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Universidade de Coimbra
Preprint Number 11–04

DUALITY INDEX OF ORIENTED REGULAR HYPERMAPS
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Abstract: By adapting the notion of chirality group, the duality group of H can
be defined as the the minimal subgroup D(H) E Mon(H) such that H/D(H) is a
self-dual hypermap (a hypermap isomorphic to its dual). Here, we prove that for
any positive integer d, we can find a hypermap of that duality index (the order of
D(H)), even when some restrictions apply, and also that, for any positive integer
k, we can find a non self-dual hypermap such that |Mon(H)|/d = k. This k will be
called the duality coindex of the hypermap.
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1. Operations on hypermaps

Topologically, a map is a cellular embedding of a connected graph into
a closed connected surface. We can generalize this notion if, instead of
graphs, we use hypergraphs, allowing each (hyper)edge to be adjacent to
more than two (hyper)vertices. By this process, we can construct a more
general structure: the hypermap. Usually, hypermaps are represented by
cellular embeddings of bipartite maps (following the Walsh correspondence
between bipartite maps and hypermaps [9]) or by cellular embeddings of
connected trivalent graphs. In this last representation (James representation
[5]) we label each face 0, 1 or 2 so that each edge of the graph is incident to
two faces carrying different labels. Those faces correspond to hypervertices,
hyperedges or hyperfaces, depending on the label they carry.
The topological definitions of maps and hypermaps have a combinatorial

translation. A map can be understood as a transitive permutation represen-
tation Γ → SymF of the group

Γ = 〈r0, r1, r2|r
2
0 = r21 = r22 = (r2r0)

2 = 1〉 = V4 ∗ C2

on a set F representing its flags (the cells of the barycentric subdivision
of the map); and a hypermap can be regarded as a transitive permutation
representation ∆ → SymΩ of the group

∆ = 〈r0, r1, r2 | r
2
0 = r21 = r22 = 1〉 ∼= C2 ∗ C2 ∗ C2,
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on a set Ω representing its hyperflags. Similarly, an oriented hypermap (with-
out boundary) can be regarded as a transitive permutation representation of
the subgroup

∆+ = 〈ρ0, ρ1, ρ2 | ρ0ρ1ρ2 = 1〉 = 〈ρ0, ρ2 | −〉

of index 2 in ∆ (a free group of rank 2) consisting of the elements of even
word-length in the generators ri, where ρ0 = r1r2, ρ1 = r2r0 and ρ2 =
r0r1. In the case of hypermaps, the hypervertices, hyperedges and hyperfaces
(i-dimensional constituents for i = 0, 1, 2) are the orbits of the dihedral
subgroups 〈r1, r2〉, 〈r2, r0〉 and 〈r0, r1〉, and in the case of oriented hypermaps
they are the orbits of the cyclic subgroups 〈ρ0〉, 〈ρ1〉 and 〈ρ2〉, with incidence
given by nonempty intersection in each case. The local orientation around
each hypervertex, hyperedge or hyperface is determined by the cyclic order
of the corresponding cycle of ρ0, ρ1 or ρ2.
Operations on topological maps were first studied by S. Wilson [10] but

were later extended to hypermaps, following a more algebraic approach [8, 4].
If H is a hypermap corresponding to a permutation representation θ : ∆ →
SymΩ, and if α is an automorphism of ∆, then α−1 ◦ θ : ∆ → SymΩ
corresponds to a hypermap Hα. Therefore, an operation on hypermaps is
any transformation of hypermaps induced by a group automorphism of ∆.
The hypervertices, hyperedges and hyperfaces of Hα are, respectively, the
orbits of 〈rα1 , r

α
2 〉, the orbits of 〈rα2 , r

α
0 〉 and the orbits of 〈rα0 , r

α
1 〉 on Ω. If α

is an inner automorphism then Hα ∼= H for all H, so we have an induced
action of the outer automorphism group Out∆ = Aut∆/Inn∆ as a group Φ
of operations on isomorphism classes of hypermaps. This action is faithful,
as shown by L. James [4]. The same can be said about oriented hypermaps,
with Out∆+ acting as a group Φ+ of operations. L. James [4] also proved
that Out∆+ ∼= GL(2,Z2), a very important result for the classification of all
operations on oriented hypermaps (see [7] for details).

