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Abstract: We introduce the umbral calculus formalism for hypercomplex vari-
ables starting from the fact that the algebra of multivariate polynomials IR[x] shall
be described in terms of the generators of the Weyl-Heisenberg algebra. The ex-
tension of IR[x] to the algebra of Clifford-valued polynomials P give rise to an
algebra of Clifford-valued operators whose canonical generators are isomorphic to
the orthosymplectic Lie algebra osp(1|2).

This extension provides an effective framework in continuity and discreteness
that allows us to establish an alternative version of Almansi decomposition com-
prising continuous and discrete versions of classical Almansi theorem in Clifford
analysis (c.f. [38, 33]) that corresponds to a meaningful generalization of Fischer
decomposition for the subspaces ker(D′)k.

We will discuss afterwards how the symmetries of sl2(IR) (even part of osp(1|2))
are ubiquitous on the recent approach of Render (c.f. [37]), showing that they can
be interpreted as the method of separation of variables for the Hamiltonian operator
in quantum mechanics.
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1. Introduction
1.1. The Scope of Problems. In the last two decades considerable atten-
tion has been given to the study of polynomial sequences for hypercomplex
variables in different contexts. For example, in the approach proposed by
Faustino & Kähler (c.f. [20]), rising and lowering factorials that yield
e.g. the classical Bernoulli and Euler polynomials (c.f. [44]) are the discrete
analogues of homogeneous polynomials that appear in Fischer’s decomposi-
tion involving difference Dirac operators. The hypercomplex generalization
of this polynomials was studied recently in [35] by Malonek & Tomaz in
connection with Pascal matrices.
Roughly speaking, the construction of hypercomplex Bernoulli polynomials

shall be obtained via Appell sets [8, 34]. These set of polynomials studied

Received December 29, 2010.

1
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at an early stage by Abul-ez & Constales in [1] in terms of basic sets
of hypercomplex polynomials shall be interpreted as a Cauchy-Kovaleskaya
extension of the rising factorials considered in [20]. For a fully explanation of
Cauchy-Kovaleskaya extension we refer to [14] (Subsection II.5); a meaningful
characterization of Cauchy-Kovaleskaya’s extension in interplay with Segal-
Bargmann spaces can be found in [10] (Subsection 2.2).
Along with the construction of basic polynomial sequences in hypercom-

plex variables, other directions have been followed to construct Appell sets,
namely by taking the Fueter-Sce extension of complex monomials zk (c.f.
[26]), using a Fourier series expansion of square integrable monogenic func-
tions on the unit ball (c.f. [5]) or alternatively using a Gelfand-Tsetlin basis
approach (c.f. [6]) that essentially combines Fischer decomposition with the
Cauchy-Kovalevskaya extension.
With respect to the discrete setting, it was further developed in the Ph.D

thesis of Faustino (c.f. [22]) that families of discrete polynomials can be
constructed as blending between continuum and discrete Clifford analysis
giving an affirmative answer to the paper of Malonek & Falcão (c.f.
[34]).
According to this proposal, discrete Clifford operators underlying the or-

thogonal group O(n) were introduced by means of representations of the Lie
superalgebra osp(1|2). Moreover, the refinement of discrete harmonic anal-
ysis follows from the representation of the Lie algebra sl2(IR) as the even
part of osp(1|2) while the blending between continuum and discrete Clifford
analysis was obtained via a Sheffer map (c.f.[40, 39]) that essentially maps
the homogeneous polynomials onto basic polynomial sequence of binomial
type.
This approach combines the radial algebra based approach proposed by

Sommen in [43] with the umbral calculus approach postponed in [16] by
Di Bucchianico,Loeb & Rota. The main novelty of this new approach
rests mostly from the fact that continuous and discrete Clifford analysis are
described as realizations of the well-known Wigner quantum systems (c.f.
[45]) on which the Sheffer map shall be interpreted as a gauge transformation
that keep invariant the symmetries of both systems (see e.g. [23] for a sketch
of this approach).
There were still consider alternative constructions of discrete Clifford anal-

ysis using different type of symmetries. One of them proposed in the preprint
of Faustino & Kähler (c.f.[21]), Clifford analysis on symmetric lattices
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appears as a mimetic description of Hermitian Clifford analysis on which the
unitary group U(n) appear as the natural candidate to the induced repre-
sentations for the algebra of Clifford-valued operators (c.f. [7]). The major
obstacle arising this construction follows from the fact that the multiplication
operators xjT

−j
h and xjT

+j
h do not commute and hence there is no chance to

get a radial algebra structure (c.f. [43]). For a complete survey besides this
drawback we refer to [22] (Section 3).
Quite recently, in the recent approach of De Ridder, De Schepper,

Kähler & Sommen (c.f.[13]) the Weyl-Heisenberg symmetries encoded in

the forward/backward finite difference operators ∂±jh and multiplication op-

erators xjT
∓j
h were replaced by ‘skew’-Weyl symmetries with the purpose to

get, in analogy with the Hermitian setting, linear independence between the
vector multiplication operators X+ =

∑n
j=1 e

+
j X

+
j and X− =

∑n
j=1 e

−
j X

−
j .

As a result, the authors show that the Euler polynomials are the result-
ing discrete polynomials that yield a Fischer decomposition for D+

h +D−h =
∑n

j=1 e
+
j ∂

+j
h +e−j ∂

−j
h . Besides this approach there is an open question regard-

ing the symmetries of such system.
Let us turn now our attention for the Almansi decomposition state of art

in Clifford and harmonic analysis. The theorem formulated below:

Almansi’s Theorem (cf. [2, 3]) If f is polyharmonic of degree k in a
starlike domain with center 0, then there exist uniquely defined functions
f0, · · · , fk−1, each harmonic in Ω such that

f(x) = f0(x) + |x|2f2(x) + · · ·+ |x|2(k−1)fk−1(x).

corresponds to the Almansi decomposition for poly-harmonic functions.
One can find important applications and generalizations of this result for

several complex variables in the monograph of Aronszajn, Creese &

Lipkin, [3], e.g. concerning functions holomorphic in the neighborhood of
the origin in Cn. Generalizations of Almansi’s Theorem can be found in
[38, 33, 12, 36, 37].
For the harmonic case, the importance of this result was recently ex-

plored by Render in [37], showing that for functions belonging to the real
Bargmann space, there is an intriguing connection between the existence of
a Fischer inner pair (c.f. [37]) the problem of uniqueness of polyharmonic
functions posed by Hayman in [27] (c.f. [37], Section 9) as well as a charac-
terization for the entire for the Dirichlet problem (c.f. [37], Section 10).
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In the Clifford setting, the Almansi theorem shall be understood as a mean-
ingful generalization of Fischer decomposition for hypercomplex variables
without requiring a Fischer inner product a-priori (c.f [14], pp. 204-207).
This result plays a central role in the study of polymonogenic functions like-
wise in the study of polyharmonic functions as refinements of polymonogenic
functions. This was consider in the begining of 90′s by Ryan [38] to study
invariance of iterated Dirac operator in relation to Möbius transformations
on manifolds. On the last decade Malonek & Ren established a general
framework which describe the decomposition of iterated kernels for differ-
ent function classes [33, 36]. Besides the approach of Cohen, Colonna,

Gowrisankaran & Singman regarding polyharmonic functions on trees
and the approaches on Fischer decomposition for difference Dirac operators
proposed by Faustino & Kähler [20] and De Ridder, De Schepper,

Kähler & Sommen [13], as far as we know, there is no established frame-
work on Almansi-type theorems as a general method for obtaining special
representations for discrete hypercomplex functions.

1.2. Motivation of this approach. The umbral calculus formalism pro-
posed by Roman & Rota (c.f. [39, 40]) have received on the last fifteen
years the attention of mathematicians and physicists. Besides the papers of
Di Bucchianico & Loeb (c.f.[15]) andDi Bucchianico, Loeb, & Rota

(c.f. [16]) devoted to classical aspects of umbral calculus, further applications
were developed after the papers of Smirnov & Turbiner (c.f. [42]) and
Dimakis, Müller-Hoissen & Striker in the mid of the 90′s (c.f. [19])
with special emphasize to systematic discretization of Hamiltonian operators
preserving Weyl-Heisenberg symmetries (c.f. [32, 31]), to the construction of
Appell sets (c.f. [44]) and complete orthogonal systems of polynomials (c.f.
[17]) based on the theory of Sheffer sets likewise in the solution of the Boson-
Normal ordering problem in quantum mechanics by combinatorial identities
based on binomial sums with the construction of coherent states (c.f. [4]).
When we take the tensor product between the algebra of multivariate poly-

nomials IR[x] with the Clifford algebra of signature (0, n) in IRn, the resulting
algebra of Clifford-valued polynomials is described in Lie symmetries under-
lying the Lie algebra sl2(IR) and the Lie superalgebra osp(1|2) (see [18, 23, 11]
and the references given there) while the Fischer decomposition of the algebra
of homogeneous Clifford-valued polynomials in terms of spherical harmonics
and spherical monogenics follows from the Howe dual pair technique (see [6]
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and references given there) applied to sl2(IR) × O(n) and osp(1|2) × O(n),
respectively. The details of such technique can be found on the papers of
Howe (c.f. [29]) and Cheng & Zhang (c.f.[9]).
Although on the last years the Lie (super)algebra framework was success-

fully applied in Clifford analysis, these kind of algebras are also ubiquitous
e.g. in the old works of Wigner (c.f. [45]) and Turbiner (c.f. [41]):
In [45] it was shown that the so-called Wigner quantum systems that de-

scribe a motion of a particle on the ambient space IRn may be characterized
in terms of symmetries of osp(1|2n); on [41] the eigenfunctions for the Hamil-
tonian operators were computed explicitly by taking into account the sl2(IR)
symmetries of such system while the eigenvalues were described as an infinite
number of (unplaited) sheets lying on a Riemann surface. Quite recently, in
[46] Zhang also apply this framework to the study of quantum analogues
for the Kepler problem in the superspace setting.

