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ABSTRACT: The aim of this paper is to develop a probabilistic study on a large
and general class of conditionally heteroscedastic models, namely the —TGARCH
processes. For this class of processes we establish necessary and sufficient conditions
of strict stationarity, ergodicity and existence of moments. A discussion on the
weak stationarity up to the d order as well as on the weak stationarity is also
presented. Finally, the minimal representation of a )— TGARCH process is obtained
developing, in a unique way, the corresponding conditional moment of order § in
terms of present and past observations.
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1. Introduction

Let X = (X;,t € Z) be a real stochastic process and, for any t € Z, let us
consider X;” = Xlry,>01, X; = —X/x,<0y and X, the o—field generated
by (thi,’i Z O) .

The stochastic process X = (X, t € Z) is said to follow a § power threshold
generalized autoregressive conditional heteroscedastic (0—TGARCH) model
with orders p and ¢ (p, q € N) if, for every ¢t € Z, we have

X = o0&y

p q
O'? =w + 21 [Ozi (X;;Z)é -+ 62 (Xt_i)a] + Zl’}/jagj (1'1)
i= j=

for some constants 6 > 0, w > 0, s > 0, 5 > 0,7 = 1,...,p, v; > 0,
j = 1,...,q, and where ¢ = (gt € Z) is a sequence of independent and
identically distributed real random variables such that ¢; is independent of
X, 4, for every t € Z. The process ¢ is called the generator process of X.

If v =0, 7 =1,..,¢ the S—TGARCH(p, ¢) model is simply denoted
0—TARCH(p).
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Power conditional heteroscedastic models were proposed, among others,
by Ding, Granger and Engle [6] arguing, in particular, that the introduc-
tion of the exponent ¢ allows long memory in the shocks of the conditional
variance. Following this original idea, we consider here a natural extension
of TGARCH processes that allows to take into account both long memory
property and the asymmetry in the stochastic volatility. For these processes
the TGARCH equation propagates not just conditional standard deviation
but, more generally, absolute moments of order §.

With this general formulation we include the principal conditional het-
eroscedastic models, namely:

1) GARCH (Engle [7], Bollerslev [3]): considering 6 = 2 and «o; = (3,
1=1,...,p.

2) TGARCH (Zakoian [17]): considering § = 1.

3) 6—GARCH, 6 > 0 (Mittnik, Paolella and Rachev [14]): considering

Qi = i = 1 p Infact, o [(5)" + (X)) = e [X+ X =
(07 ‘thirs .

4) APARCH (Ding, Granger and Engle [6]), considering «; = a; (1 — TZ')(S
and 3; = a; (1 + Ti)é, where a; > 0, || < 1,i=1,...,p.

This class of power-transformed and threshold GARCH models was intro-
duced by Pan, Wang and Tong [16] with a slightly different parametrization
and they called them PTTGARCH models. The parametrization here con-
sidered is a more natural one. These authors evaluate, in what concerns the
probabilistic behaviour of the process X, the strict stationarity and the exis-
tence of moments. Their hypotheses are different from those here presented.
In particular, the sufficient condition of strict stationarity and the condition
on the moments existence are in our study clearly less demanding. Moreover,
we use these results to establish the weak stationarity up to the 6—order and
we develop a study on the weak stationarity of a related vectorial model. We
also point out that the error process here considered is quite general and not
necessarily symmetrically distributed.

In order to simplify the presentation we consider in the following section
m = max (p,q) and introduce a; = 3; = 0,7 =p+1,...,q, if ¢ > p, and
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v =0, =q+1,..,p,if ¢ <p. With this convention we have
m
5 _\0
0'? =w + Z |:Odi (X;r_l) -+ 62 (Xt—i) -+ ’}/Z'O'?_Z-:| .
i=1

To develop the probabilistic study of these models and following the idea
present in Mittnik, Paolella and Rachev [14], let us consider the vectorial

stochastic process of R™, Y = (Y;,t € Z), whose k-component, Yt(k), has the
following definition

vV =of
k L 5 _ 5
Y;( )= 2 [O‘i (Xtti—kk;—l) + i (Xt—i—i—k:—l) + %Ufwa yk=2,...,m.

(1.2)
This process satisfies the recurrence equation

Yijn=A4Y,+B (1.3)

where (A, t € Z) is a sequence of random square matrices of order m and B
is a determinist vector of R™ given by

m—1

A = Zl [O‘i (5;L)5+ﬁi (515_)5+%] e Im—1
L (€5) 4 B () + Y 0.
_ | wer
= }

with ey, ..., €,,—1 the canonical base of R™~1, I,,,_; the identity matrix of m—1
order and 0,,_; the null vector of R™~ 1

As we assume that (e;,¢ € Z) are independent and identically distributed
random variables, the random matrices (A, t € Z) are also independent and
identically distributed.

The vectorial representation here obtained is different from that considered
in Pan, Wang and Tong [16] and apart its writing simplicity it has the advan-
tage of being valid for every orders and particular cases as those considered
in the Corollary of Theorems 1 and 2 in the next Section.

Considering a 0 —TGARCH model with general orders p and g we establish,
in Section 2, a sufficient condition of strict stationarity and ergodicity. Under
such condition, we explicit the unique strict stationary and ergodic solution.



4 E.GONCALVES, J.LEITE AND N.MENDES-LOPES

Other sufficient or necessary conditions are also established in general or
in some particular cases. In addition, in Section 3, we state a necessary
and sufficient condition of weak stationarity up to the order § which is also
a simpler, and useful in practice, condition of strict stationarity. Several
examples illustrate our results.

A discussion of the weak stationarity of this model is developed in Section
4. Finally in Section 5 we establish a minimal definition of these models.
This canonical definition is a consequence of the representation obtained for

o) as a sum of functions of present and past observations.

