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INTERPOLATING POLYNOMIALS AND THEIR

APPLICATION TO DERIVATIVE-FREE OPTIMIZATION
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Abstract: Interpolation-based trust-region methods are an important class of al-
gorithms for Derivative-Free Optimization which rely on locally approximating an
objective function by quadratic polynomial interpolation models, frequently built
from less points than there are basis components.

Often, in practical applications, the contribution of the problem variables to the
objective function is such that many pairwise correlations between variables are
negligible, implying, in the smooth case, a sparse structure in the Hessian matrix.
To be able to exploit Hessian sparsity, existing optimization approaches require the
knowledge of the sparsity structure. The goal of this paper is to develop and analyze
a method where the sparse models are constructed automatically.

The sparse recovery theory developed recently in the field of compressed sensing
characterizes conditions under which a sparse vector can be accurately recovered
from few random measurements. Such a recovery is achieved by minimizing the `1-
norm of a vector subject to the measurements constraints. We suggest an approach
for building sparse quadratic polynomial interpolation models by minimizing the
`1-norm of the entries of the model Hessian subject to the interpolation conditions.
We show that this procedure recovers accurate models when the function Hessian
is sparse, using relatively few randomly selected sample points.

Motivated by this result, we developed a practical interpolation-based trust-
region method using deterministic sample sets and minimum `1-norm quadratic
models. Our computational results show that the new approach exhibits a promis-
ing numerical performance both in the general case and in the sparse one.

Keywords: Derivative-free optimization, interpolation-based trust-region meth-
ods, random sampling, sparse recovery, compressed sensing, `1-minimization.
AMS Subject Classification (1991): 65D05, 90C30, 90C56, 90C90.

1. Introduction
The wide range of applications of mathematical optimization have been

recently enriched by the developments in emerging areas such as Machine
Learning and Compressed Sensing, where a structure of a model needs to be
recovered from some observations. Specially designed optimization methods
have been developed to handle the new applications that often give rise to

Date: April 15, 2011.
Support for this work was provided by FCT under the grant PTDC/MAT/098214/2008.

1



2 A. BANDEIRA, K. SCHEINBERG AND L. N. VICENTE

large scale, but convex and well structured problems. However, in many
real-world applications, the objective function is calculated by some costly
black-box simulation which does not provide information about its deriva-
tives. Although one could estimate the derivatives, e.g., by finite differences,
such a process is often too expensive and can produce misleading results in
the presence of noise. An alternative is to consider methods that do not
require derivative information, and such methods are the subject of study in
Derivative-Free Optimization (DFO). DFO, thus, deals with objects of un-
known structure. In this paper we propose a reverse relationship between op-
timization and compressed sensing — instead of using optimization methods
for compressed sensing we use the results of compressed sensing to improve
optimization methods by recovering and exploiting possible structures of the
black-box objective functions.

An important class of methods in DFO are interpolation-based trust-region
methods. At each iteration, these methods build a model of the objective
function that locally approximates it in some trust region centered at the
current iterate. The model is then minimized in the trust region, and the
corresponding minimizer is, hopefully, a better candidate for being a mini-
mizer of the objective function in the trust region, and thus, possibly, is taken
as the next iterate. The minimization of the model in the trust region should,
however, be an easy task, hence the models should be simple. The simplest
yet meaningful class of models is the class of linear functions. Their drawback
is that they do not capture the curvature of the objective function and thus
slow down the convergence of the methods. A natural and convenient non-
linear class of models, which is often efficiently used, is the quadratic class.
Determined quadratic interpolation requires sample sets whose cardinality is
approximately equal to the square of the dimension, which may turn out to
be too costly if the objective function is expensive to evaluate. An alterna-
tive is to consider underdetermined quadratic models, using sample sets of
smaller size than the ones needed for determined interpolation. However, in
this case, the quality of the model may deteriorate.

In many applications, the objective function has structure, such as sparsity
of the Hessian, which one may exploit to improve the efficiency of an opti-
mization method. In DFO, since derivatives are not known, so is, typically,
their sparsity structure. The main idea of our work is to implicitly and au-
tomatically take advantage of the sparsity of the Hessian to build accurate
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models from relatively small sample sets. This goal is achieved by minimizing
the `1-norm of the Hessian model coefficients.

Our work relies on the sparse solution recovery theory developed recently
in the field of compressed sensing, where one characterizes conditions under
which a sparse signal can be accurately recovered from few random measure-
ments. Such type of recovery is achieved by minimizing the `1-norm of the
unknown signal subject to measurement constraints and can be accomplished
in polynomial time.

The contribution of this paper is twofold. First, we show that it is possible
to compute fully quadratic models (i.e., models with the same accuracy as
second order Taylor models) for functions defined on Rn with sparse Hessians
based on randomly selected sample sets with only O(n(log n)4) sample points
(instead of the O(n2) required for the determined quadratic case) when the
number of non-zero elements in the Hessian of the function is O(n). Second,
we introduce a practical interpolation-based trust-region DFO algorithm ex-
hibiting competitive numerical performance.

The state-of-the-art approach is to build quadratic interpolation models,
based on sample sets of any size, between n+ 1 and (n+ 1)(n+ 2)/2, taking
up the available degrees of freedom by choosing the models with the smallest
Frobenius norm of the Hessian [9] or Hessian change [19], and this approach
has been shown to be robust and efficient in practice (see also the recent
paper [15] where the models are always determined, varying thus the number
of basis components). In the approach proposed in this paper, the degrees of
freedom are taken up by minimizing the `1-norm of the Hessian of the model.
We have tested the practical DFO algorithm using both minimum Frobenius
and minimum `1-norm models. Our results demonstrate the ability of the
`1-approach to improve the results of the Frobenius one in the presence of
some form of sparsity in the Hessian of the objective function.