1.3. Organization of the paper. In this paper we will derive an um-
bral counterpart for the well known Almansi type decomposition for hyper-
complex variables by employing combinatorial and algebraic/geometric tech-
niques regarding umbral calculus (c.f. [19, 16]), radial algebras (c.f. [43]) and
the Howe dual pair technique confining nonharmonic analysis and quantum
physics (c.f. [28, 30]).
We will start to introduce the umbral calculus framework in the algebra of

Clifford-valued polynomials P := IR[x]⊗Cℓ0,n as well as the symmetries pre-
served under the action of the Sheffer map, showing that there is a mimetic
transcription of classical Clifford analysis to discrete Clifford analysis that
generalizes complex analysis to higher dimensions (c.f. [14, 25]). Roughly
speaking, in umbral calculus the algebra of polynomials IR[x] can be rec-
ognized as being isomorphic to the algebra generated by position and mo-
mentum operators x′j and Oxj

, respectively, satisfying the Weyl-Heisenberg
relations

[Oxj
, Oxk

] = 0 = [x′j, x
′
k], [Oxj

, x′k] = δjkid. (1)

Here and elsewhere [a,b] := ab−ba denotes the commuting bracket between
a and b.
Moreover, if we take e1, . . . , en as the Clifford algebra generators satisfying

the anti-commuting relations {ej, ek} := ejek+ekej = −2δjk, umbral Clifford
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analysis (c.f. [23]) deals with the study of the algebra of differential operators

Alg
{

x′j, Oxj
, ej : j = 1, . . . , n

}

,

For a complete survey besides this approach we refer to [22] (Section 3).
Moreover, taking into account the action of the orthosymplectic Lie su-

peralgebra of type osp(1|2) on the subspaces (x′)s kerD′ we will derive some
recursive relations (Lemma 3.1 and Proposition 3.1) and inversion formulae
(Lemmata 3.3 and 3.4) which allow us to decompose the subspace ker(D′)k

(the so-called umbral polymonogenic functions of degree k) as a direct sum
of subspaces of the type Ps(x

′) kerD′, for s = 0, 1, . . . , k − 1, where Ps(x
′)

stands a polynomial type operator of degree s satisfying the mapping prop-
erty Ps(x

′) : ker(D′)s → kerD′.
This in turn gives an alternative interpretation for the results obtained by

Ryan (c.f. [38]), Malonek & Ren ([33, 36]) and Faustino & Kähler

[20] in terms of the symmetries of the Lie superalgebra osp(1|2) and the Lie
algebra sl2(IR).
Finally, in Subsection 3.2 we will give an interpretation for the recent ap-

proach of Render (c.f. [37]) showing that for a special choice of potential
operator V~(x

′) the Almansi decomposition encoded in the quantized Fischer

inner pair ((2V~(x
′))k , (∆′)k) is nothing else than a sl2(IR) based diagonal-

ization of the Hamiltonian H′ = −1
2∆
′ + V~(x

′).

2. Umbral Clifford Analysis
2.1. Umbral calculus revisited. In this section we will review some basic
notions regarding umbral calculus. The proof of further results that we will
omit can be found in [40, 39, 15] or alternatively in [22], Chapter 1.
In the following, we will set by IR[x] the ring of polynomials over x =

(x1, x2, . . . , xn) ∈ IRn, by α = (α1, α2, . . . αn) the multi-index over INn
0 and by

xα = xα1

1 xα2

2 . . . xαn
n the monomial over x The partial derivative with respect

to xj will be denoted by ∂xj
:= ∂

∂xj
while the gradient ∂x corresponds to the

n−tuple ∂x := (∂x1
, ∂x2

, . . . , ∂xn
).

Here and elsewhere, we will also adopt the following notations:

∂α
x := ∂α1

x1
∂α2

x2
. . . ∂αn

xn
, α! = α1!α2! . . . αn!,

(

β

α

)

= β!
α!(β−α)! , |α| =

∑n
j=1 αj .

By means of the differentiation formulae ∂α
xx

β = 0 for |α| > |β| and ∂α
xx

β =
β!
α! x

β−α for |α| ≤ |β|, it turns out the representation of the binomial formula



(DISCRETE) ALMANSI TYPE DECOMPOSITIONS 7

in terms of the gradient operator ∂x:

(x+ y)β =

|β|
∑

|α|=0

(

β

α

)

xαyβ−α =
∞
∑

|α|=0

[∂α
xx

β]x=y

α!
xα (2)

Linearity arguments shows that the extension of the above formula to the
ring of polynomials IR[x] corresponds to f(x + y) = exp(y · ∂x)f(x), where
exp(y · ∂x) =

∑∞
|α|=0

yα

α!∂
α
x denotes the formal power series representation of

the shift operator Tyf(x) = f(x+ y).
An operator Q ∈ End(IR[x]) is shift-invariant if and only if it commutes

with Ty = exp(y · ∂x) for all P ∈ IR[x] and y ∈ IRn:

[Q, Ty]P (x) := Q(TyP (x))− Ty(Q P (x)) = 0.

Under the shift-invariance condition for Q, the first expansion theorem (c.f.
[15]) states that any linear operator Q : IR[x]→ IR[x] is shift-invariant if and
only if Q is given by the following formal power series:

Q =

∞
∑

|α|=0

aα

α!
∂α
x , with aα = [Qxα]x=0 .

Set Ox = (Ox1
, Ox2

, . . . , Oxn
) as a multivariate operator. We say that Ox is

shift-invariant operator if and only if Ox1
, Ox2

, . . . , Oxn
are shift-invariant too.

Moreover, Ox is a multivariate delta operator if and only if there is a non-
vanishing constant c such that Oxj

(xk) = cδjk, holds for all j, k = 1, 2, . . . , n.
It can be shown that if Ox is a multivariate delta operator, each Oxj

lowers
the degree of a polynomial P (x) ∈ R[x]. In particular Oxj

(c) = 0 for each
non-vanishing constant c (c.f. [22], Lemmata 1.1.8 and 1.1.9) and hence, any
multivariate delta operator Ox uniquely determines a polynomial sequence
of binomial type {Vα(x) : α ∈ Nn

0}, (c.f.[22] Theorems 1.1.12 and 1.1.13):

Vβ(x+ y) =

|α|
∑

|β|=0

(

β

α

)

Vα(x)Vβ−α(y) (3)

such that V0(x) = 1, Vα(0) = δα,0 and Oxj
Vα(x) = αjVα−vj

(x), where vj

stands the j−element of the canonical basis of Rn.
The Pincherle derivative of Oxj

with respect to xj is defined formally as
the commutator between Oxj

and xj:

O′xj
f(x) := [Oxj

, xj]f(x) = Oxj
(xjf(x))− xj(Oxj

f(x)),
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This canonical operator plays an important role in the construction of basic
polynomial sequences (c.f. [19, 17, 4]). The subsequent results allows us to
determine in which conditions the operator (O′xj

)−1 exists.
We will start with the following lemma:

Lemma 2.1. The Pincherle derivative of a shift-invariant operator Q is shift-
invariant.

Regardless the last lemma one looks to shift-invariant operators Q as for-
mal power series Q(x) =

∑

α
aα
α!x

α obtained viz the replacement of x by the

gradient operator ∂x, i.e. ι[Q(x)] = Q(∂x) where ι : ÎR[x] → End(IR[x]) is

defined as a mapping between the algebra of formal power series ÎR[x] and
the algebra of linear operators acting on IR[x] End(IR[x]). According to the
isomorphism theorem (see [39], page 7, Theorem 2.1.1.), ι is one-to-one and
onto. This in turn leads to the following proposition:

Proposition 2.1. An shift-invariant operator Q has its inverse if and only
if Q1 6= 0.