2. Algebraic Hypermaps

∆ and ∆+ are, respectively, the full automorphism group and the orientation-
preserving automorphism group of the universal hypermap H̃. This hy-
permap is called universal because any hypermap is the quotient of H̃ by
some subgroup H ≤ ∆, known as the hypermap subgroup (which is unique
up to conjugacy). If H � ∆, we say that the hypermap is regular since,
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when this occurs, the hypermap has the highest possible number of symme-
tries. A regular hypermap can be represented, algebraically, by a four-tuple
H = (∆/H, h0, h1, h2) where h2

0 = h2
1 = h2

2 = 1 and 〈h0, h1, h2〉 = ∆/H,
the monodromy group, Mon(H), of the hypermap. Similarly, an oriented
regular hypermap can be regarded as a triple H+ = (∆+/H, x, y), with
∆+/H = 〈x, y〉 being the monodromy group of the oriented regular hyper-
map. From a topologically point of view, x can be interpreted as the per-
mutation that cyclic permutes the hyperdarts (oriented hyperedges) based
on the same hypervertex, and y the permutation that cyclic permutes the
hyperdarts based on the same hyperface, according to the chosen orientation.
An oriented hypermap is called chiral if it is not invariant under the opera-
tion that reflects the oriented hypermap, inverting its orientation (which is
the same as saying that H+ admits no orientation-reversing automorphism).
If (xy)2 = 1, H+ is a map.

3. The Duality Group

Our aim is to study what we will call the duality group of a hypermap.
Some work has been done on chirality groups [2] and there is no reason
not to extend that notion to duality or other hypermap operations. These
operations, as we have mentioned before, come from outer automorphisms of
∆ and by choosing the right group ∆∗, containing ∆, we can look at duality
as the result of sending a hypermap subgroup to its conjugate in ∆∗. To
build this group, we should add an element t, of order 2, transposing r0 and
r2 and fixing r1. Hence, we can define ∆∗ in the following way:

∆∗ = ∆⋊ C2 = 〈r0, r1, r2, t : r
2
i = t2 = 1, rt0 = r2, r

t
1 = r1〉

This also means that ∆ is a normal subgroup of index 2 of ∆∗. Therefore, each
conjugacy class of subgroups H ≤ ∆ is either a ∆∗-conjugacy class (if the
hypermap H is self-dual, which occurs when H ∼= Ht) or paired with another
∆-conjugacy class, containing H t (if the hypermap H is not self-dual). This
last observation is a general one and it is true for every kind of hypermap.
However, we will only deal with regular hypermaps and these have normal
subgroups as hypermap subgroups, which means that H is conjugate only
to itself in ∆. So, if a hypermap is self-dual, the group H is invariant under
that specific outer automorphism of ∆ (conjugation in ∆∗).

Theorem 3.1. Let N be a normal subgroup of ∆ and let G = ∆/N . Then
the following are equivalent:
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i) N t = N
ii) N is normal in ∆∗

Because
∆∗ = 〈r0, r1, r2, t : r

2
i = t2 = 1, rt0 = r2, r

t
1 = r1〉 =

= 〈r0, r1, t : r
2
0 = rt1 = t2 = 1, rt1 = r1〉 = 〈r1, t〉 ∗ 〈r0〉 ∼= V4 ∗ C2

∼= Γ

we can build a functor from hypermaps (H ≤ ∆) to maps (H ≤ ∆∗ ∼= Γ)
and, depending on the chosen isomorphism between ∆∗ and Γ, this is the
Walsh functor [9], representing a hypermap as a bipartite map or one of its
duals.
If H is a regular hypermap with hypermap subgroup H then H is normal in

∆. The largest normal subgroup of ∆∗ contained inH is the groupH∆ = H∩
H t and the smallest normal subgroup of ∆∗ containing H is the group H∆ =
HH t. These correspond, respectively, to the smallest self-dual hypermap
that covers H, and the largest self-dual hypermap that is covered by H.

HH
t

*

H H
t

H H1
t

1

Figure 1. H∆ and H∆.

Like chirality, the duality operation is an operation of order 2 (see [7]
for the complete classification of hypermap operations of finite order) and
some of the results that were stated for chirality and chirality groups [2]
also work here, with similar proves. Whenever this is case, we will not
give a demonstration of the result since the reader can easily adapt the one
available in [2]. The following proposition is a good example of what we have
just mentioned:

Proposition 3.1. The groups H∆/H, H/H∆, H
∆/H t and H t/H∆ are all

isomorphic to each other.