This paper is organized as follows. In Section 2, we introduce background
material on interpolation models. We give a brief introduction to compressed
sensing in Section 3, introducing also concepts related to partially sparse
recovery (the details are left to a separate paper [2]). In Section 4, we obtain
the main result mentioned above for sparse recovery of models for functions
with sparse Hessians, using an orthogonal basis for the space of polynomials
of degree ≤ 2. The proof of this result is based on sparse bounded orthogonal
expansions which are briefly described in the beginning of Section 4. In
Section 5, we introduce our practical interpolation-based trust-region method
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and present numerical results for the two underdetermined quadratic model
variants, defined by minimum Frobenius and `1-norm minimization. Finally,
in Section 6 we draw some conclusions and discuss possible avenues for future
research.

The paper makes extensive use of vector, matrix, and functional norms.
We will use `p or ‖ · ‖p for vector and matrix norms, without ambiguity. The
notation Bp(x; ∆) will represent a closed ball in Rn, centered at x and of
radius ∆, in the `p-norm, i.e., Bp(x; ∆) = {y ∈ Rn : ‖y − x‖p ≤ ∆}. For
norms of functions on normed spaces L, we will use ‖ · ‖L.

2. Use of models in DFO trust-region methods
2.1. Fully linear and fully quadratic models. One of the main tech-
niques used in DFO consists of locally modeling the objective function f :
D ⊂ Rn → R by models that are “simple” enough to be optimized easily
and sufficiently “complex” to approximate f well. If a reliable estimate of
the derivatives of the function is available, then one typically uses Taylor
approximations of first and second order as polynomial models of f(x). In
DFO one has no access to derivatives or their accurate estimates, and hence
other model classes are considered. However, the essential approximation
quality of the Taylor models is required to be sustained by the models used
in DFO. For instance, the simplest first order approximation is provided by,
the so-called, fully linear models, whose definition requires f to be smooth
up to the first order.

Assumption 2.1. Assume that f is continuously differentiable with Lipschitz
continuous gradient (on an open set containing D).

The following definition is essentially the same as given in [9, Definition
6.1] stated using balls in an arbitrary `p-norm, with p ∈ (0,+∞].

Definition 2.1. Let a function f : D → R satisfying Assumption 2.1 be
given. A set of model functions M = {m : Rn → R, m ∈ C1} is called a
fully linear class of models if the following hold:

(1) There exist positive constants κef , κeg, and νm
1 , such that for any

x0 ∈ D and ∆ ∈ (0,∆max] there exists a model function m in M,
with Lipschitz continuous gradient and corresponding Lipschitz con-
stant bounded by νm

1 , and such that
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• the error between the gradient of the model and the gradient of
the function satisfies

‖∇f(u)−∇m(u)‖2 ≤ κeg ∆, ∀u ∈ Bp(x0; ∆),

• and the error between the model and the function satisfies

|f(u)−m(u)| ≤ κef ∆2, ∀u ∈ Bp(x0; ∆).

Such a model m is called fully linear on Bp(x0; ∆).
(2) For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with re-
spect to x0 and ∆) number of steps can
• either provide a certificate for a given model m ∈ M that it is

fully linear on Bp(x0; ∆),
• or fail to provide such a certificate and find a model m̃ ∈M fully

linear on Bp(x0; ∆).

It is important to note that this definition does not restrict fully linear
models to linear functions, but instead considers models that approximate
f as well as the linear Taylor approximations. Linear models such as linear
interpolation (and first order Taylor approximation) do not capture the cur-
vature information of the function that they are approximating. To achieve
better practical local convergence rates in general it is essential to consider
nonlinear models. In this paper we focus on quadratic interpolation models,
which ultimately aim at a higher degree of approximation accuracy. We call
such approximation models fully quadratic, following [9], and note that, as
in the linear case, one can consider a wider class of models not necessarily
quadratic. We now require the function f to exhibit smoothness up to the
second order.

Assumption 2.2. Assume that f is twice differentiable with Lipschitz con-
tinuous Hessian (on an open set containing D).

Below we state the definition of fully quadratic models given in [9, Defini-
tion 6.2], again using balls in an `p-norm, with arbitrary p ∈ (0,+∞].

Definition 2.2. Let a function f : D → R satisfying Assumption 2.2 be
given. A set of model functions M = {m : Rn → R, m ∈ C2} is called a
fully quadratic class of models if the following hold:

(1) There exist positive constants κef , κeg, κeh, and νm
2 , such that for

any x0 ∈ D and ∆ ∈ (0,∆max] there exists a model function m in
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M, with Lipschitz continuous Hessian and corresponding Lipschitz
constant bounded by νm

2 , and such that
• the error between the Hessian of the model and the Hessian of the

function satisfies

‖∇2f(u)−∇2m(u)‖2 ≤ κeh ∆, ∀u ∈ Bp(x0; ∆),

• the error between the gradient of the model and the gradient of
the function satisfies

‖∇f(u)−∇m(u)‖2 ≤ κeg ∆2, ∀u ∈ Bp(x0; ∆),

• and the error between the model and the function satisfies

|f(u)−m(u)| ≤ κef ∆3, ∀u ∈ Bp(x0; ∆).

Such a model m is called fully quadratic on Bp(x0; ∆).
(2) For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with re-
spect to x0 and ∆) number of steps can
• either provide a certificate for a given model m ∈ M that it is

fully quadratic on Bp(x0; ∆),
• or fail to provide such a certificate and find a model m̃ ∈M fully

quadratic on Bp(x0; ∆).