From Lemma 2.1 notice that O′xj
is shift-invariant whenever Oxj

is shift-

invariant. Since from the definition O′xj
(1) = Oxj

(xj) and Oxj
(xj) is a non-

vanishing constant, Proposition 2.1 asserts that (O′xj
)−1 exists locally as a

formal series expansion involving multi-index derivatives ∂α
x .

The former description in terms of Pincherle derivatives allows us to de-
termine basic polynomial sequences Vα(x) as polynomial sequences obtained
from the action of (x′)α :=

∏n
k=1(x

′
k)

αk with x′k := xk(O
′
xk
)−1 on the constant

polynomial Φ = 1 (see also [39], page 51, Corollary 3.8.2):

Vα(x) = (x′)α1. (4)

The properties of basic polynomial sequences are naturally characterized
within the extension of the mapping property Ψx : xα 7→ Vα(x) to R[x].
According to [39], this mapping is the well-know Sheffer map that link two
basic polynomial sequences of binomial type. It is clear from the construction
that Ψ−1x exists and it is given by the linear extension of Ψ−1x : Vα(x) 7→ xα

to R[x] leading to the following properties on R[x]:

Oxj
= Ψx∂xj

Ψ−1x , and x′j = ΨxxjΨ
−1
x .

From the border view of quantummechanics, the 2n+1 operators x′1, . . . , x
′
n,

Ox1
, . . . , Oxn

and id generate the Bose algebra isomorphic to IR[x] (c.f. [16]).
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Indeed for Φ = 1 (the so-called vacuum vector) Oxj
(Φ) = 0 holds for each

j = 1, . . . , n while the raising and lowering operators, x′j : Vα 7→ Vα+vj
and

Oxj
: Vα 7→ αj Vα−vj

respectively, satisfy the Weyl-Heisenberg relations given
by (1).
Due to this correspondence, we would like to stress that the quantum

mechanical description of umbral calculus give us many degrees of freedom
for constructing raising operators x′j : Vα(x) 7→ Vα+vj

(x) in such way that
the commuting relations (1) fulfil. In particular, in [19, 17] it was postponed
the importance to consider the following symmetrized versions of the raising
operators xj(O

′
xj
)−1:

x′j =
1

2
(xj(O

′
xj
)−1 + (O′xj

)−1xj) (5)

as a special type of canonical discretization.

2.2. Basic operators. In what follows we will use the notation introduced
in Section 2.1. Additionally we will define Cℓ0,n as the algebra determined by
the set of vectors e1, e2, . . . , en satisfying the graded anti-commuting relations

{ej, ek} = −2δjk, (6)

where {a,b} = ab+ ba denotes the anti-commuting bracket between a and
b.
The above algebra is commonly known in literature as the Clifford alge-

bra of signature (0, n) (c.f. [14], Chapters 0 & I; [25], Chapter 1) which
corresponds particular example of an algebra of radial type since the anti-
commutator {ej, ek} (scalar-valued quantity) commutes with all the basic
vectors ej:

{ [ej, ek] , el } = 0, for all j, k, l = 1, . . . , n. (7)

For further details concerning the construction of Cℓ0,n as an algebra of radial
type we refer to [43].
Additionally, we will denote by P = IR[x]⊗Cℓ0,n the algebra of all Clifford-

valued polynomials and by End(P) the algebra of all linear operators acting
on P . The Weyl-Heisenberg character of the operators x′j and Oxj

combined
with the radial character of the generators underlying the Clifford algebra
Cℓ0,n allows us to define umbral Clifford analysis as the study of the algebra
of differential operators

Alg
{

x′j, Oxj
, ej : j = 1, . . . , n

}

(8)
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Furthermore, the umbral counterparts Dirac operator, vector variable and
Euler operator, D′, x′ and E ′ respectively, given by

D′ =
n

∑

j=1

ejOxj
, (9)

x′ =
n

∑

j=1

ejx
′
j, (10)

E ′ =
n

∑

j=1

x′jOxj
, (11)

correspond to linear combinations of the elements of the algebra (8).
In this context, the operators (9)-(11) shall be understood as basic left

endomorphisms acting on the algebra End(P):

x′ : F (x) 7→
n

∑

j=1

ejx
′
j(F (x)),

x′ : F (x) 7→
n

∑

j=1

ejOxj
(F (x)),

E ′ : F (x) 7→
n

∑

j=1

x′jOxj
(F (x)).

Along this paper we will use several times the notation ∆′ :=
∑n

j=1O
2
xj

when

we refer to the umbral counterpart of the Laplace operator ∆ =
∑n

j=1 ∂
2
xj
.

The next lemma naturally follows from straightforward computations ob-
tained by direct combination of the relations (1) and (6):

Lemma 2.2 (c.f. [22], Lemma 3.4.3, pp. 68). The operators x′, D′, E ′ ∈
End(P) satisfy the following anti-commutation relations

{x′, x′} = −2
n

∑

j=1

(x′j)
2, {D′, D′} = −2∆′, {x′, D′} = −2E ′ − nid.

When acting on the polynomial Φ = 1, from the first relation of Lemma
2.2, the quantity −(x′)2(1) is scalar-valued while from the second relation of
Lemma 2.2 ∆′ := −(D′)2 is a second order operator satisfying the vanishing
condition ∆′(1) = 0. On the other hand, the third relation of Lemma 2.2,
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the action of the umbral Euler operator on the algebra End(P) we can recast
E ′ in terms of the graded anti-commuting relation between x′ and D′:

E ′ =
n

∑

j=1

x′jOxj
= −1

2
({x′, D′}+ nid) . (12)

The acting both sides of the above identity on the polynomial Φ = 1, we
recast the dimension of the ambient space IRn as n = −D′(x′1). So, the
polynomial Φ = 1 shall be interpreted as the corresponding ground level
eigenstate while the dimension of the ambient space IRn appears as twice of
the ground level energy associated to the harmonic oscillator containing n

degrees of freedom.
It is also clear from Lemma 2.2 that the anti-commutators {x′, x′}, {D′, D′}

and {x′, D′} are scalar operators. Thus, from (9),(10) and (12) (x′)2, −(D′)2
and E ′ shall be view as generalizations for the norm squared of a vector
variable in the Euclidean space, the Laplacian operator and Euler operator,
respectively. From the border point of quantum mechanics, the operators
−1

2
(x′)2 and −1

2
∆′ describe a spherical potential and kinetic energy, respec-

tively.
Here we would like also to stress that the umbral Euler operator E ′ (see

identity (11)) comprises at the same time the concept of directional derivative
introduced by Howe (c.f. [28]) for quantum groups with the concept of non-
shift-invariant mixed/number operator given Di Bucchianico, Loeb &

Rota (c.f. [16]).
We will end this subsection by showing and discussing some examples re-

garding the construction of the operators (9)-(11).

Example 2.1. If we take Oxj
= ∂xj

, D′ and x′ coincide with the standard
Dirac and coordinate variable operators, respectively:

D =
n

∑

j=1

ej∂xj
, x =

∑n
j=1 ejxj.

while E =
∑n

j=1 xj∂xj
corresponds to the classical Euler operator.

Furthermore, the continuum Hamiltonian 1
2

(

−∆+ |x|2
)

can we rewritten
as

1

2

(

−∆+ |x|2
)

=
1

2
(D2 − x2),
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where the quantity 1
2
|x|2 = −1

2
x2 corresponds to a spherical symmetric poten-

tial operator.

Example 2.2. Next we will consider D′ as a difference Dirac operator given

in terms of the forward differences ∂+j
h f(x) =

f(x+hvj)−f(x)
h

:

D′ =
n

∑

j=1

ej∂
+j
h =

n
∑

j=1

ej
Thvj
− id

h
.

The square of D′ corresponds to (D′)2 = − 1
h2

∑n
j=1(T2hvj

− 2Thvj
+ id).

On the other hand, the formal series expansion for ∂
+j
h is given by ∂

+j
h =

1
h

(

exp(h∂xj
)− id

)

, and [∂+j
h , xj] = Thvj

= exp(h∂xj
) is the Pincherle deriv-

ative for ∂
+j
h .

Thus the operator x′ corresponds to

x′ =
n

∑

j=1

ej xjT−hvj
=

n
∑

j=1

ej xj exp(−h∂xj
).

Alternatively, using relation (5), the operator x′ can also be taken as

x′ =
1

2

n
∑

j=1

ej
(

xjT−hvj
+ T−hvj

xj

)

=
1

2

n
∑

j=1

ej
(

xj exp(−h∂xj
) + exp(−h∂xj

)xj

)

.

Then, take into account the definition (11) and the relation (12), we can
consider two different constructions for E ′:

• E ′ = ∑n
j=1 xjT−hvj

∂
+j
h =

∑n
j=1 xj∂

−j
h ;

• E ′ = 1
2

∑n
j=1

(

xjT−hvj
+ T−hvj

xj

)

∂
+j
h = 1

2

∑n
j=1 xj∂

−j
h +1

2

∑n
j=1 T−hvj

xj∂
+j
h .

