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CONTRACTION OF GABOR FRAMES TO THE INTERVAL
(-1,1)

LUIS DANIEL ABREU† AND JOHN E. GILBERT

Abstract: In this paper we introduce frames for the space L2(−r, r), r ≥ 1 that
formally approach Gabor frames in L2 (R) as r → ∞. This is done using an
integral transform which can be seen, in a certain sense, as a contraction of the
Bargmann transform. The transform and the associated frames can be related to
Bergman spaces in the unit disc, thus allowing a complete characterization by means
of Seip´s geometric description of the sampling sequences in the Bergman space.
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1. Introduction
In this paper we introduce frames for the space L2(−r, r), r ≥ 1, in par-

ticular for L2(−1, 1), that formally approach Gabor frames in L2 (R) when
r →∞. Our discussion is motivated by the limit

lim
r→∞

(
1− µ(t, ξ)

r

)r

= e−µ(t,ξ). (1)

Because of the fundamental role played by exponential functions in the theory
of Gabor frames of L2 (R), we determine whether functions of the form

(1− µ(t, ξ))α

can be used in the construction of frames in L2(−1, 1). For instance, it follows

from a special case of our results that, defining λk,n =
(
1− 21−n

)
e

2πik
n , the

following sequence of functions is a frame of L2(−1, 1):
{

2−
2
3n(1− t2)

1
4

(1− 2tλk,n + λ2
k,n)

}

n∈N, 0≤k<n
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This provides a new method for stable representation of functions in L2(−1, 1).
In the proofs, generating functions for Gegenbauer polynomials are combined
with deep results from the theory of Bergman spaces. Our main result is a
complete description of the sequence of points that can be used to construct a
certain family of frames for L2(−1, 1). It uses the geometric description of sets
of sampling in the Bergman space obtained by Kristian Seip [22] just as cor-
responding results in the Fock space [17], [20] provide a complete description
of the sequences yielding Gabor frames with Gaussian windows. To provide
a link to Seip´s results we introduce an integral transform maping L2(−1, 1)
to some spaces in the unit disc which are equivalent to weighted Bergman
spaces. This integral transform plays a role in the analysis of L2(−1, 1) analo-
gous to the Bargmann-Fock transform for L2 (R) and it approaches the latter
in the sense of (1).

The outline of the paper is as follows. We introduce the L2(−1, 1) frames
and the associated integral transform in the next section. This will allow us
to state the main results of the paper, which will be proved after recalling
some well known material about special functions and Bergman spaces in a
“Tools” section. The central section of the paper is the fourth, where the
density theorem is proved, using a general principle which seems to be appli-
cable in several situations. The remainder of the paper is devoted to a more
detailed study of the mapping properties of our integral transform, which
can be summarized in a commutative diagram. The last section contains
informal remarks related to other work as well as historical remarks about
the Bargmann transform.

2. Results
2.1. A contracted Gabor system. Let D be the unit disc in the complex
plane. For a sequence Λ = {λ} ⊂ D define the sequence of functions

F α
λ (t) =

(1− t2)
α
2− 1

4 (1− |λ|2)α+ 1
2

(1− 2tλ + λ2)α

on (−1, 1). The set {F α
λ }λ∈Λ can be thought of as a contracted Gabor system

in the sense that

lim
r→∞

F πr2

λ/r

(
t

r

)
= e2πtλ−πλ2−πt2/2−π|z|2 = e−

π
2 (t−2x)2−2πiξte2πixξ, (2)
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setting λ = x− iξ. This limit can also be written as

lim
r→∞

F πr2

λ/r

(
t

r

)
= e2πixξMξT2xϕ(t), ϕ(t) = e−

π
2 t2,

where Tx and Mξ denote translation and modulation

Txf(t) = f(t− x) Mξf(t) = e−2πiξt.

Thus, up to the factor e2πixξ, limit (2.1) is a Gabor system with gaussian
window.