This definition of a fully quadratic class requires that given a model from
the class one can either prove that it is a fully quadratic model of f on a given
Bp(x0; ∆), and for given κef , κeg, κeh, and νm

2 , independent of x0 and ∆, or
provide such a model. It is shown in [9, Chapter 6] that model-improvement
algorithms exist for quadratic interpolation and regression models. Hence
quadratic interpolation models form a fully quadratic class of models. They
also exist for a fully linear class of models, where a model-improvement al-
gorithm in [9] checks if a quadratic interpolation model is built using a well-
poised set of at least n + 1 interpolation points. To certify that a model is
fully quadratic, a model-improvement algorithm in [9] requires that the set
of the interpolation points is well poised and contains (n+1)(n+2)/2 points
in the proximity of x0. Thus, using a model-improvement algorithm often
implies considerable computational cost: it may be prohibitive to maintain
sets of (n+1)(n+2)/2 sample points near the current iterate due to the cost
of obtaining the function values and the dimension of the problem. More-
over, verifying that the sample set is well poised may require a factorization
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of a matrix with (n+ 1)(n+ 2)/2 rows and columns resulting in O(n6) com-
plexity. For small n, this additional cost may be negligible, but it becomes
substantial as n grows beyond a few dozens.

In this paper we show that for any given function f , there exist constants
κef , κeg, κeh, and νm

2 and the corresponding fully quadratic class of quadratic
models M for which, given x0 and ∆, we can construct a fully quadratic
model of f on Bp(x0; ∆) from M, with high probability, using, possibly, less
than (n+ 1)(n+ 2)/2 sample points.

Note that Definition 2.2 requires the existence of an algorithm which can
deterministically certify that a given model is fully quadratic. This require-
ment is imposed because it enables the deterministic convergence analysis of
an algorithmic framework, provided in [8] (see also [9, Chapter 10]), based on
fully quadratic (or fully linear) models. In contrast, in this work, we consider
an algorithm which cannot certify that a given model is fully quadratic, but
can construct such models with high probability, hopefully, at a considerable
computational saving. To adapt this approach in a convergent algorithmic
framework, a stochastic version of such a framework has to be designed and
analyzed. This work is a subject of future research (see [13] for some relevant
theoretical results).

Finally, we want to point out that while the full convergence theory for the
new model-based algorithmic framework is under development, the practical
implementation reported in this paper shows that in a simple trust-region
framework the new method works as well as or better than other methods
discussed in [9].

2.2. Quadratic polynomial interpolation models. In model based DFO
fully quadratic models of f are often obtained from the class of quadratic
polynomials by interpolating f on some sample set of points Y . A detailed
description of this process and related theory is given in [9]. Here we present
briefly the basic ideas and necessary notation.

Let P2
n be the space of polynomials of degree less than or equal to 2 in Rn.

The dimension of this space is q = (n + 1)(n + 2)/2. A basis φ for P2
n will

be denoted by φ = {φι(x)} with ι = 1, . . . , q. The most natural basis for
polynomial spaces is the one consisting of the monomials, or the canonical
basis. This basis appears naturally in Taylor models and is given for P2

n by

φ̄ =

{
1

2
u2

1, ...,
1

2
u2

n, u1u2, ..., un−1un, u1, ..., un, 1

}
. (1)
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We say that the quadratic function q interpolates f at a given point w
if q(w) = f(w). Assume that we are given a set W = {w1, ..., wp} ⊂ Rn of
interpolation points. A quadratic function q that interpolates f at the points
in W , written as

q(u) =

q∑
ι=1

αιφι(u),

must satisfy the following p interpolation conditions
∑q

ι=1 αιφι(wi) = f(wi),
i = 1, ..., p. These conditions form a linear system,

M(φ,W )α = f(W ), (2)

where M(φ,W ) is the interpolation matrix and f(W )i = f(wi), i = 1, ..., p.
A sample set W is poised for (determined) quadratic interpolation if the

corresponding interpolation matrixM(φ,W ) is square (p=q) and non-singular,
guaranteeing that there exists a unique quadratic polynomial q such that
q(W ) = f(W ). It is not hard to prove that this definition of poisedness and
the uniqueness of the interpolant do not depend either on f or on the basis
φ (see [9, Chapter 3]).

In [9, Chapters 3 and 6] rigorous conditions on W are derived which en-
sure “well poisedness” for quadratic interpolation. Under these conditions
it is shown that if W ⊂ B2(x0; ∆) is a well-poised sample set for quadratic
interpolation, then the quadratic function q that interpolates f on W is a
fully quadratic model for f on B2(x0; ∆) for some fixed positive constants
κef , κeg, κeh, and νm

2 .
One of the conditions imposed in [9] on a sample set W to guarantee fully

quadratic interpolation model, is that W has to contain p = (n+1)(n+2)/2
points. However, building such a sample set costs (n+1)(n+2)/2 evaluations
of the function f which is too expensive for many applications. A typical
efficient approach is to consider smaller sample sets, which makes the linear
system in (2) underdetermined.

2.2.1. Underdetermined quadratic interpolation. We will now consider the
case where the size of the sample set W satisfies n+1 < p < (n+1)(n+2)/2,
in other words, when there are more points than is required for linear inter-
polation but fewer than is necessary for determined quadratic interpolation.
If we consider the class of all quadratic functions that interpolate f on W ,
then we can choose a model from this class that for one reason or other seems
the most suitable. In particular approaches in [7] and [26] select a quadratic
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model with the smallest possible Frobenius norm of the Hessian matrix, while
in [19] a model is chosen to minimize the Frobenius norm of the change of
the Hessian. The former approach is studied in detail in [9, Chapter 5]. Let
us introduce the basic ideas here.

To properly introduce the underdetermined models that we wish to consider
we split the basis φ̄ in (1) into its linear and quadratic components: φ̄L =
{u1, ..., un, 1} and φ̄Q = φ̄ \ φ̄L.