2. 0—TGARCH processes: strict stationarity

Let us consider any norm ||.|| on the set M of the square matrices of order
m and the following hypothesis on the matrices (A, t € Z) :

(H1): The sequence (= log||Ao...A_,]|)
to a strictly negative constant +.

Loy converges almost surely (a.s.)

The existence of a stationary solution for the 6 —TGARCH model is stated
in the next theorem.

Theorem 1. If the sequence (=log || Ao...A_y||) _ satisfies the hypothesis

ne
(H1), there exists a unique strictly stationary and ergodic solution, (X, t € Z)

of the d— TGARCH model (1.1).

Proof. Under the hypothesis (H1),
1) the vectorial process

Zt =B+ hm (a.s.) ZAtfl---Atanat e
n=1

1
n

is well defined (a.s.). In fact, it is easy to show that lim (a.s.) || Ai—1...Ar—y ||
+00

e” < 1 which implies the (a.s.) convergence of the series Y [|A;—1...A;_,B]| .
n=1

2) the process (Z;, t € Z) is a strictly stationary solution of equation (1.3).
In fact, Z;.1 = B+ A;Z; and, as Z; is a measurable function of the strictly
stationary and ergodic sequence (A, t € Z), the process (Z;, t € Z) is strictly
stationary and ergodic.
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3) the process (Z;, t € Z) is the unique strictly stationary solution of the
equation (1.3). In fact, for another stationary solution U; of this equation we
deduce that

U =A1.. A 1U_;_1+ Z A q... A, B+ B.

n=1

So, for every i € N,
120 = UM < Ar1Ae sl 1Zi 1)+ 10l
and

€ €
P12~ Ul > &) < P (I Ausi Al 120 > 5) + P (| AvsiAd U] > 5)

taking into account that the laws of (Ai1,..., 41, Zr—i-1)

and (A1, ..., A¢—;_1,Us_;_1) are independent of t since Z; ;1 = f (Ar_i_2, At_i_3, ...

and Up_i—1 = g (As—i—2, Ar—i—s, ....).
Let us consider a positive real 7, arbitrarily fixed, and choose reals m; and
my such that P (|| Z;|| > m1) < 7 and P (||U|| > m2) < 7. We have

€
P(||Z: = Ui >€) <P (HAHi...AtH > 2—m1) + P (|Us|| > mq) +
€
P [|Ap...A — P :
# P (s A > 55 )+ PG > mo)

But under the hypothesis (H1) lim(a.s.) ||A¢ri...A¢]| = 0, which leads to

the unique representation

Ut = hm(as) ZAt—l---At—nB + B = Zt.

n=1

4) Let Zt(i) denotes the Z; order 7 component, 1 < ¢ < m. The real stochastic

process given by V; = ¢ {Zt(l)} " is a solution of the model (1.1). In fact, using
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the recurrence equation (1.3) we get

Zt(l) = | (5;1)6 + 51 (575 1)5 + 71} Zt(l)l + Zt(2)1 tTw
Zt(z)l = |0 (5;2)5 + 0o 5;2)5 + 72} Ztmz + Zt(3)2
Zﬁnﬁé = |Am-1 (5?—77%1)(S + B (8;—m+1)6 + %n—l} Zt(i)erl + Zt@l&ﬂ
20 = o (60)" + B (61m)" + ) 20
So,
ZV = wty [ozl- () + 8 (e7,) + %} z4

1

7

:w—'—

L

{Oéi (thi)é + G (‘/t_z‘)é} + Z%Zt@z
i=1

1

7

1
Moreover, V; = ¢ [Zt(l)] " is a measurable function of the strictly stationary
process € and so V' is strictly stationary.
The unicity of this strictly stationary solution of the model (1.1), V', follows
from the unicity of the strictly stationary solution of equation (1.3).
Finally, as V; is a measurable function of (g4, &;1,...) and as € is a strictly
stationary and ergodic process, we also have the ergodicity of (V;,t € Z). =

Theorem 2. Let E (logjL HAOH) < +4o00. If there exists a unique strictly
stationary and ergodic solution, (X;,t € Z), of the 60— TGARCH model (1.1)

then the sequence (+log HAO"'A*”H)neN satisfies the hypothesis (H1).

Proof. Let us now assume that there exists a (unique strictly stationary
and ergodic) solution, (X;, t € Z), of the )—TGARCH model (1.1). Denote
by Y the corresponding solution of equation (1.3). We have

Yo=A (.. A ; Y, + Z A ,..A B+ B.

n=1
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As all the coefficients of the vector B and matrices A; are nonnegative, we
can write for every ¢ € N

i:A_l...A_nB <Y,
n=1

where, for z,y in R™, z <y means y —x € (R")".

+00
This shows that the series Y A ;.. A ,B converges (a.s.).
n=1

So, lim ||A_y...A_,B|| = 0 (a.s.) which implies lim ||[A_;...A_, fi|| =0 (a.s.),

1<i<m,as B=wf,.,Afi=fi12<i<m-1and A_,f,, =0,
where f1, ..., fi, is the canonical basis of R™.
So, for any vector U of R™

lim A 4..A_,U=0 (a.s.)

and finally lim ||A_1...A_,|| = 0 (a.s.) which implies v < 0 (Bougerol and
Picard [4, Lema 2.1]). |

We recall that, considering any norm ||.|| on R and defining an operator
norm on the set M of the square matrices of order m by

M| = sup {|Mx]| / lz]| , = € R™, z # 0}

for any M in M, the top Lyapunov exponent associated to a sequence (A, t € Z)
of independent, identically distributed random matrices and such that E (log™ || A||)
is finite, is defined by

1
fyL:inf{E< logHAoA_l...A_nH) ,nGN}.
n

+1

From Kingman [13, Theorem 6] it follows that, almost surely,
1
v = lim —log||Ag...A_,||
n—4ocon

and, since all the norms are equivalent on M, ~;, is independent of the norm.
Moreover, from Bougerol and Picard [4, Lema 2.1] if, almost surely,

lim [ Ag...A || = 0

n—-+00

then the top Lyapunov exponent associated to the sequence (A, t € Z) is
strictly negative.
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So, if the sequence of matrices (A, t € Z) related to the )—TGARCH model
satisfies E (log™ ||Ag||) < +oo, the (H1) hypothesis is a necessary and suf-
ficient condition for the existence and unicity of a strictly stationary and
ergodic solution of model (1.1).