2.2. A Beurling density theorem. A sequence of functions {fλ}λ∈I is a
frame of a Hilbert space H if there exist positive constants A,B such that,
for every f ∈ H, the inequality

A ‖f‖2
H ≤

∑

i∈I

|〈f, fi〉H|2 ≤ B ‖f‖2
H ,

holds. We will characterize the sequences Λ ⊂ D such that {Fλ(t)}λ∈Λ is
a frame of L2(−1, 1). This requires some aditional terminology and we will
follow [23]. Let

ρ(z, w) =

∣∣∣∣
z − w

1− zw

∣∣∣∣ , z, w ∈ D,

be the pseudo-hyperbolic metric in the unit disc. A sequence Λ ⊂ D is then
said to be uniformly separated if there exists δ > 0 such that ρ(λ1, λ2) > δ
for every λ1, λ2 ∈ Λ. Given such a sequence, its lower Beurling-Seip density
is defined by

D−(Λ) = lim sup
r→1

sup
z

∑
ρ(λj ,z)<r(1− ρ(λj, z))

log 1/(1− r)
.

For example, when ωn = e2πi/n is the primitive nth root of unity and Λ is
the family

λk,n =
(
1− γ

2n

)
(ωn)

k, n ∈ N, 0 ≤ k < n, (3)

then D−(Λ) = γ/ log 2.
We will use the characterization of sampling sequences in the Bergman

space ([22]) to establish our main result.
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Theorem 1. Let Λ be a uniformly separated sequence in the unit disc. Then
the set of functions {F α

λ (t)}λ∈Λ, α > 1/2, is a frame for L2(−1, 1) if and only
if D−(Λ) > α + 1/2.

Corollary 1. When Λ = {λk,n} is the family defined in (2.2), {F α
λ (t)}λ∈Λ is

a frame in L2(−1, 1) if and only if γ > (α + 1/2) log 2.

The example in the introduction follows by choosing α = 1 and γ = 2.

2.3. A Bargmann-type transform. Denote by Bα the integral transform

(Bαf)(z) =

∫ 1

−1

f(t)

(1− 2tz + z2)α
dωα(t), f ∈ L2(−1, 1),

where

dωα(t) =

√
Γ(α)

π
1
2Γ(α + 1/2)

(1− t2)
α
2− 1

4dt.

We will show that Bα maps L2(−1, 1) to the space aα(D) of analytic functions
in the unit disc with norm

‖F‖2
aα(D) =

∫

D

[
z
dF

dz
(z) + αF (z)

]
F (z)(1− |z|2)2α−2dz.

As a side remark, one should notice that this space is reminiscent of one of
the spaces appearing in the disc model of the metapletic representation [8].
The other space which occurs in [8] is the standard Bergman space, with
norm

‖F‖2
Aα(D) =

∫

D
|f(z)|2 (1− |z|2)αdz.

Denoting by Mα the mapping defined on the basis elements {un}∞n=0 of a
Hilbert space by

Mαun =
√

n + α un, (4)

the mapping properties of Bα can be expressed in the following commutative
diagram:

L2(−1, 1)
Bα

→ aα (D)

Mα ↓ ↓ Mα

Hα(−1, 1) →
Bα

A2α−2(D)

(5)
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The diagram provides an indication on why the restriction α > 1
2 is neces-

sary in Theorem 1: the limit case α → 1
2
+

of A2α−2(D) is the Hardy space,
where sampling sequences do not exist [23]. The space Hα(−1, 1) has some
interesting properties, and we will see that it is the most appropriate space
in which to consider the following formal limit: setting α = πr2, replacing
z by z/r and taking limits in Bα in the sense of (1), we obtain the Bargmann
transform:

(Bf)(z) =

∫

R
f(t)e2πtz−πt2−πz2/2dt.

3. Background
3.1. Special functions. We will now list some properties of the special
functions that will be used in the remaining. Detailed expositions concerning
such special functions can be found in [1] and [13].

3.1.1. The Gamma function. The Gamma function is defined, for Rz > 0,
by the integral

Γ(z) =

∫ ∞

0
tz−1e−tdt.

