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ON PARTIALLY SPARSE RECOVERY
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Abstract: In this paper we consider the problem of recovering a partially sparse
solution of an underdetermined system of linear equations by minimizing the `1-
norm of the part of the solution vector which is known to be sparse. Such a problem
is closely related to the classical problem in Compressed Sensing where the `1-norm
of the whole solution vector is minimized. We introduce analogues of restricted
isometry and null space properties for the recovery of partially sparse vectors and
show that these new properties are implied by their original counterparts. We show
also how to extend recovery under noisy measurements to the partially sparse case.
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1. Introduction
In Compressed Sensing one is interested in recovering a sparse solution x̄ ∈

RN of an underdetermined system of the form y = Ax̄, given a vector y ∈ Rk

and a matrix A ∈ Rk×N with far fewer rows than columns (k � N). This
can be accomplished by minimizing the number of non-zero components of x,
i.e., the `0-norm of x (the `0-norm is defined by ‖u‖0 = |{i : ui 6= 0}| but,
strictly speaking, it is not a norm)

min ‖x‖0 s. t. Ax = y, (1)

which is an NP-Hard problem. It is commonly considered sufficient to solve
a more tractable approximation to this problem obtained by substituting the
non-convex `0-norm by a relatively close convex approximation.

Recent results indicate that the `1-norm can serve as such an approximation
(see [5] for a survey on some of this material) and, in fact, `1(x) = ‖x‖1 is the
tightest convex relaxation of the real-extended function g(x): g(x) = ‖x‖0 if
‖x‖∞ ≤ 1 and g(x) = +∞ otherwise [12]. Hence problem (1) is replaced by
the following optimization problem

min ‖x‖1 s. t. Ax = y. (2)
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Note that (2) is equivalent to a linear program and thus is much easier to
solve than (1).

In this paper we consider the case when it is known a priori that the
solution vector consists of two parts, one of which is expected to be dense,
in other words we have x = (x1, x2), where x1 ∈ RN−r is sparse and x2 ∈ Rr

is possibly dense. A natural generalization of problem (2) to this setting of
partially sparse recovery is given by

min ‖x1‖1 s. t. A1x1 + A2x2 = y, (3)

where A = (A1, A2), A1 ∈ Rk×(N−r), and A2 ∈ Rk×r. We will refer to this
setting as partially sparse recovery of size N − r.

Such type of problems arise naturally in sparse Hessian recovery (Ban-
deira, Scheinberg, and Vicente [2]). In particular, suppose we want to de-
termine a model m(z) = α>1 φ1(z) + α>2 φ2(z), written on some function basis
φ = {φ1, φ2}, by interpolating a function f : Rn → R on a sample set
Y , where the number k = |Y | of sample points is lower than the number
N = |φ1| + |φ2| of basis components. The interpolation conditions are rep-
resented by M(φ1, Y )α1 + M(φ2, Y )α2 = f(Y ), where M(φ, Y ) is the Van-
dermonde matrix associated with the basis φ and the sample set Y . Now
suppose that m(z) has a representation in terms of φ1 and φ2 with α1 a sparse
vector (and α2, possibly, dense). Then, such an interpolation model can be
constructed by solving a problem of the form (3) where (x1, x2) = (α1, α2),
(A1, A2) = (M(φ1, Y ), M(φ2, Y )), y = f(Y ), and r = |φ2|. For instance for
quadratic interpolation of a function whose Hessian is sparse, but the gra-
dient is expected to be dense, φ1 contains the quadratic basis components
z2
i /2, zizj, with j > i, i, j ∈ {1, . . . , n}, whereas φ2 contains the linear ba-

