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INEXACT SOLUTION OF NLP SUBPROBLEMS IN MINLP

M. LI AND L. N. VICENTE

Abstract: In the context of convex mixed-integer nonlinear programming
(MINLP), we investigate how the outer approximation method and the generalized
Benders decomposition method are affected when the respective NLP subproblems
are solved inexactly. We show that the cuts in the corresponding master problems
can be changed to incorporate the inexact residuals, still rendering equivalence and
finiteness in the limit case. Some numerical results will be presented to illustrate
the behavior of the methods under NLP subproblem inexactness.
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1. Introduction
Recently, mixed integer nonlinear programming (MINLP) has become again

a very active research area [1, 2, 4, 5, 6, 7, 14, 16]. Benders [3] developed
in the 60’s a technique for solving linear mixed-integer problems, later called
Benders decomposition. Geoffrion [11] extended it to MINLP in 1972, in
what become known as generalized Benders decomposition (GBD). Much
later, in 1986, Duran and Grossmann [8] derived a new outer approximation
(OA) method to solve a particular class of MINLP problems, which become
widely used in practice. Although the authors shown finiteness of the OA al-
gorithm, their theory was restricted to problems where the discrete variables
appear linearly and the functions involving the continuous variables are con-
vex. Both OA and GBD are iterative schemes requiring at each iteration the
solution of a (feasible or infeasible) NLP subproblem and one mixed-integer
linear programming (MILP) master problem.

For these particular MINLP problems, Quesada and Grossmann [15] then
proved that the cuts in the master problem of OA imply the cuts in the mas-
ter problem of GBD, showing that the GBD algorithm provides weaker lower
bounds and generally requires more major iterations to converge. Fletcher
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and Leyffer [9] generalized the OA method of Duran and Grossmann [8] into
a wider class of problems where nonlinearities in the discrete variables are
allowed as long as the corresponding functions are convex in these variables.
They also introduced a new and simpler proof of finiteness of the OA algo-
rithm. The relationship between OA and GBD was then addressed, again,
by Grossmann [12] in this wider context of MINLP problems, showing once
more that the lower bound predicted by the relaxed master problem of OA is
greater than or equal to the one predicted by the relaxed master problem of
GBD (see also Flippo and Rinnooy Kan [10] for the relationship between the
two techniques). Recently, Bonami et al. [4] suggested a different OA algo-
rithm using linearizations of both the objective function and the constraints,
independently of being taken at the feasible or infeasible NLP subproblem,
to build the MILP master problem. This technique is, in fact, different from
the traditional OA (see [9]), where the cuts in the master MILP problems do
not involve linearizations of the objective function in the infeasible case.

Westerlund and Pettersson [18] generalized the cutting plane method [13]
from convex NLP to convex MINLP, in what is known as the extended
cutting plane (ECP) method (see also [19, 20]). While OA and GBD alternate
between the solution of MILP and NLP subproblems, the ECP relies only on
the solution of MILP problems.

In the above mentioned OA and GBD approaches, the NLP subproblems
are solved exactly, at least for the derivation of the theoretical properties,
such as equivalence between original and master problem and finite termina-
tion of the corresponding algorithms. In this paper we investigate the effect
of NLP subproblem inexactness in these two techniques. We show how the
cuts in the master problems can be changed to incorporate the inexact resid-
uals of the first order necessary conditions of the NLP subproblems, in a way
that still renders the equivalence and finiteness properties, as long as the size
of these residuals allow inferring the cuts from convexity properties.

In this paper, we will adopt the MINLP formulation

P


min f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X ∩ Znd, y ∈ Y,

where X is a bounded polyhedral subset of Rnd and Y a polyhedral subset
of Rnc. The functions f : X × Y −→ R and g : X × Y −→ Rm are assumed
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continuously differentiable. We will also assume that P is convex, i.e., that
f and g are convex functions.

Let xj be any element of X∩Znd. Consider, then, the (convex) subproblem

NLP(xj)


min f(xj, y)

s.t. g(xj, y) ≤ 0,

y ∈ Y,

and suppose it is feasible. In this case, yj will represent an approximated
optimal solution of NLP(xj). For an xk in X ∩ Znd for which NLP(xk) is
infeasible, yk is instead defined as an approximated optimal solution of the
following feasibility (convex) subproblem

NLPF(xk)


min u

s.t. gi(x
k, y) ≤ u, i = 1, . . . ,m,

y ∈ Y, u ∈ R,

where one minimizes the `∞-norm of the measure of infeasibility of subprob-
lem NLP(xk).

For a matter of simplification, and without loss of generality, we suppose
that the constraints y ∈ Y are part of the constraints g(xj, y) ≤ 0 and
gi(x

k, y) ≤ u, i = 1, . . . ,m, in the subproblems NLP(xj) and NLPF(xk),
respectively. In addition, let us assume that the approximated optimal solu-
tions of the NLP subproblems satisfy an inexact form of the corresponding
first order necessary Karush-Kuhn-Tucker (KKT) conditions. More particu-
larly, in the case of NLP(xj), we assume the existence of λj ∈ Rm

+ , rj ∈ Rnc,
and sj ∈ Rm, such that

∇yf(xj, yj) +
m∑

i=1

λj
i∇ygi(x

j, yj) = rj, (1)

λj
igi(x

j, yj) = sj
i , i = 1, . . . ,m. (2)
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When NLP(xk) is infeasible, we assume, for NLPF(xk), the existence of µk ∈
Rm

+ , zk ∈ Rm, wk ∈ R, and vk ∈ Rnc, such that

m∑
i=1

µk
i∇ygi(x

k, yk) = vk, (3)

1−
m∑

i=1

µk
i = wk, (4)

µk
i (gi(x

k, yk)− uk) = zk
i , i = 1, . . . ,m. (5)

Points satisfying the inexact KKT conditions can be seen as solutions of ap-
propriate perturbed subproblems (see the Appendix). The following two sets
will then be used to index these two sets of approximated optimal solutions:

T = {j : xj ∈ X ∩ Znd, NLP(xj) is feasible and yj appr. solves NLP(xj)}

and

S = {k : xk ∈ X∩Znd, NLP(xk) is infeasible and yk appr. solves NLPF(xk)}.

The inexact versions of OA and GBD studied in this paper will attempt to
find the best pair among all of the form (xj, yj) corresponding to j ∈ T .
Implicitly, we are thus redefining a perturbed version of problem P and will
denote it by P :

P min
j∈T

f(xj, yj). (6)

This problem is well defined if T 6= ∅ which in turn can be assumed when
the original MINLP problem P has a finite optimal value.

We use the superscripts l, p, and q to denote the iteration count, super-
script j to index the feasible NLP subproblems defined above, and k to
indicate infeasible subproblems. The following notation is adopted to dis-
tinguish between function values and functions. f l = f(xl, yl) denotes the
value of f evaluated at the point (xl, yl), similarly, ∇f l = ∇f(xl, yl) is
the value of the gradient of f at the point (xl, yl), ∇xf

l = ∇xf(xl, yl) is
the value of the gradient of f with respect to x at the point (xl, yl), and
∇yf

l = ∇yf(xl, yl) is the value of the gradient of f with respect to y at the
point (xl, yl). Moreover, the same conventions apply for all other functions.

We organize the paper in the following way. In Section 2, we extend OA for
the inexact solution of the NLP subproblems, rederiving the corresponding
background theory and main algorithm. In Section 3 we proceed similarly
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for GBD, also discussing the relationship between the inexact forms of OA
and GBD. Section 4 describes a set of preliminary numerical experiments,
reported to better understand some of the theoretical features encountered
in our study of inexactness in MINLP.

2. Inexact outer approximation
2.1. Equivalence between perturbed and master problems for OA.
OA relies on the fact that the original problem P is equivalent to a MILP
(master problem) formed by minimizing the least of the linearized forms of f
for indices in T subject to the linearized forms of g for indices in S and T .
When the NLP subproblems are solved inexactly, one has to consider per-
turbed forms of such cuts or linearized forms in order to keep an equivalence,
this time to the perturbed problem P . In turn, these inexact cuts lead to a
different, perturbed MILP (master problem) given by

POA



min α

s.t.