This common group will be called the duality group D(H) of H and its
order the duality index d of H. The duality index is somehow a way to
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measure how far the hypermap is from being self-dual. If the duality index is
1 then the hypermap is self-dual; and the bigger that index, the more distant
the hypermap is from being self-dual.

Proposition 3.2. The duality group D(H) of a regular hypermap H is iso-
morphic to a normal subgroup of the monodromy group Mon(H).

Proof. The same as in [2], with duality group instead of chirality group.

Then, another possible way to understand the duality group is to look at it
as the minimal subgroup D(H) E Mon(H) such that H/D(H) is a self-dual
hypermap. If D(H) = Mon(H) or, equivalently, H∆ = ∆ we say that the
hypermap has extreme duality index.

We have extended ∆ to ∆∗ by adjoining t such that t2 = 1, rt0 = r2, r
t
2 =

r0, r
t
1 = r1. Then,

xt = r2r1 = y−1, yt = r1r0 = x−1.

We will denote this kind of duality on oriented regular hypermaps by β −
duality (chiral-duality). On the other hand, conjugation by r1t induces

x 7→ y, y 7→ x,

interchanging generators. This will be called α − duality (orientation-pre-
serving duality). The relationship between the two (α and β) will be dealt
briefly at the end of this paper. From now on, to simplify the writing,
whenever we refer to duality we mean α − duality, the one that preserves
orientation. An hypermap is called self-dual if it is invariant under this
duality operation.

From an orientable hypermap we can choose two possible oriented hyper-
maps. If H = (G, r0, r1, r2), let H+ = (G+, x, y) be one of the oriented
hypermaps associated with H. The duality group D(H+) is the minimal
normal subgroup of G+ such that H+/D(H+) is a self-dual hypermap. It
follows that D(H+) � G+ and we say that H has extreme duality index if
D(H+) = G+. (Hence, a hypermap has extreme duality index if its duality
group is equal to its monodromy group).
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4. Duality index

We can now easily prove the following theorem:

Theorem 4.1. For every k ∈ N, there is a self-dual oriented regular hyper-
map with order k.

Proof. Let G be the cyclic group of order k generated by g. If we take
G = 〈g〉 and H = (G, g, g), the hypermap with monodromy group G, then
there is an automorphism of H that interchanges the two generators (they
are both equal to g, in this case). Hence, the hypermap is self-dual.

But this last result also means that for every k ∈ N there is a hypermap
H = (G, a, b) such that |G|/d = k, with d being the duality index of H. We
just have to take G = 〈g〉, as the cyclic group of order k, and the hypermap
H = (G, g, g), as in the previous proof. Because (G, g, g) is self-dual, d = 1
and we have |G|/d = |G| = k. From now on, we will call |G|/d the duality
coindex of a hypermap of monodromy group G.

Can we prove a similar theorem as Theorem 4.1 using only hypermaps that
are not self-dual (for which d 6= 1)? The proof we provide bellow will give
the reader not only an affirmative answer but also the presentation of the
monodromy groups of those hypermaps.

Theorem 4.2. If k ∈ N, there is a non self-dual oriented regular hypermap
H = (G, a, b) with duality coindex k.

Proof. Given k ≥ 3, we can choose, by Dirichlet’s Theorem, a prime q ≡
1 mod (k). Let G = 〈g, h|hq = 1, gk = 1, hg = hu〉 ∼= Cq ⋊ Ck, where u ∈ Zq

has multiplicative order k, Cq = 〈h〉 and Ck = 〈g〉. Then, if h = ab and
g = a, we have:

G = 〈a, b|(ab)2 = ak = 1, (ab)a = (ab)u〉

The duality group of this hypermap is the smallest normal subgroup N of G
such that the assignment a 7→ b, b 7→ a induces an automorphism of G/N .
We obtain this quotient by adding extra relations, substituting a for b and b
for a in the original ones.∗ In this case, we just have to add these relations:

∗This method will be used several times in the next pages and the group N , in similar contexts,
will always mean the smallest normal subgroup N of the monodromy group G such that the
interchange of generators induces an automorphism of G/N .
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bk = 1 and (ba)b = (ba)u.Hence:

G/N = 〈(ab)2 = ak = bk = 1, (ab)a = (ab)u, (ba)b = (ba)u〉

But (ab)a = ba, so ba = (ab)u, ab = (ba)u. It follows that ab = (ab)u
2

or,
equivalently, (ab)u

2−1 = 1. Because k ≥ 3, we have u 6= ±1 mod q ⇒ u2−1 6=
0 mod q ⇒ (u2 − 1, q) = 1. So,

(ab)q = (ab)u
2−1 = 1 ⇒ ab = 1 ⇒ b = a−1.

