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A SURROGATE MANAGEMENT FRAMEWORK USING
RIGOROUS TRUST-REGIONS STEPS

S. GRATTON AND L. N. VICENTE

Abstract: Surrogate models and heuristics are frequently used in the optimiza-
tion engineering community as convenient approaches to deal with functions for
which evaluations are expensive or noisy, or lack convexity. These methodologies
do not typically guarantee any type of convergence under reasonable assumptions
and frequently render slow convergence.

In this paper we will show how to incorporate the use of surrogate models, heuris-
tics, or any other process of attempting a function value decrease in trust-region
algorithms for unconstrained derivative-free optimization, in a way that global con-
vergence of the latter algorithms to stationary points is retained. Our approach
follows the lines of search/poll direct-search methods and corresponding surrogate
management frameworks, both in algorithmic design and in the form of organizing
the convergence theory.
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gence.
AMS Subject Classification (2010): 90C30, 90C56.

1. Introduction
Booker et al. [2] introduced in 1998 an algorithmic framework to incorpo-

rate the use of surrogates in direct-search methods. Since then this approach
has been popular among optimizers and practitioners (see [1, 2, 6, 8, 9, 11,
12, 13]).

Part of the success of this approach relies on its simplicity. The iterations of
direct-search methods (of directional type) have been organized in [2] around
two major steps, a search step and a poll step. The search step is optional
and not responsible for the main convergence properties of the overall direct-
search method. It is required to evaluate the objective function at a finite
number of points and the criterion to declare its success is simple. In fact,
if global convergence of the direct-search method is ensured by using integer
lattices and simple decrease, the search step is successful if it generates a point
in the underlying mesh for which the objective function value is lower than
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the one at the current iterate [2]. If, on the other hand, global convergence
is guaranteed by imposing a sufficient decrease condition based on a forcing
function, all it is required from the search step is then to yield a sufficient
decrease [7]. When the search step in unsuccessful, the method reverts to
the poll step which can be viewed as a rigorous step, i.e., a step which must
ensure some form of decrease for small step sizes at non-stationary points.

The purpose of this paper is to introduce a similar framework but when the
rigorous steps are the trust-region ones, thus replacing the use of direct search
by trust-region methods in the surrogate management framework. Given the
type of scheme that ensures global convergence for trust regions, where no
underlying mesh is available, the search step must be based on some form of
sufficient decrease. As in the search/poll direct-search methods, the method
reverts to the rigorous step (now a trust-region one) if the search step in not
successful.

Another contribution of this paper is to rewrite the convergence of the
overall trust-region method as a direct search one, by showing first that
there is a subsequence of non successful iterates where the step size (in our
case the trust-region radius) tends to zero. Such iterates correspond to non
successful rigorous trust-region steps, where the size of the true gradient is of
the order of the trust-region radius. Convergence of a subsequence of iterates
to a stationary point can then be easily guaranteed by taking the limit when
the trust-region radius goes to zero. We also study under what conditions
can one establish that all limit points are stationary. It is important to note
that such a rewriting of the convergence theory of trust-region methods is
not allowed in derivative-based methods, where, in fact, it is possible to show
under appropriate conditions that the trust-region radius is bounded away
from zero. In trust-region methods for derivative-free optimization (DFO),
the presence of a criticality step (taken when the model gradient is sufficiently
small, and where the models are improved in a ball of appropriate radius) is
essential to drive the trust-region radius to zero.

After this introduction the paper continues in Section 2 with a description
of the type of surrogate management framework for trust-region methods
that fits the above requirements. In Section 3 we show that such a framework
enjoys global convergence to first-order stationary points. The paper is ended
in Section 4 with some concluding remarks.
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2. Surrogate management framework
We start by describing, at an abstract level, the surrogate management

framework for incorporating a search step and a trust-region method.

Algorithm 2.1. Surrogate Management Framework for TRM

Initialization: Choose an initial point x0 and an initial trust-region
radius ∆0 > 0. Initialize all sample sets, models, constants, and
tolerances for both the Search Step and the Rigorous TR Step. Set
k = 0.

Search Step: Try to compute a point x with f(x) ≤ f(xk)− ρ(∆k) by
evaluating the function f (at a finite number of points).
If such a point is found, then set xk+1 = x, declare the iteration and
the Search Step successful, maintain or increase the trust-region radius
(∆k+1 ≥ ∆k), increment k by one, and skip the Rigorous TR Step.

Rigorous Trust-Region Step: Apply a step of a trust-region method
(including setting the trust-region radius ∆k+1), increment k by one,
and return to the Search Step.