(
∇xf(xj, yj)

∇yf(xj, yj)− rj

)> (
x− xj

y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>
(

x− xj

y − yj

)
+ g(xj, yj) ≤ tj, ∀j ∈ T,(

∇xgi(x
k, yk)

∇ygi(x
k, yk)− 1

1−wk v
k

)> (
x− xk

y − yk

)
+ gi(x

k, yk) ≤ ak
i ,

i = 1, . . . ,m, ∀k ∈ S,

x ∈ X ∩ Znd, y ∈ Y, α ∈ R,

where, for i = 1, . . . ,m,

tji =

{
sj

i

λj
i

, if λj
i > 0,

0, if λj
i = 0,

(7)

and

ak
i =

{
mzk

i −wkuk

mµk
i

, if µk
i > 0,

0, if µk
i = 0.

(8)

Note that when r, s, v, w, and z are zero, we obtain the well-known master
problem in OA. Also, optionally, one could have added the cuts

∇f(xk, yk)>
(

x− xk

y − yk

)
+ f(xk, yk) ≤ α, ∀k ∈ S, (9)
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corresponding to linearizations of the objective function in the infeasible
cases, as suggested in [4].

From the convexity and continuous differentiability of f and g, we know
that, for any (xl, yl) ∈ Rnd × Rnc,

f(x, y) ≥ f(xl, yl) +∇f(xl, yl)>
(

x− xl

y − yl

)
, (10)

g(x, y) ≥ g(xl, yl) +∇g(xl, yl)>
(

x− xl

y − yl

)
. (11)

In addition, when yj is a feasible point of NLP(xj), we obtain from (11) and
g(xj, yj) ≤ 0 that

0 ≥ g(xl, yl) +∇g(xl, yl)>
(

xj − xl

yj − yl

)
. (12)

The inexact OA method reported in this section as well as the GBD method
of the next section require the residuals of the inexact KKT conditions to
satisfy the bounds given in the next two assumptions, in order to validate the
equivalence between perturbed and master problems, and to ensure finiteness
of the respective algorithms. Essentially, these bounds will ensure that the
above convexity properties will still imply the inexact cuts at the remaining
points. We first give the bounds on the residuals r and s for the feasible case.

Assumption 2.1. Given any l, j ∈ T , with l 6= j, assume that

‖rl‖ ≤
−τ [(∇f l)>

(
xj − xl

yj − yl

)
+ f l − f j]

‖yj − yl‖
,

for some τ ∈ [0, 1), and

|sl
i| ≤ −σiλ

l
i[(∇gl

i)
>

(
xj − xl

yj − yl

)
+ gl

i],

for some σi ∈ [0, 1], i = 1, . . . ,m.

Now, we state the bounds for the residuals v, w, and z in the infeasible
case.
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Assumption 2.2. Given any j ∈ T and any k ∈ S, and for all i ∈
{1, . . . ,m}, if µk

i 6= 0, assume that

1

1− wk
‖vk‖ ‖yj − yk‖+

1

µk
i

|zk
i |+

uk

mµk
i

|wk| ≤ −βi[(∇gk
i )
>

(
xj − xk

yj − yk

)
+ gk

i ],

for some βi ∈ [0, 1], otherwise, assume that

1

1− wk
‖vk‖ ‖yj − yk‖ ≤ −ηi[(∇gk

i )
>

(
xj − xk

yj − yk

)
+ gk

i ],

for some ηi ∈ [0, 1].

We are now in a position to state the equivalence between the original,
perturbed MINLP problem and the MILP master problem POA.

Theorem 2.1. Let P be a convex MINLP problem and P be its perturbed
problem as defined in the Introduction. Assume that P is feasible with a
finite optimal value and that the residuals of the KKT conditions of the NLP
subproblems satisfy Assumptions 2.1 and 2.2. Then POA and P have the
same optimal value.

Proof : The proof follows closely the lines of the proof of [4, Theorem 1]. Since
problem P has a finite optimal value it follows that, for every x ∈ X ∩ Znd,
either problem NLP(x) is feasible with a finite optimal value or it is infeasible,
that the sets T and S are well defined, and that the set T is nonempty. Now,
given any xl ∈ X ∩Znd with l ∈ T ∪S, let POA

xl denote the problem in α and
y obtained from POA when x is fixed to xl. First we will prove that problem
POA

xk is infeasible for every k ∈ S.
Part I. Establishing infeasibility of POA

xk for k ∈ S.
In this case, problem NLP(xk) is infeasible and yk is an approximated opti-

mal solution of NLPF(xk) with corresponding inexact nonnegative Lagrange
multipliers µk. When we set x = xk, the corresponding constraints in POA

will result in

(∇ygi(x
k, yk)− 1

1− wk
vk)>(y − yk) + gi(x

k, yk) ≤ ak
i , (13)

for i = 1, . . . ,m. Multiplying the inequalities in (13) by the nonnegative
multipliers µk

1, . . . , µ
k
m, and summing them up, one obtains

(
m∑

i=1

µk
i∇ygi(x

k, yk)− vk)>(y − yk) ≤
m∑

i=1

(zk
i − µk

i gi(x
k, yk))− wkuk. (14)
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By using (3), one can see that the left hand side of the inequality in (14)
is equal to 0. On the other hand, by using equation (5), the right hand
side of the inequality in (14) results in

∑m
i=1(z

k
i − µk

i gi(x
k, yk)) − wkuk =

−(Σm
i=1µ

k
i +wk)uk, which is equal to −uk by (4). Since NLP(xk) is infeasible,

−uk must be strictly negative. We have thus proved that the inequality (14)
has no solution y.

This derivation implies that the minimum value of POA should be found
as the minimum value of POA

xj over all xj ∈ X ∩Znd with j ∈ T . We prove in
the next two separate subparts that, for every j ∈ T , the optimal value ᾱj

of POA
xj coincides with the approximated optimal value of NLP(xj).

Part II. Establishing that POA
xj has the same objective value as

the perturbed NLP(xj) for j ∈ T .
We will show next that (yj, f(xj, yj)) is a feasible solution of POA

xj , and
therefore that f(xj, yj) is an upper bound on the optimal value ᾱj of POA

xj .
Part II–A. Establishing that f(xj, yj) is an upper bound for the

optimal value of POA
xj for j ∈ T .

In this case, it is easy to see that POA
xj contains all the constraints indexed

by l ∈ T (
∇xf(xl, yl)

∇yf(xl, yl)− rl

)> (
xj − xl

y − yl

)
+ f(xl, yl) ≤ α, (15)

∇g(xl, yl)>
(

xj − xl

y − yl

)
+ g(xl, yl) ≤ tl, (16)

where, for i = 1, . . . ,m,

tli =

{
sl

i

λl
i
, if λl

i > 0,

0, if λl
i = 0,

as well as all the constraints indexed by k ∈ S and i ∈ {1, . . . ,m}(
∇xgi(x

k, yk)
∇ygi(x

k, yk)− 1
1−wk v

k

)> (
xj − xk

y − yk

)
+ gi(x

k, yk) ≤ ak
i , (17)

where ak
i is given as in (8).

First take any l ∈ T and assume that yl is an approximated optimal solution
of NLP(xl) with corresponding inexact nonnegative Lagrange multipliers λl.
If l = j, it is easy to verify that (yj, f(xj, yj)) satisfies (15) and (16). Assume
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then that l 6= j. From Assumption 2.1, we know that, for some τ ∈ [0, 1),

−(rl)>(yj − yl) ≤ ‖rl‖ ‖yj − yl‖ ≤ −τ [(∇f l)>
(

xj − xl

yj − yl

)
+ f l − f j].

Thus,

[(∇f l)>
(

xj − xl

yj − yl

)
+ f l − f j]− (rl)>(yj − yl)

≤ (1− τ)[(∇f l)>
(

xj − xl

yj − yl

)
+ f l − f j] ≤ 0,

where the last inequality comes from 1−τ > 0 and (10) with (x, y) = (xj, yj).
We then see that (15) is satisfied with α = f(xj, yj) and y = yj.