sis elements 1,z1, . . . , zn. The authors have used partially sparse recovery
approach in [2] for building sparse quadratic interpolation models of func-
tions with sparse Hessian. It is shown in [2] that by using randomly selected
interpolation sets with O(n(log n)4) points one can achieve model accuracy
similar to that of second-order Taylor polynomials if there are O(n) non-zero
elements in the Hessian. Such a number is in comparison to O(n2) interpola-
tion points which are required by other existing results that achieved similar
accuracy. The authors have also successfully applied the `1–sparse recon-
struction of quadratic models [2] in interpolation-based trust-region methods
for Derivative-Free Optimization [8].
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One of the key applications of partially sparse recovery is image recon-
struction (Vaswani and Lu [15]). In the paper [15] a sufficient condition is
given under which partially sparse recovery is achieved. Their condition is
weaker than the known restricted isometry property for general sparse recov-
ery. This is natural, since the case of partial sparsity can be considered as a
case of general sparsity where part of the support of the solution is known
in advance. The contribution of our paper (a subset of our results appeared
in [1]) is to introduce the corresponding analogues of restricted isometry and
null space properties for the case of partial sparsity. We will show that these
new properties are sufficient for partially sparse recovery (including the noisy
case) and are implied by the original conditions of fully sparse recovery.

1.1. Notation. We will use the following notation in this paper. [N ] denotes
the set of integers {1, . . . , N}, and [N ](s) denotes the set of all subsets of [N ]
of cardinality s ≤ N . If A is a matrix, then by N (A) andR(A) we denote the
null and range spaces of A, respectively. We say that a vector x is s−sparse
if at most s components of x are non-zero. This is also denoted by ‖x‖0 ≤ s.
Given v ∈ RN and S ∈ [N ], vS ∈ RN denotes a vector defined by (vS)i = vi,
i ∈ S and (vS)i = 0, i /∈ S.

2. Sparse recovery in compressed sensing
The main question addressed by Compressed Sensing is under what con-

ditions on the matrix A can a sparse vector x̄ be recovered by solving prob-
lem (2) given A and the right hand side y = Ax̄. The next definition is a
well known characterization of such matrices.

Definition 2.1 (Null Space Property). The matrix A ∈ Rk×N is said to
satisfy the Null Space Property (NSP) of order s if, for every v ∈ N (A)\{0}
and for every S ∈ [N ](s), one has

‖vS‖1 <
1

2
‖v‖1. (4)

The term Null Space Property was introduced in [7]. However, we note
that the characterization mentioned above and formalized in the following
theorem had been implicitly used in [9]. It is well known that NSP is a
necessary and sufficient condition for the recovery of an s-sparse vector x̄.
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Theorem 2.1. The matrix A satisfies the Null Space Property of order s if
and only if, for every s−sparse vector x̄, problem (2) with y = Ax̄ has an
unique solution and it is given by x = x̄.

Proof : For a proof see, e.g., [13].

It is difficult to verify if a matrix satisfies the NSP. On the other hand,
the Restricted Isometry Property (RIP), introduced in [4], is considerably
more useful and insightful, although it provides only sufficient conditions for
every s−sparse vector x̄ to be the unique solution of (2) when y = Ax̄. We
present below the definition of the RIP and the Restricted Isometry Property
Constant.

Definition 2.2 (Restricted Isometry Property). One says that δs > 0 is the
Restricted Isometry Property Constant, or RIP constant, of order s of the
matrix A ∈ Rk×N if δs is the smallest positive real such that:

(1− δs) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs) ‖x‖2
2 (5)

for every s−sparse vector x.

The following theorem (see, e.g., [13]) provides a useful sufficient condition
for successful recovery by (2) with y = Ax̄.

Theorem 2.2. Let A ∈ Rk×N and 2s < N . If

2δ2s + δs < 1, (6)

where δs and δ2s are the RIP constants of A of order s and 2s, respectively,
then, for every s−sparse vector x̄, problem (2) with y = Ax̄ has an unique
solution and it is given by x = x̄.

It is known that RIP is satisfied with some probability if the entries of
the matrix are randomly generated (see, e.g., [3]), but it is still an open
problem to find deterministic matrices which satisfy such property when the
underlying system is highly underdetermined (see [14]).

3. Partial sparse recovery
In this section we consider the following extension of the NSP to the case

of partially sparse recovery.