The next corollary states a necessary and sufficient condition of strict sta-
tionarity when we are in presence of a 6—TGARCH model of order m, m € N,
with a particular form for o?.

Corollary. If E {log [ozm (Ef)(S + B (8;)5 + fym] } exists then a necessary
and sufficient condition for the existence of a unique strictly stationary so-
lution of the 6— TGARCH model of order m where o) = w + au, (Xt*_m)a +

Om (X;m)a + %ﬂf_m 18
E {log [ozm () + B (1) + vm} } < 0.

Proof. Taking into account the particular form of the matrices (A, t € Z)
in this case, it can be seen that the product of m consecutive matrices is a
diagonal one. For example, Ay...A,,—1 = Dy,—1¢ with element

di; = |:Oém (8:1_2)5 + Bm (8;1_2)5 + vm] Li=1,....m.

So, taking groups of m consecutive matrices and k = L%J, with |z ]| denot-
ing the integral part of x, we have

Ag.. Ay = Ao A 1Ap. Az 1 Ao Azt Ay Akm—1Akme - Ay
= Dmfl,ODmel,m--~Dk;m—1,(k—1)m AkmAn
Firstly, we note that Dy, 10D2m—1,m---Dim—1,(k—1)m 18 also a diagonal matrix

_am,l 0 ... 00
0 ap—2 ... 0 0

0 0 . a1 O
_0 0 .. 0 a()_
where
k—1 5 5
a; = |:Odm (8Z++jm) +ﬁm (8;+jm) +7m:| ) 1= 077m_ L.

<
|
=
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So,
1 1
ﬁ log HAOANH = ﬁ log HDm—l,ODQm—l,m---kafl,(kfl)m Ak:mAnH
m 1
< —log||D|| + —log || Akm.-.. Ax|| -
n n
Considering ||D|| = (maximum proper value of DTD)?, we have for ex-
ample
k-1 s s
1D =TT [ (&) + B () + ]
=0
So,
k-1
m km 1 5
_1Og HDH = TE log [am ( H—jm) + Bm ( H—jm) + fym}

O

j=
which converges (a.s.) to E{ [ozm (e Z+]m) + B (e Z+]m) + ’ym} } asn — —+00.

Moreover, as n = km + 7, with 0 < 5 <m — 1,

1 1
~log|| Agm-.. Au|| < ﬁ;):log | Agornil| -
So, 210g || Ajm...An|| converges (a.s.) to zero as n — +oo.

We have proved that if £ {log {am (e Zﬂm) + B (€ Z+jm)5 4 %n} } =a<0

then +log||Ay...A,|| converges (a.s.) toy < 0 as n — +oo. So, the strict
stationary solution exists by Theorem 1.
Conversely, it is enough to observe that if < log|| Ay ... A,|| converges (a.s.)

toy < 0asn — 400 then - log || Ag... Agpn || converges (a s.)toy<Oask —

+00. So, by the previous calculations £ {log {ozm ( Zﬂm) + Bm ( Zﬂm) + %n} } < 0.
|

In the next examples we illustrate the previous results considering 6 —TGARCH
models with a generator process ¢ following the standard Cauchy law, that

is, with density f(z) = ﬁm) r € R.
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Example 1. Under the conditions of the last Corollary, if we consider § = 2
we obtain

E{log [ozm (82_)2 + B (8;)2 +’ym]} = log [(\/@4— Vm) (\/ﬁ_me m)] :

So, there exists a unique strictly stationary solution X if and only if
(s B, Ym) belongs to the set

(@, 8,7) €10, +o0l’ s 7 < [\/(f VB) +a-(vat+ ﬁ)]

The frontier of this region is depicted in the Figure 1.

2

FIGURE 1. Region of strict stationarity of a Cauchy
2—TGARCH model.

Example 2. Under the conditions of the last Corollary, if we consider now
Ym = 0, that is a 0—TARCH model, we obtain

E {log [ozm (82—)6 + B (s;)é] } = %log (mBm)

+00
using the fact that [ ﬁg;; dxr = 0 (Gradshteyn and Ryzhik [11, p. 564]).
0

A necessary and sufficient condition of strict stationarity for X is then
mBm < 1, which is independent of the parameter §. The frontier of this
region is depicted in the Figure 2.
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FIGURE 2. Region of strict stationarity of a Cauchy 6— TARCH
model.

A necessary condition for the existence of a strictly stationary solution of
model (1.1) is now stated.

Theorem 3. Let E (log™ || Ao||) < +o0. If the 5— TGARCH model presented
in (1.1) has a strictly stationary solution then

q
Zﬁfj < 1.
j=1

Proof. Let A be the matrix which is obtained replacing & and ¢; by 0 in
the matrix A;, t € Z.

Since, for each k € Z, A, > A, we have Ay...A_,, > A""!. So, the Lyapunov
exponent associated with the sequence of matrices (A, t € Z) satisfies vy >
log |4 .