Now, from Assumption 2.1, one has for some σi ∈ [0, 1], i = 1, . . . ,m,

λl
i[(∇gl

i)
>

(
xj − xl

yj − yl

)
+ gl

i]− sl
i ≤ λl

i[(∇gl
i)
>

(
xj − xl

yj − yl

)
+ gl

i]

− σiλ
l
i[(∇gl

i)
>

(
xj − xl

yj − yl

)
+ gl

i]

≤ (1− σi)λ
l
i[(∇gl

i)
>

(
xj − xl

yj − yl

)
+ gl

i]

≤ 0,

where the last inequality is justified by (12) and σi ∈ [0, 1]. Thus,

λl
i[(∇gl

i)
>

(
xj − xl

yj − yl

)
+ gl

i] ≤ sl
i, i = 1, . . . ,m. (18)

If λl
i is equal to 0, so is tli by its definition and we see that (yj, f(xj, yj))

satisfies the constraints (16) with y = yj. If λl
i 6= 0, then (18) can be written

as:

∇gi(x
l, yl)>

(
xj − xl

yj − yl

)
+ gi(x

l, yl) ≤ sl
i

λl
i

= tli,

which also shows that the constraints (16) hold with y = yj.
Finally, we take any k ∈ S and assume that yk is an approximate optimal

solution of NLP(xk) with corresponding inexact Lagrange multipliers µk. For
every i ∈ {1, . . . ,m}, if µk

i 6= 0, from Assumption 2.2, we have for some



10 M. LI AND L. N. VICENTE

βi ∈ [0, 1], that

− 1

1− wk
(vk)>(yj − yk)− 1

µk
i

zk
i +

uk

mµk
i

wk ≤ −βi[(∇gk
i )
>

(
xj − xk

yj − yk

)
+ gk

i ],

i.e.,

− 1

1− wk
(vk)>(yj − yk)− ak

i ≤ −βi[(∇gk
i )
>

(
xj − xk

yj − yk

)
+ gk

i ]

by the definition of ak
i . Thus, the constraints (17) are satisfied with y = yj.

When µk
i = 0, it results that ak

i = 0 by its definition and, also by
Assumption 2.2, we have that, for some ηi ∈ [0, 1],

(∇gk
i )
>

(
xj − xk

yj − yk

)
+ gk

i −
1

1− wk
(vk)>(yj − yk)

≤ (1− ηi)[(∇gk
i )
>

(
xj − xk

yj − yk

)
+ gk

i ] ≤ 0.

This also shows that the constraints (17) hold with y = yj.
We can therefore say that (yj, f(xj, yj)) is a feasible point of POA

xj , and thus
ᾱj ≤ f(xj, yj). Next, we will prove that f(xj, yj) is also a lower bound, i.e.,
ᾱj ≥ f(xj, yj).

Part II–B. Establishing that f(xj, yj) is a lower bound for the
optimal value of POA

xj for j ∈ T .
Recall that yj is an approximated optimal solution of NLP(xj) satisfying

the inexact KKT conditions (1) and (2). By construction, any solution of
POA

xj has to satisfy the inexact outer-approximation constraints:

(∇yf(xj, yj)− rj)>(y − yj) + f(xj, yj) ≤ α, (19)

∇yg(xj, yj)>(y − yj) + g(xj, yj) ≤ tj. (20)

Multiplying the inequalities (20) by the nonnegative multipliers λj
1, . . . , λ

j
m

and summing them together with (19), one obtains

(∇yf(xj, yj)− rj)>(y − yj) + f(xj, yj)

+
m∑

i=1

λj
i (∇ygi(x

j, yj)>(y − yj) + gi(x
j, yj)− sj

i ) ≤ α. (21)
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The left hand side of the inequality (21) can be rewritten as:

(∇yf(xj, yj)+
m∑

i=1

λj
i∇ygi(x

j, yj)−rj)>(y−yj)+
m∑

i=1

(λj
igi(x

j, yj)−sj
i )+f(xj, yj).

By using (1) and (2), this quantity is equal to f(xj, yj), and it follows that
inequality (21) is equivalent to f(xj, yj) ≤ α.

In conclusion, for any xj ∈ X ∩ Znd with j ∈ T , problems POA
xj and per-

turbed NLP(xj) have the same optimal value. In other words, the MILP
problem POA has the same optimal value as the perturbed problem P given
by (6).

Since in the exact case, all the KKT residuals are zero, it results from
Theorem 2.1 what is well known for OA:

Corollary 2.1. Let P be a convex MINLP problem. Assume that P is feasible
with a finite optimal value and the residuals of the KKT conditions of the
NLP subproblems are zero. Then POA and P have the same optimal value.

In the paper [4], the feasibility NLP subproblem is stated as

PF
xk


min

∑m
i=1 ui

s.t. g(xk, y) ≤ u,

u ≥ 0,

y ∈ Y, u ∈ Rm.

Note that one could easily rederive a result similar to [4, Theorem 1] replacing
their PF

xk by our NLPF(xk). In fact, the argument needed here is essentially
Part I of the proof of Theorem 2.1 with v, w, and z set to zero. In their
approach, the cuts (9) are included in the master problem, but one can also
see that the proof of Theorem 2.1 remains true in this case (it would suffice
to observe that (9) is satisfied trivially in the convex case when y = yj and
α = f(xj, yj)).

2.2. Inexact-OA algorithm. One knows that the outer approximation al-
gorithm terminates finitely in the convex case and when the optimal solutions
of the NLP subproblems satisfy the first order KKT conditions (see [9]). In
this section, we will extend the outer approximation algorithm to the in-
exact solution of the NLP subproblems by incorporating the corresponding
residuals in the cuts of the master problems.
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As in the exact case, at each step of the inexact OA algorithm, one tries
to solve a subproblem NLP(xp), where xp is chosen as a new discrete as-
signment. Two results can then occur: either NLP(xp) is feasible and an
approximated optimal solution yp can be given, or this subproblem is found
infeasible and another NLP subproblem, NLPF(xp), is solved, yielding an ap-
proximated optimal solution yp. In the algorithm, the sets T and S defined
in the Introduction will be replaced by:

T p = {j : j ≤ p, xj ∈ X ∩ Znd, NLP(xj) is feasible and yj appr. solves

NLP(xj)}
and

Sp = {k : k ≤ p, xk ∈ X ∩ Znd, NLP(xk) is infeasible and yk appr. solves

NLPF(xk)}.
In order to prevent any xj, j ∈ T p, from becoming the solution of the re-
laxed master problem to be solved at the p–iteration, one needs to add the
constraint

α < UBDp,

where
UBDp = min

j ≤ p,j∈T p
f(xj, yj).

Then we define the following inexact relaxed MILP master problem

(POA)p



min α

s.t. α < UBDp,(
∇xf(xj, yj)

∇yf(xj, yj)− rj

)> (
x− xj

y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>
(

x− xj

y − yj

)
+ g(xj, yj) ≤ tj, ∀j ∈ T p,(

∇xgi(x
k, yk)

∇ygi(x
k, yk)− 1

1−wk v
k

)> (
x− xk

y − yk

)
+ gi(x

k, yk) ≤ ak
i ,

i = 1, . . . ,m, ∀k ∈ Sp,

x ∈ X ∩ Znd, y ∈ Y, α ∈ R,

where tj and ak
i were defined in (7) and (8), respectively. The presentation

of the inexact OA algorithm (given next) and the proof of its finiteness in
Theorem 2.2 follows the lines in [9].
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Algorithm 2.1 (Inexact Outer Approximation).
Initialization

Let x0 be given. Set p = 0, T−1 = ∅, S−1 = ∅, and UBD = +∞.

REPEAT

(1) Inexactly solve the subproblem NLP(xp), or the feasibility sub-
problem NLPF(xp) provided NLP(xp) is infeasible, and let yp be
an approximated optimal solution. At the same time, obtain the
corresponding inexact Lagrange multipliers λp of NLP(xp) (resp.
µp of NLPF(xp)). Evaluate the residuals rp and sp of NLP(xp)
(resp. vp, wp, and zp of NLPF(xp)).

(2) Linearize the objective functions and constraints at (xp, yp). Re-
new T p = T p−1 ∪ {p} or Sp = Sp−1 ∪ {p}.

(3) If (NLP(xp) is feasible and f p < UBD), then update current best
point by setting x̄ = xp, ȳ = yp, and UBD = f p.

