the basic notions and results.

Definition 2.1. ([3], 3.2) A category C with split pullbacks has semidirect
products if for every morphism p : E −→ B, the pullback functor
p∗ : PtB(C) −→ PtE(C) is monadic.

A pointed category C has semidirect products if and only if
iB

∗ : PtB(C) −→ Pt0(C) ∼= C is monadic for every C-object B, where
iB : 0 −→ B is the unique morphism from the zero object 0 to B. This follows
from the fact that, for every p : E −→ B inC, the functor p∗ : PtBC −→ PtEC

has a left adjoint and (iB)
∗ ∼= (iE)

∗p∗.
For the definition to make sense, we need to assume the existence of kernels

of split epimorphisms, so that we can define the functor (iB)
∗ for every object

B, as well as the existence of binary coproducts, for (iB)
∗ to have a left

adjoint.
If (TB, ηB, µB) is the monad defined on C by the adjunction above, the

components of ηB and µB are the unique morphisms with k0η
B
X = ιX and

k0µ
B
X = [k0, ιB]k

′
0, as displayed in the diagrams

B♭X
k0 // X + B

X

ηX

OO

ιX

99ssssssssss

, B♭(B♭X)
k′
0 //

µX

��

(B♭X) +B

[k0,ιB ]
��

B♭X
k0 // X +B
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where k0 and k′0 denote the kernels of [0, 1] : X + B −→ B and of
[0, 1] : (B♭X) + B −→ B, respectively.
An algebra for this monad is a pair (X, ξ : B♭X −→ X) with ξηBX = 1 and

ξµB
X = ξ(1♭ξ).

The monadicity of (iB)
∗ for every object B inC is equivalent to the monadi-

city of the functor Pt(C) −→ C×C which assigns to each point (A, α, β, B)
the pair (ker(α), B). In more detail, we have an adjunction

C×C
+ //

Pt(C)
ker

oo

between pairs and points where “plus” assigns to a pair (X,B) the point

X + B
[0,1]

//
B

ι2
oo

and the kernel functor “ker” assigns to each point (A, α, β, B) the pair (X,B)
in the split extension

X
ker(α)

// A
α //

B
β

oo .

Then an action is a triple (X, ξ, B) and a morphism of internal actions
is a pair of morphisms (f0, f1) : (X, ξ, B) −→ (X ′, ξ′, B′) such that f0ξ =
ξ′(f1♭f0), defining the category Act(C) of internal actions.
The comparison functor Φ: Pt(C) −→ Act(C) assigns to each point

(A, α, β, B) with a specified kernel, say k : X −→ A, the triple (X, ξ, B) where
ξ is the unique morphism such that kξ = [k, β]k0, as described in [4].
It is well-known that the comparison functor Φ has a left adjoint L if and

only if C has coequalizers of all reflexive pairs of the form ([k0, ιB], ξ+1) for
every internal action (X, ξ, B).
By the universal property of the coproduct, this is equivalent to the exis-

tence of coequalizers of the pairs k0, ιXξ : B♭X −→ X +B, for every internal
action (X, ξ, B).
The semidirect product of B and the algebra (X, ξ, B) is L(X, ξ, B) ([3]).
So this is the natural setting to work in.
Throughout, for short, we assume that the category C is finitely complete,

finitely cocomplete and pointed.
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3. A characterization

We are going to describe necessary and sufficient conditions for the mona-
dicity of the kernel functor (iB)

∗, that is for the comparison functor

ΦB : PtB(C) −→ ActB(C)

to be an equivalence, for every object B in C.
For fixed B and an objectX inC we consider the canonical split extensions

B♭X
k0 // X +B

[0,1]
//
B

ιB
oo

as well as morphisms (ξ, q, 1B) of split chains

B♭X
k0 //

ξ
��

X + B
[0,1]

//

q
��

B
ιB

oo

X
qιX // A

α //
B

β
oo

.

We observe that

(i) if (A, α, β) ∈ PtB(C) and qιX = ker(α) then ΦB(A, α, β) = (X, ξ);
(ii) if (X, ξ) ∈ ActB(C) and q = Coeq (k0, ιXξ) then LB(X, ξ) = (A, α, β).

Let us also consider the following diagram

B♭X
k0 //

""E
EE

EE
EE

EE

ξ

��

X +B
[0,1]

//

q

##G
GG

GG
GG

GG
G

[k,β]

��

B
ιB

oo

??
??

??
??

??
??

??
??