As ||A]| > p(A), where p (A) is the spectral radius of matrix A, and 7, < 0,
we deduce that p (A) < 1. Moreover, we have

[ 22—y -1 0 ... 0
—Y2 z =1 .. 0
det (21, — A) = det | : L e
—Ym—1 0 0 |
=Y 0 0 .oz

= 2™ (1 — iﬂ) = 2™ (1 — zq:m> .
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q ‘
We conclude that the continuous function f(x) =1— > 7,2/ has no zeros
j=1

q
when 0 < 2 < 1. Since f(0) = 1, this implies that f(1)=1— > v; >0, as
j=1

required. u

3.0—TGARCH processes: stationarity up to the ¢ order
and relation with strict stationarity

We analyze now the existence of the order 6 moment of the process X that
is solution of model (1.1). Let us suppose that

(H2): E(|5t|5> < 400 and P(s=0) # 1.

We denote E <|5ﬁ|5) = ¢5, I [(5?)6} = ¢15 and E [(5{)6} = ¢o5. As

¢ > O,

b [(X;r)é |Xt1} = U?E [(Sf)é |Xt1} = Ufﬁbl,a
and formally we have F [(Xt*)é} =F (Jf) ¢1,5. Analogously, £ {(Xt)é} =
L (‘7?) $2.5-

Theorem 4. Under (H2), E (]Xt](s) exists and is independent of t if and
only if

m

D (igrs + Bidas +7) < 1. (3.1)
i=1
Proof. Let us assume that Y (a;¢15+ Big2s + ) < 1. Taking into ac-
i=1

count the integration properties of positive measurable functions, we get

E(o))=w+ Z (i1 s+ Bios +7i) E (07_;) -
im1

m .
Considering the polynomial o (L) =1 — > (1.6 + Bipe.s + i) L' associ-
i=1
ated to the previous recurrence equation, we conclude that this equation has
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a solution, F (0?) , that is independent of ¢ if the roots of « (L) are outside
the unit circle, which happens if and only if > (qid15 + Bidas + i) < 1.

=1

We assume now that E (\Xt|5) exists and is independent of ¢. Taking into
account the definition of ¢¢ we have, as E (\Xt\é) = ¢sE (o),

E(o]) = w+z{az ((x2)] + B [(X2) + 3B (o)}

— F (Uf) =w+ Z {O@E (0?,1-) o5+ BiE (0?4) P26+ il (Ufﬂ‘)}

1=1

= |1- Z {aiprs + Bigas + it | B (|Xt\5> - w.
i=1
The positivity of F (\Xt‘5) and w implies 1 — > (id15 + Bid2s + i) > 0.
i=1

Corollary. If € satisfy the hypothesis (H2) and Y (oip15+ Bidpas +7i) < 1
i=1

then E (\Xt\é) exists and is independent of t and we have

> (IXt\5> _ _ w @5 |
1= (it s+ Bidvas + i)

1=1

We note that for 06 € Nor 0 = 55,0 € N,b € N, and under the previous
conditions, we can write the § order moment of X; in terms of those of

£ () and ()’
1)
B(X) = 2 Bici)

1-3 {oziE [(sj)é} + GiE [(&)6] +%‘}.

1=1

Let us show now that the condition (3.1) is also a sufficient condition of
strict stationarity.
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We point out that the hypothesis (H2) implies E (log™ [|Ag|]) < +oc.
In fact, E(log™ [[Aoll) < E (Aol Ljag)>1) < E([[Aol]) which is finite if

E (\st\5> < 400.

Theorem 5. The d—TGARCH process X satisfying the model (1.1), the
hypothesis (H2) and > (15 + Bigpas +vi) < 1 is strictly stationary.
i=1

Proof. Let us consider the matrix A;. Denote by A; (i) the sub-matrix of
A; with its first ¢ lines and columns. We have

det (21, — E (A; (m)))

[ 2 — a5 — Bidas — ™ -10 .. 0
—aP15 — Padas — V2 z =1 .. 0
=det | : T
— Q191,56 — Bm-1¢26 — Ym—1 0 0 ... -1
| — @16 — BnP2.5 — Ym 0 0 .. z |

= zdet (21,1 — E (A1 (m —1))) + (—am®P15 — Bm®P2.5 — Ym) (_1)m+1 (_1)m71
= 22 det (21,2 — E (A1 (m —2))) — 2 (m_1015 + Bn1026 + Ym-1) —
— (am¢1,5 + ﬁm¢2,6 + W/m)

= 2" (1 — Z (it 5 + Bidbas + Vi) Z’)
i—1

Then

det (2L, — E (A)] = |2 [ = " (aidrs+ Bidos + %) |27
=1

We deduce that if |z| > 1 then |det (21, — E(A1))| > 1= (15 + Biddas + Vi)
i=1

and, if ‘Z‘ = 1, then \det (Zlm —F (Al))‘ Z 1— Z (Odi¢1,5 + ﬁi¢2,5 + ’}/Z) .
1=1
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As, by hypothesis, 1— Z (15 + Bigas + i) > 0, there is no proper value
—1

of £ (A1), z, such that |z| > 1. Consequently, the spectral radius p of the
matrix F (Al) satisfies p < 1. But, as Kesten and Spitzer [12, (1.4)] pointed
out, it is always true that v; < logp. So, 77 < 0 and the )—TGARCH model
presented in (1.1) has a unique strictly stationary and ergodic solution. =

As a consequence of the previous theorem and Holder inequality, we deduce
now the weak stationarity up to the 0 order of the process X under the
necessary and sufficient condition of existence of its moment of § order.

We remember that (X, t € Z) is weak stationary up to the § order if all
the joint moments of (Xy,,..., Xy, ) of order less or equal to § exist and are
equal to the corresponding joint moments of (Xy,1p, ..., X¢, 1), h € Z, that
1s,

E(X0)" o (X0, = B (X o (Kin)”
with 71 > 0,...,7, >0, 71 + ... + jn <6, (tl, tn) e 7" heZl.