(4) Solve the relaxed master problem (POA)p, obtaining a new dis-
crete assignment xp+1 to be tested in the algorithm. Increment p
by one unit.

UNTIL ((POA)p is infeasible).

If termination occurs with UBD = +∞ , then the algorithm visited every
discrete assignment x ∈ X ∩ Znd but did not obtain a feasible point for the
original MINLP problem P, or perturbed version P . In this case, the MINLP
is declared infeasible. Next, we will show that the inexact OA algorithm also
terminates in a finite number of steps.

Theorem 2.2. Let P be a convex MINLP problem and P be its perturbed
problem as defined in the Introduction. Assume that either P has a finite
optimal value or is infeasible, and that the residuals of the KKT conditions
of the NLP subproblems satisfy Assumptions 2.1 and 2.2. Then Algorithm 2.1
terminates in a finite number of steps at an optimal solution of P or with an
indication that P is infeasible.

Proof : Since the set X is bounded by assumption, finite termination of Al-
gorithm 2.1 will be established by proving that no discrete assignment is
generated twice by the algorithm.

Let q ≤ p. If q ∈ Sp, it has been shown in Part I of the proof of Theo-
rem 2.1 that the corresponding constraint in POA

xp , derived from the feasibility
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problem NLPF(xq), cannot be satisfied, showing that xq cannot be feasible
for (POA)p.

We will now show that xq cannot be feasible for (POA)p when q ∈ T p. For
this purpose, let us assume that xq is feasible in (POA)p and try to reach
a contradiction. Let yq be an approximated optimal solution of NLP(xq)
satisfying the inexact KKT conditions, that is, there exist λq ∈ Rm

+ , rq ∈ Rnc,
and sq ∈ Rm, such that

∇yf
q +

m∑
i=1

λq
i∇ygi(x

q, yq) = rq, (22)

λq
igi(x

q, yq) = sq
i , i = 1, . . . ,m. (23)

If xq would be feasible for (POA)p it would satisfy the following set of in-
equalities for some y:

αp < UBDp ≤ f q, (24)(
∇xf

q

∇yf
q − rq

)> (
0

y − yq

)
+ f q ≤ αp, (25)

(∇gq)>
(

0
y − yq

)
+ gq ≤ tq, (26)

where, for i = 1, . . . ,m,

tqi =

{
sq

i

λq
i
, if λq

i > 0,

0, if λq
i = 0.

Multiplying the rows in (26) by the Lagrange multipliers λq
i ≥ 0, i = 1, . . . ,m,

and adding (25), we obtain that

(∇yf
q − rq)>(y − yq) + f q +

m∑
i=1

λq
i∇ygi(x

q, yq)>(y − yq) +
m∑

i=1

λq
ig

q
i

≤ αp +
m∑

i=1

λq
i t

q
i ,
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which, by the definition of tq, is equivalent to

(∇yf
q − rq)>(y − yq) + f q +

m∑
i=1

λq
i∇ygi(x

q, yq)>(y − yq) +
m∑

i=1

(λq
ig

q
i − sq

i )

≤ αp.

The left hand side of this inequality can be written as:

[∇yf
q − rq +

m∑
i=1

λq
i∇ygi(x

q, yq)]>(y − yq) +
m∑

j=1

(λq
ig

q
i − sq

i ) + f q.

Using (22) and (23), this is equal to f q and therefore we obtain the inequality

f q ≤ αp,

which contradicts (24).
The rest of the proof is exactly as in [9, Theorem 2] but we repeat here for

completeness and possible changes in notation. Finally, we will show that
Algorithm 2.1 always terminates at a solution of P or with an indication
that P is infeasible (which occurs when UBD = +∞ at the exit). If P is
feasible, then let (x∗, y∗) be an optimal solution of P with optimal value f ∗.
Without loss of generality, we will not distinguish between (x∗, y∗) and any
other optimal solution with the same objective value f ∗. Note that from The-
orem 2.1, (x∗, y∗, f ∗) is also an optimal solution of POA. Now assume that
the algorithm terminates indicating a nonoptimal point (x′, y′) with f ′ > f ∗.
In such a situation, the previous relaxation of the master problem POA after
adding the constraints at the point (x′, y′, f ′), called (POA)p, is infeasible,
causing the above mentioned termination. We will get a contradiction by
showing that (x∗, y∗, f ∗) is feasible for (POA)p. First, by the assumption that
UBD = f ′ > f ∗, the first constraint α = f ∗ < UBD of (POA)p holds. Sec-
ondly, since (x∗, y∗, f ∗) is an optimal solution to POA, it must be feasible for
all other constraints of (POA)p. Therefore, the algorithm could not terminate
at (x′, y′) with UBD = f ′.

3. Inexact generalized Benders decomposition
3.1. Equivalence between perturbed and master problems for GBD.
In the generalized Benders decomposition (GBD), the MILP master problem
involves only the discrete variables. When considering the inexact case, the
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master problem of GBD is the following:

PGBD



min α

s.t. f(xj, yj) +∇xf(xj, yj)>(x− xj)

+
∑m

i=1 λj
i∇xgi(x

j, yj)>(x− xj) ≤ α, ∀j ∈ T,∑m
i=1 µk

i [gi(x
k, yk) +∇xgi(x

k, yk)>(x− xk)] + wkuk

−
∑m

i=1 zk
i ≤ 0, ∀k ∈ S,

x ∈ X ∩ Znd, α ∈ R.

One can easily recognize the classical form of (exact) GBD master problem
when wk = 0 and zk = 0. Moreover, as we show in the Appendix, this MILP
can also be derived in the inexact case from a perturbed duality representa-
tion of the original, perturbed problem.

A proof similar to the one of exact GBD and exact and inexact OA (Theo-
rem 2.1) allows us to establish the desired equivalence between the original,
perturbed MINLP problem and the MILP master problem PGBD.

Theorem 3.1. Let P be a convex MINLP problem and P be its perturbed
problem as defined in the Introduction. Assume that P is feasible with a
finite optimal value and that the residuals of the KKT conditions of the NLP
subproblems satisfy Assumptions 2.1 and 2.2. Then PGBD and P have the
same optimal value.

Proof : Given any xl ∈ X ∩Znd with l ∈ T ∪S, let PGBD
xl denote the problem

in α obtained from PGBD when x is fixed to xl. First we will prove that
problem PGBD

xk is infeasible for every k ∈ S. When we set x = xk, in the
corresponding constraint of PGBD, one obtains

m∑
i=1

µk
i gi(x

k, yk) + wkuk −
m∑

i=1

zk
i ≤ 0

From (4) and (5), it results that uk ≤ 0, but one knows that uk is strictly
positive when NLP(xk) is infeasible.

Next, we will prove that for each xj ∈ X ∩ Znd, with j ∈ T , PGBD
xj has the

same optimal value as the perturbed NLP(xj). First, we will prove that the
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following constraints of PGBD
xj

f(xl, yl) +∇xf(xl, yl)>(xj − xl) +
m∑

i=1

λl
i∇xgi(x

l, yl)>(xj − xl) ≤ α,

∀l ∈ T, (27)
m∑

i=1

µk
i [gi(x

k, yk) +∇xgi(x
k, yk)>(xj − xk)] + wkuk −

m∑
i=1

zk
i ≤ 0,

∀k ∈ S. (28)

are satisfied with α = f(xj, yj). Under Assumptions 2.1 and Assumption 2.2,
we know from the proof of Theorem 2.1 (Part II–A) that the following
hold: (15) with y = yj and α = f(xj, yj), (16) with y = yj, and (17) with
y = yj.

When l ∈ T , multiplying the inequalities (16) with y = yj by the non-

negative multipliers λj
1, . . . , λ

j
m and summing them together with (15) with

y = yj and α = f(xj, yj), one obtains

f(xl, yl) +∇xf(xl, yl)>(xj − xl) +
m∑

i=1

λl
i∇xgi(x

l, yl)>(xj − xl)

≤ f(xj, yj)− [∇yf(xl, yl) +
m∑

i=1

λl
i∇ygi(x

l, yl)− rl]>(yj − yl)

−
m∑

i=1

λl
ig(xl, yl) +

m∑
i=1

λl
it

l
i.