X ′ k′ // Q
πq

//

c
{{wwwwwwwwww

Boo

��
��

��
��

��
��

��
��

X

u

<<xxxxxxxxx k // A
α //

B
β

oo

(1)

where (X, ξ) ∈ ActB(C), (A, α, β) ∈ PtB(C), q = Coeq (k0, ιXξ), πq is the
unique morphism such that πq · q = [0, 1], k′ = ker(πq) and k = ker(α).
The two undefined morphisms are exactly the components of the unit u

and counit c of the adjunction LB ⊣ ΦB. Indeed,
- for (X, ξ) ∈ ActB(C), the unit u(X,ξ) is the unique morphism such that

k′u = qιX , and
- for (A, α, β) ∈ PtB(C), the counit is the unique morphism c(A,α,β) such

that cq = [k, β].



ON CATEGORIES WITH SEMIDIRECT PRODUCTS 5

It is well-known that the counit c(A,α,β) is an isomorphism if and only if
[k, β] is a regular epimorphism, since the later is the counit of the adjunction
− + B ⊣ (iB)

∗. The unit u = u(X,ξ) is an isomorphism if and only if ΦB

preserves coequalizers of pairs ([k0, ιB], ξ + 1): in the diagram

B♭(B♭X)
µX //

1♭ξ
//

��

B♭X
ξ

//

k0
��

X

qιX
��

u // X ′ = ΦL(X, ξ)

k′
xxqqqqqqqqqqqqq

(B♭X) +B
[k0,ιB]

//

ξ+1
//

��

X + B
q

//

��

Q

π
��

B

OO

B

OO

B

OO

(2)

we have that ξ = Coeq (µX , 1♭ξ), µX = ΦB([k0, ιB]), 1♭ξ = ΦB(ξ + 1) and
ΦB(q) = uξ.
Protomodularity of a pointed category C means that (iB)

∗ is conservative
for every C-object B (because this is equivalent to have p∗ conservative for
every p : E −→ B) and so ΦB is conservative if and only ifC is protomodular.
In the pointed case, protomodularity is equivalent to the condition that

the Split Short Five Lemma holds ([1], Proposition 3.1.2).

Theorem 3.1. A category C has semidirect products if and only if the fol-
lowing conditions hold:

(a) C satisfies the Split Short Five Lemma;
(b) For fixed B and internal action (X, ξ), the split chain

X
qιX // Q

π //
B

qιB
oo ,

where q = Coeq (k0, ιXξ) and (Q, π, qιB) = L(X, ξ), is a split extension
(i.e. qιX = ker(π)).

Proof : Let us assume that the category C admits semidirect products, that
is that ΦB is an equivalence for every object B. Then, since u(X,ξ) is an
isomorphism, we obtain (b). The fact that c(A,α,β) is an isomorphism im-
plies that for every point (A, α, β), with kernel k : X −→ A, the induced
morphism [k, β] : X + B −→ A is a regular epimorphism and so it is a strong
epimorphism. Consequently, the Split Short Five Lemma holds in C.
Conversely, from (b) we derive that the unit u(X,ξ) is an isomorphism for

every action (X, ξ). Then, in diagram (1) defining u and c, we use the Split
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Short Five Lemma to conclude that c is an isomorphism as well. Since L is full
and faithful and Φ is conservative we conclude that Φ is an equivalence.

This theorem can be easily reformulated as follows:

Theorem 3.2. The category C has semidirect products if and only if, for
every morphism (ξ, q, 1B) of split chains

B♭X
k0 //

ξ
��

X +B
[0,1]

//

q
��

B
ιB

oo

X
qιX // E

p
//
B

s
oo

where (X, ξ) is an internal action, we have that

q = Coeq (k0, ιXξ) ⇔ qιX = ker(p).

The following result is closer to our objectives and motivates the notion of
strict action we introduce later.

Theorem 3.3. Let us assume, in addition, that C is a regular category.
Then C has semidirect products if and only if the following two conditions
hold:

(a) C satisfies the Split Short Five Lemma;
(b) for every (X, ξ) ∈ ActB(C), if a commutative square of the form

B♭X
ξ

//

k0
��

X

��

X + B // Q

is a pushout then it is also a pullback.

Proof : We only need to prove that condition (b) here is equivalent to con-
dition (b) in Theorem 3.1. Let us assume that 3.1(b) holds. If (X, ξ) is
an internal action and (q, l) is the pushout of k0 along ξ then it is easy to
prove that q = Coeq (k0, k0ηXξ = ιXξ) and l = qιX . Then, since qιX is a
monomorphism, the square is a pullback.
Conversely, since (q, qιX) is the pushout of (k0, ξ), the resulting square is

also a pullback, by hypothesis. This implies that qιX is a monomorphism
and so u(X,ξ) is a monomorphism. Since, in (2), (uξ, k0) is the pullback of
(q, k′) and the category C is regular then uξ is a regular epimorphism. Then
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uξ and ξ regular epimorphisms imply that u is also a regular epimorphism.
Consequently, u(X,ξ) is an isomorphism and so qιX is the kernel of the induced
morphism πq, as required.