Hereby ∂
−j
h = 1

h(id − T−vj
) corresponds to the backward finite difference op-

erator.

Example 2.3. Now we will replace the forward finite differences ∂+j
h used in

the definition of D′ in Example 2.2 by a central difference operator on the
equidistant grid hZn:

Oxj
f(x) =

f(x+ hvj)− f(x− hvj)

2h
.

The formal series expansion for these operators correspond to

Oxj
=

1

2h

(

exp
(

h∂xj

)

− exp
(

−h∂xj

))

=
1

2h
sinh

(

h∂xj

)
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and moreover the formal series expansion for D′ is given by

D′ =
1

2h

n
∑

j=1

ej sinh
(

h∂xj

)

.

The square of (D′)2 splits the star laplacian on a equidistant grid with mesh-
width 2h:

−(D′)2 =
n

∑

j=1

exp(2h∂xj
)− 2id+ exp(−2h∂xj

)

4h2
=

n
∑

j=1

T2hvj
− 2id+ T−2hvj

4h2
.

Therefore, the construction of the operators x′ and E ′ shall be take into
account the following formal series expansion for O′xj

:

O′xj
f(x) =

f (x+ hvj) + f (x− hvj)

2
= cosh

(

h∂xj

)

f(x).

Using the relation cosh
(

h∂xj

)

= 1
h
exp

(

−h∂xj

) (

id− exp
(

2h∂xj

))

com-

bined with the standard Von Neumann series expansion of
(

id− exp
(

2h∂xj

))−1

in the C∞−topology, we get the following asymptotic expansion for (O′xj
)−1 :

(O′xj
)−1 = −h

(

id− exp
(

2h∂xj

))−1
exp

(

h∂xj

)

= −h
∞
∑

k=0

exp
(

(2k + 1)h∂xj

)

,

or equivalently (O′xj
)−1 = −h∑∞

k=0 T(2k+1)hvj
. The above inverse only exists

whenever
∥

∥T2hvj

∥

∥ =
∥

∥exp
(

2h∂xj

)
∥

∥ < 1.
Alternatively, we can express (O′xj

)−1 by taking into account the following

formal integral representation in terms of the Laplace transform (Lf)(s) =
∫∞
0 e−stf(t) dt (c.f. [16]):

(O′xj
)−1 = −h

∫ ∞

0

e−st exp(h(2t+ 1)∂xj
) dt = −h

∫ ∞

0

e−stTh(2t+1)vj
dt.

The umbral Dirac operator introduced in Example 2.2 corresponds to the
forward difference Dirac operator introduced by Faustino & Kähler in
[20]. Here we would like to notice that in Example 2.2, the square (D′)2 does
not split the star laplacian ∆h defined below:

∆hf(x) =
n

∑

j=1

f(x+ hvj) + f(x− hvj)− 2f(x)

h2
,
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which means that discrete harmonic analysis can not be refined in terms of
discrete Dirac operators involving only forward differences (c.f. [20]).
As we see in Example 2.3, the computation of the inverse for O′xj

=

cosh
(

h∂xj

)

is cumbersome and involves infinite sums or integral represen-
tations. However, in the case when periodic boundary conditions of the type
x+ hNvj = x for certain N ∈ N are imposed on the equidistant lattice hZn,
in [19] (see Section 5) the authors compute explicitly (O′xj

)−1 as a finite sum

involving powers of Thvj
= exp

(

h∂xj

)

.
On the other hand, contrary to Example 2.2, the operators x′ and D′ ob-

tained as mimetic transcription of classical Clifford analysis to the discrete
setting viz intertwining properties on the algebra of Clifford-valued polyno-
mials P = R[x]⊗ Cℓ0,n:

ΨxD = D′Ψx, Ψxx = x′Ψx, ΨxE = E ′Ψx (13)

concern with the nearest neighbor points together with all the points con-
tained in each direction hvj. Hereby, Ψx is the Sheffer map introduced in
Section 2.1.
Here we would also like to stress that ∆2h = −(D′)2 is defined on the

equidistant lattice (2h)Zn. So, the periodicity as well as the coarsening of
lattice is the price that we must pay in order to get discrete Clifford analysis
as a refinement of discrete harmonic analysis underlying the orthogonal group
O(n).

2.3.Orthosymplectic Lie Algebra Representation. The main objective
of this subsection is to gather a fully description of the Clifford operators
defined on Subsection 2 as a representation of the orthosymplectic Lie algebra
osp(1|2). We will start to recall some basic definitions underlying the Lie
algebra setting. A comprehensive survey of this topic can be found in [28, 24].
The orthosymplectic Lie algebra of type osp(1|2) is defined as a direct sum

of linear spaces

span
{

p−,p+,q
}

⊕ span
{

r−, r+
}
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equipped with the standard graded commutator [·, ·] such that p−,p+,q, r−

and r+ satisfy the following standard commutation relations (see e.g. [24]):
[

q,p±
]

= ±p±, [p+,p−] = 2q,
[

q, r±
]

= ±1
2
p±, [r+, r−] = 1

2q,
[

p±, r∓
]

= −r±, [r±, r±] = ±1
2p
±.

Here we would like to point out that on above construction, the Lie algebra
sl2(IR) appears as a refinement of osp(1|2) in the sense that the canonical
generators p−,p+, 2q itself generate sl2(IR). In particular sl2(IR) corresponds
to the even part of osp(1|2).
The subsequent lemma leads up to an isomorphism to a canonical real-

ization of the orthosymplectic Lie algebra of type osp(1|2) in terms of the
operators x′, D′ and E ′ + n

2 id. We leave the proof of the following lemma to
Appendix A.

Lemma 2.3 (See Appendix A). The operators x′,D′ and E ′ + n
2
id generate

a finite-dimensional Lie algebra in End(P). The remaining commutation
relations are

[

x′, (x′)2
]

= 0, [x′,−∆′] = −2D′, [E ′ +
n

2
id, x′] = x′

[

D′, (x′)2
]

= 2x′, [D′,−∆′] = 0, [E ′ +
n

2
id, D′] = −D′

[

(x′)2,−∆′
]

= 4
(

E ′ +
n

2
id
)

,
[

E ′ + n

2
id,−(x′)2

]

= −2(x′)2,
[

E ′ +
n

2
id,−∆′

]

= 2∆′

Furthermore, the standard commutation relations for osp(1|2) are obtained
viz the following normalization

p− = −1
2∆
′, p+ = −1

2(x
′)2, q = 1

2

(

E ′ + n
2 id

)

r+ = 1
2
√
2
ix′, r− = 1

2
√
2
iD′

and hence, p+ = 1
2(x
′)2, p− = 1

2∆ and 2q = E ′ + n
2 id correspond to the

canonical generators of the Lie algebra sl2(IR).
In brief, the above description establishes a parallel with the continuum

versions of Clifford analysis (c.f [14]) and harmonic analysis (c.f. [30]) as
representations of osp(1|2) and sl2(IR), respectively. This also establishes
the with the celebrated Wigner Quantum systems introduced by Wigner in
[45] in the sense that osp(1|2) encode the n−dimensional discrete harmonic
oscillator.
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3. Almansi-type theorems in (discrete) Clifford analysis
3.1.Main Result. In this section, we will derive an Almansi-type theorem
based on replacements of the operators (x′)k by polynomial type operators
Pk(x

′) such that (D′)kPk(x
′) : kerD′ → kerD′ is an isomorphism. For a

sake a simplicity, we leave for Appendix B the proofs of the technical results
regarding the proof of our main result.
We will start to pointing out the following definitions:

Definition 3.1. Let Ω be a domain in IRn and k ∈ IN. A function f : Ω −→
Cℓ0,n is Umbral polymonogenic of degree k if (D′)kf(x) = 0 for all x ∈ Ω. If
k = 1, it is called umbral monogenic function.

Definition 3.2. A domain Ω ⊂ Rn is a starlike domain with center 0 if with
x ∈ Ω also tx ∈ Ω holds for any 0 ≤ t ≤ 1.

For any k ∈ IN, we denote by Q′k : kerD′ → kerD′ the right inverse of
(D′)kPk(x

′), i.e.

(D′)kPk(x
′)(Q′kf) = f, for all f ∈ kerD′.