An essential property of a sample set W with |W | > n + 1 is that the
matrix M(φ̄L,W ) must have sufficiently linearly independent columns (in [9,
Section 4.4] it is said that W is well poised for linear regression). Roughly
speaking, well poisedness means that one has a relatively small condition
number of a scaled version of M(φ̄L,W ), see [9, Section 4.4]. In that case for
any quadratic model which interpolates f on W the following holds (see [9,
Theorem 5.4] for a rigorous statement and proof).

Theorem 2.1. For any x0 ∈ D and ∆ ∈ (0,∆max], let q be a quadratic
function that interpolates f in W , where W ⊂ B2(x0; ∆) is a sample set well
poised for linear regression. Then, q is fully linear (see Definition 2.1) for f
on B2(x0; ∆) where the constants κef and κeg are O(1 + ‖∇2q‖2) and depend
on the condition number of a scaled version of M(φ̄L,W ).

Theorem 2.1 suggests that one should build underdetermined quadratic
models with “small” model Hessians, thus motivating minimizing its Frobe-
nius norm subject to (2) as in [7] and [26]. Recalling the split of the basis
φ̄ into the linear and the quadratic parts, one can write the interpolation
model as

q(u) = αT
Qφ̄Q(u) + αT

Lφ̄L(u),

where αQ and αL are the appropriate parts of the coefficient vector α. The
minimum Frobenius norm solution [9, Section 5.3] can now be defined as the
solution to the following optimization problem

min 1
2‖αQ‖2

2

s. t. M(φ̄Q,W )αQ +M(φ̄L,W )αL = f(W ).
(3)

(If |W | = (n + 1)(n + 2)/2, this reduces to determined quadratic interpo-
lation.) Note that (3) is a convex quadratic program with a closed form
solution.

In [9, Section 5.3] it is shown that under some additional conditions of
well poisedness on W , the minimum Frobenius norm (MFN) interpolating
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model can be fully linear with uniformly bounded error constants κef and κeg.
Hence, the MFN quadratic models provide at least as accurate interpolation
as linear models.

On the other hand, it has not been shown so far that any underdetermined
quadratic interpolation model provides a higher order approximation of f .
The purpose of this paper is to show how to construct, with high probability,
underdetermined quadratic interpolation models that are fully quadratic.

2.2.2. Sparse quadratic interpolation. It is clear that without any additional
assumptions on f we cannot guarantee a fully quadratic accuracy by an
interpolation model based on less than (n + 1)(n + 2)/2 points. We will
thus consider the structure that is most commonly observed and exploited in
large-scale derivative based optimization: the (approximate) sparsity of the
Hessian of f . Special structure, in particular group partial separability of
f , has been exploited in DFO before, see [5]. However, it was assumed that
the specific structure is known in advance. In derivative-based optimization
where the Hessian is explicitly available, the sparsity of the Hessian is also
assumed to be given. In the derivative-free setting, however, it is unreason-
able to assume that the sparsity structure of the Hessian is known. Moreover,
we do not need to assume that there exists a fixed sparsity structure of the
Hessian.

What we assume in this paper is that the Hessian of f is “approximately”
sparse in the domain where the model is built. In other words we assume the
existence of a sparse fully quadratic model (a rigorous definition is provided
in Section 4.3). In the case where ∇2f is itself sparse, a Taylor expansion
may serve as such a model. The main focus of our work is to recover sparse
quadratic models from the interpolation conditions.

Instead of solving (3) we construct quadratic models from the solution to
the following optimization problem

min ‖αQ‖1

s. t. M(φ̄Q,W )αQ +M(φ̄L,W )αL = f(W ),
(4)

where αQ, αL, φ̄Q, and φ̄L are defined as in (3). Solving (4) is tractable, since
it is equivalent to a linear program. Note that minimizing the `1-norm of the
entries of the Hessian model indirectly controls its `2-norm and therefore it
is an appealing approach from the perspective of Theorem 2.1. This makes
the new approach a reasonable alternative to building MFN models. As we
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will show in this paper, this approach is advantageous when the Hessian
of f has zero entries (in other words, when there is no direct interaction
between some of the variables of the objective function f). In such cases,
as we will show in Section 4, we are able to recover, with high probability,
fully quadratic models with much less than (n+ 1)(n+ 2)/2 random points.
This is the first result where a fully quadratic model is constructed from an
underdetermined interpolation system. To prove this result we will rely on
sparse vector recovery theory developed in the field of compressed sensing. In
the next section we introduce the basic concepts and results that are involved.

3. Compressed sensing
Compressed sensing is a field concerned with the recovery of a sparse vec-

tor z̄ ∈ RN satisfying b = Az̄, given a vector b ∈ Rk and a matrix A ∈ Rk×N

with significantly fewer rows than columns (k � N). One expects that the
desired sparse vector z̄ ∈ RN can be recovered by minimizing the number of
non-zero components in

min card(z) s. t. Az = b, (5)

where card(z) = |{i ∈ {1, . . . , n} : zi 6= 0}|. Since this problem is generally
NP-Hard, one considers a more tractable approximation

min ‖z‖1 s. t. Az = b, (6)

which is equivalent to a linear program. The main results of compressed
sensing show that, under certain conditions on the (possibly random) matrix
A, the solution of (6) is in fact z̄ and coincides with the optimal solution
of (5) (possibly, with high probability). We will now discuss such compressed
sensing results that are useful for our purposes.

3.1. General concepts and properties. One says that a vector z is
s−sparse if card(z) ≤ s. In compressed sensing, one is interested in ma-
trices A such that, for every s−sparse vector z̄, the information given by
b = Az̄ is sufficient to recover z̄ and, moreover, that such recovery can be ac-
complished by solving problem (6). The following definition of the Restricted
Isometry Property (RIP) is introduced in [4].