The assumption that the morphism ξ (as in condition (b) of Theorem 3.3)
is an internal action cannot be avoided . The following example shows that
even in the category of groups, the paradigmatic example in this context, a
pushout of a protosplit (i.e. a kernel of a split epimorphism) along a split
epimorphism need not be a pullback. Indeed, the fact that pushouts are
not always pullbacks in the situation described is a well-known fact. The
following is a very simple example of this phenomenon.

Example 3.4. In Gp consider the following square

F [x, yxy−1, y2xy−2, ...]
α //

k
��

F [yxy−1, y2xy−2, ...]

l
��

F [x, y]
q

// F [y]

where F [X] denotes the free group on a set X, k is an inclusion, α and
q send x to the empty word, and l is the zero morphism. Then, k is the
kernel of the split epimorphism F [x, y] −→ F [y], α is split by the inclusion
F [yxy−1, ...] −→ F [x, yxy−1, ...], and the square is a pushout. However it is
not a pullback.

4. Internal actions versus strict actions

The functor ΦB is conservative, if and only if iB
∗ : PtB(C) −→ Pt0(C)

is conservative, that is if and only if the counit [k, β] is an extremal epi-
morphism, and this means protomodularity of C.
The functor LB is conservative if and only if u(X,ξ), or equivalently qιX , is

an extremal monomorphism for every action (X, ξ).
This fact and Theorem 3.3 motivates the following definitions in an arbi-

trary category.

Definition 4.1. An exact span is a diagram

Y
k

��~~
~~

~~
~ α

  A
AA

AA
AA

A X
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that can be completed into a commutative square which is at the same time
a pushout and a pullback.

Definition 4.2. A generalized action of (B, p) in (X,α) is an internal struc-
ture of the form

Y
α //

k
��

X
β

oo

A
p

//
B

s
oo

(3)

where αβ = 1, ps = 1, k = ker(p) and (k, α) is an exact span.

Definition 4.3. A strict internal action is a generalized action where the
diagram

X
kβ

// A B
soo

is a coproduct diagram.

A structure as in definition 4.2 is a generalized action if and only if the
square

Y
α //

k
��

X

qkβ
��

A
q

// Q

(4)

is a pullback, or equivalently, qkβ is a monomorphism, where
q = Coeq(k, kβα). In particular it is a strict action whenever A = X + B
and qιX is a monomorphism.

Proposition 4.4. Every strict action is an internal action.

Proof : In this case (4) becomes

B♭X
α //

k0
��

X

qιX
��

X + B
q

// Q

and, since it is a pullback, the morphism qιX is a monomorphism. On the
other hand, this square is always a pushout and so q = Coeq (k0, ιXα). From
that we conclude that αηX = 1 and αµX = α(1♭α), as desired.

Proposition 4.5. In an homological category with binary coproducts there
is an equivalence between strict internal actions and points.
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Proof : It follows from 3.3.

Corollary 4.6. An homological category with binary coproducts has semidi-
rect products if and only if every internal action is strict.

The following is an example due to G. Janelidze of an homological category
with binary coproducts and coequalizers, without semidirect products and
so where not all internal actions are strict.

Example 4.7. Let C be the quasivariety of groups determined by the axiom

(xy)3 = 1 ⇒ xy = yx, (5)

let B = {1, b} be the 2-element cyclic group, X = {1, x, x2} be the 3-element
cyclic group, and suppose that B acts on X by bx = x2 (and so bx2 = x).
Then:

(i) B+X in C will be the same as in the category of groups and so the
action above does exist in C;

(ii) the semidirect product of B and X in the category of groups will be
the symmetric group on three elements;

(iii) the condition (5) will force it to become isomorphic to B, i.e. the
semidirect product of B and X in C is isomorphic to B;

(iv) therefore the kernel of π (as in condition (b) of Theorem 3.1) will be
trivial instead of being X.

Every quasivariety of groups is a homological category and the one defined
above is closed under binary coproducts.

This example is a particular instance of a more general fact. We recall that
a variety has semidirect products if and only if it is protomodular(Theorem
3.4 in [3]).

Proposition 4.8. Let V be a pointed protomodular variety. Then a quasiva-
riety Q of V, closed under binary coproducts, has semidirect products if and
only if it is closed under semidirect products in V.