Corollary. Let X be a stochastic process satisfying a §—TGARCH (p,q)
model with generator process (e,t € Z) under condition (H2). X is weak
stationary up to the order ¢ if and only if > (id15 + Bidas + Vi) < 1.

=1

Proof. Under the necessary and sufficient condition of existence of the
moment of order §, the process X is strictly stationary. So, we only have to
ensure the existence of those expectations.

The generalized Holder’s inequality for positive exponents (*) gives

- %
X, /H|Xﬁ ﬁdP<H [/\Xt\ dP]
[E (\Xti 5)}7 < +00
*Holder inequality

m
Let p1, ..., pm in |0, +o00[ be such that Zpi = 1. Consider f; € L, (Q,A,pn),i=1,...,m.
i=1""

E [|Xt1\ﬁ o]

I
e

m m m ) 1
Then T fi € L(9,4,p) and [ TT1fildp < TT (S 15" dio)
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as E/ (|Xti|5> exists. |

Example 3. Let us consider again the particular Cauchy —TARCH process
studied in the example 2. Ford < 1, F (|5t|5> exists and £ (\st\é) = —

sin(‘s%lw)
(Gradshteyn and Ryzhik [11, p. 340]). So, a necessary and sufficient condi-

tion for the existence of F (\Xt|5) is (v + Om) @ < 1.
) ™
The regions of strict and up to the d—order weak stationarity of the X
process are depicted in the Figure 3.

FIGURE 3. Regions of strict and up to 6— order weak stationarity
of a Cauchy d—TARCH model.

In order to illustrate last results, in the next examples we take again the
§—TARCH model with ¢ = w + a, (X;Qm)é + O (X;m)é,m € N, and
consider several distributions for the generator process.

Example 4. Let us consider that the generator process € follows the standard
Gaussian law. There is a strictly and stationary solution X if and only if
log (mfBm) — 6 (¢ +1og2) < 0, where ¢ is the Euler constant (c~0.577215).

Moreover, a necessary and sufficient condition for the existence of E <|Xt|6>

. T'(0+1
1S (am + ﬁm) 2%((2—:_5))
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+oo 0
These results follow easily from the relations [ log(z)exp (—‘%) dr =
0

—0+1

+oo ) 11
—@ (c+log2) and of 2 exp (—%) dr = T (0 + 1) 55 +/7 (Gradshteyn
and Ryzhik [11, pp. 602 and 382, resp.]).

Example 5. If the generator process € follows the Laplace law, that is,

with density f(z) = exp (—|z]), z € R, then taking into account the rela-
+00 +00

tions f log (z)exp (—x) dz = —c and f 2’ exp (—z)dx = T (6§ + 1) (Grad-

shteyn and Ryzhik [11, pp. 602, 371 and 1085]), we find that a necessary
and sufficient condition of existence of a strictly stationary solution X is
log (v fBm) — dc < 0. A necessary and sufficient condition of weak stationar-

ity up to the d—order of X is (ay, + On) 5+1) < 1.

Example 6. Let us consider now that the generator process ¢ follows the
Uniform law in |—1,1[. A necessary and sufficient condition of existence of
a strictly stationary solution X is log (a,,(3,) — 26 < 0 and a necessary and

sufficient condition for the existence of E (|Xt|5> is (tm + Bm) 5 © +1) < 1.

4. )—TGARCH processes: discussion on the weak sta-
tionarity

The process Y; = B + lim(q.c.) Y  Ay1...A1 1B, t € Z, is the strictly sta-
" k=1
tionary and ergodic solution of the vectorial model (1.3). Let us show that

this solution is weakly stationary if and only if

(H3): E <|\A0...Am|\2> exists for every m € Ny and 3r € Ny : E (HAO...ATHQ) <1

(4.1)
This condition is equivalent to

tim B ([ 4o Au|[?) =0 (4.2)
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(r4+1)—

In fact, the independence of the sequence of matrices (A, t € Z) gives, with
| x| representing the integral part of x,
E (HAO...AnHZ)
) 2
< E( Ao AP HA(LH sy .
k=i k

< 2 (14 AP)] 7 (BlAE)
with £ < r + 1. Consequently, the convergence follows easily under (4.1).

Conversely, if limF (HAO...AHHQ) = (0 we have, obviously, the condition

n
(4.1).

We observe that, by Lemma 1 in the Appendix A, the strictly stationary
solution Y = (Y;,t € Z) is weakly stationary if (4.1) is assumed. Moreover,
taking into account the same Lemma, under condition (4.1) the referred
strictly stationary solution exists.

On the other hand, Y is also the unique weakly stationary solution of the

model (1.3). In fact, if W = (W, t € Z) is another weakly stationary solution
of the model (1.3) we get, using recurrence, for every i > 1,

IWe =il < A1 A i | (IWecica |+ Y1)
< 20l Ae Al (I P+ 1))

Aol 41

(r+1)

r+1 r+1

From the independence of the matrices (A, ¢t € Z) we obtain
E (W= YilP) <28 (141 Acial?) B (IWe il + 1Y)

and so (HWt — YtH2> < ¢, for every ¢ > 0, which implies W; = Y; in L?,.

If Y is a solution of the model (1.3), we know that the corresponding
solution of model (1.1) is the first component of the vectorial process U =
(U, t € Z) defined by

il

Ut = EtY;

1

with Yt% = ((Y;(l))g eees (Y;(m))g) , that is, Ut(l) = & (Yt(1)>g is a solution
of (1.1).

We can now state the following result.
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Theorem 6. There exists a unique weak stationary of order 26 solution of the
model (1.1) with generator process € with moments of order 25 if and only if
the sequence of matrices (A, t € Z) satisfies the hypothesis (H3). Moreover,
this solution is the strictly stationary one.