Definition 3.1 (Restricted Isometry Property). One says that δs > 0 is the
Restricted Isometry Property Constant, or RIP constant, of order s of the
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matrix A ∈ Rk×N if δs is the smallest positive real such that:

(1− δs) ‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δs) ‖z‖2
2

for every s−sparse vector z.

The following theorem (see, e.g., [21]) provides a useful sufficient condition
for successful recovery by (6) with b = Az̄.

Theorem 3.1. Let A ∈ Rk×N and 2s < N . If 2δ2s + δs < 1, where δs and δ2s

are the RIP constants of A of order s and 2s, respectively, then, for every
s−sparse vector z̄, problem (6) with b = Az̄ has an unique solution and it is
given by z̄.

Although the RIP provides useful sufficient conditions for sparse recovery,
it is a difficult and still open problem to find deterministic matrices which
satisfy such property when the underlying system is highly underdetermined
(see [24] for a discussion on this topic). It turns out that random matrices
provide a better ground for this analysis (see for instance, one of the classical
results in [3]). Note that δ2s <

1
3 trivially implies the sufficient condition of

Theorem 3.1, and in fact it is the condition that is usually assumed.

3.2. Partially sparse recovery. To be able to apply sparse recovery results
of compressed sensing to our setting we first observe that problem (4) is
similar to problem (6), however, it differs in that only a part of the solution
vector α is expected to be sparse and appears in the objective function. We
hence need to consider an extended recovery result for partial sparsity.

Formally, one has z = (z1, z2), where z1 ∈ RN−r is (s − r)−sparse and
z2 ∈ Rr. A natural generalization of problem (6) to this setting of partially
sparse recovery is given by

min ‖z1‖1 s. t. A1z1 + A2z2 = b, (7)

where A = (A1, A2) and A1 has the first N − r columns of A and A2 the last
r. One can easily see that problem (4) fits into this formulation by setting
z1 = αQ, z2 = αL, A1 = M(φ̄Q,W ), A2 = M(φ̄L,W ), and r = n+ 1.

We can define an extension of the RIP to the partially sparse recovery
setting. Under the assumption that A2 is full column rank (which in turn is
implied by the RIP; see [2]), let

P = I − A2
(
A>2 A2

)−1
A>2 (8)
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be the matrix representing the projection from RN onto R (A2)
⊥ . Then, the

problem of recovering (z̄1, z̄2), where z̄1 is an (s− r)–sparse vector satisfying
A1z̄1+A2z̄2 = b, can be stated as the problem of recovering an (s−r)−sparse
vector z̄1 satisfying (PA1) z1 = Pb and then recovering z̄2 satisfying A2z2 =
b−A1z̄1. The latter task results in solving a linear system given that A2 has
full column rank and (PA1)z̄1 = Pb. Note that the former task reduces to
the classical setting of compressed sensing. These considerations motivate
the following definition of RIP for partially sparse recovery.

Definition 3.2 (Partial RIP Property). We say that δr
s−r > 0 is the Partial

Restricted Isometry Property Constant of order s − r for recovery of size
N − r of the matrix A = (A1, A2) ∈ Rk×N (with A1 ∈ Rk×(N−r), A2 ∈ Rk×r,
and r ≤ s) if A2 is full column rank and δr

s−r is the RIP constant of order
s− r (see Definition 3.1) of the matrix PA1, where P is given by (8).

When r = 0 the Partial RIP reduces to the RIP of Definition 3.1. In [2] we
show a simple proof of the fact that if a matrix A satisfies RIP for s−sparse
recovery with δs constant, then it also satisfies Partial RIP with δr

s−r = δs.
It is also shown there that Partial RIP implies that the solution of (7) is the
s−sparse solution z̄ = (z̄1, z̄2) with z̄1 the (s − r)−sparse vector and z̄2 the
dense one. Hence to be able to apply sparse recovery results to problem (4),
which is of interest to us, it suffices to construct matrices M(φ̄,W ) for which
the RIP property holds. In [25] a specific sufficient condition for partially
recovery is given, but it remains to be seen if we can use such a result to
strengthen the bounds on the sample set size which we derive in Section 4.
To establish these bounds, we will rely on results on random matrices which
apply to our specific setting. We discuss these results in the next section.

4. Recovery of Sparse Hessians
4.1. Sparse recovery using orthonormal bases. For the purposes of
building quadratic models based on sparse Hessians we are interested in
solving (4) which is equivalent to (7), where A = M(φ,W ) = (M(φQ,W ),
M(φL,W )), A1 = M(φQ, Y ), A2 = M(φL, Y ), z1 = αQ, z2 = αL, b = f(W ),
and r = n + 1. In this case φ is a basis in the space P2

n of polynomials of
degree ≤ 2 of dimension N = (n + 1)(n + 2)/2 and the resulting quadratic
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model q is constructed as

q(x) =
N∑

ι=1

αιφι(x)

where α is the vector of coefficients which is presumed to be sparse.
Let us now consider a general setting of a finite dimensional space of func-

tions (defined in some domain D) spanned by a basis φ = {φ1, ..., φN} of func-
tions (not necessarily polynomial). Let us also consider a function g : D → R
which belongs to that space, in other words g can be written as

g =
N∑

j=1

αjφj,

for some expansion coefficients α1, ..., αN . We are interested in the problem
of recovering g from its values in some finite subset W = {w1, ..., wk} ⊂ D
with k ≤ N , with the additional assumption that g is s−sparse, meaning
that the expansion coefficient vector α is s−sparse. The purpose of this
section is to provide conditions under which such recovery occurs with high
probability. Although the results of this section hold also for complex valued
functions, we will restrict ourselves to the real case, because the functions we
are interested in DFO are real valued. We consider a probability measure µ
defined in D (having in mind that D ⊂ Rn). The basis φ will be required to
satisfy the following orthogonality property [21].