The shifted factorial is defined as

(a)0 = 1

(a)n = a(a + 1)...(a + n− 1)

We will use the following relation between the Gamma function and the
shifted factorial:

(a)n = Γ(a + n)/Γ(a) (6)

as well as Stirling´s formula

Γ(x) ∼
√

2πxx− 1
2e−x,

as Rx →∞.

3.1.2. The Hermite functions. The Hermite polynomials are defined by the
recurrence relation

Hn+1(t) = 2tHn+1(t)− 2nHn+1(t).

with H0(t) = 1 and H1(t) = t. They satisfy the orthogonality relation

∫ ∞

−∞
Hn(t)Hm(t)e−t2dt = 2nn!

√
πδn,m
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and have the generating function

e2tz−z2

=
∞∑

n=0

Hn(t)
zn

n!
. (7)

We will also consider the orthonormal Hermite functions defined as

hn(t) = (2nn!)−
1
2Hn(t

√
2π)e−πt2.

Hermite functions are very important in the context of the Bargmann trans-
form, because they are a basis of the space L2(R) that is mapped into the
basis

(Bhn) (z) =

(
πn

n!

) 1
2

zn

of the Bargmann-Fock space by the Bargmann transform.

3.1.3. The Gegenbauer functions. The Gegenbauer polynomials are defined
by the recurrence relation

2(n + α)tCα
n (t) = (n + 1)Cα

n+1(t) + (n + 2α− 1)Cα
n−1(t)

with Cα
0 (t) = 1 and Cα

1 (t) = 2αt. They satisfy the orthogonality
∫ 1

−1
Cα

n (t)Cα
m(t)(1− t2)α− 1

2dt =
(2α)n

√
πΓ(α + 1/2)

n!(n + α)Γ(α)
δn,m (8)

and have the generating function

(1− 2tz + z2)−α =
∞∑

n=0

Cα
n (t)zn, (9)

where the sum is uniformly convergent on R×K, for every compact subset
K of the unit disk. The normalized Gegenbauer functions are

cα
n(t) = (1− t2)α/2− 1

4

√
n!(n + α)Γ(α)

(2α)n

√
πΓ(α + 1/2)

Cα
n (t) (10)

they satisfy ∫ 1

−1
cα
n(t)cα

m(t)dt = δn,m

and constitute a complete orthonormal basis of the space L2(−1, 1).
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Remark 1. From the generating functions (9) and (7) it is easy to see that

lim
α→∞

1

α
n
2

Cα
n (

x√
α

) =
Hn(x)

n!
. (11)

3.2. Bergman spaces. There are recent books on Bergman spaces which
provide a current account of their structure and of major advances in their
study over the last twenty years [11] [5]. We will need some elementary facts
about them.

The functions

eα
n(z) =

√
Γ(α + 2 + n)

n!Γ(α + 2)
zn

constitute an orthonormal basis of the Bergman spaces

Aα(D) =

{
f analytic in D such that

∫

D
|f(z)|2 (1− |z|2)αdz < ∞

}
.

Therefore, a function with a Taylor series expansion

f(z) =
∞∑

n=0

anz
n,

has norm

‖f‖2
Aα(D) =

∞∑
n=0

n!Γ(2 + α)

Γ(n + 2 + α)
|an|2 .

The Bergman spaces Aα(D) are Hilbert spaces with a reproducing kernel
given by

Rα(z, w) =
1

(1− zw)2+α
. (12)

4. Proof of the main result

4.1. A general principle. We will use a very simple principle which allows
one to construct frames in a given Hilbert space U from sampling sequences
in a reproducing kernel Hilbert space H. It is related to work of Hille [12]
and may be useful in other contexts. Recall that Λ = {λ} is a sampling
sequence for a Hilbert space H with reproducing kernel R(., .), if there exist



8 LUÍS DANIEL ABREU AND JOHN E. GILBERT

positive constants A,B (not necessarily the same at each occurrence) such
that

A ‖F‖2
H ≤

∑

λ∈Λ

|F (λ)|2 R(λ, λ)−1 ≤ B ‖F‖2
H . (13)

for every F ∈ H.