Proof. Let Y be the weakly stationary solution of equation (1.3). So,
E (HY}H2> < +o00, t € Z, and then Y(I) = (Y;f(l),t € Z) is a second order

process. As

= ="y,

5
o

we conclude that the process U = (Ut(l),t € Z> is of order 26 if ¢; has

moment of order 2§. So, under this condition and hypothesis (4.1), there
exists a unique weak stationary of order 26 solution of the model (1.1) given
by

Ul = = (v

where Yt(l) is the first component of the weak and strict stationary solution
of the model (1.3).

Finally, the unicity in L2, of the solution of equation (1.3) implies the
unicity of the solution of (1.1) of order 2.

Let us now study the necessity of the condition (4.1) for the existence of
the weak stationary solution of order 24.

Let X = (X4, t € Z) be the weakly stationary solution of order 2§ and let
us consider the corresponding vectorial process Y such that Y;,1 = A;Y; + B.

Using this equation we can write, for any r € N,

Yo=A 1. ALY . 1+ ZA_l...A_nB + B.

n=1

So, taking into account that A_{...A_,Y_,,_1 is a vector with positive coef-
ficients, we have, for any r € N,

Yo > ET:A_L..A_”B.

n=1
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As X?° = 02e?, the existence of E (Xf‘s) and E (5?5) ensure that of

E (07°). So, Y is a second order process because the expectation of 1Y;]]> =
m

Ol
> [Y; } is finite.
i=1

We can then conclude that, for any r € N,

ET:A_L..A_”B
n=1

and, noting the positiveness of the vectors coefficients involved, we can use
Beppo-Levi’s Theorem to obtain

400
> A4..AB
n=1

2

E < E (II%I°) < +o

2
<E (HYOHQ) < +00.

Let us show now that we also have
+00 o0
S E (HA_l...A_nBHQ) -YE (HCnBH2> < +o0,
n=1 n=1

where C,, = A_;...A_,, has generic element CE?). We have

m 2
|CaBI? = *> (cli)
=1

and so

+00 m —+00 9 +00 2

Y E (HCHB\F) 1 (cg») <E |} AL ALB| | < +oc.
n=1 i=1 n=1 n=1

We can then conclude that lim E (HCRBH2) = 0.
Let us consider now the canonical basis of R™, (fi, ..., f) . As E (HCnBH2> =

w?E <|\Cnf1\|2> we deduce that lim FE (HC’nleQ) = 0.
Moreover, for i = 2,...,m — 1, ||Cpfil|l = [|Cro1fi-1ll = |Cr-afi-al| = ... =
H(jn_@‘J)ja‘ an{lH(jnf%A‘:: H(jn—lj%v—lH:: H(jn—On—lyflu- SO,

lim E (HCan-HQ) —0, i=2,..,m.
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We are now able to prove that
lim E (chH?) ~0 (4.3)

or, equivalently, that the condition (4.1) holds.
To obtain this, we use the operator norm defined by ||M||= sup ||Mz| ,z €

o] <1
R™, M € M, taking into account that all the norms in M are equivalent.

We have then E <|\Cn|\2> — E | sup ||Chz|® | . But using the continuity of

lz]<1
the operator norm and the compactness of {x : ||z|| < 1} we have, for every
we Q, sup [|Coz|* = [|CXo (w)|)? for some X (w) such that || X, (w)]|| < 1.

]| <1

So, choosing a measurable version of X we have sup ||Cyz||* = ||CrXol*.
| <1
Let us consider then any random vector X verifying || X| < 1. We can

m

write X = > B, f; with B; real random variables such that Bi2 < 1. We have
i=1
then

b (HCnXH2> <E (i | Bj] Icnfz-l>2
S mim [z e [ ()]

i=1 j=1

which implies lim E (HC’nX HQ) = 0 and, in consequence, the equality (4.3).
|

5. 0—TGARCH processes: minimal representation

In this section we obtain a representation unique for the process X =
(X, t € Z) defined in (1.1), in terms of its past, described by X", and X, ,
v > 1, and the generator process €. We also state a necessary and sufficient
condition for the existence of a minimal representation of X;.

We begin by establishing a representation for o; in terms of X;", and X, _,
1> 1.

Let us define the following polynomials, whose coefficients are those present
in the definition of o?:

A(ﬂf) = Oélx‘i_...‘i_Oépxp’ B (gg) — ﬁlx_i_.”_i_ﬁpxp’ G(x) — 1_711,_“._7(]37(].
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To ensure that the model orders are in fact p and ¢, we suppose 7, # 0
and ay, or (3, non zero.

In the following we assume the strict stationarity of the 6—TGARCH pro-
cess X = (X;,t € Z) defined in (1.1) and that the matrices (A, t € Z) satisfy
the condition E (log™ || 4¢||) < +o0. From Theorem 3 we have v +...+7, < 1
and so all the roots of G (x) = 0 are outside the unit circle, which implies

1 +00 '
- d'xj7 ‘Q?‘ < 17
- 4"

where the coefficients d; decrease exponentially as j — +4-00. Obviously,

A - . B =
ﬂ — chx], (z) _ Zgjxj’ 2| <1

j=1

j=1
with

¢j = ndj1+ o ydjp, ¢ = Pidja+ o Bydjp, J 21,
and c¢; and ¢; decreasing exponentially as j — +oo0.

From Lemma 2 in the Appendix A, we conclude that if & (logJr Uo) < +00
then

+o00 5 +00 5
o) =co+ Zcz' (X)) + 25@ (Xi2)
i=1 i=1

+00
for every t, with probability one, where ¢y = % = w;)dj. Moreover, if 7
j:
and ¢, are non-degenerated random variables, this representation of o; in
terms of past values of X;" and X, is unique.