Definition 3.1 (Null Space Property for Partially Sparse Recovery). We say
that A = (A1, A2) satisfies the Null Space Property (NSP) of order s− r for
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partially sparse recovery of size N − r with r ≤ s if A2 is full column rank
(N (A2) = {0}) and for every v1 ∈ RN−r \ {0} such that A1v1 ∈ R(A2) and
every S ∈ [N − r](s−r), we have

‖(v1)S‖1 <
1

2
‖v1‖1. (7)

Note that when r = 0, i.e., when x does not have a known dense part, the
NSP for partially sparse recovery reduces to the NSP in Definition 2.1. The
new property is a necessary and sufficient condition for any solution of (3)
with y = Ax̄ to satisfy x1 = x̄1 if x̄1 is appropriately sparse.

Theorem 3.1. The matrix A = (A1, A2) satisfies the Null Space Property of
order s−r for Partially Sparse Recovery of size N−r if and only if for every
x̄ = (x̄1, x̄2) such that x̄1 ∈ RN−r is (s− r)−sparse and x̄2 ∈ Rr, problem (3)
with y = Ax̄ has an unique solution and it is given by (x1, x2) = (x̄1, x̄2).

Proof : The proof follows the steps of the proof of [13, Theorem 2.3] with
appropriate modifications. Let us assume first that for any vector (x̄1, x̄2) ∈
RN , where x̄1 is an (s− r)−sparse vector and x̄2 ∈ Rr, the minimizer (x1, x2)
of ‖x1‖1 subject to A1x1 + A2x2 = Ax̄ satisfies x1 = x̄1. Consider any v1 6= 0
such that A1v1 ∈ R(A2). Then consider minimizing ‖x1‖1 subject to A1x1 +
A2x2 = A1(v1)S + A2v2 for any v2 ∈ Rr and for any S ∈ [N − r](s−r). By the
assumption, the corresponding minimizer (x1, x2) satisfies x1 = (v1)S. Since
A1v1 ∈ R(A2), there exists u2 such that A1(−(v1)Sc)+A2u2 = A1(v1)S+A2v2.
As −(v1)Sc 6= (v1)S, (−(v1)Sc, u2) is not the minimizer of ‖x1‖1 subject to
A1x1 + A2x2 = A1(v1)S + A2v2, hence, ‖(v1)Sc‖1 > ‖(v1)S‖1 and (7) holds.

Let us now assume that A satisfies the NSP of order s−r for partially sparse
recovery of size N − r (Definition 3.1). Then, given a vector (x̄1, x̄2) ∈ RN ,
where x̄1 is (s − r)−sparse and x̄2 ∈ Rr, and a vector (u1, u2) ∈ RN with
u1 6= x̄1 and satisfying A1u1 + A2u2 = A1x̄1 + A2x̄2, consider (v1, v2) =
((x̄1 − u1), (x̄2 − u2)) ∈ N (A), which implies A1v1 ∈ R(A2) and v1 6= 0.
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Thus, setting S to be the support of x̄, one has that

‖x̄1‖1 ≤ ‖x̄1 − (u1)S‖1 + ‖(u1)S‖1

= ‖(v1)S‖1 + ‖(u1)S‖1

< ‖(v1)Sc‖1 + ‖(u1)S‖1

= ‖ − (u1)Sc‖1 + ‖(u1)S‖1

= ‖u1‖1,

(the strict inequality coming from (7)), guaranteeing that all solutions (x1, x2)
of problem (3) with y = Ax̄ satisfy x1 = x̄1.

It remains to point out that x2 = x̄2 is uniquely determined by solving
A2x2 = y − A1x̄1 if and only if A2 is full column rank.

The rank assumption on A2 is reasonable in the Derivative-Free Optimiza-
tion setting, for instance, where r is smaller than the number of rows in
A.

We now define an extension of the RIP to the partially sparse recovery
setting. For this purpose, let A = (A1, A2) be as considered above, under the
assumption that A2 has full column rank. Let

P = I − A2
(
A>

2 A2
)−1

A>
2 (8)

be the matrix of the orthogonal projection from RN onto R (A2)
⊥ . Then,

the problem of recovering (x̄1, x̄2), where x̄1 is an (s − r)−sparse vector
satisfying A1x̄1+A2x̄2 = y, can be stated as the problem of recovering an (s−
r)−sparse vector x1 = x̄1 satisfying (PA1) x1 = Py and then recovering x2 =
x̄2 satisfying A2x2 = y − A1x̄1. The solution of the resulting linear system
in the second step exists and is unique given that A2 has full column rank
and (PA1)x̄1 = Py. Note that the first step is now reduced to the classical
setting of Compressed Sensing. This motivates the following definition of
RIP for partially sparse recovery.