Proposition 1. If {un(t)}n∈I is an orthonormal basis of a Hilbert space U
and {pn(z)}n∈I an orthonormal basis of a Hilbert space H with reproducing
kernel R(z, w), set

K(t, z) =
∑

n∈I

mnun(t)pn(z),

Then {
K(t, λ)√
R(λ, λ)

}

λ∈Λ

is a frame for U for every sequence {mn}n∈I of real numbers bounded away
from zero and infinity if and only if {λ}λ∈Λ is a sampling sequence for H.

In many cases the kernel K(t, z) in Proposition 1 can be identified with
important functions, but the “custom” multiplier sequence {mn}n∈I is useful
in cases like the one we will need to construct frames of L2 (−1, 1).

Proof : Define a transform T : U → H by

(Tf)(z) = 〈f(.), K(., z)〉U .

Then

(Tun(.))(z) =
∑

n∈I

mnpn(z) 〈un(.), um(.)〉U = mnpn(z). (14)

Since {mn}n∈I is bounded away from zero and infinity, there exist constants
A,B, independent of n, such that

0 < A ≤ mn ≤ B < ∞.

For f(t) =
∑

n∈I anun(t), (14) gives ‖Tf‖2
U =

∑
n∈I |mnan|2. Consequently,

for every f ∈ U ,

A ‖f‖U ≤ ‖Tf‖H ≤ B ‖f‖U . (15)

In particular, T : U → H is surjective since the range of T contains a dense
subspace of H.
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Now set F (z) = (Tf)(z) = 〈f(.), K(., z)〉U in (13). Then

A ‖Tf‖2
H ≤

∑

λ∈Λ

|〈f(.), K(., λ)〉|2 R(λ, λ)−1 ≤ B ‖Tf‖2
H .

Using the norm equivalence (15), we find constants C,D such that

C ‖f‖2
U ≤

∑

λ∈Λ

∣∣∣∣∣

〈
f(.),

K(., λ)√
R(λ, λ)

〉

U

∣∣∣∣∣

2

≤ D ‖f‖2
U .

Thus

{
K(t,λ)√
R(λ,λ)

}

λ∈Λ
is a frame of U .

One can easily reverse this proof since T is invertible. Starting from the
frame property the definition of a sampling sequence follows easily using
T−1 : H → U . This yields the “if” part of the Proposition.

The application of the above principle to the transference of the sampling
sequences of the Bargmann-Fock space to Gabor frames with a gaussian
window is quite simple, since the multiplier sequence {mn} is not required.

Example 1. Let U = L2(R) and H = F(C), the Bargmann-Fock space of
analytic functions in C with the norm

‖F‖2
F(C) =

∫

C
|F (z)|2 e−π|z|2dz.

Then we can take in the above theorem un = hn, the Hermite functions and

pn(z) =
(

πn

n!

) 1
2 zn. In this case the situation is considerably simple, since we

can take mn = 1. Using the generating function for the Hermite functions
(7), we can sum

K(t, z) =
∑

n∈N
hn(t)

(
πn

n!

) 1
2

zn = 21/4e2πtz−πt2−πz2/2.

Since the reproducing kernel of F(C) is eπzw, Proposition 1 says that Λ ⊂ C
is a sampling sequence for F(C) if and only if

{
e2πtλ−πt2−πλ2/2−π|λ|2/2

}
λ∈Λ

is a frame of L2(R) or, by writing λ = x + iξ, that
{
e2πixξMξT2xϕ(t)

}
λ∈Λ,

the collection of modulation and translations of a gaussian window, is a Ga-
bor frame of L2(R) (see [9, pag. 53], [8, pag. 39] for more details on this
connection). Now let I be a compact set of measure 1 in the complex plane
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and let n−(r) denote the smallest number of points from Λ to be found in a
translate of rI. The lower Beurling density of Λ is given as

D−(Λ) = lim
r→∞

sup
n−(r)

r2 .