Now we choose the derivative-free trust-region method from [4, Section 4]
(see also [5, Section 10.3]) to concretize an example of the above surrogate
management framework. A rigorous definition of fully linear model will be
given later. For the moment, one can think of a quadratic model with similar
accuracy properties of a first-order expansion Taylor model.

Algorithm 2.2. Surrogate Management Framework for TRM (a
concrete example)

Initialization: Choose an initial point x0 and an initial trust-region
radius ∆0 ∈ (0, ∆max] for some ∆max > 0. Initialize all sample sets,
models, constants, and tolerances for the Search Step.

For the TR step: Choose an initial model m0(x0 + s). The con-
stants η0, η1, γ, γinc, εc, µ, and β should also be chosen such that
0 ≤ η0 ≤ η1 < 1 (with η1 6= 0), 0 < γ < 1 < γinc, εc > 0, and
µ > β > 0. Set k = 0.

Search Step: Try to compute a point x with f(x) ≤ f(xk)− ρ(∆k) by
evaluating the function f (at a finite number of points).
If such a point is found, then set xk+1 = x, declare the iteration and
the Search Step successful, maintain or increase the trust-region radius
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(∆k+1 ∈ [∆k, min{γinc∆k, ∆max}]), increment k by one, and skip the
Rigorous TR Step.

TR Step 1 (criticality step): Apply some criticality step when ‖gk‖ ≤
εc yielding a new model mk(xk + s) (i.e., a new gradient model gk and
a new Hessian model Hk) and a new trust-region radius ∆k such that
∆k ≤ µ‖gk‖ and mk is fully linear on B(xk; ∆k), and such that, if ∆k

is reduced, one has β‖gk‖ ≤ ∆k.
TR Step 2 (step calculation): Compute a step sk that sufficiently

reduces the model mk, in the sense of

mk(xk)−mk(xk + sk) ≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, ∆k

}
(1)

(with κfcd ∈ (0, 1]), and such that xk + sk ∈ B(xk; ∆k).
TR Step 3 (acceptance of the trial point): Compute f(xk+sk) and

define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully linear on B(xk; ∆k),
then xk+1 = xk+sk and the model is updated to take into consideration
the new iterate, resulting in a new model mk+1(xk+1+s); otherwise the
model and the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

TR Step 4 (model improvement): If ρk < η1 use a model-improve-
ment algorithm to attempt to certify that mk is fully linear on B(xk; ∆k)
(if such a certificate is not obtained, one makes one or more suitable
improvement steps). Define mk+1(xk+s) to be the (possibly improved)
model.

TR Step 5 (trust-region radius update): Set

∆k+1 ∈


[∆k, min{γinc∆k, ∆max}] if ρk ≥ η1,
{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to the Search Step.

The search step is either successful (and those iterations will be labeled
by indices in Ssearch) or not (in which case a rigorous TR step is executed).
Note that the rigorous TR step of Algorithm 2.2 (composed by TR Steps
1–5) gives rise to four types of trust-region iterations:



A SURROGATE MANAGEMENT FRAMEWORK USING RIGOROUS TRUST-REGIONS STEPS 5

(1) Successful iterations (indices in Str), when ρk ≥ η1 (the new iterate
is accepted and the trust-region radius is retained or increased).

(2) Acceptable iterations, when η1 > ρk ≥ η0 and mk is fully linear
(new iterate is accepted and the trust-region radius is decreased). Note
that there are no acceptable iterations when η0 = η1 ∈ (0, 1).

(3) Model-improving, when η1 > ρk and mk is not certifiably fully linear
(the model is improved and the new point might be included in the
sample set but is not accepted as a new iterate).

(4) Unsuccessful iterations, when ρk < η0 and mk is fully linear (the
trust-region radius is reduced and nothing else changes). Note that
this is the case when no (acceptable) decrease was obtained and there
is no need to improve the model.

The successful iterations of the overall algorithmic framework will be those
corresponding to either successful search steps or successful rigorous TR
steps:

S = Ssearch ∪ Str.

It is also important to note that unsuccessful iterations can only occur in the
rigorous TR step.

3. Convergence to first-order stationarity
As is mentioned in [5, Chapter 10], it might be possible (especially at the

early iterations) that the function f is evaluated outside L(x0) = {x ∈ Rn :
f(x) ≤ f(x0)} when considering sampling techniques used for modeling. If
we assume that sampling is restricted to sets of the form B(xk; ∆k) and that
∆k never exceeds the given positive constant ∆max, then the enlarged region
where f is sampled can be rigorously described as

Lenl(x0) = L(x0) ∪
⋃

x∈L(x0)

B(x; ∆max) =
⋃

x∈L(x0)

B(x; ∆max).