Definition 3.2 (Partial RIP). We say that δr
s−r > 0 is the Partial Restricted

Isometry Property Constant of order s−r of the matrix A = (A1, A2) ∈ Rk×N ,
for recovery of size N−r with r ≤ s, if A2 is full column rank and δr

s−r is the
RIP constant of order s− r (see Definition 2.2) of the matrix PA1, where P
is given by (8).
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Again, when r = 0 the Partial RIP reduces to the RIP of Definition 2.2.
We also note that, given a matrix A = (A1, A2) ∈ Rk×N with Partial RIP
constants δr

2(s−r) and δr
s−r of order 2(s−r) and s−r, respectively, for recovery

of size N − r, satisfying 2δr
2(s−r) + δr

s−r < 1, then, by Theorems 2.1 and 2.2,

we have that PA1 satisfies the NSP of order s− r. Thus, given x̄ = (x̄1, x̄2)
such that x̄1 ∈ RN−r is (s− r)−sparse and x̄2 ∈ Rr, x̄1 can be recovered by
minimizing the `1-norm of x1 subject to (PA1)x1 = PAx̄ and, recalling that
A2 is full-column rank, x2 = x̄2 is uniquely determined by A2x2 = y − A1x̄1.
(In particular, this implies that A satisfies the NSP of order s−r for partially
sparse recovery of size N − r.)

4. Partially sparse recovery implied by fully sparse re-
covery conditions

We are now interested in showing that partially sparse recovery is achiev-
able under the conditions which guarantee fully sparse recovery. In particular
we will show that the NSP and RIP imply, respectively, the NSP for par-
tially sparse recovery and the partial RIP. We first establish the relationship
between the corresponding null space properties.

Theorem 4.1. If a given matrix A satisfies the NSP of order s then it
satisfies the NSP for partially sparse recovery of order s− r for any r ≤ s.

Proof : Let A = (A1, A2) satisfy the NSP of order s. First we note that since
r ≤ s, the NSP implies that A2 is full column rank. Let v1 ∈ RN−r be a
non-zero vector such that A1v1 ∈ R(A2) and let T ∈ [N − r](s−r). Define
W = [N ] \ [N − r].

Since there exists v2 such that A1v1 +A2v2 = 0, we have that v = (v1, v2) ∈
N (A) \ {0}, and therefore by setting S = T ∪W and by using the NSP,

‖(v1)T‖1 + ‖v2‖1 = ‖vS‖1 <
1

2
‖v‖1 =

1

2
‖v1‖1 +

1

2
‖v2‖1.

Thus,

‖(v1)T‖1 ≤ ‖(v1)T‖1 +
1

2
‖v2‖1 ≤ 1

2
‖v1‖1,

and A satisfies the NSP of order s − r for partially sparse recovery of size
N − r.

Partial RIP is also implied by RIP without the change in the RIP constant
value.
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Theorem 4.2. Let A = (A1, A2) satisfy the RIP of order s with the RIP
constant δs. Then A satisfies partial RIP of order s − r with δr

s−r = δs for
partially sparse recovery of size N − r, for any r ≤ s.

Proof : First we note that since r ≤ s, the RIP implies that A2 is full column
rank. Consider now any given (s − r)−sparse vector x1 ∈ RN−r. First note
that from Definition 2.2, RIP of order s implies

(1− δs)
(
‖x1‖2

2 + ‖x2‖2
2
)
≤ ‖A1x1 + A2x2‖2

2 ≤ (1 + δs)
(
‖x1‖2

2 + ‖x2‖2
2
)
,

(9)
for the given x1 ∈ RN−r and any (possibly dense) vector x2 ∈ Rr.

Now, by setting x2 = −
(
A>

2 A2
)−1

A>
2 A1x1, one obtains

(1− δs)‖x1‖2
2 ≤ (1− δs)

(
‖x1‖2

2 + ‖x2‖2
2
)
≤ ‖A1x1 + A2x2‖2

2 = ‖PA1x1‖2.