A famous theorem of Lyubarskii-Seip-Wallstén [17], [20] says that the sam-
pling sequences (and consequently the frames we have just described) are char-
acterized by the condition D−(Λ) > 1.

4.2. Proof of Theorem 1. We use Proposition 1. Let U = L2(−1, 1),
H = A2α−1(D) and

un(t) = cα
n(t),

where cα
n(t) are the Gegenbauer functions defined in (10). Consider also

pn(z) = e2α−1
n (z).

and

mn = mα
n =

2α + n + 1

(n + α)(2α− 1)
.

The multiplier mα
n is bounded above and below for α > 1

2 . Indeed,

1

2α− 1
<

2α + n + 1

(n + α)(2α− 1)
<

4

2α− 1

holds for all n ≥ 0 whenever 2α > 1.The function K(t, z) can be evaluated
explicitly, using the generating function (9) of the Gegenbauer polynomials
and properties of the Gamma function:

Kα(t, z) =
∑

n∈N
mα

ncα
n(t)e2α−1

n (z)

=
∑

n∈N
cα
n(t)

√
Γ(2α + n)

(n + α)n!Γ(2α)
zn

= kα

[∑

n∈N
Cα

n (t)zn

]
(1− t2)

α
2− 1

4

= kα(1− 2tz + z2)−α(1− t2)
α
2− 1

4 .

with kα =
√

Γ(α)/ (
√

πΓ(α + 1/2)). The reproducing kernel formula (12)
gives

R2α−1(z, z) = (1− |z|2)−2α−1.
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Thus we can use Proposition 1 to conclude that Λ = {λ} is a sampling
sequence in A2α−1(D) if and only if

F α
λ (t) =

(1− t2)
α
2− 1

4 (1− |λ|2)α+ 1
2

(1− 2tλ + λ2)α

is a frame in L2(−1, 1). Theorem 1 then follows from the result of Seip :
Theorem [22]: Let Λ be a uniformly separated sequence in the unit disc.

Then Λ is a sampling sequence for A2α−1(D) if and only if D−(Λ) > α+1/2.

5. Mapping properties of Bα

5.1. The unitary transform Bα : L2(−1, 1) → aα(D). In this section we
will prove the following result.

Theorem 2. The transform Bα is an unitary isomorphism

Bα : L2(−1, 1) → aα(D).

Proof : In the previous section we saw that

∑

n∈N
mα

ncα
n(t)e2α−1

n (z) = kα
(1− t2)

α
2− 1

4

(1− 2tz + z2)α
(16)

Taking into account that

(Bαcα
n)(z) =

∫ 1

−1

cα
n(t)

(1− 2tz + z2)α
dωα(t) = kα

∫ 1

−1
cα
n(t)

(1− t2)
α
2− 1

4

(1− 2tz + z2)α
dt,

we can use (16); since the sum is uniformly convergent on R×K, for every
compact subset K of the unit disk, it can be interchanged with the integral.
The result is

(Bαcα
n)(z) = mα

ne2α−1
n (z) =

1√
(n + α)

e2α−2
n (z),

Thus, Bα is an isometry if and only if Bα

[
L2(−1, 1)

]
is the space of functions

analytic in the unit disk having

un(z) =
1√

(n + α)
e2α−2
n (z) (17)

as an orthonormal basis. It remains to show that this space is indeed aα(D).
First observe that

‖F‖2
aα(D) = 〈TαF, F 〉A2α−2(D) (18)
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where Tα is the operator defined as

TαF = z
dF

dz
+ αF . (19)

By definition Bα

[
L2(−1, 1)

] ⊂ A2α−2(D) and we can expand F ∈ Bα

[
L2(−1, 1)

]
in terms of the basis e2α−2

n (z) of A2α−2(D):

F (z) =
∞∑

n=0

〈
F, e2α−2

n

〉
A2α−2(D) e

2α−2
n (z). (20)

On the one hand, this gives

〈TαF, F 〉A2α−2(D) =
∞∑

n=0

(n + α)
∣∣∣
〈
F, e2α−2

n

〉
A2α−2(D)

∣∣∣
2
; (21)

on the other hand, F can also be written in terms of the basis un(z) of
Bα

[
L2(−1, 1)

]
as

F (z) =
∞∑

n=0

〈F, un〉Bα[L2(−1,1)]
1√

n + α
e2α−2
n (z).