The derivation of convergence results for trust-region methods typically
requires some form of continuous differentiability of the objective function.
In the DFO context, one requires Lipschitz continuity of the gradient to be
able to work with models which are fully linear.

Assumption 3.1. Suppose x0 and ∆max are given. Assume that f is contin-
uously differentiable with Lipschitz continuous gradient in an open domain
containing the set Lenl(x0).
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The following definition of fully linear models is taken verbatim from [4,
Definition 3.1] (see also [5, Definition 10.3]).

Definition 3.1. Let a function f : Rn → R, that satisfies Assumption 3.1,
be given. A set of model functions M = {m : Rn → R, m ∈ C1} is called a
fully linear class of models if:

(1) There exist positive constants κef , κeg, and νm
1 such that for any x ∈

L(x0) and ∆ ∈ (0, ∆max] there exists a model function m(x + s) in
M, with Lipschitz continuous gradient and corresponding Lipschitz
constant bounded by νm

1 , and such that
• the error between the gradient of the model and the gradient of

the function satisfies

‖∇f(x + s)−∇m(x + s)‖ ≤ κeg ∆, ∀s ∈ B(0; ∆), (2)

and
• the error between the model and the function satisfies

|f(x + s)−m(x + s)| ≤ κef ∆2, ∀s ∈ B(0; ∆). (3)

Such a model m is called fully linear on B(x; ∆).
(2) For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with re-
spect to x and ∆) number of steps can
• either establish that a given model m ∈ M is fully linear on

B(x; ∆) (we will say that a certificate has been provided),
• or find a model m̃ ∈M that is fully linear on B(x; ∆).

As in the convergence of most trust-region methods, we need to assume
that the objective function is bounded from below and the model Hessians
are uniformly bounded.

Assumption 3.2. Assume f is bounded below on L(x0), that is there exists
a constant κ∗ such that, for all x ∈ L(x0), f(x) ≥ κ∗.

Assumption 3.3. There exists a constant κbhm > 0 such that, for all xk

generated by the algorithm in the rigorous TR steps,

‖Hk‖ ≤ κbhm.

The first piece of the convergence theory concerns only the rigorous TR
step, and is a restatement of [4, Lemma 5.2] (see also [5, Lemma 10.6]).
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Lemma 3.1. Consider an iteration k corresponding to a rigorous TR step.
If mk is fully linear on B(xk; ∆k) and the iteration is not successful (i.e. if
it is acceptable or unsuccessful), then

‖gk‖ ≤ C1∆k,

where

C1 =
1

min
{

1
κbhm

,
κfcd(1−η1)

4κef

} .

We will now show that the trust-region radius converges to zero (this re-
quires some modifications from [4, Lemma 5.5], see also [5, Lemma 10.9], to
accommodate the search step).

Lemma 3.2. If ρ(·) is chosen such that ρ(∆) → 0 ⇒ ∆ → 0, then

lim
k→+∞

∆k = 0. (4)

Proof : The proof follows known arguments when the number of successful
iterations is finite (see, e.g, the proof of [5, Lemma 10.7]). In this case,
without loss of generality one can consider only iterations acceptable, model
improvement or unsuccessful, where the trust-region radius is not increased.
We then know that we can have only a finite (uniformly bounded, say by N)
number of model-improvement iterations before the model becomes fully lin-
ear, which shows that there is an infinite number of iterations that are either
acceptable or unsuccessful (and in either case a reduction occurs in the trust-
region radius). Moreover, ∆k is decreased at least once every N iterations
by a factor of γ. As a result, ∆k converges to zero.

Let us now consider the case when S is infinite. Two types of successful
iterations are possible (depending if they occur in the search step or in the
rigorous TR one). In the former case, when k ∈ Ssearch, we obtain

f(xk)− f(xk+1) ≥ ρ(∆k). (5)

In the latter case, when k ∈ Str we have

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)].