Definition 4.1 (K-bounded orthonormal basis). A basis φ = {φ1, ..., φN} is
said to be an orthonormal basis satisfying the K-boundedness condition (in
the domain D for the measure µ) if∫

D
φi(u)φj(u)dµ(u) = δij

and ‖φj‖L∞(D) ≤ K, for all i, j ∈ {1, . . . , N}.

The following theorem [21] shows that by selecting the sample set W ran-
domly we can recover the sparse coefficient vector with fewer sample points
than basis coefficients.

Theorem 4.1 (Rauhut [21]). Let M(φ,W ) ∈ Rk×N be the interpolation
matrix associated with an orthonormal basis satisfying the K-boundedness
condition. Assume that the sample set W = {w1, ..., wk} ⊂ D is chosen
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randomly where each point is drawn independently according to the probability
measure µ. Further assume that

k

log k
≥ c1K

2s(log s)2 logN, (9)

k ≥ c2K
2s log

(
1

ε

)
, (10)

where c1, c2 > 0 are universal constants and s ∈ {1, . . . , N}. Then, with
probability at least 1 − ε, ε ∈ (0, 1), 1√

k
A = 1√

k
M(φ,W ) satisfies the RIP

property (Definition 3.1) with constant δ2s <
1
3.

From the classical results in compressed sensing (see Theorem 3.1), this
results implies that every s−sparse vector z̄ ∈ RN is the unique solution to
the `1-minimization problem (6), with A = M(φ,W ) and b = M(φ,W )z̄ =
g(W ). However, it also implies, by [2, Theorem 4.2], that every s−sparse
vector (z̄1, z̄2) with (s− r)−sparse z̄1 ∈ RN−r and possibly dense z̄2 ∈ Rr, is
the unique solution to the `1-minimization problem (7), with A = M(φ,W )
and b = M(φ,W )z̄ = g(W ). Note that it is a scaled version of A, given

by A/
√
k and not A itself, that satisfies the RIP property but this does not

affect the recovery results in the exact setting. As we will see below the
scaling interferes in the noisy case.

It is worth noting that an optimal result is obtained if one sets ε = e
− k

c2K2s

in the sense that (10) is satisfied as equality. Also, from (9) we obtain k ≥
(log k)c1K

2 s(log s)2 logN , and so, using log s ≥ 1, 1−e−
k

c2K2s ≥ 1−N−γ log k,
for the universal constant γ = c1/c2. Thus, ε can be set such that the
probability of success 1− ε satisfies

1− ε ≥ 1−N−γ log k, (11)

showing that this probability of success grows polynomially with N and k.
As we observe later in this section, we are not interested in satisfying

the interpolation conditions exactly, hence we need to consider instead of
b = g(W ) a perturbed version b = g(W ) + ε, with a known bound on the
size of ε. In order to extend the results we just described to the case of noisy
recovery, some modifications of problem (6) are needed. In the case of full
noisy recovery it is typical to consider, instead of the formulation (6), the
following optimization problem:

min ‖z‖1 s. t. ‖Az − b‖2 ≤ η, (12)
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where η is a positive number. We now present a recovery result based on
the formulation (12) and thus appropriate to the noisy case. The proof is
available in [21].

Theorem 4.2 (Rauhut [21]). Under the same assumptions of Theorem 4.1,
with probability at least 1−ε, ε ∈ (0, 1), the following holds for every s−sparse
vector z̄:

Let noisy samples b = M(φ,W )z̄ + ε with

‖ε‖2 ≤ η

be given, for any η non-negative, and let z∗ be the solution of the `1-minimiza-
tion problem (12) with A = M(φ,W ). Then,

‖z∗ − z̄‖2 ≤ ctotal√
k
η (13)

for some universal constant ctotal > 0.

Since we are interested in the partially sparse recovery case, we need to
consider instead

min ‖z1‖1 s. t. ‖Az − b‖2 ≤ η, (14)

The extension of Theorem 4.2 to partially recovery for the noisy case is
obtained from the full noisy recovery, analogously to the exact case (see [2,
Theorem 5.2] for a proof).

Theorem 4.3. Under the same assumptions of Theorem 4.1, with probability
at least 1− ε, ε ∈ (0, 1), the following holds for every vector z̄ = (z̄1, z̄2) with
r ≤ s and z̄1 an (s− r)−sparse vector:

Let noisy samples b = M(φ,W )z̄ + ε with

‖ε‖2 ≤ η

be given, for any η non-negative, and let z∗ = (z∗1, z
∗
2) be the solution of the

`1-minimization problem (14) with A = M(φ,W ). Then,

‖z∗ − z̄‖2 ≤
cpartial√

k
η, (15)

for some universal constant cpartial > 0.

It is worth noting that the factor 1/
√
k appears in (13) and (15) due to the

fact that it is A/
√
k (and not A) that satisfies the RIP property. Also, we

note that it is possible extend these results to approximately sparse vectors
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(see [2]), however we do not to include such an extension in the present paper
for the sake of clarity of the exposition.

4.2. Sparse recovery using polynomial orthonormal expansions. As
described in Section 2, we are interested in recovering a local quadratic model
of the objective function f : D ⊂ Rn → R near a point x0. Therefore we
consider the space of quadratic functions defined in Bp(x0; ∆). To apply the
results in Theorems 4.1 and 4.2 we need to build an appropriate orthonor-
mal basis for the space of quadratic functions in Bp(x0; ∆). In addition we
require that the models we recover are expected to be sparse in such a ba-
sis. In this paper we consider models that reconstruct sparse Hessians of
f , and thus it is natural to include into the basis polynomials of the forms
cij (ui − x0) (uj − x0), with some constant cij (we will henceforth set x0 = 0
without lost of generality). It is then required that these elements of the
basis do not appear as parts of other basis polynomials. The orthonormal
basis should satisfy the K-boundedness condition for some constant K inde-
pendent1 of the dimension n.