The right hand side is equal to f(xj, yj) by the definitions of rl, sl, and tl,
showing that (27) holds with α = f(xj, yj).

When k ∈ S, multiplying the inequalities in (17) with y = yj by the
nonnegative multipliers µk

1, . . . , µ
k
m, and summing them up, one obtains using

(3) and (4)

m∑
i=1

µk
i∇xgi(x

k, yk)>(xj − xk) +
m∑

i=1

µk
i gi(x

k, yk) ≤
m∑

i=1

µk
i a

k
i ,

which, by the definition of ak, is the same as (28).
Thus, f(xj, yj) is a feasible point of PGBD

xj , and therefore f(xj, yj) is an
upper bound on the optimal value ᾱj of POA

xj . To show that is also a lower
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bound, i.e., that ᾱj ≥ f(xj, yj), note that from (27), when l = j, PGBD
xj

contains the constraint:

f(xj, yj) ≤ α.

We have thus proved that for any xj ∈ X ∩Znd, with j ∈ T , problems PGBD
xj

and perturbed NLP(xj) have the same optimal value, which concludes the
proof.

When all the KKT residuals are zero we obtain as a corollary the known
equivalence result in GBD:

Corollary 3.1. Let P be a convex MINLP problem. Assume that P is feasible
with a finite optimal value and the residuals of the KKT conditions of the
NLP subproblems are zero. Then PGBD and P have the same optimal value.

Remark 3.1. It is well known that the constraints of the GBD master prob-
lem can be derived from the corresponding ones of the OA master problem,
in the convex, exact case (see [15]). The same happens naturally in the in-
exact case. In fact, from the proof of Theorem 3.1 above, we can see that
the constraints in POA

xj , for j ∈ T , imply the corresponding ones in PGBD
xj .

Moreover, one can easily see that any of the constraints in POA imply the
corresponding ones in PGBD.

Thus, one can also say in the inexact case that the lower bounds produced
iteratively by the OA algorithm are stronger than the ones provided by the
corresponding GBD algorithm (given next).

3.2. Inexact GBD algorithm. As we know for exact GBD, it is possible
to derive an algorithm for the inexact case, terminating finitely, by solving
at each iteration a relaxed MILP formed by the cuts collected so far. The
definitions of UBDp, T p, and Sp are the same as those in Section 2.2. The
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relaxed MILP to be solved at each iteration is thus given by

(PGBD)p



min α

s.t. α < UBDp

f(xj, yj) +∇xf(xj, yj)>(x− xj)

+
∑m

i=1 λj
i∇xgi(x

j, yj)>(x− xj) ≤ α, ∀j ∈ T p∑m
i=1 µk

i [gi(x
k, yk) +∇xgi(x

k, yk)>(x− xk)] + wkuk

−
∑m

i=1 zk
i ≤ 0, ∀k ∈ Sp

x ∈ X ∩ Znd, α ∈ R.

The inexact GBD algorithm is given next (and follows the presentation in [9]
for OA).

Algorithm 3.1 (Inexact GBD Approximation).
Initialization

Let x0 be given. Set p = 0, T−1 = ∅, S−1 = ∅, and UBD = +∞.

REPEAT

(1) Inexactly solve the subproblem NLP(xp), or the feasibility sub-
problem NLPF(xp) provided NLP(xp) is infeasible, and let yp be
an approximated optimal solution. At the same time, obtain the
corresponding inexact Lagrange multipliers λp of NLP(xp) (resp.
µp of NLPF(xp)). Evaluate the residuals rp and sp of NLP(xp)
(resp. vp, wp, and zp of NLPF(xp)).

(2) Linearize the objective functions and constraints at xp. Renew
T p = T p−1 ∪ {p} or Sp = Sp−1 ∪ {p}.

(3) If (NLP(xp) is feasible and f p < UBD), then update current best
point by setting x̄ = xp, ȳ = yp, and UBD = f p.

(4) Solve the relaxed master problem (PGBD)p, obtaining a new dis-
crete assignment xp+1 to be tested in the algorithm. Increment p
by one unit.

UNTIL ((PGBD)p is infeasible).

Similarly as in Theorem 2.2 for OA, one can establish that the above
inexact GBD algorithm terminates in a finite number of steps.
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Theorem 3.2. Let P be a convex MINLP problem and P be its perturbed
problem as defined in the Introduction. Assume that either P has a finite
optimal value or is infeasible, and that the residuals of the KKT conditions
of the NLP subproblems satisfy Assumptions 2.1 and 2.2. Then Algorithm 3.1
terminates in a finite number of steps at an optimal solution of P or with an
indication that P is infeasible.

4. Numerical experiments
We will illustrate some of the practical features of inexact OA and GBD

algorithms by reporting numerical results on three test problems: Example 1,
taken from [8, test problem no. 1], has 3 discrete variables and 3 continu-
ous variables; Example 2, taken from [8, test problem no. 2], has 5 discrete
variables and 6 continuous variables; Example 3, taken from [8, test problem
no. 3], and has 8 discrete variables and 9 continuous variables. All the three
examples are convex and linear in the discrete variables, and consist of sim-
plified versions of process synthesis problems. In the third example we found
a point better than the one in [8]: x∗ = (0, 2, 0.46782, 0.58477, 2, 0, 0, 0.26667,
1.25144)>, y∗ = (0, 1, 0, 1, 0, 1, 0, 1)> with corresponding optimal value f ∗ =
44.6764.

The implementation and testing of Algorithms 2.1 and 3.1 was made in
MATLAB (version 7.11.0, R2010b). We used fmincon (from MATLAB) to
solve the NLP subproblems and ip1 [17] to solve the MILP problems, arising
in both algorithms. The linear equality constraints possibly present in the
original problems were kept in the MILP master problems.

For both methods, we report results for two variants, depending on the
form of the cuts. In a first variant the subproblems are solved inexactly (with
tolerances varying from 10−6 to 10−1) but the cuts are the exact ones. When
the tolerance is set to 10−6 we are essentially running exact OA and GBD.
The second variant also incorporates inexact solution of NLP subproblems
(again with tolerances varying from 10−6 to 10−1) but the cuts are now the
inexact ones.

In the tables of results we report the number N of iterations taken by
Algorithms 2.1 and 3.1. We also report, in the tables corresponding to the
second variant, the number C of constraint inequalities of Assumptions 2.1
and 2.2 that were violated by more than 10−8. The stopping criteria of both
algorithms consisted of the corresponding master program being infeasible
or the number of iterations exceeding 50 or the solution of the MILP master
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Table 1. Application of OA (inexact solution of NLP subprob-
lems and exact cuts) to Example 1. The table reports the num-
ber N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(0, 0, 0)> 2 2 2 2 2 NPC
(1, 0, 0)> 2 2 2 2 2 NPC
(0, 1, 0)> 2 2 2 2 2 NPC
(1, 0, 1)> 2 2 2 2 2 NPC
(0, 1, 1)> 3 3 3 3 3 NPC
(0, 0, 1)> 2 2 2 2 2 NPC

NPC stands for no proper convergence (repeated solution of MILP master
problem).

program coinciding with a previous one (these third cases were marked with
NPC, standing for no proper convergence). We note that in all the NPC
cases found, the repeated integer solution of the MILP master problem was
indeed the solution of the original MINLP.

4.1. Results for inexact OA method. Tables 1–6 summarize the ap-
plication of inexact OA (Algorithm 2.1) (variant inexact solution of NLP
subproblems and exact cuts, and variant inexact solution of NLP subprob-
lems and inexact cuts) to Examples 1–3. Comparing Tables 1 and 2, one
can see little difference between using exact or inexact cuts for the first,
smaller example. However, looking at Tables 3 and 4 for the second example
and Tables 5 and 6 for the third example, one can see, for larger values of
the tolerances, that the inexact case with exact cuts has more tendency for
unproper convergence (i.e., the MILP is incapable of either provide a new
integer solution or render infeasible), while the variant incorporating the in-
exactness in the cuts does not. We also observe that inexact OA converged
even neglecting the imposition of the inequalities of Assumptions 2.1 and 2.2.