By using the bound on the fraction of Cauchy decrease (1), we have that

f(xk)− f(xk+1) ≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, ∆k

}
.
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Due to the TR Step 1 of Algorithm 2.2 we have that ‖gk‖ ≥ min{εc, µ
−1∆k},

hence

f(xk)− f(xk+1) ≥ η1
κfcd

2
min{εc, µ

−1∆k}min

{
min{εc, µ

−1∆k}
‖Hk‖

, ∆k

}
. (6)

Since S is infinite and f is bounded from below, and by using Assump-
tion 3.3 and the property assumed for ρ(·), the right-hand sides of the above
expressions (5) and (6) have to converge to zero (whenever they occur an
infinite number of times). Hence limk∈S ∆k = 0, and nothing else would
remain to be proved if all iterations are successful. However, the trust-region
radius can only be increased during a successful iteration, and it can only be
increased by a ratio of at most γinc, which then completes the proof.

Now we can state that there is a subsequence of iterates along which the
true gradient goes to zero. The proof of this fact follows a new insight given
by the fact that the trust-region radius is converging to zero. In fact, this
behavior of the trust-region radius necessarily implies that there is an infinite
number of iterations where it must be reduced. Also, the trust-region radius
cannot possibly be reduced at search steps and thus we can focus on what
happens in the rigorous TR ones. In more classical trust-region methods,
one would immediately conclude that there is an infinite number of unsuc-
cessful iterations. However, because of the more complex DFO setting, in
particular the presence of the criticality step (main contributor for the con-
vergence to zero of the trust-region radius) and the way simple decrease is
handle (acceptable iterations), one has three rather than one type of situa-
tion responsible for a decrease in the trust-region radius. Fortunately, in all
cases one has ‖gk‖ = O(∆k), allowing one to drive a subsequence of model
gradients to zero, from which then the result stated below easily follows.

Theorem 3.1. Let Assumptions 3.1, 3.2, and 3.3 hold. If ρ(·) is chosen
such that ρ(∆) → 0 ⇒ ∆ → 0, then

lim inf
k→+∞

‖∇f(xk)‖ = 0.

Proof : From Lemma 3.2, we know that there must exist an infinite number of
iterations where the trust-region radius is reduced (which must occur at rig-
orous TR steps). Thus, there is either an infinite number of criticality steps
where the trust-region radius is reduced (and ‖gk‖ ≤ ∆k/β holds) or an infi-
nite number of either acceptable or unsuccessful iterations (where Lemma 3.1
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applies), and let us denote all these iterations by the index sequence {`i}. In
any of these three cases, one has ‖g`i

‖ = O(∆`i
) and by taking limits when

∆`i
goes to zero, one obtains

lim
i→+∞

‖g`i
‖ = 0. (7)

Also, in any of the cases, one has

‖∇f(x`i
)− g`i

‖ ≤ κeg∆`i
,

and, from (7) and ∆`i
→ 0, we derive ‖∇f(x`i

)‖ → 0.

It is possible to extend this result to the whole sequence of iterates, es-
tablishing a result of the lim-type given in [4, Lemma 5.9] (see also [5,
Lemma 10.13]). To do so, we need to impose that the search step x− xk =
xk+1 − xk stays in a trust region of radius proportional to ∆k and to com-
pute at this step a model which is fully linear in such a trust region. This
observation is aligned with the generalization of liminf to lim in direct-search
methods which requires the search step to essentially be empty (or to coin-
cide with a complete poll step, which, note, can be seen as a way of imposing
fully linearity); see [7] and also [5, Pages 132–133].

Theorem 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold, and γfac, γρ > 0 be
constants independent of the iteration counter. If ρ(∆) = γρ∆, and if in the
search step xk+1 ∈ B(xk; γfac∆k) and a model mk(xk + s) is formed, fully
linear in B(xk; γfac∆k), then

lim
k→+∞

∇f(xk) = 0.

Proof : The proof is classical and only requires a few adjustments. We will
follow closely the presentation in [5, Theorem 10.13].

We have seen from Lemma 3.2 and Theorem 3.1 that in the case when
S is finite the theorem holds. Hence, we will assume that S is infinite.
Suppose, for the purpose of establishing a contradiction, that there exists a
subsequence {ki} of successful iterations such that

‖∇f(xki
)‖ ≥ ε0 > 0, (8)

for some ε0 > 0 and for all i (we can ignore model-improving iterations, since
xk does not change during such iterations). Then, we obtain that

‖gki
‖ ≥ ε > 0,
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for some ε > 0 and for all i sufficiently large. The explanation for this is
twofold. In the search step it results from Lemma 3.2 and the fact that the
models are required to be fully linear. The explanation for a TR step comes
from the fact that the true gradient goes to zero whenever the model one
does (which can be seen from the proof of Theorem 3.1). Without loss of
generality, we pick ε such that