Thus, the Almansi theorem can be formulated as follows:

Theorem 3.1. Let Ω be a starlike domain in IRn with center 0. If f is
a umbral polymonogenic function in Ω of degree k, then there exist unique
functions f0, f1, . . . , fk−2, fk−1, each umbral monogenic in Ω, such that

f(x) = P0(x
′)f0(x) + P1(x

′)f1(x) + · · ·+ Pk−1(x
′)fk−1(x). (14)

Moreover the umbral monogenic functions f0, f1, . . . , fk−2, fk−1 are given by
the following formulas:

fk−1(x) = Q′

k−1
(D′)k−1f(x)

fk−2(x) = Q′

k−2
(D′)k−2(id− Pk−1(x

′)Q′

k−1
(D′)k−1)f(x)

...
f1(x) = Q1D

′(id− P2(x
′)Q2(D

′)2) · · · (id− Pk−1(x
′)Qk−1(D

′)k−1)f(x)
f0(x) = (id− P1(x

′)Q′

1
D′)(id− P2(x

′)Q′

2
(D′)2) · · · (id− Pk−1(x

′)Qk−1(D
′)k−1)f(x).

(15)

Conversely, the sum in (14), with f0, f1, . . . , fk−2, fk−1 umbral monogenic
in Ω, defines a umbral polymonogenic function in Ω.

Before proving Theorem 3.1, we need some preliminary results.
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Lemma 3.1 (See Appendix B). Let Ω be a starlike domain in IRn with center
0. For any Clifford-valued function f(x) in Ω, the following relations hold
for each s ∈ IN:

D′((x′)sf(x)) = −2(x′)s−1T ′sf(x) + (−1)s(x′)sD′f(x), (16)

where

T ′s =

{

k id, if s = 2k
E ′ + (n2 + k)id, if s = 2k + 1

.

From the above lemma, the next proposition naturally follows:

Proposition 3.1 (See Appendix B). The iterated umbral Dirac operator
(D′)k has the mapping property

(D′)k : (x′)s kerD′ → (x′)s−k kerD′

for any s ≥ k. Hereby, for each f(x) ∈ kerD′,

(D′)k ((x′)sf(x)) = (−2)k(x′)s−kT ′s−k+1 . . . T
′
s−1T

′
sf(x), (17)

where the operators U ′j are defined in Lemma 3.1.

Let Ω be a starlike domain with center 0. For any s > 0, we define the
operator Is : C

1(Ω, Cℓ0,n) −→ C1(Ω, Cℓ0,n) by

Isf(x) =

∫ 1

0

f(tx)ts−1dt. (18)

In addition, we set Es = sid+ E. For s = 0 we write E instead of E0.

Lemma 3.2 (c.f.[33]). Let x ∈ IRn and Ω be a domain with Ω ⊃ [0, x]. If
s > 0 and f ∈ C1(Ω, Cℓ0,n), then

f(x) = IsEsf(x) = EsIsf(x). (19)

Sloppily speaking, the family of maps Is : C
1(Ω, Cℓ0,n)→ C1(Ω, Cℓ0,n) can

be viewed as certain sort of right inverse for the operatorDx =
∑n

j,k=1 ejek∂xj
xk

in kerD. Indeed, if f ∈ kerD (i.e. f is monogenic), from Lemma 2.2

D(xf(x)) = x(Df(x)) +D(xf(x)) = −2Ef(x)− nf(x) = −2En/2f(x)

holds whenever Ox = ∂x := (∂x1
, ∂x2

, . . . , ∂xn
).

Finally, from Lemma 3.2, f(x) = −2En/2

(

−1
2
In/2f(x)

)

= −1
2
D(xIn/2f(x)),

showing that the operator−1
2In/2 is a right inverse for Dx on the range kerD.
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On the other hand, when restricted to the space P = ⊕∞k=0Pk, where
each fk ∈ Pk is a Clifford-valued homogeneous polynomial of degree k ( i.e.
fk(tx) = tkfk(x)), the family of mappings Is satisfy the equation

Isfk(x) =

∫ 1

0

fk(x)t
k+s−1dt =

1

k + s
fk(x), for all fk ∈ Pk

This corresponds to the simplest case of a local coordinate system that
contains along any point x ∈ IRn the curve tsx = (tsx1, t

sx2, . . . , t
sxn) tangent

to the family of vector-fields Es = sid+E satisfying the eigenvalue equation
Esfk(x) = (k + s)fk(x). Hence, Lemma 3.2 remains true for E ′ + sid =
Ψ−1x EsΨx in P , since it holds componentwise.

Lemma 3.3 (See Appendix B). There exists I ′s : P → P such that

(E ′ + sid)I ′s = id = I ′s(E
′ + sid).

The next lemma will be also important on the sequel

Lemma 3.4 (See Appendix B). If f ∈ P, then
D′I ′sf(x) = I ′s+1D

′f(x). (20)

For any k ∈ IN0, denote by Q′k =
(

−1
2

)k
(U ′k)

−1(U ′k−1)
−1 . . . (U ′1)

−1, where

(U ′s)
−1 =







1
k id, if s = 2k

I ′n
2
+k, if s = 2k + 1

. (21)

As direct consequence of (20), we find that I ′sf(x) and is umbral monogenic
whenever f(x) is umbral monogenic in Ω. From the definition of Q′k, we thus
obtain

Q′k(kerD
′) = kerD′. (22)

Then the following lemma holds

Lemma 3.5 (See Appendix B). For any umbral monogenic function f in Ω,

(D′)k
[

(x′)kQ′kf(x)
]

= f(x), x ∈ Ω.

Now we come to the proof of our main theorem for Pk(x
′) = (x′)k:

Proof: [Proof of Theorem 3.1] It is sufficient to show that

ker(D′)k = ker(D′)k−1 + Pk−1(x
′) kerD′, k ∈ IN,
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where Pk−1(x′) = (x′)k−1. Notice that Lemma 3.3 states that

(D′)kPk(x
′)Q′k = id. (23)

We divide the proof into two parts:

(i) ker(D′)k ⊃ ker(D′)k−1 + Pk−1(x′) kerD′. Since ker(D′)k−1 ⊂ ker(D′)k,
we need only to show Pk−1(x′) kerD′ ⊂ ker(D′)k. For any g ∈ kerD′,
by (23) and (22) we have

(D′)k(Pk−1(x
′)g) = D′((D′)k−1Pk−1(x

′)Q′k−1)(Q
′
k−1)

−1g = D′(Q′k−1)
−1g = 0.

(ii) ker(D′)k ⊂ ker(D′)k−1 + Pk−1(x′) kerD′.
For any f ∈ ker(D′)k, we have the decomposition

f = (id− Pk−1(x
′)Q′k−1(D

′)k−1)f + Pk−1(x
′)(Q′k−1(D

′)k−1f).

We will show that the first summand above is in ker(D′)k−1 and the
item in the braces of the second summand is in kerD′. This can be
verified directly. First,

(D′)k−1(id− Pk−1(x
′)Qk−1(D

′)k−1)f =

= ((D′)k−1 − ((D′)k−1Pk−1(x
′)Q′k−1)(D

′)k−1)f

= ((D′)k−1 − (D′)k−1)f = 0.

Next, since (D′)k−1f ∈ kerD′ and Q′k−1 kerD
′ ⊂ kerD′, we have

Q′k−1(D
′)k−1f ∈ kerD′, as desired.

This proves that ker(D′)k = ker(D′)k−1 + Pk−1(x′) kerD′. By induction, we
can easily deduce that ker(D′)k = kerD′ + x′ kerD′ + (x′)2 kerD′ + . . . +
(x′)k−1 kerD′.

Next we prove that for any f ∈ ker(D′)k the decomposition

f = g + Pk−1(x
′)fk, g ∈ ker(D′)k−1, fk ∈ kerD′

is unique. In fact, for such a decomposition, applying (D′)k−1 on both sides
we obtain

(D′)k−1f = (D′)k−1g + (D′)k−1Pk−1(x
′)fk

= (D′)k−1Pk−1(x
′)Q′k−1(Q

′
k−1)

−1f1

= (Q′k−1)
−1fk.

Therefore fk = Q′k−1(D
′)k−1f, so that

g = f − Pk−1(x
′)fk = (id− Pk−1(x

′)Q′k−1(D
′)k−1)f.
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Thus equations (14) and (15) follows by induction.
To prove the converse, we see from equation (17) of Lemma 3.1 that

(D′)k+1(x′)k kerD′ = {0} holds for any k ∈ IN.
Replacing k by j, we have

(D′)k(x′)j kerD′ = {0}

for any k > j. �
The proof of the above theorem can be interpreted as the following infinite

triangle on which the subspaces ker(D′)k are despicted into columns. Each
element of the triangle given by Proposition 2.3 corresponds to the action of
osp(1|2)×O(n) on rows and columns:

{0} kerD′ ker(D′)2 ker(D′)3 ker(D′)4 . . .

{0} kerD′
x′

−→ x′ kerD′
x′

−→ (x′)2 kerD′
x′

−→ (x′)3 kerD′ . . .

↓ D′ ↓ D′ ↓ D′ ↓ D′

{0} kerD′
x′

−→ x′ kerD′
x′

−→ (x′)2 kerD′ . . .

↓ D′ ↓ D′ ↓ D′

{0} kerD′
x′

−→ x′ kerD′ . . .