Thus G/N = 〈a|ak = 1〉 ∼= Ck. Therefore |G/N | = k and, since G is not
cyclic, the hypermap H = (G, a, b) is not self-dual.

If k = 2 we take G = C6 generated by the pair (1, 4), with presentation:

C6 = 〈x, y|x6 = 1, x4 = y〉.

Hence, considering N as the duality group,

|C6/N | = |〈x, y|x6 = 1, x4 = y, y6 = 1, y4 = x〉| = 3.

Then, (C6, x, y) has duality index 6
3 = 2.

For k = 1, all we have to do is to choose any hypermap with extreme
duality index.

Now, another question can be asked: for each d ∈ N, is it possible to find
at least one hypermap with that duality index? And can we make some
restrictions in the available hypermaps we are allowed to choose? The first
question is not difficult to be answered:

Theorem 4.3. For every d ∈ N, there is an oriented regular hypermap with
duality index equal to d.

Proof. Let G be the cyclic group of order d generated by g. If we take
G = 〈g〉 and H = (G, g, 1), the hypermap with monodromy group G, then
its duality group must be equal to G, which means that the hypermap has
an extreme duality index |G| = d.

Remarks: a) Obviously, H = (G, 1, g) also works here. In fact, for any
duality index, we can always find, not just one, but two hypermaps with that
extreme duality index (which is not surprising since these two hypermaps are
duals of each other). b) It follows from the proof of this last theorem that for
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every n ≥ 1 there is an oriented regular hypermap with cyclic duality group
(the monodromy group of the hypermap H = (Cn, g, 1) with Cn = 〈g〉).

It is now clear that we can get any duality index using hypermaps that have
extreme duality index. Can we achieve the same result only with hypermaps
that do not have extreme duality index? Before we answer that question,
we need to introduce some results and definitions about direct products of
hypermaps.

5. Direct Products and Duality groups

If H and K are oriented regular hypermaps with hypermaps subgroups H
and K ≤ ∆+, respectively, then:

Definition 5.1. The least common cover H ∨ K and the greatest common
quotient H∧K are the oriented regular hypermaps with hypermap subgroups
H ∩K and 〈H,K〉 = HK respectively.

If H = (D1, R1, L1) and K = (D2, R2, L2) let D = D1×D2 and the permu-
tations R and L be the ones that act on D induced by the actions ρ 7→ Ri,
λ 7→ Li of ∆+ on D1 and D2. If this action is transitive on D, we call
H × K = (D,R, L), the oriented direct product of H and K with hypermap
subgroup H ∩K.

Lemma 5.1. [1] If H and K are oriented regular hypermaps, then the fol-
lowing conditions are equivalent:

i) ∆+ acts transitively on D;
ii) H ∧K is the oriented hypermap, with one dart;
iii) HK = ∆+.

If these conditions are satisfied we say thatH andK are oriented orthogonal
and we use the notation H ⊥ K. Then, H×K is well defined and isomorphic
toH∨K with monodromy groupMon(H×K) = Mon(H)×Mon(K). Having
in mind that H has extreme duality index if and only if HHd = ∆+, we have,
as an important example, the following result:

Lemma 5.2. H has extreme duality index ⇔ H ⊥ Hd.

Once again, we can adapt one of the theorems for chirality groups [2],
writing it in this new context of duality:
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Theorem 5.1. Let H and K be oriented regular hypermaps, with hypermap
subgroups H and K, such that K has extreme duality index and covers H.
Then the product L = K × Hd is an oriented regular hypermap with duality
group D(L) ∼= H/K.

Proof. The same as in [2], substituting chirality by duality.

We can now answer the question we have raised at the end of the previous
section:

Theorem 5.2. For every d ∈ N there is an oriented regular hypermap with
non extreme duality index d.

Proof. Let K be a normal subgroup of ∆+ such that ∆+/K = C2d. Then
K = (C2d, g, 1), with C2d = 〈g〉, is orientably regular and has extreme duality
index. If we take H such that K ≤ H and |H : K| = d then |∆+ : H| = 2,
which means thatH E ∆+ andH is orientably regular. Hence, the hypermap
L = K ×Ht is orientably regular and

|Mon(L)| = |Mon(K)| · |Mon(Ht)| = 2d× 2 = 4d.