4.2. Results for inexact GBD method. Tables 7–12 summarize the ap-
plication of inexact GBD (Algorithm 3.1) (variant inexact solution of NLP
subproblems and exact cuts, and variant inexact solution of NLP subprob-
lems and inexact cuts) to Examples 1–3. One can observe that there is little
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Table 2. Application of OA (inexact solution of NLP subprob-
lems and inexact cuts) to Example 1. The table reports the num-
ber N of iterations taken as well as the number C of inequalities
violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(0, 0, 0)> 2 0 2 0 2 0 2 0 2 0 NPC 0
(1, 0, 0)> 2 0 2 0 2 0 2 0 2 0 NPC 0
(0, 1, 0)> 2 0 2 0 2 0 2 0 2 0 NPC 0
(1, 0, 1)> 2 0 2 0 2 0 2 0 2 0 NPC 0
(0, 1, 1)> 3 0 3 0 3 0 3 0 3 0 NPC 0
(0, 0, 1)> 2 0 2 0 2 0 2 0 2 0 NPC 0

The maximum number for C is 13t(t− 1)/2 + 12st, where t = |T |, s = |S|,
and s + t = N .

NPC stands for no proper convergence (repeated solution of MILP master
problem).

difference between the two variants since the ‘exact’ cuts in the first variant
already incorporate inexact information coming from the inexact Lagrange
multipliers. One observes that inexact GBD takes more iterations than inex-
act OA in these examples, which, according to Remark 3.1, is expected since
inexact GBD yields weaker lower bounds and hence generally requires more
major iterations to converge than inexact OA. The number of inequalities
of Assumptions 2.1 and 2.2 violated in inexact GBD is also higher than the
one in inexact OA.

5. Conclusions and final remarks
In this paper we have attempted to gain a better understanding of the

effect of inexactness when solving NLP subproblems in two well known de-
composition techniques for Mixed Integer Nonlinear Programming (MINLP),
the outer approximation (OA) and the generalized Benders decomposition
(GBD).

As pointed out to us by I. E. Grossmann, solving the NLP subproblems
inexactly in OA positions this approach somewhere in between exact OA and
the extended cutting plane method [18].
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Table 3. Application of OA (inexact solution of NLP subprob-
lems and exact cuts) to Example 2. The table reports the num-
ber N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(1, 0, 0, 0, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 0, 0)> 2 2 2 NPC NPC NPC
(1, 0, 1, 0, 0)> 3 3 3 NPC NPC NPC
(1, 0, 0, 1, 0)> 2 2 2 NPC NPC NPC
(1, 0, 0, 0, 1)> 3 3 3 NPC NPC NPC
(0, 1, 1, 0, 0)> 2 2 2 NPC NPC NPC
(0, 1, 0, 1, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 0, 1)> 2 2 2 NPC NPC NPC
(1, 0, 1, 1, 0)> 3 3 3 NPC NPC NPC
(1, 0, 1, 0, 1)> 3 3 3 NPC NPC NPC
(0, 1, 1, 1, 0)> 2 2 2 NPC NPC NPC
(0, 1, 1, 0, 1)> 2 2 2 NPC NPC NPC

NPC stands for no proper convergence (repeated solution of MILP master
problem).

Although all the conditions required on the residuals of the inexact KKT
conditions can be imposed, one can see from Assumptions 2.1 and 2.2 that
the complete satisfaction of all those inequalities would ask for repeated NLP
subproblem solution for all the previous addressed discrete assignments. Such
requirement would then undermine the practical purpose of saving computa-
tional effort aimed by the NLP subproblem inexactness. In our preliminary
numerical tests we disregarded the conditions of Assumptions 2.1 and 2.2 and
verified, after terminating each run of inexact OA or GBD, how many of them
were violated. The results indicated that proper convergence can be achieved
without imposing Assumptions 2.1 and 2.2, and that the number of violated
inequalities was relatively low. The results also seem to indicate that the
cuts in OA and GBD must be changed accordingly when the corresponding
NLP subproblems are solved inexactly. Testing these inexact approaches in
a wider test set of larger problems is out of the scope of this paper, although
it seems a necessary step to further validate these indications.
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Table 4. Application of OA (inexact solution of NLP subprob-
lems and inexact cuts) to Example 2. The table reports the num-
ber N of iterations taken as well as the number C of inequalities
violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(1, 0, 0, 0, 0)> 3 0 3 0 3 0 3 0 3 0 3 0
(0, 1, 0, 0, 0)> 2 0 2 0 2 0 2 0 2 0 2 0
(1, 0, 1, 0, 0)> 3 1 3 1 3 1 3 1 3 1 3 1
(1, 0, 0, 1, 0)> 2 0 2 0 2 0 2 0 2 0 2 0
(1, 0, 0, 0, 1)> 3 0 3 0 3 0 3 0 3 0 3 0
(0, 1, 1, 0, 0)> 2 2 2 2 2 2 2 2 2 2 2 2
(0, 1, 0, 1, 0)> 3 1 3 1 3 1 3 1 3 1 3 1
(0, 1, 0, 0, 1)> 2 0 2 0 2 0 2 0 2 0 2 0
(1, 0, 1, 1, 0)> 3 1 3 1 3 1 3 1 3 1 3 1
(1, 0, 1, 0, 1)> 3 0 3 0 3 0 3 0 3 0 3 0
(0, 1, 1, 1, 0)> 2 0 2 0 2 0 2 0 2 0 2 0
(0, 1, 1, 0, 1)> 2 0 2 0 2 0 2 0 2 0 2 0

The maximum number for C is 27t(t− 1)/2 + 26st, where t = |T |, s = |S|
and s + t = N .

Our study was performed under the assumption of convexity of the func-
tions involved. Moreover, we also assumed that the approximated optimal
solutions of the NLP subproblems were feasible in these subproblems, and
that the corresponding inexact Lagrange multipliers were nonnegative. Re-
laxing these assumptions introduces another layer of difficulty but certainly
deserves proper attention in the future.

Appendix A
A.1. Inexact KKT conditions and perturbed problems. As we said in the Intro-
duction of the paper, the point yj satisfying the inexact KKT conditions (1)–(2) of the
subproblem NLP(xj) can be interpreted as a solution of a perturbed NLP subproblem,
which has the form

perturbed NLP(xj)


min f(xj, y)− (rj)>(y − yj)

s.t. g(xj, y)− tj ≤ 0,

y ∈ Y,

where tj is given by (7). The data of this perturbed subproblem depends, however, on
the approximated optimal solution yj and inexact Lagrange multipliers λj. Similarly, the
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Table 5. Application of OA (inexact solution of NLP subprob-
lems and exact cuts) to Example 3. The table reports the num-
ber N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(1, 0, 0, 0, 0, 0, 0, 0)> 3 3 3 NPC NPC NPC
(1, 0, 0, 0, 0, 0, 0, 1)> 2 2 2 NPC NPC NPC
(1, 0, 1, 0, 0, 0, 0, 1)> 1 1 1 NPC NPC NPC
(1, 0, 0, 0, 1, 0, 0, 0)> 3 3 3 NPC NPC NPC
(1, 0, 0, 0, 1, 0, 0, 1)> 2 2 2 NPC NPC NPC
(1, 0, 1, 0, 1, 0, 0, 1)> 1 1 1 NPC NPC NPC
(1, 0, 0, 1, 0, 1, 0, 0)> 3 3 3 NPC NPC NPC
(1, 0, 0, 1, 0, 1, 0, 1)> 2 2 2 NPC NPC NPC
(1, 0, 0, 1, 0, 0, 1, 0)> 3 3 3 NPC NPC NPC
(1, 0, 0, 1, 0, 0, 1, 1)> 1 1 1 NPC NPC NPC
(0, 1, 0, 0, 0, 0, 0, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 0, 0, 0, 0, 1)> 2 2 2 NPC NPC NPC
(0, 1, 1, 0, 0, 0, 0, 1)> 2 2 2 NPC NPC NPC
(0, 1, 0, 0, 1, 0, 0, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 0, 1, 0, 0, 1)> 2 2 2 NPC NPC NPC
(0, 1, 1, 0, 1, 0, 0, 1)> 2 2 2 NPC NPC NPC
(0, 1, 0, 1, 0, 1, 0, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 1, 0, 1, 0, 1)> 1 1 1 NPC NPC NPC
(0, 1, 1, 1, 0, 1, 0, 1)> 2 2 2 NPC NPC NPC
(0, 1, 0, 1, 0, 0, 1, 0)> 3 3 3 NPC NPC NPC
(0, 1, 0, 1, 0, 0, 1, 1)> 2 2 2 NPC NPC NPC
(1, 0, 1, 1, 0, 1, 0, 1)> 2 2 2 NPC NPC NPC