We will now build such an orthonormal basis on the domainD = B∞(0; ∆) =
[−∆,∆]n (the `∞-ball centered at the origin and of radius ∆), using the uni-
form probability measure µ and the corresponding L2 inner product.

4.2.1. An orthonormal basis on hypercubes. Let µ be the uniform proba-
bility measure on B∞(0; ∆). Note that due to the geometric properties of
B∞(0; ∆) = [−∆,∆]n, one has∫

[−∆,∆]n
g(ui)h(u1, ..., ui−1, ui+1, ..., un)du = (16)

=

∫ ∆

−∆
g(ui)dui

∫
[−∆,∆]n−1

h(u1, ..., ui−1, ui+1, ..., un)du1 · · · dui−1dui+1 · · · dun,

for appropriate integrable functions g and h.
We want to find an orthonormal basis, with respect to µ, of the second

degree polynomials on B∞(0; ∆) that contains the polynomials cij{uiuj}i6=j.
We are considering only the off-diagonal part of the Hessian since this is the
part which is expected to be sparse (indicating the lack of direct variable
interactions). It is easy to see that the n(n − 1)/2 polynomial functions

1Otherwise the results in Theorems 4.1 and 4.2 become weaker. Recently, progress has been made
in addressing the case when K grows with the dimension, where the main idea is to precondition
the interpolation matrix (see [22]).
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{cijuiuj}i6=j are all orthogonal, and that due to symmetry all cij constants
are equal, to say, k2 (a normalizing constant). Hence we have n(n − 1)/2
elements of the basis. Now, note that from (16), for different indices i, j, l,∫

B∞(0;∆)
uiujuldµ =

∫
B∞(0;∆)

uiujdµ =

∫
B∞(0;∆)

uiu
2
jdµ = 0.

As a result, we can add to the set {k2uiuj}i6=j the polynomials {k1ui}1≤i≤n

and the polynomial k0, where k1 and k0 are normalizing constants, forming
a set of n(n− 1)/2 + (n+ 1) orthogonal polynomials.

It remains to construct n quadratic polynomials, which have to contain
terms u2

i but should not contain terms uiuj. We choose to consider n terms
of the form k3(u

2
i − α1ui − α0). We will select the constants α0 and α1 in

such a way that these polynomials are orthogonal to the already constructed
ones. From the orthogonality with respect to ui, i.e.,∫

B∞(0;∆)
ui(u

2
i − α1ui − α0)dµ = 0,

we must have α1 = 0. Then, orthogonality with respect to the constant
polynomial 1 implies ∫

B∞(0;∆)
u2

i − α0dµ = 0.

Thus,

α0 =
1

2∆

∫ ∆

−∆
u2du =

1

2∆

(
2

3
∆3

)
=

1

3
∆2.

Hence we have a set of orthogonal polynomials that span the set of qua-
dratic functions on B∞(0; ∆). What remains is the computation of the nor-
malization constants to ensure normality of basis elements. From∫

B∞(0;∆)
k2

0dµ = 1
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we set k0 = 1. From the equivalent statements∫
B∞(0;∆)

(k1ui)
2 dµ = 1,

k2
1

(2∆)n

∫ ∆

−∆
u2du

∫
[−∆,∆]n−1

1du = 1,

k2
1

∫ ∆

−∆
u2 du

2∆
= 1,

we obtain k1 =
√

3/∆. From the equivalent statements∫
B∞(0;∆)

(k2uiuj)
2 dµ = 1,

k2
2

(∫ ∆

−∆
u2 du

2∆

)2

= 1,

we conclude that k2 = 3/∆2. And from the equivalent statements∫
B∞(0;∆)

(
k3

(
u2

i −
1

3
∆2

))2

dµ = 1,

k2
3

∫ ∆

−∆

(
u2 − 1

3
∆2

)2
1

2∆
du = 1,

we obtain

k3 =
3
√

5

2∆2 .

We have thus constructed the desirable basis, which we will denote by ψ.
We will abuse the notation to define ψ using indices (0), (1, i), (2, ij) or (2, i)
for the elements of ψ in place of the single index ι. The expressions of these
sophisticated indices should simplify the understanding. For instance, (2, ij)
index stands for the element of the basis ψ which involves the term uiuj,
similarly α(2,i) is the term corresponding to u2

i , and so on.

Definition 4.2. We define the basis ψ as the set of the following (n+1)(n+
2)/2 polynomials: 

ψ2,i(u) = 3
√

5
2∆2u

2
i −

√
5

2 ,
ψ2,ij(u) = 3

∆2uiuj,

ψ1,i(u) =
√

3
∆ ui,

ψ0(u) = 1.

(17)
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The basis ψ satisfies the assumptions of Theorems 4.1 and 4.2, as stated
in the following theorem.

Theorem 4.4. The basis ψ (see Definition 4.2) is orthonormal and satisfies
the K-boundedness condition (see Definition 4.1) in B∞(0; ∆) for the uniform
probability measure with K = 3.

Proof : From the above derivation and (16) one can easily show that ψ is
orthonormal in B∞(0; ∆) with respect to the uniform probability measure.
So, it remains to prove the boundedness condition with K = 3. In fact, it is
easy to check that 

‖ψ2,i‖L∞(B∞(0;∆)) =
√

5 ≤ 3,
‖ψ2,ij‖L∞(B∞(0;∆)) = 3 ≤ 3,

‖ψ1,i‖L∞(B∞(0;∆)) =
√

3 ≤ 3,
‖ψ0‖L∞(B∞(0;∆)) = 1 ≤ 3,

(18)

where ‖g‖L∞(B∞(0;∆)) = maxx∈B∞(0;∆) |g(x)|.