Thus by (20) and the completeness of e2α−2
n (z),

〈F, un〉Bα[L2(−1,1)] =
√

n + α
〈
F, e2α−2

n

〉
A2α−2(D) .

Finally,

‖F‖2
Bα[L2(−1,1)] =

∞∑
n=0

∣∣∣〈F, un〉Bα[L2(−1,1)]

∣∣∣
2

=
∞∑

n=0

(n + α)
∣∣∣
〈
F, e2α−2

n

〉
A2α−2(D)

∣∣∣
2

= 〈TαF, F 〉A2α−2(D)

= ‖F‖2
aα(D) ,

using (21) and (18).
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5.2. The inverse transform. In order to compute the inverse transform
B−1

α : aα(D) → L2(−1, 1), observe that, since {e2α−2
n (z)} is an orthonormal

basis of A2α−2(D), we have
∫

D
znzm(1− |z|2)2α−2dz =

n!Γ(2α)

Γ(2α + n)
δnm. (22)

Theorem 3. The transform

B−1
α : aα(D) → L2(−1, 1)

defined by

(B−1
α F )(t) = Cα

∫

D
F (z)Bα(z, t)(1− |z|2)2α−2dz

is an inverse of Bα.

Proof : Using the generating function (9) and the orthogonality (22) gives
(

Bα
−1

[
e2α−2
n√
n + α

])
(t) = cα

n(t).

Thus B−1
α maps the orthonormal basis of aα(D) into the orthonormal basis

of L2(−1, 1) and this is enough to prove the result.

Remark 2. An alternative proof can be given based on the fact that we al-
ready know that Bα is unitary: we have, for F ∈ A2α−2(D) and g ∈ L2(−1, 1),

〈
B−1

α F, g
〉

L2(−1,1) = 〈F,Bαg〉aα(D) .

Then, writing the integrals explicitly, we can interchange the order if the
integrals are absolutely convergent, which is the case for polynomials. It is
then possible to adapt the argument in [8, pag. 45] and extend the result to
arbitrary functions in L2(−1, 1).

6. Further properties of Bα

In this section we will observe that there is a Hilbert space of functions
H (−1, 1) defined in (−1, 1) where the transform Bα acts very naturally.

6.1. A natural domain. We want to find a Hilbert space in (−1, 1) which
can formally be deformed such that it approaches L2(−∞,∞). For this
purpose, the space L2(−1, 1) is too small and the norms of the deformed
Gegenbauer functions would blow during the deformation process. Indeed,
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although ‖cα
n‖L2(−1,1) = 1, the values

∥∥∥cα
n

(
.√
α

)∥∥∥
L2(−α,α)

don´t stay close to

one during the limit process where ‖‖L2(−∞,∞) is approached, because, from
the orthogonality relation of the Gegenbauer polynomials, a calculation em-
ploying Stirling´s formula shows that, as α →∞,

∥∥∥∥cα
n

(
.√
α

)∥∥∥∥
2

L2(−α,α)
∼ (n + α) .

This observation suggests defining a Hilbert space space in terms of Gegen-
bauer expansions. Let Hα(−1, 1) be the function space constituted by all the
functions of the form

f(t) =
∞∑

n=0

anc
α
n(t) (23)

If f, g ∈ Hα(−1, 1) with f as in (23) and

g(x) =
∞∑

n=0

bnc
α
n(t),

we define the norm

‖f‖2
Hα(−1,1) =

∞∑
n=0

|an|2
(n + α)

and the inner product

〈f, g〉Hα(−1,1) =
∞∑

n=0

anbn

(n + α)
.