↓ D′ ↓ D′
{0} kerD′ . . .

↓ D′
{0} . . .

. . .

In those actions, the operator x′ shifts all the spaces in the same row to the
left while the operator D′ shifts all the spaces in the same column down. In
particular, the (k + 1)−line of the above diagram corresponds to the action
of (D′)k on the subspaces (x′)s kerD′ represented in (s+ 1)−column.
The next important step is the passage from the homogeneous operator

of degree k, (x′)k, to a general polynomial type operator Pk(x
′) with the

mapping property Pk(x
′) : ker(D′)k → kerD′. The corollary below gives us

a possible generalization for the construction of Pk(x
′):

Corollary 3.1. If Pk(x
′) = A′k (x′)k +Rk(x

′) where A′k is a Hilbert-Schmidt
operator that satisfy the graded commuting relation [A′k, D

′] = akD
′ for some
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ak ∈ IR and

(D′)k (Rk(x
′)f(x)) = 0, for all f ∈ kerD′,

then Theorem 3.1 fulfils whenever the eigenvalues of the operator A′k are
greater than kak.

Proof: Starting from the definition of Pk(x
′) and using induction on k ∈

IN0, the assumptions for A′k and Rk(x
′) lead to

(D′)k(Pk(x
′)f(x)) = (D′)k(A′k(x

′)kf(x)) = (−kakid+ A′k)(D
′)k

(

(x′)kf(x)
)

.

whenever f belongs to kerD′ (i.e. f is umbral monogenic).
From direct application of Lemma 17, the later equation becomes then

(D′)k(Pk(x
′)f(x)) = (−2)k(−kakid+ A′k)T

′
1 . . . T

′
k−1T

′
kf(x)),

where the operators U ′j are defined in Lemma 3.1.

Replacement of f(x) by S ′kf(x) =
(

−1
2

)k
(T ′k)

−1(T ′k−1)
−1 . . . (T ′0)

−1f(x), on
the above equation results in

(D′)k(Pk(x
′)S ′kf(x)) = (−kakid+A′k)f(x).

Hereby (U ′s)
−1 are defined viz equation (21).

Now it remains to show that −kakid+A′k is invertible ensuring that Q′k =
S ′k(−kakid+ A′k)

−1 is a right inverse for (D′)kPk(x
′) : kerD′ → kerD′.

If A′k is a multiple of the identity operator id, ak = 0 and hence A′k is
invertible and the proof of corollary holds.
Otherwise, since A′k is a Hilbert-Schmidt operator we conclude that A′k has

discrete spectra. Then, analogously to the proof of Lemma 3.3 (see Appendix
B), A′k is given by the series expansion

A′kf(x) =
∞
∑

s=0

λk,sfs(x),

where λk,s ∈ IR are the eigenvalues of A′k.
Thus −kakid + A′k is invertible whenever −kak + λk,s is positive, that is

λk,s > kak.
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Finally, using the same order of ideas of the proof of Theorem 3.1, induction
arguments lead to the following infinite triangle

{0} kerD′ ker(D′)2 ker(D′)3 ker(D′)4 . . .

{0} P0(x
′) kerD′

x
′

−→ P1(x
′) kerD′

x
′

−→ P2(x
′) kerD′

x
′

−→ P3(x
′) kerD′ . . .

↓ D′ ↓ D′ ↓ D′ ↓ D′

{0} P0(x
′) kerD′

x
′

−→ P1(x
′) kerD′

x
′

−→ P2(x
′) kerD′ . . .

↓ D′ ↓ D′ ↓ D′

{0} P0(x
′)kerD′

x′

−→ P1(x
′) kerD′ . . .

↓ D′ ↓ D′

{0} P0(x
′) kerD′ . . .

↓ D′

{0} . . .

. . .

This gives the following direct decomposition of ker(D′)k:

ker(D′)k = ker(D′)k−1 ⊕ Pk−1(x
′) kerD′

= ker(D′)k−2 ⊕ Pk−2(x
′) kerD′ ⊕ Pk−1(x

′) kerD′

= . . .

= P0(x
′) kerD′ ⊕ P1(x

′) kerD′ ⊕ . . .⊕ Pk−1(x
′) kerD′.

concluding in this way the proof of Corollary 3.1. �
We will end this section by establishing a parallel between our approach

and the approaches of Ryan (c.f. [38]), Malonek & Ren (c.f. [33, 36])
and Faustino & Kähler (c.f. [20]).
Recall that Fischer decomposition ([14], Theorem 1.10.1) states the spaces

of homogeneous polynomials Pk are splitted in spherical monogenics pieces
with degree lower than k:

Pk =
k

∑

s=0

⊕

xs (Pk−s ∩ kerD) .

Moreover, from the mapping property given by Lemma 3.5 each Pk ∈
Pk belongs to kerDk+1 and hence from the intertwining property given by
relations (13) the Clifford-valued polynomial ΨxPk(x) = Pk(x

′)1 belongs to
ker(D′)k+1 and hence the Almansi decomposition

ker(D′)k+1 = kerD′ ⊕ x′ kerD′ ⊕ (x′)2 kerD′ ⊕ . . .⊕ (x′)k kerD′,
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comprise the approaches of Ryan (c.f. [38]), Malonek & Ren (c.f. [33])
(i.e. for Ψx = id) as well as the Fischer decomposition in terms of forward
Dirac operators if we consider the operators introduced in Example 2.2. The
flexibility of this approach allows us also to get the Fischer decomposition for
several classes of difference operators like the difference operators considered
in Example 2.3.

Remark 3.1. The replacement of (x′)k by the polynomial type operators
Pk(x

′) given by Corollary 3.1 gives a parallel in continuum as the decompo-
sition in terms iterated kernels obtained by Ren & Malonek (c.f. [33]) on
which the operators Pk(x

′) shall be interpreted as quantization of a Clifford-
valued polynomial of degree k.

3.2. Parallelism with the Quantum Harmonic Oscillator. We will
finish this section by turning out our attention to the quantum harmonic
oscillator given by the following Hamiltonian with written in terms of the
potential operator V~(x

′) = −1
2(x
′)2 − ~

2x
′ + ~2

8

(

Γ′ − n
2 id

)

:

H′~ = −
1

2
∆′ + V~(x

′), with ~ ∈ IR.

Hereby Γ′ = −x′D′−E ′ corresponds to the umbral counterpart of the spher-
ical Dirac operator (c.f. [14]).
In order to analyze the sl2(IR) symmetries of H′, we further introduce the

auxiliar operator

J ′~ =
~

4
D +

1

2

(

E ′ +
n

2
id
)

on the algebra of Clifford-valued polynomials P . The subsequent proposition
gives a description of the Lie algebra symmetries underlyingH′, showing that
p+ = V~(x

′), p− = −∆′

2 and q = ~
4D + E + n

2 id are the canonical generators
of sl2(IR).
We start with the following lemma:

Lemma 3.6. When acting on P, the operator Γ′ commute with the operators
E ′ and ∆′, i.e.

[E ′,Γ′] = 0, [∆′,Γ′] = 0.

Proof: For the proof of [E ′,Γ′] = 0 it remains to show that [E ′, x′D′] = 0
and since from definition [E ′,Γ′] = [E ′,−x′D′ − E ′] = −[E ′, x′D′].
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From Lemma 2.3 we get [E ′, x′] = x′ and [E ′, D′] = −D′. This leads to

E ′(x′D′) = (x′ + x′E ′)D′ = x′D′ + (−x′D′ + x′D′E ′) = (x′D′)E ′,

or equivalently [E ′, x′D′] = 0, as desired.
In order to show that [Γ′,∆′] = 0, we recall the relations [∆′, x′] = 2D′,

[∆′, E ′] = 2∆′ [∆′, D′] = 0 follow from Lemma 2.3. This shows that

∆′(x′D′) = (2D′ + x′∆′)D′ = −2∆′ + (x′D′)∆′,

and hence,

∆′(x′D′ + E ′) = −2∆′ + (x′D′)∆′ + 2∆′ + E ′∆′ = (x′D′ + E ′)∆′.

Finally, taking into account the definition of Γ′ the above equation is equiv-
alent to [∆′,Γ′] = 0, as desired. �

Lemma 3.7. When acting on P, the elements ∆′

2
, V~(x

′) and J~ are the
canonical generators of the Lie algebra. The remaining commutation rela-
tions are

[

∆′

2
, V~(x

′)

]

= J ′~, [J ′~, V~(x
′)] = V~(x

′),

[

J ′~,
∆′

2

]

=
∆′

2
.