Using the backward shift operator L, the last result may be written as
follows:

o) = ﬁ ot AW (X)) + B (X))
w A
- G (1) GE?J; (‘XtJr)(S + % (Xti)a' (5.1)

From this representation we deduce a unique representation of X; = oye;
in terms of its past, for each arbitrarily fixed generator process €.
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Let us now study the minimality of the definition (1.1) of the )—TGARCH
process, in the sense that there is no pair (p*, ¢*), such that p* < p or ¢* < ¢

and ) ) )
p ;& ;& .
0! =w* + Zai (Xttz) + Zﬁi (XIH-) + Z’yjat—j (5.2)
i=1 i=1 j=1
for some (not necessarily non negatives) w*, o, 37 (i = 1,...,p") , v, (j = 1, ...,¢").

Theorem 7. We suppose that E (logjL 00) < +o00 and that the random vari-
ables ef and 5 are non degenerated. The definition (1.1) is minimal if and

only if
A(x)and G(x) are coprimes or B (x)and G(z) are coprimes  (5.3)

in the set of the polynomials with real coefficients.

Proof. We suppose that A (x) and G(z) are coprimes or B (z) and G(z)

are coprimes and that there are (p*,¢*), p* < p or ¢* < ¢, and w*, o,

Bi(i=1,....p"), 7 (j =1,...,¢") such that (5.2) holds. From the strict sta-
q*

tionarity we necessarily have Z’yj* < 1. We define

J=1

A*(2) = ajz+..+aha?, B (z) = Blat.. 482", G (z) = 1-rja—.. .

This gives

re) B, BE &
;cjﬂ, G (2) = c;ja’
and so, from the unicity of the representation,
A() A"(x)  B(z) B (z)
G@) G G @)
If A(z) and G (x) are coprimes, we conclude that there is a polynomial
P(z) such that

A" (z) = A(z) P(z), G (z)=G(z) P(z),

with a similar conclusion if B and G are coprimes. Then ¢* > ¢,p* > p,
which is a contradiction.

j=1

Conversely, let us now suppose that the definition (1.1) is minimal but the
condition (5.3) fails, that is, neither A and G nor B and G are coprimes.
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It is always possible to write

where Fy (x) = ged (G (), A (), Fp(r) = ged (G (x), B (z)) and Gy (x) is
a polynomial with a degree less than or equal to ¢ — 2. Similarly, we have

A(r) = Fa(z) A*(z), B(z) = Fg(x)B*(z),

where degree(A® (z)) < p, degree(B*® (z)) < p.
If we introduce F' (z) = lem (F4 (z), Fp (x)), we have, from (5.1),

= g e AW () + B (X0)]
- rwaa moeo &) Boan &
- Fmam ?<(LL>)GFE(L))> XY+ ﬁéﬁ)fﬁf’) ()
where & = w" (2 (% O

So, we have
5 1
op =
F(L)Gy (L)

SHAW) ()" + BL) (X7)']

where F (L) Gy (L), A(L) = A* (L) .55 and B (L) = B* (L) £.; are poly-

nomials whose degrees are less than those of G, A and B, respectively. This
fact contradicts the hypothesis of minimal definition. u

Finally, under the hypotheses of the Theorem 7 and supposing that the
polynomials A (z) and G(x) are coprimes or the polynomials B () and G(z)
are coprimes, there is no

(W*aa;ﬁ; (Z - 17 7p) 773* (] - 17 ,Q)) ?é (waaiaﬁi (Z — 17 7p) 77] (] - 17 7Q))

p p q
such that o) = w* + Y a} (X;L_Z-)(S + > 6 (Xﬁ__i)(S + >_7jo)_;, which assures
i=1 i=1 j=1

the unicity of the minimal definition of o?.
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6. Conclusion

The probabilistic analysis developed in this paper for )—TGARCH models
has enormous impact on statistical applications of such models. Indeed we
note that we ensure the existence of stationary and ergodic solutions under
conditions of great simplicity expressed in terms of the model coefficients.

Moreover, the results stated in Section 5 reinforce this contribution as
we obtain a unique representation for af in terms of the present and past
observations, which may have a great relevance for estimating and testing
methodologies as well as in the forecasting phase. Finally, we remark that the
whole study is valid for general generator processes, in particular with laws
without classical moments or non-symmetrical ones. So, it may be applied
to models generated by processes of stable laws which has great interest in
financial applications (Nollan [15], Bellini and Bottolo [1]).

Appendix A

Lemal. IfE (HAO...AmH2> exists for everym € Ny and Ir € Ny : B (HAO...ATHQ) <1

then the strictly stationary solution Y = (Y, t € Z) of the vectorial model
(1.3) is weakly stationary.

Proof. We can write

E ||
400 +0o0 400
<IBIF (142 E(lArrAcil) + D> B (A Al A Al | -
k=1 k=1 j=1

Taking into account the independence of the sequence of matrices (A;,t € Z)
we have

—+00 —+00
S E(JArAckl) = > E (A Al
k=r k=r

r—1 400

= ) > E(| A A

1=0 k=1
r—1 400

Z Z a*E (N Agr+1---Akril])

1=0 k=1

IN
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with a = E (HAl...ATHQ) <land E (HAl...AiHQ) — 1ifi=0.
So,

if E([JAl]]) =1
ZE Ay Ari]]) < Tz @1, where ar = 1-[B(|Ao|)]" if E (]| A]) # 1.