NPC stands for no proper convergence (repeated solution of MILP master
problem).

point yk satisfying the inexact KKT conditions (3)–(5) of the subproblem NLPF(xk) can be
interpreted as a solution of the following perturbed NLP subproblem

perturbed NLPF(xk)


min u− wk(u− uk)− (vk)>(y − yk)

s.t. gi(x
k, y)− u− ck

i ≤ 0, i = 1, . . . ,m,

y ∈ Y, u ∈ R,



26 M. LI AND L. N. VICENTE

Table 6. Application of OA (inexact solution of NLP subprob-
lems and inexact cuts) to Example 3. The table reports the num-
ber N of iterations taken as well as the number C of inequalities
violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(1, 0, 0, 0, 0, 0, 0, 0)> 3 1 3 1 3 1 3 2 3 2 3 1
(1, 0, 0, 0, 0, 0, 0, 1)> 2 0 2 0 2 1 2 2 2 3 2 2
(1, 0, 1, 0, 0, 0, 0, 1)> 1 0 1 0 1 0 1 0 1 0 2 2
(1, 0, 0, 0, 1, 0, 0, 0)> 3 1 3 1 3 1 3 1 3 2 3 1
(1, 0, 0, 0, 1, 0, 0, 1)> 2 0 2 0 2 1 2 2 2 3 2 2
(1, 0, 1, 0, 1, 0, 0, 1)> 1 0 1 0 1 0 1 0 1 0 2 2
(1, 0, 0, 1, 0, 1, 0, 0)> 3 1 3 1 3 1 3 2 3 2 3 1
(1, 0, 0, 1, 0, 1, 0, 1)> 2 1 2 1 2 1 2 1 2 2 3 3
(1, 0, 0, 1, 0, 0, 1, 0)> 3 1 3 1 3 1 3 2 3 2 3 1
(1, 0, 0, 1, 0, 0, 1, 1)> 1 0 1 0 1 0 1 0 1 0 2 3
(0, 1, 0, 0, 0, 0, 0, 0)> 3 1 3 1 3 1 3 1 3 1 4 4
(0, 1, 0, 0, 0, 0, 0, 1)> 2 2 2 2 2 2 2 2 2 4 3 7
(0, 1, 1, 0, 0, 0, 0, 1)> 2 0 2 0 2 0 2 0 2 1 3 3
(0, 1, 0, 0, 1, 0, 0, 0)> 3 1 3 1 3 1 3 1 3 1 4 4
(0, 1, 0, 0, 1, 0, 0, 1)> 2 2 2 2 2 2 2 2 2 4 3 7
(0, 1, 1, 0, 1, 0, 0, 1)> 2 0 2 0 2 0 2 0 2 1 3 3
(0, 1, 0, 1, 0, 1, 0, 0)> 3 1 3 1 3 1 3 1 3 1 4 4
(0, 1, 0, 1, 0, 1, 0, 1)> 1 1 1 1 1 1 1 1 1 1 2 3
(0, 1, 1, 1, 0, 1, 0, 1)> 2 2 2 2 2 2 2 3 2 3 2 3
(0, 1, 0, 1, 0, 0, 1, 0)> 3 1 3 1 3 1 3 1 3 1 4 4
(0, 1, 0, 1, 0, 0, 1, 1)> 2 2 2 2 2 1 2 2 2 2 3 5
(1, 0, 1, 1, 0, 1, 0, 1)> 2 0 2 0 2 0 2 0 2 0 3 3

The maximum number for C is 21t(t− 1) + 41st, where t = |T |, s = |S|,
and s + t = N .

where, for i = 1, . . . ,m,

ck
i =

{
zk
i

µk
i
, if µk

i > 0,

0, if µk
i = 0.

A.2. Derivation of the master problem for inexact GBD. As in the exact case, the
MILP master problem PGBD can be derived from a more general master problem closer to
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Table 7. Application of GBD (inexact solution of NLP sub-
problems and exact cuts) to Example 1. The table reports the
number N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(0, 0, 0)> 3 3 3 3 3 3
(1, 0, 0)> 3 3 3 3 3 3
(0, 1, 0)> 3 3 3 3 3 3
(1, 0, 1)> 3 3 3 3 3 3
(0, 1, 1)> 4 4 4 4 4 4
(0, 0, 1)> 3 3 3 3 3 3

Table 8. Application of GBD (inexact solution of NLP sub-
problems and inexact cuts) to Example 1. The table reports the
number N of iterations taken as well as the number C of inequal-
ities violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(0, 0, 0)> 3 0 3 0 3 0 3 0 3 0 3 0
(1, 0, 0)> 3 0 3 0 3 0 3 0 3 0 3 0
(0, 1, 0)> 3 0 3 0 3 0 3 0 3 0 3 0
(1, 0, 1)> 3 0 3 0 3 0 3 0 3 0 3 0
(0, 1, 1)> 4 0 4 0 4 0 4 0 4 0 4 1
(0, 0, 1)> 3 0 3 0 3 0 3 0 3 0 3 0

The maximum number for C is as in Table 2.

the original duality motivation of GBD:

PGBD1


min α

s.t. infy∈Y {f(x, y) + (λj)>g(x, y)− (rj)>(y − yj)} −
∑m

i=1 sj
i ≤ α, ∀j ∈ T,

infy∈Y {(µk)>g(x, y)− (vk)>(y − yk)}+ wkuk −
∑m

i=1 zk
i ≤ 0, ∀k ∈ S,

x ∈ X ∩ Znd , α ∈ R.

In fact, we will show next that the constraints in problem PGBD1 imply those of PGBD.
When l ∈ T , one knows that NLP(xl) has an approximated optimal solution yl, satisfying

the corresponding inexact KKT conditions with inexact Lagrange multipliers λl. By the
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Table 9. Application of GBD (inexact solution of NLP sub-
problems and exact cuts) to Example 2. The table reports the
number N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(1, 0, 0, 0, 0)> 8 8 8 8 8 8
(0, 1, 0, 0, 0)> 7 7 7 7 9 9
(1, 0, 1, 0, 0)> 5 5 5 5 5 5
(1, 0, 0, 1, 0)> 6 6 6 6 6 6
(1, 0, 0, 0, 1)> 7 7 7 6 6 6
(0, 1, 1, 0, 0)> 6 6 6 6 6 6
(0, 1, 0, 1, 0)> 5 5 5 5 5 5
(0, 1, 0, 0, 1)> 7 7 7 7 6 6
(1, 0, 1, 1, 0)> 8 8 8 8 9 9
(1, 0, 1, 0, 1)> 5 5 5 5 5 5
(0, 1, 1, 1, 0)> 8 8 8 8 8 8
(0, 1, 1, 0, 1)> 6 6 6 6 6 6

convexity of f and g (see (10) and (11)),

f(x, y) + (λl)>g(x, y)− (rl)>(y − yl)

≥ f(xl, yl) +∇xf(xl, yl)>(x− xl) +∇yf(xl, yl)>(y − yl)

+
m∑

i=1

λl
i[gi(x

l, yl) +∇xgi(x
l, yl)>(x− xl) +∇ygi(x

l, yl)>(y − yl)]

− (rl)>(y − yl).