On the other hand, the choice x2 = 0 provides

‖PA1x1‖2
2 ≤ ‖A1x1‖2

2 ≤ (1 + δs) ‖x1‖2
2.

We have thus arrived at the conditions of Definition 3.2.

Remark 4.1. Notice that Theorems 4.1 and 4.2 apply to any partition of A
into A1 and A2 of appropriate size, hence full NSP and RIP conditions are
clearly stronger than partial NSP and RIP conditions for particular A1 and
A2.

Remark 4.2. Theorems 2.1, 3.1, and 4.1 guarantee that if any sparse vec-
tor is recovered by full `1-minimization, then it is recovered by partial `1-
minimization if some part of the support is known. However, a particular
partially sparse vector may be recovered by full `1-minimization and not by
the partial one. For example, let A and x̄ be defined as

A =

[
2 −2 −1
0 −1 1

]
, x̄ =

 −4
0
3

 ,

with y = Ax̄ = (−11, 3)>, s = 2 and r = 1. Vector x̄ can be reconstructed by
the full `1-minimization problem

min ‖x‖1 s.t.

[
2 −2 −1
0 −1 1

] x1
x2
x3

 =

[
−11
3

]
.
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However, the solution of partial `1-minimization problem

min |x1|+ |x2| s.t.

[
2 −2 −1
0 −1 1

] x1
x2
x3

 =

[
−11
3

]
is (0, 8/3, 17/3)> and hence the partially sparse vector x = (−4, 0, 3)> is not
recovered. This example does contradict the theory since one can easily show
that the matrix A does not satisfy the NSP.

5. Partial (and total) compressibility recovery with noisy
measurements

In most realistic applications the observed measurement vector y often con-
tains noise and the true signal vector x̄ is not sparse but rather compressible,
meaning that most components are very small but not necessarily zero. It
is known, however, that Compressed Sensing is robust to noise and can ap-
proximately recover compressible vectors. This statement is formalized in
the following theorem taken from [6] (see also [10, 11] and references therein
for results involving smaller values of the constant in the bound (10) below).

Theorem 5.1. Assume that the matrix A ∈ Rk×N satisfies RIP with the RIP
constant δ2s such that

δ2s <
√

2− 1. (10)

For any x̄ ∈ RN , let noisy measurements y = Ax̄ + ε be given satisfying
‖ε‖2 ≤ η. Let x# be a solution of

min
x∈RN

‖x‖1 s.t. ‖Ax− y‖2 ≤ η. (11)

Then

‖x# − x̄‖2 ≤ cη + d
σs(x̄)1√

s
, (12)

for constants c, d only depending on the RIP constant, and where σs(x̄)1 =
minx: ‖x‖0≤s ‖x− x̄‖1.

The following theorem provides an analogous result for the partially sparse
recovery setting introduced in Section 3.

Theorem 5.2. Assume that the matrix A = (A1, A2) ∈ Rk×N satisfies partial
RIP of order 2(s− r) for recovery of size N − r with the RIP constant δr

2(s−r)
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for which (10) holds. For any x̄ = (x̄1, x̄2) ∈ RN , let noisy measurements
y = Ax̄ + ε be given satisfying ‖ε‖2 ≤ η. Let x∗ = (x∗1, x

∗
2) be a solution of

min
x=(x1,x2)∈RN

‖x1‖1 s.t. ‖Ax− y‖2 ≤ η. (13)

Then

‖x∗1 − x̄1‖2 ≤ cη + d
σs−r(x̄1)1√

s− r
, (14)

and

‖x∗2 − x̄2‖2 ≤ C2

(
2η + C1

(
cη + d

σs−r(x̄1)1√
s− r

))
, (15)

for constants c, d only depending on the RIP constant δr
2(s−r), and where C1

and C2 are given by

C1 = ‖A1‖2 = max
x1 6=0

‖A1x1‖2

‖x1‖2
and C2 = ‖A†

2‖ =
1

minx2 6=0
‖A2x‖2
‖x‖2

.

(Since A2 is full column rank recall that A†
2 = (A>

2 A2)
−1A>

2 and C2 > 0.)