Then, by Theorem 5.1:

D(L) = H/K,

and |H : K| = d. L does not have extreme duality index because |Mon(L)| =
4d > d.

This is not only true for hypermaps but also for maps :

Theorem 5.3. For every d ∈ N there is an oriented regular map with (non
extreme) duality index equal to d.

Proof. Let D2m = 〈x, y|xm = y2 = (xy)2 = 1〉 be the dihedral group of order
2m. If we take M = (D4d, x, y), then, considering N as before, we will have:
D4d/N ∼= D4. Therefore, |N | = 4d/4 = d.

Although a map is a special case of a hypermap (when (xy)2 = 1), Theorem
5.3 is not a stronger version of Theorem 5.2, since Theorem 5.2 allows us
to get not just hypermaps but proper hypermaps (hypermaps that are not
maps), which is also an important restriction.

A group is called strongly self-dual if for all its generating pairs there is
an automorphism of G interchanging them. A good example of one of these
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groups is the quaternion group. In the next section, we will use a general-
ization of the quaternion group to find infinite families of proper hypermaps
with non extreme duality indexes.

6. Generalized quaternion groups

Definition 6.1. If w = eiπn ∈ C, the matrices:

x =

(
w 0
0 w

)
, y =

(
0 1
−1 0

)

generate a subgroup Q2n of order 4n in GL(2,C) with presentation [6]:

〈x, y|xn = y2, x2n = 1, y−1xy = x−1〉

which is called the generalized quaternion group.

As we have proved in Theorem 5.2, we can have a hypermap of any non
extreme duality index. However, that proof does not show us the presenta-
tion of the monodromy group of any of those hypermaps. Various explicit
examples can be obtained using generalized quaternion groups.

Theorem 6.1. If d is odd or d ≡ 0 (mod 4), there is an oriented regular
hypermap with generalized quaternion monodromy group, which has a non
extreme duality index equal to d.

Proof. a) d is odd:
Let n = 2+4k, k = 0, 1, 2, ... . If we takeG to be the generalized quaternion

group of order 4n then |G| = 8 + 16k and has presentation:

G = 〈x, y|x2+4k = y2, x4+8k = 1, y−1xy = x−1〉.

If we take N to be the smallest normal subgroup of G such that the as-
signment that interchanges the two generators induces an automorphism
then G/N (which is obtain from G adding new relations) is the quaternion
group and has order 8. But |N | = |G|/|G/N |. Hence, |N | = 8 + 16k/8 =
2k + 1(for k = 0, 1, ...) From this, we can conclude that for d odd there is a
hypermap with monodromy group G and a non extreme duality index (since
|G/N | = 8 6= 1) equal to d = 2k + 1.

b) d ≡ 0 (mod 4):
Let n = 4k, k = 1, 2, ... If we take G to be the generalized quaternion group

of order 4n then |G| = 16k and has presentation:

G = 〈x, y|x4k = y2, x8k = 1, y−1xy = x−1〉
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If we take N to be the smallest normal subgroup of G such that the assign-
ment that interchanges the two generators induces an automorphism then

G/N = 〈x, y|x4k = y2, x8k = 1, y−1xy = x−1, y4k = x2, y8k = 1, x−1yx = y−1〉

Using the third and sixth relations, we have (y−1xy)yx = x−1(xy−1) = y−1.
Therefore, applying the first relation y2 = x4k, we have: y−1xx4kx = y−1 ⇒
x4k+2 = 1. Then, using the second relation: x4k+2 = x8k ⇒ x4k−2 = 1. Hence,
x4k+2 = x4k−2 = 1 ⇒ x4 = 1.
From the first relation x4k = y2 we can now conclude that y2 = 1 and,

from the fourth one, that x2 = 1. Therefore, the presentation of the group
G reduces to 〈x, y|x2 = y2 = (xy)2 = 1〉, which defines a Klein 4-group. We
have proved, this way, that G/N has order 4. Hence

|N | = 16k/4 = 4k , k = 1, 2, ...

This means that, for d ≡ 0 (mod 4), there is a hypermap with monodromy
group G has a non extreme duality index (since |G/N | = 4 6= 1) equal to
d = 4k.