Thus, using the inexact KKT conditions (1),

α ≥ inf
y∈Y

{f(x, y) + (λl)>g(x, y)− (rl)>(y − yl)} −
m∑

i=1

sl
i

≥ inf
y∈Y

{f(xl, yl) +∇xf(xl, yl)>(x− xl) +
m∑

i=1

λl
i∇xgi(x

l, yl)>(x− xl) +
m∑

i=1

λl
igi(x

l, yl)}

−
m∑

i=1

sl
i
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Table 10. Application of GBD (inexact solution of NLP sub-
problems and inexact cuts) to Example 2. The table reports the
number N of iterations taken as well as the number C of inequal-
ities violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(1, 0, 0, 0, 0)> 8 1 8 1 8 1 8 1 8 1 8 1
(0, 1, 0, 0, 0)> 7 2 7 2 7 2 7 2 9 3 9 3
(1, 0, 1, 0, 0)> 5 3 5 3 5 3 5 3 5 3 5 3
(1, 0, 0, 1, 0)> 6 0 6 0 6 0 6 0 6 0 6 0
(1, 0, 0, 0, 1)> 7 2 7 2 7 2 6 2 6 2 6 2
(0, 1, 1, 0, 0)> 6 4 6 4 6 4 6 4 6 4 6 4
(0, 1, 0, 1, 0)> 5 0 5 0 5 0 5 0 5 0 5 0
(0, 1, 0, 0, 1)> 7 2 7 2 7 2 7 2 6 1 6 1
(1, 0, 1, 1, 0)> 8 3 8 3 8 3 8 3 9 3 9 3
(1, 0, 1, 0, 1)> 5 0 5 0 5 0 5 0 5 0 5 0
(0, 1, 1, 1, 0)> 8 1 8 1 8 1 8 1 8 1 8 1
(0, 1, 1, 0, 1)> 6 0 6 0 6 0 6 0 6 0 6 0

The maximum number for C is as in Table 4.

= f(xl, yl) +∇xf(xl, yl)>(x− xl) +
m∑

i=1

λl
i∇xgi(x

l, yl)>(x− xl) +
m∑

i=1

λl
igi(x

l, yl)

−
m∑

i=1

sl
i

= f(xl, yl) +∇xf(xl, yl)>(x− xl) +
m∑

i=1

λl
i∇xgi(x

l, yl)>(x− xl).

The last equality holds due to (2).
When l ∈ S, we know that NLPF(xl) has an approximated optimal solution yl satisfying

the corresponding inexact KKT conditions with inexact Lagrange multipliers µl. Also by
the convexity of g (see (11)), we have that

(µl)>g(x, y)− (vl)>(y − yl)

≥ (µl)>[g(xl, yl) +∇xg(xl, yl)>(x− xl)] + (
m∑

i=1

µl
i∇ygi(x

l, yl)− vl)>(y − yl).



30 M. LI AND L. N. VICENTE

Table 11. Application of GBD (inexact solution of NLP sub-
problems and exact cuts) to Example 3. The table reports the
number N of iterations taken.

Tolerances
initial point 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

(1, 0, 0, 0, 0, 0, 0, 0)> 10 10 10 10 10 10
(1, 0, 0, 0, 0, 0, 0, 1)> 12 12 12 11 11 11
(1, 0, 1, 0, 0, 0, 0, 1)> 9 9 9 9 9 9
(1, 0, 0, 0, 1, 0, 0, 0)> 10 10 10 10 10 10
(1, 0, 0, 0, 1, 0, 0, 1)> 12 12 12 11 11 11
(1, 0, 1, 0, 1, 0, 0, 1)> 9 9 9 9 9 9
(1, 0, 0, 1, 0, 1, 0, 0)> 9 9 9 9 9 9
(1, 0, 0, 1, 0, 1, 0, 1)> 9 9 9 9 9 9
(1, 0, 0, 1, 0, 0, 1, 0)> 10 10 10 9 9 9
(1, 0, 0, 1, 0, 0, 1, 1)> 9 9 9 9 9 9
(0, 1, 0, 0, 0, 0, 0, 0)> 9 9 9 8 8 8
(0, 1, 0, 0, 0, 0, 0, 1)> 9 9 10 10 10 9
(0, 1, 1, 0, 0, 0, 0, 1)> 11 11 11 11 11 11
(0, 1, 0, 0, 1, 0, 0, 0)> 9 9 9 8 8 8
(0, 1, 0, 0, 1, 0, 0, 1)> 9 9 10 10 10 9
(0, 1, 1, 0, 1, 0, 0, 1)> 11 11 11 11 11 11
(0, 1, 0, 1, 0, 1, 0, 0)> 9 9 9 8 8 8
(0, 1, 0, 1, 0, 1, 0, 1)> 10 10 10 9 9 9
(0, 1, 1, 1, 0, 1, 0, 1)> 9 9 9 9 9 9
(0, 1, 0, 1, 0, 0, 1, 0)> 10 10 10 9 9 9
(0, 1, 0, 1, 0, 0, 1, 1)> 9 9 9 8 8 8
(1, 0, 1, 1, 0, 1, 0, 1)> 9 9 9 9 9 9

Then, using the inexact KKT conditions (4),

0 ≥ inf
y∈Y

{(µl)>g(x, y)− (vl)>(y − yl)}+ wlul −
m∑

i=1

zl
i

≥ inf
y∈Y

{
m∑

i=1

µl
i[gi(x

l, yl) +∇xgi(x
l, yl)>(x− xl)]}+ wlul −

m∑
i=1

zl
i

=
m∑

i=1

µl
i[gi(x

l, yl) +∇xgi(x
l, yl)>(x− xl)] + wlul −

m∑
i=1

zl
i.
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Table 12. Application of GBD (inexact solution of NLP sub-
problems and inexact cuts) to Example 3. The table reports the
number N of iterations taken as well as the number C of inequal-
ities violated in Assumptions 2.1 and 2.2.

Tolerances

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

initial point N C N C N C N C N C N C

(1, 0, 0, 0, 0, 0, 0, 0)> 10 6 10 6 10 6 10 8 10 13 10 12
(1, 0, 0, 0, 0, 0, 0, 1)> 12 20 12 20 12 19 11 15 11 17 11 14
(1, 0, 1, 0, 0, 0, 0, 1)> 9 10 9 9 9 7 9 10 9 13 9 11
(1, 0, 0, 0, 1, 0, 0, 0)> 10 6 10 6 10 6 10 8 10 13 10 12
(1, 0, 0, 0, 1, 0, 0, 1)> 12 20 12 20 12 19 11 15 11 17 11 14
(1, 0, 1, 0, 1, 0, 0, 1)> 9 10 9 9 9 7 9 10 9 13 9 11
(1, 0, 0, 1, 0, 1, 0, 0)> 9 7 9 7 9 6 9 8 9 13 9 13
(1, 0, 0, 1, 0, 1, 0, 1)> 9 4 9 4 9 4 9 5 9 10 9 8
(1, 0, 0, 1, 0, 0, 1, 0)> 10 14 10 14 10 12 9 10 9 12 9 8
(1, 0, 0, 1, 0, 0, 1, 1)> 9 7 9 7 9 6 9 8 9 13 9 13
(0, 1, 0, 0, 0, 0, 0, 0)> 9 13 9 13 9 12 8 7 8 8 8 8
(0, 1, 0, 0, 0, 0, 0, 1)> 9 7 9 7 10 10 10 11 10 20 9 14
(0, 1, 1, 0, 0, 0, 0, 1)> 11 7 11 7 11 6 11 8 11 13 11 13
(0, 1, 0, 0, 1, 0, 0, 0)> 9 13 9 13 9 12 8 7 8 8 8 8
(0, 1, 0, 0, 1, 0, 0, 1)> 9 7 9 7 10 10 10 11 10 20 9 14
(0, 1, 1, 0, 1, 0, 0, 1)> 11 7 11 7 11 6 11 8 11 13 11 13
(0, 1, 0, 1, 0, 1, 0, 0)> 9 19 9 19 9 18 8 14 8 16 8 13
(0, 1, 0, 1, 0, 1, 0, 1)> 10 15 10 15 10 13 9 11 9 13 9 9
(0, 1, 1, 1, 0, 1, 0, 1)> 9 6 9 6 9 6 9 8 9 13 9 12
(0, 1, 0, 1, 0, 0, 1, 0)> 10 15 10 15 10 16 9 11 9 11 9 9
(0, 1, 0, 1, 0, 0, 1, 1)> 9 14 9 14 9 13 8 8 8 9 8 9
(1, 0, 1, 1, 0, 1, 0, 1)> 9 6 9 6 9 5 9 7 9 10 9 9

The maximum number for C is as in Table 6.

In summary we have the following property.

Property A.1. Given some sets T and S, the lower bound predicted by the master problem
PGBD1 is greater than or equal to the one predicted by the master problem PGBD.
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