Proof : Being a regular epi-reflective subcategory of a pointed protomodular
category, Q is also pointed and protomodular.
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Let us consider the diagram

B♭X
ξ

//

��

X

qιX
��

X

q′ιX
��

X +B q
//

��

Q
rQ

//

πξ

��

R(Q)

R(πξ)
��

B

OO

B

OO

B

OO

where (X, ξ) ∈ ActB(Q), q is the coequalizer in V of the pair (k0, ιXξ) of Q-
morphisms and rQ is the reflection ofQ inQ. Then q′ = rQq is the coequalizer
of (k0, ιXξ) in Q. Consequently, by the Split Short Five Lemma, q′ιX is the
kernel of the split epimorphism R(πξ) if and only if rQ is an isomorphism.

Examples of categories where every action is strict, other than the catego-
ries with semidirect products, are

(1) exact ideal-determined Mal’tsev categories (see [7]),
(2) varieties.

In the first case, the Barr-Kock theorem (see e.g. pg. 441 of [1]) can be used
to prove that for each internal action the square

B♭X
ξ

//

k0
��

X

qιX
��

X + B
q

// Q

is a pullback.
For varieties, the kernel functor (iB)

∗ preserves coequalizers of reflexive
pairs because underlying functors from varieties to the category of sets pre-
serve them. Indeed, since coequalizers in PtB(C) are constructed at the level
of C, it is enough to see that the pullback functor (iB)

∗ : C ↓ B → C preser-
ves coequalizers of reflexive pairs. If C is a variety and U is the underlying
functor, in the commutative diagram

C↓B
(iB)

∗

//

V
��

C

U
��

Set↓U(B)
(U(iB))

∗

// Set
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(U(iB))
∗V preserves coequalizers of reflexive pairs because the same holds

both for V and for (U(iB))
∗, the later preserving all colimits since it is also

a left adjoint.Then the conclusion follows because U is conservative.
It is clear that the same holds for monadic categories over a locally carte-

sian closed category where, in addition, the corresponding forgetful functor
preserves coequalizers of reflexive pairs.
In all these examples the categories are exact. The case of protomodular

topological models of semi-abelian varieties shows that exactness is not a
necessary condition for this purpose. Our last example provides another
instance of non-exact categories where all actions are strict.
Let S be a semi-abelian category andM = Mono(S) be the full subcategory

of S2 = Mor(S) with objects all triples (A1, a, A2) such that a : A1 −→ A2 is
a monomorphism. Then, M is a regular epi-reflective subcategory of S.
Properties of categoriesM = Mono(C) of monomorphisms in a category C

were investigated by Ana Helena Roque in [9]. In particular she proves there
that Mono(C) is regular whenever C is regular and that exactness of C may
not be inherited by Mono(C). This is the case when C is the category of
groups a fact that goes back at least to N. Yoneda [10], whose main example
of a non-abelian category is the category of short exact sequences in an
abelian category.
A simple example of non-exactness of the category Mono(Gp) of mono-

morphisms in the category of groups is provided by any non-trivial group G
and the inclusion of the equality relation (G, 1G, G) on G into the relation
(G × G, pr1, pr2) which is a non-effective equivalence relation on the object
(G, 1G, G) of Mono(Gp) .
The category S2 is semi-abelian and so, in particular, it is pointed and pro-

tomodular. Then Mono(S) is also pointed and protomodular. Consequently,
categories of monomorphisms of semi-abelian categories are examples of ho-
mological categories that are not exact in general.
If, furthermore, the coproduct of two monomorphisms in S is a mono-

morphism, as it is the case in the category of groups and in every abelian
category, we can define there internal actions as above.
If (X, ξ) is an internal action in ActB(M), considering the diagram in

S2 with X = (X1, x,X2), B = (B1, b, B2), (B1 + X1, b + x,B2 + X2) and
(B1♭X1, b♭x, B2♭X2) in Mono(S) = M, the (regular epi-mono)-factorization
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mq̄ of l : Q1 −→ Q2 in S

B1♭X1

k1 //

ιX1
ξ1

//

b♭x
��

B1 +X1
q1 //

b+x
��

Q1
q̄

//

l
��

Q̂

m
��

B2♭X2

k2 //

ιX2
ξ2

// B2 +X2 q2
// Q2

1Q2

// Q2

.

Being an action in S2, (q1ιX1
, q2ιX2

) is a monomorphism in S2 and so qιX =
(q̄q1ιX1

, q2ιX2
) is a monomorphism in M because q2ιX2

is a monomorphism
in S. Consequently, every action is strict.
Thus, by Corollary 4.6, we have there a good theory of semidirect products.

Proposition 4.9. If S is a semi-abelian category where the coproduct of two
monomorphisms is a monomorphism then Mono(S) has semidirect products.
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o Desenvolvimento Rápido e Sustentado do Produto, Instituto Politécnico de Leiria,
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