1=E([[4ol])

=

The convergence of the other series results from the convergence of the
400
series Y F (HAt_l...At_kH2> , whose proof is analogous to the previous one,
- 400
and from that of Z Z E (HAt—l---At—kH HAt—l---At—jH) .

k=1j5>k
To study this last one we observe firstly that

r—1 +oo

S Bl A Al A A )

k=1 j=r+1

r—1 k +oo
is a convergent series as it is upper bounded by » {E (|\A0H2)} Yo E(||Aksa---Ajl])

k=1 Jj=r+1
and
+oo 400
S Bl A a Al A A
k=r j=k+1

is also convergent since it is upper bounded by

(a2 + 27 m) ZE (14 40)
withap = 5 [ (J40?)]

j=h
We also point out that the condition (4.1) implies lim +log || 4...A,|| =
n

v < 0. In fact, let us show firstly that (< log HAO...AnH)Jr is integrable for
every n € N. We have

1 + 1 — -
<ﬁ log HAO...AnH) < - Z (log [|A:ll)

1=0
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and then the integrability results from the integrability of || Ag]|.

The result will follow from the Theorem 2.1 of Kingman [13] if we show
that E (Llog||Ag...A_,||) converges to a strictly negative limit. Using a
decomposition in groups of r + 1 elements and taking into account that the
matrices (A, t € Z) are independent and identically distributed, we have

1 — 1
E <—log HAO...AnH) < ME(log | Ao A, |+~ E (1og HAL , A,
n n n +

ﬁj (r41)"

).

Using the Jensen’s inequality, the integrability of ||Ao|| and the indepen-
dence of the sequence (A, t € Z) we have the convergence to zero of the last
term.

On the other hand, we have

e 1 :
i T (g 4.4, 1) < g [B (140 A1)

which establishes the result.
So, the Liapunov exponent associated to the matrices (A, t € Z) is negative
which implies the existence of the strictly stationary solution considered.
We conclude that under condition (H3) the process Y is a weak and strictly
stationary solution of the vectorial model (1.3).
|

Lema 2. If £ (logjL Jo) < 400 then

400 +00
af =cy+ Z Ci (X;ii)é + ZEZ (X;Z-)é, for every t, with probability one,
i=1 i=1

(A.1)
with coefficients ¢; and ¢; that decrease exponentially. If, in addition, ef and
gy are non-degenerated random variables, the given representation is unique.

Proof. As E(log" ||4o]) < +oo and [|4g|| > 1 we deduce that
E {logJr [ozi (5;{)5 + 0 (86)6 + %-] } , 1 = 1,...,m, is finite. Since the func-
tion log™ is non decreasing then F [log+ (83)} and F [long (86 )] are finite.

Consequently, as E (logJr Uo) < 400, the same occurs to [log‘L (XJ)] and
to & [log‘L (XO’)} :
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Moreover, (X;r bt e Z) is a sequence of real random variables, identically
distributed, as well as (X[ e Z) , since (X¢,t € Z) is strictly stationary. In
consequence ('), the series

400 400
S (xh) and Y E(x)
=1 1=1

are absolutely convergent with probability 1.
Considering the strictly stationary process £ = (&, t € Z) such that

q q
G=w+) a (X)) + P (X))’
i=1 =1
let us show that
+00
(7? = Z dm&t—m- (AZ)
m=0

As E (logJr |§0|) < 400, this series is absolutely convergent with probability
1, taking into account the exponential decrease of d,,,, m € N.
On the other hand, from

1 +00 . +00 ‘
G = Zdjx] = 1=1—-—mr—.. —y29 Zdjxj
J=0 j=0

we deduce that dy = 1, d; = 71, do = diyi+72, ..., dg = dg—1 1 +...+diy—1+7
and d; = d;_1y1 + ... + di_g7y,, for i > q.
For j > p, the following relation holds

[™]=

G+ dibor+ ot di&y =07 = Y (divjgrg+ -+ dpyi) op .
i=1
The left-hand side of this equality converges a.s., when 7 — 400, to the
right-hand side of (A.2).

TTf (£4,0 < k < 4+00) is a sequence of real random variables identically distributed such that
E (log™ &) < 400

+oo

then the series 3 &,2F converges, with probability 1, for any z in the region |z| < 1 (Berkes,
k=0

Horvath and Kokoszka [2, Lemma 2.2]).
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Moreover, using the exponential decrease of d; and the fact that £ (logJr 00) < 400
we have (Gongalves and Mendes-Lopes [10])

o

From Borel-Cantelli Lemma, we obtain

q
Z (dz’+j—q7q + .+ dj%’) Of—i—j
=1

>c} < 400, Ve > 0.

+00 0
0? =+ Zci (Xttz‘)é + ZEZ (X;i)é
i=0 i=0

with probability 1.
Now, let e and &, be non degenerated variables. To establish the unicity
of the representation obtained for oy, let us consider, for some t,

“+00 “+00
o=+ Y (X)) G (X)), (as)
i=1 i=1
and
+00 +00
o) = fo+ Z fi (Xtti)é + Z fi (Xtii)éa (a.s.).
i=1 i=1

By contradiction, let m; > 0 and mgy > 0 be the smallest integers such that
Cmy # fmy, and Gy # [, (We note that if ¢; = f; and ¢; = f;, for every i > 0,
then ¢y = fo).

By the definition of m; and ms, and taking into account that X; = o0&y,
we obtain

(fml - le) O-t*m15;——m1 + (fmz - Emz) Xt_—mg =

—+00 —+00
=co— fo+ Z (ci — fi) X — Z (Ei_fz) Xy
t=mq+1 t=mo+1

If my < msy, we get

ef = L
o (fm1 - le) Ot—my

- 1 [f (c; — f) X0, — i.i (@ﬁ)XH]

(fm1 T le) Ot—my i=mq+1 i=mo+1

KE””@ - fmz) Xi o, + (co = fo)} n
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As 0y, > a9 >0, g/, is well defined. As X]7L is g;—measurable, as well
as X, (g; is the o—field generated by €;,€; 1, ...), the right-hand side of the
last relation (and, consequently, €/, ) is a real random variable measurable
with respect to g, ,, ;. Taking into account that &;, ¢ € Z, are independent,
we conclude that €, is constant (a.s.).

The conclusion is analogous if m; > mo.
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