Corollary 6.1. Every cyclic group of odd order or of order multiple of 4 can
be a duality group of an oriented regular hypermap with non extreme duality
index and generalized quaternion monodromy group.

Proof. In the previous proof N = 〈x4〉 ∼= C1+2k, in a); and N = 〈x2〉 ∼= C4k,
in b).

In the proof of the Theorem 6.1, G/N is the quaternion group and any hy-
permap which has that group as monodromy group is self-dual. But all gen-
erating pairs are equivalent under automorphisms of the quaternion group.
Then, there is only one (self-dual) hypermap, up to isomorphism, with mon-
odromy group being the quaternion group.

Theorem 6.2. Let n be odd. Then, the generalized quaternion group

G = 〈x, y|xn = y2, x2n = 1, y−1xy = x−1〉

of order 4n is the monodromy group of an oriented regular hypermap with
extreme duality index.

Proof. If we take N to be the smallest normal subgroup of G such that the
assignment that interchanges the two generators induces an automorphism
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then

G/N = 〈x, y|xn = y2, x2n = 1, y−1xy = x−1, yn = x2, y2n = 1, x−1yx = y−1〉.

Hence, we have x−1yx = y−1 (last relation) but also x−1 = y−1xy (third
relation). Therefore, y−1xyyx = y−1 ⇒ y−1xy2x = y−1. Using the first
relation in this last equality, we have y−1xxnx = y−1 ⇒ xn+2 = 1. Let k
be the order of x. Then, since k|(n + 2) and n is odd, k must also be odd.
But from the second relation we also know that x2n = 1 and, consequently,
k|2n. Therefore, k|n. If odd k divides n and n+ 2, then k = 1 (and we have
x = 1). Because yn = y2 and y2 = xn, we have yn = y2 = 1. Since n is
odd, y = 1. Hence, |G/N | = 1, which means that the hypermap has extreme
duality index.

Corollary 6.2. There are infinitely many oriented regular hypermaps with
extreme duality index and generalized quaternion group as monodromy group.

Every hypermap having the generalized quaternion group (with the presen-
tation given in our definition) as monodromy group has chirality index equal
to 1. This can easily be checked because if we want to obtain a reflexible
hypermap as a quotient of the original one, we just have to add the follow-
ing relations to the ones that we already have for the generalized quaternion
group: x−n = y−2, x−2n = 1 and yx−1y−1 = x (substituting x by x−1 and y
by y−1 in the original relations) . However, these relations do not change the
presentation of the group. Hence, all the theorems above (where the gener-
alized quaternion group appears in the proof) are, in fact, about reflexible
(non chiral) hypermaps.

7. Chiral duality

As we have previously noticed, there are two types of duality induced by
the following automorphisms of ∆+:

α : x 7→ y; y 7→ x,

β : x 7→ y−1; y 7→ x−1.

Since the automorphisms of ∆+ which induce them are conjugate in Aut(∆+),
both dualities have the same general properties (the groups which arise as
α − duality groups are the same that arise as β-duality groups [7]). Never-
theless, their effect on a specific hypermap might be distinct. To make this
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observation clear to the reader, we will give some examples of hypermaps
such that:

a) |Dα(H)| 6= |Dβ(H)|
b) Dα(H) ∼= Dβ(H)

Examples. a) We can take H = (G, x, y) with G = 〈x, y|x4 = y4 =
1, xy = y2x2〉. |G| = 20 (this order can easily be checked using GAP [3]).
Then

G/Nα = 〈x, y|x4 = y4 = 1, xy = y2x2, yx = x2y2〉.

Using the two last relations, we have: xyyx = y2x2x2y2 ⇔ xy2x = 1 ⇔ y2 =
x2. Therefore, G/N = 〈x|x4 = 1〉 and |G/Nα| = 4. However:

G/Nβ = 〈x, y|x4 = y4 = 1, xy = y2x2, y−1x−1 = x−2y−2〉 = G.

Hence |G/Nβ| = 20. It follows that G is β-self-dual but not α-self-dual.

b) If H = (G, x, y) = (A5, (12345), (123)) then Dα(H) ∼= A5 because the
hypermap has extreme α-duality index. But

Hβ = (G, y−1, x−1) = (A5, (132), (15432)).

Hence, we still have two permutations of different order. This means that the
hypermap cannot be β-self-dual and, because A5 is simple, we can conclude
that it must have extreme β-duality index. It follows thatDβ(H) ∼= Dα(H) ∼=
A5.
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