ε ≤ min

{
ε0

2(2 + κegµ)
, εc

}
. (9)

Property (7) ensures the existence, for each ki in the subsequence, of a
first iteration `i > ki such that ‖g`i

‖ < ε. By removing elements from {ki},
without loss of generality and without a change of notation, we thus obtain
that there exists another subsequence indexed by {`i} such that

‖gk‖ ≥ ε for ki ≤ k < `i and ‖g`i
‖ < ε, (10)

for sufficiently large i.
We now restrict our attention to the setK corresponding to the subsequence

of iterations whose indices are in the set

∪i∈N0
{k ∈ N0 : ki ≤ k < `i},

where ki and `i belong to the two subsequences defined above in (10).
We know that ‖gk‖ ≥ ε for k ∈ K. From limk→+∞ ∆k = 0 and Lemma 3.1

we conclude that for any large enough k ∈ K the iteration k is either suc-
cessful or model improving.

Moreover, for each k ∈ K ∩ S we have that either (TR step)

f(xk)−f(xk+1) ≥ η1[mk(xk)−mk(xk +sk)] ≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
κbhm

, ∆k

}
(11)

and for any such k large enough, ∆k ≤ ε
κbhm

, or (search step)

f(xk)− f(xk+1) ≥ ρ(∆k) = γρ∆k. (12)

Hence, we have for k ∈ K ∩ S sufficiently large,

∆k ≤ max

(
2

η1κfcdε
,

1

γρ

)
[f(xk)− f(xk+1)] := C2[f(xk)− f(xk+1)].

Since for any k ∈ K large enough the iteration is either successful or model
improving and since for a model improving iteration xk = xk+1 we have, for
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all i sufficiently large,

‖xki
− x`i

‖ ≤
`i−1∑
j=ki

j∈K∩S

‖xj − xj+1‖ ≤
`i−1∑
j=ki

j∈K∩S

∆j ≤ C2[f(xki
)− f(x`i

)].

Since the sequence {f(xk)} is bounded below (Assumption 3.2) and mono-
tonic decreasing, we see that the right-hand side of this inequality must
converge to zero, and we therefore obtain that limi→+∞ ‖xki

− x`i
‖ = 0.

Finally,

‖∇f(xki
)‖ ≤ ‖∇f(xki

)−∇f(x`i
)‖+ ‖∇f(x`i

)− g`i
‖+ ‖g`i

‖.

The first term of the right-hand side tends to zero because of the Lipschitz
continuity of the gradient of f (Assumption 3.1), and is thus bounded by ε for
i sufficiently large. The explanation for the second term is twofold. For a TR
step, we use the fact that from (9) and the mechanism of the criticality step
(TR Step 1) at iteration `i, the model m`i

is fully linear on B(x`i
; µ‖g`i

‖). So,
using fully linearity and (10), we deduce for this step that the second term
is bounded by κσµε (for i sufficiently large). In the search step, this term
is also bounded by κegµε for i sufficiently large since the models are always
fully linear and the trust-region radius converges to zero. The third term
is bounded by ε by (10). As a consequence, we obtain from these bounds
and (9) that

‖∇f(xki
)‖ ≤ (2 + κegµ)ε ≤ 1

2
ε0

for i large enough, which contradicts (8). Hence our initial assumption must
be false and the theorem follows.

4. Concluding remarks
Surrogate models can be used and managed in a variety of forms in the

search step of the framework described in this paper, in particular using any
of the ideas in Booker et al. [2] or in the review [5, Section 12.2]. Given
a type of sample-based surrogate models chosen for the search step, it will
then be of particular interest to consider the communication between this
step and the TR rigorous one. In fact, not only could the rigorous TR step
benefit from any new function evaluations made in the search step (as long
as they correspond to points not too far from the current trust region), but
the same could happen the other way round, in particular since the models
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used in the search step could certainly be less locally based. The specifics of
such a sample set communication are application dependent and out of the
scope of this paper.

We have chosen as a rigorous trust-region method the one from Conn,
Scheinberg, and Vicente [4] due to its high level of abstraction and appli-
cability, but our choice could have also contemplated the more recent self-
correcting geometry method of Scheinberg and Toint [10], which dispenses
with the model-improving iterations by judiciously updating the sample set
with the incoming solution of the trust-region subproblem. It is also impor-
tant to remark that such a form of surrogate management framework using
rigorous trust-regions steps is not at all restricted to optimization without
derivatives. In fact, the principle of a search or oracle step can also be applied
to most derivative-based trust-region methods described in [3].
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