Proof : From Theorem 4.2, the matrix PA1, where P is given by (8), satisfies
the condition of Theorem 5.1. Thus, since P is a projection matrix,

‖PA1x̄1 − Py‖ = ‖PAx̄− Py‖ ≤ ‖Ax̄− y‖ ≤ η,

and a solution x#
1 of

min
x1∈RN−r

‖x1‖1 s.t. ‖PA1x1 − Py‖2 ≤ η, (16)

satisfies

‖x#
1 − x̄1‖2 ≤ cη + d

σs−r(x1)1√
s− r

. (17)

Now, we will prove that the solutions of problems (13) and (16) coincide
in their x1 parts, completing thus the proof of (14). Let (x∗1, x

∗
2) be a feasible

point of (13). Again, since P is a projection matrix, we obtain that

‖PA1x
∗
1 − Py‖2 = ‖P(A1x

∗
1 + A2x

∗
2 − y)‖2 ≤ ‖A1x

∗
1 + A2x

∗
2 − y‖2 ≤ η,

which proves that x∗1 is a feasible point of (16). Now let x#
1 be a feasible

point of (16). Since I − P projects (orthogonally) onto the column space

of A2 there must exist an x#
2 such that A2x

#
2 = (I −P)(y−A1x

#
1 ), and then

‖A1x
#
1 + A2x

#
2 − y‖2 = ‖PA1x

#
1 − Py‖2 ≤ η.
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Therefore (x#
1 , x#

2 ) is a feasible point of (13). Hence we have proved that,
any solution of problem (13) is also a solution of problem (16), and the
inequality (14) results directly from (17).

We now use this inequality to bound the error on the reconstruction of x̄2.
Since both x̄ and x∗ satisfy the measurements constraints ‖Ax− y‖2 ≤ η we
have that

‖A1(x̄
∗
1 − x1) + A2(x̄

∗
2 − x2)‖2 ≤ 2η,

and thus

‖A2(x
∗
2 − x̄2)‖2 ≤ 2η + ‖A1(x

∗
1 − x̄1)‖2.

Using the definitions of C1 and C2 we have

‖x∗2 − x̄2‖2 ≤ C2 (2η + C1‖x∗1 − x̄1‖2) ,

and the result (15) follows from bounding ‖x∗1 − x̄1‖2 by (14) in the above
inequality.

The condition on the matrix A imposed in the previous theorem involved
only its partial RIP constant. In the next theorem we describe how one can
bound the constants C1 and C2 using the RIP constant of A, which is known
to be small in many applications.

Theorem 5.3. The constants C1 and C2 of Theorem 5.2 can be bounded
using the RIP constant δs of order s of A = (A1, A2) ∈ Rk×N in the following
way:

C1 ≤
√

1 + δs and C2 ≤ 1√
1− δs

.

Proof : For every x1 ∈ RN−r there exist m = dN−r
s e vectors a1, ..., am ∈ RN

such that (x>1 , 0)> =
∑m

i=1 ai, each ai is s−sparse, and no two vectors share
non-zero components. As a result, the bound on C1 can be derived from

‖A1x1‖2 ≤
m∑

i=1

‖Aai‖2 ≤ (1 + δs)
m∑

i=1

‖ai‖2 = (1 + δs)‖x1‖2.

For the bound on C2 we note first that A2x2 = A(0, x>2 )> and that (0, x>2 )>

is s−sparse (since r ≤ s). By the definition of the RIP constant,

‖A2x2‖2 = ‖A(0, x>2 )>‖2 ≥
√

1− δs‖(0, x>2 )>‖2 =
√

1− δs‖x2‖2,

proving that 1/C2 ≥
√

1− δs.
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6. Concluding Remarks
In some applications of Compressed Sensing one may be interested in a

sparse (or compressible) vector whose support is partially known in advance.
In such a setting we show that one can consider the `1-minimization of the
part of the vector for which the support is not known. We have shown that
sparse recovery can be then ensured under conditions that are potentially
weaker than those assumed for the full approach. Intuitively, the bound on
the number k of measurements needed for a matrix to satisfy Partial RIP
(with high probability) should decrease as the number r of known dense
components increases. However, to the best of our knowledge, there is no
good understanding of this dependency, and we plan to address this in our
future research.
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