This provides Hα(−1, 1) with a Hilbert space structure. Now, as α →∞,
∥∥∥∥cα

n

(
.√
α

)∥∥∥∥
2

Hα(−α,α)
∼ 1

Thus, the norm remains constant while Hα(−α, α) approaches L2(R) for big
α.

6.2.The unitary property. Clearly the space Hα(−1, 1) contains L2(−1, 1),
since L2(−1, 1) is constituted by functions f with an expansion of the form
(23) where

∞∑
n=0

|an|2 < ∞.
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Moreover,

〈cα
n, cα

m〉Hα(−1,1) =
δnm

n + α
and therefore an orthonormal basis of Hα(−1, 1) is

{√
n + αcα

n(t)
}

.

Proposition 2. The transform Bα is an isometric isomorphism

Bα : Hα(−1, 1) → A2α−2(D).

Proof : The proof follows immediately from the unitarity Bα : L2(−1, 1) →
aα(D), since, following definition (4),

Hα(−1, 1) = Mα

(
L2(−1, 1)

)

and

A2α−2(D) = Mα (aα(D)) ,

providing the commutative diagram (5).

6.3. The transform Bα as a multiplier. Let

ηα
n =

√
Γ(2α + n)

(n + α)n!Γ(2α)

In the previous sections we have seen that, on the basis elements of L2(−1, 1),

(Bαcα
n)(z) =

1√
n + α

e2α−2
n (z) = ηα

nzn.

Thus, in general, given a separable Hilbert space U with orthonormal basis
{uα

n}, one can define a transform Bα mapping each f ∈ U written in the form

f =
∑

anu
α
n

to

(Bαf) (z) =
∑

anη
α
nzn.

We have already investigated the cases when uα
n = cα

n and uα
n =

√
(n + α)cα

n,
using the explicit integral. With this more general formulation we can take
U = H2(D) and uα

n = zn. This leads us to the following result.

Theorem 4. The map Bα : H2(D) → Aα(D) is a unitary isomorphism.
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Proof : Let F, G ∈ H2(D) such that

F (z) =
∑

anz
n G(z) =

∑
bnz

n.

A direct calculation shows that

〈BαF, BαG〉aα(D) =
2α− 1

π

∫ 1

0

∫ 2π

0

( ∞∑

k=0

(ηα
n)2 akbk(k + α)r2k(1− |r|)2α−2rdrdθ

)

=
2α− 1

π

∞∑

k=0

(ηα
n)2 (k + α)akbk

∫ 1

0

∫ 2π

0
r2k(1− |r|2α−2)rdrdθ

=
∞∑

k=0

akbk

= 〈F, G〉H2(D) .

6.4. The formal limit transitions. The formal limit relations between our
transform and the Bargmann transform for the Bargmann-Fock space follow
from a simple limit. Set α = πr2. Replacing z by z

r and t by t
r allows one to

consider the transform

(Bπr2

f)(
z

r
) = Cπr2

∫ r

−r

f(
t

r
)Bπr2(

z

r
,
t

r
)rdt,

mapping functions in the dilated interval (−r, r) to the dilated disk Dr. Now,
as r →∞, the kernel

Bπr2(
z

r
,
t

r
) = (1− 2tz − z2

r2 )−πr2

(1− t2

r2 )
πr2/2− 1

4

approaches e2πtz−πz2−πt2/2. Stirling formula shows that, as r →∞,

Cπr2 =

√
Γ(πr2)

π
1
4Γ(πr2 + 1/2)

∼ r
1
2 .

We already remarked that A2πr2−2(Dr) approaches F(C), and the Hπr2

(−r, r)
was defined such that it approaches L2(R). We conclude that

lim
r→∞

2
1
2r−

3
4 (Bπr2f)

(z

r

)
= (Bf)(z).
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A similar argument shows that

lim
r→∞

2
1
2r−

3
4

(
B−1

πr2F
) (

t

r

)
= (B−1F )(t).