Proof: Recall that from Lemma 2.3, p− = −∆′

2 p+ = (x′)2

2 and q = J ′~ are
the canonical generators of sl2(IR):

[

p−,p+
]

= q, [q,p−] = −p−,
[

q,p+
]

= q.

and moreover [x′,p−] = −D′, [D′,p+] = x′, [q, x′] = 1
2x
′ and [D′,p−] = 0 =

[x′,p+]. Taking into account that

V~(x
′) = −p+ − ~

2x
′ + ~2

8

(

Γ′ − n
2 id

)

and J ′~ = q+ ~
4D
′,
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combination of the above relations with Lemma 3.6 results in the following
identities in terms graded commuting relations:

[−p−, V~(x
′)] = [p−,p+] +

[

p−,−~
2x
′ + ~2

8

(

Γ′ − n
2 id

)

]

= q+ ~
2D
′;

[J ′~, V~(x
′)] = −[q,p+]− ~

2 [q, x
′]− ~

4 [D
′,p+]− (~4)

2[D′, x′]

= −p+ − ~
2x
′ + ~2

8

(

Γ′ − n
2 id

)

= V~(x
′);

[J ′~,−p−] = [q,p−]−
[

~
4D
′,p−

]

= −p−.
This proves Lemma 3.7. �

Proposition 3.2. The operators J ′~,H′~ ∈ End(P) are interrelated by the
following intertwining property:

H′~ exp (V~(x
′)) exp

(

−∆
′

2

)

= − exp (V~(x
′)) exp

(

−∆
′

2

)

J ′~.

Proof: From Lemma 3.7, the elements ∆′

2 , V~(x
′) and J~ correspond to

the canonical generators of sl2(IR)
From the above relations, it follows from induction over k that
[

∆′

2
, V~(x

′)k
]

= kJ ′~ (V~(x
′))

k−1
,
[

J ′~, V~(x
′)k

]

= kV~(x
′)k−1 (V~(x

′))k−1 ,

leading to
[

∆′

2
, exp (V~(x

′))

]

= J ′~ exp (V~(x
′)) , [J ′~, exp (V~(x

′))] = V~(x
′) exp (V~(x

′)) .

Combining the above two relations we get
[

∆′

2 + J ′~, exp (V~(x
′))
]

= (J ′~ + V~(x
′)) exp (V~(x

′)) .

which is equivalent to
(

∆′

2 − V~(x
′)
)

exp (V~(x
′)) = exp (V~(x

′))
(

∆′

2 + J ′~
)

.

Not it remains to show that
(

∆′

2 + J ′~
)

exp
(

−∆′

2

)

= exp
(

−∆′

2

)

J ′~.
This statement is then immediate from the fact that

[

J ′~, exp
(

−∆′

2

)]

=
(

−∆′

2

)

exp
(

−∆′

2

)

.
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Therefore

H~ exp (V~(x
′))

(

−∆
′

2

)

= − exp (V~(x
′))

(

∆′

2
+ J ′~

)(

−∆
′

2

)

= − exp (V~(x
′))

(

−∆
′

2

)

J ′~,

as desired. �
We will finish this section by establishing a parallel with the recent ap-

proach of Render (c.f. [37]):
According to the definition of Fischer inner pair ([37], page 315) Corol-

lary 3.1 shows that when A′k is a multiple of the identity operator id, the
pair (P2k(x

′), (∆′)k) corresponds to a quantization of the Fischer inner pair
that completely determines a (discrete) Almansi decomposition for poly-
harmonic functions. Indeed, if f is umbral poly-harmonic of degree k on
Ω (i.e. (∆′)kf(x) = 0 holds on Ω). If we take P2k(x

′) = V~(x
′)k it is straight-

forward from Corollary 3.1 that the following decompositions holds:

f(x) = P0(x
′)f0(x) + P2(x

′)f1(x) + · · ·+ P2k−2(x
′)fk−1(x)

where f0, f1, . . . , fk−2, fk−1 are umbral harmonic functions on Ω (i.e. ∆′fj(x) =
0 holds on Ω for each j = 0, . . . , k − 1).
Thus, it is also possible to obtain explicit formulae analogue to (14) for um-

bral harmonic functions f0, f1, . . . , fk−1 by taking into account the quantized
Fischer inner pair (P2k(x

′), (∆′)k).

Remark 3.2. Based on Lemma 3.7, it is clear from the above construction
that the functions f0, f1, . . . , fk−1 obtained viz Corollary 3.1 are solutions of
the coupled system of equations:

∆′fk = 0, J ′~fk = (12k + n
4 )f

In addition, from Proposition 3.2 the composite action of − exp (V~(x
′))

(

−∆′

2

)

on each fk span the eigenfunctions of H′~.
On the other hand, it is clear that the above coupled system of equations

approximate the the umbral counterpart of spherical harmonics in the limit
~← 0. However, from the following graded commuting property:

[

1

2

(

E ′ +
n

2
id
)

, exp

(

~

2
D

)]

= −~
2
D exp

(

~

2
D

)
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follows from straightforward computations combined Lemma 2.3 with induc-
tion over the natural numbers. This yields the following intertwining property
when restricted to the algebra P:

1

2

(

E ′ +
n

2
id
)

exp

(

−~
2
D

)

= exp

(

−~
2
D

)

J ′~.

showing that exp
(

−~
2D

)

maps the umbral harmonic polynomials of degree k

onto umbral counterparts of spherical harmonics.
In this case the action exp

(

−~
2D

)

on P plays a role similar to the inver-
sion of the Wick operator in Segal-Bargmann spaces underlying nilpotent Lie
groups like SL2(IR) (c.f. [10]).

4. Concluding Remarks and Open Problems
In this paper we introduce an algebraic framework that can be seen as a

comprised model for Clifford analysis underlying the orthogonal group O(n).
This makes it possible to construct the associated equations and solutions
in the discrete setting starting from the equations and their solutions in the
continuous setting. The intertwining properties given by relations (13) at the
level of the algebra End(P) gives us a meaningful interpretation of classical
and discrete Clifford analysis as two quantal systems on which the Sheffer
operator Ψx acts as a gauge transformation preserving the canonical relations
between both systems.
This approach can be viewed as a merge between radial algebra approach

proposed by Sommen [43] to define Clifford analysis with the quantum me-
chanical approach for umbral calculus described by Dimakis, Hoissen &

Striker (c.f. [19]) and Levi, Tempesta & Winternitz (c.f. [31]). Based
on the recent paper of Tempesta (c.f. [44]) we believe that this approach
shall also be useful to construct polynomials in hypercomplex variables pos-
sessing the Appell set property. In this direction, the recent approaches of
Malonek & Tomaz (c.f. [35]) De Ridder,De Schepper, Kähler &

Sommen (c.f.[13]) and Bock, Gürlebeck, Lávička & V. Souček (c.f.
[6]) are beyond to the Sheffer set property.
Here we would like to stress that contrary to the approaches of Malonek

& Tomaz and Bock, Gürlebeck, Lávička & Souček on it is almost
clear that the considered operators are generators of sl2(IR) (or alternatively
sl2(C)) and osp(1|2) while the Appell sets are invariant under the action
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of the orthogonal group O(n), in the approach of De Ridder,De Schep-

per, Kähler & Sommen it was not yet realized which kind of symmetries
are encoded and for which group the Appell sets (or more generally, the
Sheffer sets) are invariant.
Based on the recent paper of Brackx, De Schepper,Eelbode (c.f. [6])

and the preprint of Faustino & Kähler (c.f. [21]), we conjecture the fol-
lowing:

‘All Hermitian operators represented in terms of sl2(IR) and osp(1|2)
generators in continuum cannot be represented by sl2(IR) and osp(1|2)
generators in discrete but instead by quantum deformations of it’.

For a nice motivation on this direction we refer to [29], Section 2 and also
[22], Subsection 3.3, on which such gap was undertaken.
In the proof of Almansi decomposition (Theorem 3.1 and Corollary 3.1),

the iterated (umbral) Dirac operators (D′)k play a central role. In comparison
with [14, 20, 22, 13] we prove a similar result using the decomposition of the
subspaces ker(D′)k viz resolutions of osp(1|2)× O(n) instead of considering
a-priori a Fischer inner product.
With this framework, Theorem 3.1 shows that the decomposition of ker(D′)k

in terms of osp(1|2) × O(n) pieces yield the subspaces (x′)s kerD′ for s =
0, 1, . . . , k − 1. Moreover, the replacement of (x′)k by a polynomial type
operator Pk(x

′) in Corollary 3.1 gives an alternative interpretation for de-
composing kernel approach proposed by Malonek & Ren (c.f. [36]) as well
as refines the Fischer inner pair technique used by Render in [37] to prove
the Almansi decomposition in terms umbral polyharmonic functions.
As it was observed along this paper the resulting approach based on rep-

resentation of the Lie algebra osp(1|2) as a refinement sl2(R) has a core of
applications in quantum mechanics that can further be consider to study
special functions in Clifford analyis that belong to Bargmann-Fock spaces
(see [11] and references therein). From the border view of physics, we have
shown in Subsection 3.2 that the Almansi decomposition approach obtained
by Render shall be described using a diagonalization in terms of sl2(IR).
Indeed, Proposition 3.2 and Remark 3.2 explains the parallel between the
Almansi decomposition of the subspaces ker(∆′)k and the separation of vari-
ables of quantum harmonic oscillators (c.f. [41, 42, 46]).
One may further bring this technique in the future to construct new fam-

ilies of Appell/Sheffer sets for hypercomplex variables as well as to study
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Schrödinger equations on grids. At this stage, new families of discrete Clifford-
valued polynomials like e.g. hypercomplex generalizations of Kravchuk poly-
nomials (c.f. [32]) should appear.
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Appendix A.Umbral Clifford Analysis
A.1. Proof of Lemma 2.3. Proof: Notice that the relations [D′,∆′ ] =
0 =

[

x′,−(x′)2
]

are then fulfilled since (x′)2 and −∆′ commute with all
elements of End(P) (first and second relations of Lemma 2.2).
The proof of

[

E ′ + n
2
id, x′

]

= x′ and
[

E ′ + n
2
id, D′

]

= −D′ follow straight-
forward from theWeyl-Heisenberg character of operators x′j andOxj

. Straight-
forward application of the above relations naturally leads to

[

E ′ +
n

2
id, (x′)2

]

=
(

x′ + x′
(

E ′ +
n

2
id
))

x′ − x′
(

−x′ +
(

E ′ +
n

2
id
)

x′
)

= 2(x′)2,

[

E ′ +
n

2
id,−∆′

]

=
(

−D′ +D′
(

E ′ +
n

2
id
))

D′ −D′
(

D′ + E ′ +
n

2
D′

)

= 2∆′.
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Furthermore the relations
[

E ′ + n
2 id, x

′] = x′,
[

E ′ + n
2 id, D

′] = −D′ to-
gether with the third anti-commuting relation of Lemma 2.2 lead to

D′(x′)2 − (x′)2D′ =
(

−2
(

E ′ +
n

2
id
)

− x′D′
)

x′ − x′
(

−2
(

E ′ +
n

2
id
)

−D′x′
)

= −2
[

E ′ +
n

2
id, x′

]

= −2x′

−x′∆′ +∆′x′ =
(

−2
(

E ′ +
n

2
id
)

−D′x′
)

D′ −D′
(

−2
(

E ′ +
n

2
id
)

− x′D′
)

= −2
[

E ′ +
n

2
id, D′

]

= 2D′.

Finally, the combination of the relations [E ′+n
2 id, x

′] = x′ and [E ′+n
2 id, D

′] =
−D′ with the third anti-commuting relation of Lemma 2.2 leads to

−∆′(x′)2 = D′
(

−2x′ + (x′)2D′
)

= −2{x′, D′} − (x′)2∆′

= 4
(

E ′ +
n

2
id
)

− (x′)2∆′.

�

Appendix B.Almansi-type theorems in (discrete) Clif-
ford analysis

B.1. Proof of Lemma 3.1. Proof: We use induction to prove (16). Since
{x′, D′} = x′D′ +D′x′ = −2

(

E ′ + n
2 id

)

and Dg(x) = 0, we have

D′(x′g(x)) = −2
(

E ′ +
n

2
id
)

g(x). (24)

Next we show that, for any x ∈ Ω and k ∈ IN,

D′((x′)2kg(x)) = −2k(x′)2k−1g(x);
D′((x′)2k−1g(x)) = −2(x′)2(k−1)

(

E ′ + (n2 + k − 1)id
)

g(x).
(25)

This can be checked by induction. Assuming that (25) holds for k. we shall
now prove it also holds for k + 1. We now apply the operator x′D′ +D′x′ =
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−2
(

E ′ + n
2 id

)

to the function (x′)2kg(x):

x′D′((x′)2kg(x)) +D′x′((x′)2kg(x)) = −2
(

E ′ +
n

2
id
)

((x′)2kg(x)). (26)

By the hypothesis of induction, the first term in the left is equal to−2k(x′)2kg(x),
while the left side equals −2x′2k

(

E ′ + (n2 + 2k)id
)

g(x) due to the fact that
(

E ′ +
(n

2
+ s

)

id
)

x′ − x′
(

E ′ +
(n

2
+ s

)

id
)

=
[

E ′ +
n

2
id, x′

]

= x′,

holds for all s > 0.
As a result,

D′((x′)2k+1g(x)) = −x′D′(x′2kg(x))− 2
(

E ′ + n
2
id
)

((x′)2kg(x))
= 2k(x)′2kg(x)− 2(x′)2k

(

E ′ +
(

n
2
+ 2k

)

id
)

g(x)
= −2(x′)2k

(

E ′ +
(

n
2
+ k

)

id
)

g(x).
(27)

This proves the second equality of (25). The first equality of (25) can be
proved similarly. This proves the identities (25). �

B.2. Proof of Proposition 3.1. Proof: In order to prove the above
mapping property, we will derive (17) using induction over k ∈ IN. First
notice that for k = 1, relation (17) automatically fulfils according to Lemma
3.1.
Next we assume that (17) holds for any k ∈ IN. Hence, the action of D′ on

both sides of (17) combined with Lemma 3.1 results in

(D′)k ((x′)sf(x)) =

= (−2)k+1(x′)s−k−1T ′s−kT
′
s−k+1 . . . T

′
s−1T

′
sf(x) + (−1)s−k(x′)s−kD′gs−k(x),

with gs−k(x) = (−2)kU ′s−kU ′s−k+1 . . . U
′
s−1U

′
sf(x).

Now it remains to show thatD′gs−k(x) = 0. If j is even, U ′j =
j
2id and hence

[U ′j, D
′] = 0. Otherwise, from the second relations of 2.3

[

E ′ + n
2 , D

′] = D′

combined with the definition of U ′j for j odd results in [U ′j, D
′] = D′.

Thus, we have [U ′j, D
′] = 1−(−1)j

2 D′ for each j ∈ IN and moreover for each
g ∈ kerD′ the action of D′ on U ′jg(x) is equal to

D′(U ′jg(x)) = −
1− (−1)j

2
D′g(x) + U ′j(D

′g(x)) = 0,

that is, D′U ′j(kerD
′) ⊂ kerD′ for each j ∈ IN.
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Finally, recursive application of the above relation leads to

D′U ′s−kU
′
s−k+1 . . . U

′
s−1U

′
s (kerD

′) ⊂ kerD′.

and this results in D′gs−k(x) = 0, as desired. �

B.3. Proof of Lemma 3.3. Proof: Take fk(x) ∈ P such that E ′fk(x) =
kfk(x) holds for each k ∈ IN0. Hence for s > 0, the operator E ′ + sid has
only positive eigenvalues of the form λ = k+ s which shows that the inverse
of E ′ + sid tactically exists.
For any f(x) =

∑∞
k=0 fk(x) ∈ P and s > 0, define I ′s : P → P as the

operator given by the series expansion

I ′sf(x) =
∞
∑

k=0

1

k + s
fk(x).

Then we have

(E ′ + sid)(I ′sf(x)) =
∞
∑

k=0

1

k + s
((E ′ + sid)fk(x)) =

∞
∑

k=0

fk(x) = f(x)

Recalling the definition of Ψx in Section 2.1, the Clifford-valued polynomial
(

Ψ−1x fk
)

(x) is homogeneous of degree k and hence

I ′sfk(x) = Ψx

(

IsΨ
−1
x fk(x)

)

= Ψx

(

1

k + s
Ψ−1x fk(x)

)

=
1

k + s
fk(x)

leads to

I ′s ((E
′ + sid)f(x)) =

∞
∑

k=0

I ′s((k + s)fk(x)) =
∞
∑

k=0

fk(x) = f(x).

This shows that I ′s is an inverse for the operator E ′ + sid, as desired. �

B.4. Proof of Lemma 3.4. Proof: Starting from Lemma 2.3, we have
−D′ = [E ′ + n

2 id, D
′], or equivalently,

−D′ = E ′D′ −D′E ′ = (E ′ + sid)D′ −D′ (E ′ + sid)

by adding and subtracting (s− n
2
)D′ on both sides of the first equation. This

is equivalent to D′E ′s = E ′s+1D
′, where s 7→ E ′s = E ′ + sid.

Using the fact that E ′s = (I ′s)
−1, we end up with

D′I ′s = I ′s+1E
′
s+1D

′I ′s = I ′s+1D
′E ′sI

′
s = I ′s+1D

′.

�
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B.5. Proof of Lemma 3.5. Proof: Denote g(x) = Q′kf(x). From (22) and
the definition of Q′k, g is umbral monogenic in Ω and hence from equation
(17) of Proposition 3.1, we know that

(D′)k((x′)kg(x)) = (−2)kU ′1 . . . U ′k−1U ′kg(x).
Thus (D′)k((x′)kQ′kf(x)) = f(x) follows directly from the above induced

formulas. �
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