7. Discussion and connections to previous work
The ideas behind the study of integral transforms with kernels having bi-

linear expansions in terms of special functions can be traced back to Hille
[12]. It is quite remarkable that in the last section of [12] it is suggested the
study of the transform which has been fully explored by Bargmann in [3].
An interesting understanding of these and related transforms can be found
in [4].

In his paper [3], Bargmann points out that his construction can be ap-
plied to other integral transforms using generating functions of orthogonal
polynomials other than the Hermite polynomials. He gives the example of a
transform onto the Bergman space in the unit disk, involving the generating
function of Laguerre polynomials, which is essentially (24), up to a Fourier
transformation and a Cayley transform between the disk and the half plane.
Fock and Bergman spaces have been associated to expansions in signal anal-
ysis. A natural approach is by means of integrable group representations [6],
[7], [15]. The Bargmann-Fock spaces are associated with the Fock represen-
tation of the Heisenberg group and the Bergman spaces are associated with
the ax+b group seen as a subgroup of SL2(R). The study of Bergman spaces
provided an answer to a question concerning the existent of a Nyquist den-
sity for certain Wavelet frames [22]. Up to a transform from the disk to the
upper half plane, the connection to wavelet theory is done by the following
unitary mapping between the Hardy space and the Bergman space

Berα f(z) =

∫ ∞

0
tαeizt f̂(t)dt, (24)

which is a special case of the continuous wavelet transform (on the Fourier
side) when one takes as analyzing wavelet the Poisson wavelet ψα(t) =( 1

1−it

)α+1
. The transforms B and Berα map the actions of groups in spaces

of analytic functions into actions on their domain spaces. The same happens
with the transform investigated in this paper, although we were not able to
derive an explicit closed formula for the resulting action on L2(−1, 1). Thus
Bargmann’s suggestion turned out to reveal the following “classical orthog-
onal polynomial viewpoint of time-frequency analysis”:
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• Gaussian time frequency in L2(R) is associated with the generating
function of Hermite polynomials.

• Poisson frequency-scale in L2(0,∞) is associated with the generating
function of Laguerre polynomials.

• “Contracted gaussian time-frequency” in L2(−1, 1) is associated with
the generating function of Gegenbauer polynomials.

There are also examples of other transforms which are related to the one
we study in this paper. For instance, in [24] the author studies a transform
involving the kernel α(1− z2)(1− 2tz + z2)−α−1, which can be obtained from
(1−2tz+z2)−α by applying the operator z d

dz +α. The range space is identified
as the space of analytic functions in the unit disk with weight:

ρα(|z|2) =
1

Γ(2α− 1)
|z|2α−2

∫ 1

|z|2
s−α(1− s)2α−2ds

(we assume α > 1/2 because there is another expression for 0 < α < 1/2).
Another example was considered in [4], where the kernel (1− zw)(1− 2tz +
z2)−α−1, obtained from (1 − 2tz + z2)−α by applying the operator z d

dz +
2α is considered as an example of a broader theory of “Frame transforms”.
The resulting transform is unitary between L2(−1, 1) and a space of entire
functions in the unit disk with a norm equivalent to the Bergman norm.

The idea of viewing the Bergman spaces as “Gaussian deformations”, as
we did here, was used in [16] to construct a model for a deformed hyperbolic
phase space that approaches the Fock space. A group theoretical approach is
used by looking at the discrete series of SU(1, 1) deformed by a parameter,
more precisely, the discrete series of ASU(1, 1)A−1, with A defined as

A =

[ √
r 0

0 1√
r

]
.

We also remark that a theory for expansions of functions in H2 (D), related
to the discrete series of SU(1, 1), has been recently developed in [18]
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[10] A. Grossman, J. Morlet, T. Paul, Transforms associated to square integrable group represen-

tations II: examples, Ann. Inst. H. Poincaré Phys. Théor. , 45 (1986), 293-309, .
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