We will consider ψQ, the subset of ψ consisting of the polynomials of degree
2, and ψL, the ones of degree 1 or 0, as we did in Section 2 for φ̄.

We are interested in quadratic functions q =
∑

ι αιψι (see Definition 4.2)
with an h−sparse coefficient subvector αQ, i.e., only h coefficients correspond-
ing to the polynomials in ψQ in the representation of q are non-zero, where h
is a number between 1 and n(n+ 1)/2. In such cases, the corresponding full
vector α of coefficients is (h+n+1)−sparse. We now state a corollary of The-
orem 4.2 for sparse recovery in the orthonormal basis ψ, with k = p (number
of samples points) and N = q (number of elements in ψ), which will be used
in the next section to establish results on sparse quadratic model recovery.
Note that we write the probability of successful recovery of a sparse solution
in the form 1− n−γ log p which can be derived from (11) using q = O(n2) and
a simple modification of the universal constant γ.

Corollary 4.1. Let M(ψ,W ) ∈ Rp×q be the matrix of entries [M(ψ,W )]ij =

ψj(w
i), i = 1, ..., p, j = 1, ..., q, with q = (n+ 1)(n+ 2)/2.

Assume that the sample set W = {w1, ..., wp} ⊂ B∞(0; ∆) is chosen ran-
domly where each point is drawn independently according to the uniform prob-
ability measure µ in B∞(0; ∆). Further assume that

p

log p
≥ 9c (h+ n+ 1) (log (h+ n+ 1))2 log q,
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for some universal constant c > 0 and h ∈ {1, ..., n(n + 1)/2}. Then, with
probability at least 1 − n−γ log p, for some universal constant γ > 0, the fol-
lowing holds for every vector z̄, having at most h+n+ 1 non-zero expansion
coefficients in the basis ψ:

Let noisy samples b = M(ψ,W )z̄ + ε with

‖ε‖2 ≤ η

be given (for any η non-negative) and let z∗ be the solution of the `1-minimiza-
tion problem (14) with A = M(ψ,W ) = (M(ψQ,W ),M(ψL,W )). Then,

‖z∗ − z̄‖2 ≤ cpartial√
p

η

for some universal constant cpartial > 0.

Remark 4.1. It would be natural to consider the interpolation domain to
be the ball B2(0; ∆) in the classical `2-norm. However, our procedure of
constructing an orthonormal set of polynomials with desired properties in the
hypercube, i.e., using the `∞-norm ball, does not extend naturally to the `2
one. One problem with the uniform measure in the `2-ball is that formulas
like (16) no longer hold. A construction of an appropriate basis for the
uniform measure on the `2-ball is a subject for further work.

4.3. Recovery of a fully quadratic model of a function with sparse
Hessian. As we stated earlier our main interest in this paper is to recover
a fully quadratic model (see Definition 2.2) of a twice continuously differ-
entiable objective function f : D → R near a point x0 using fewer than
(n+ 1)(n+ 2)/2 sample points. In other words, we want to show that for a
given function f there exist constants κef , κeg, and κeh such that, given any
point x0 and a radius ∆, we can build a model based on a sample set of p
points (with p < (n + 1)(n + 2)/2) which, with high probability, is a fully
quadratic model of f on Bp(x0; ∆) with respect to the given constants κef ,
κeg, and κeh. The number p of sample points depends on the sparsity of the
Hessian of the model that we are attempting to reconstruct. Hence we need
to make some assumption about the sparsity. The simplest (and strongest)
assumption we can make is that the function f has a sparse Hessian at any
point x0.

Assumption 4.1 (Hessian sparsity). Assume that f : D → R satisfies As-
sumption 2.2 and furthermore that for any given x0 ∈ D the Hessian ∇2f(x0)
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of f at x0 has at most h non-zero entries, on or above the diagonal, where
h is a number between 1 and n(n+ 1)/2. If this is the case, then ∇2f(x0) is
said to be h−sparse.

The above assumption implies that for every x0 ∈ D there exists a fully
quadratic second degree polynomial model qf of f such that the Hessian∇2qf
is h−sparse, from a fully quadratic class with κ′ef , κ

′
eg, and κ′eh equal to some

multiples of the Lipschitz constant of ∇2f . The second order Taylor model
at x0 is, in particular, such a model.

However, we do not need this strong assumption to be able to construct
fully quadratic models. Constructing models via random sample sets and `1-
minimization, in the way that we described above, provides fully quadratic
models regardless of the amount of sparsity of the Hessian, as we will show
in this section. The sparsity of the Hessian affects, however, the number of
sample points that are required. Hence, one can consider functions whose
Hessian is approximately sparse and the sparsity pattern is not constant.
The following assumption is weaker than Assumption 4.1 but is sufficient for
our purposes.

Assumption 4.2 (Approximate Hessian sparsity). Assume that f : D → R
satisfies Assumption 2.2 and furthermore that for any given x0 ∈ D and ∆ >
0 there exists a second degree polynomial q(u) =

∑
ι αιψι(u) = αQψQ(u) +

αLψL(u), with αQ an h−sparse coefficient vector, where h may depend on x0
and ∆, which is a fully quadratic model of f on Bp(x0; ∆) for some constants
κ′ef , κ

′
eg, and κ′eh, independent of x0 and ∆.

If in the above assumption h is independent of x0 and ∆, then the as-
sumption reduces to Assumption 4.1. As it stands, Assumption 4.2 is less
restrictive.

Given the result in Section 4.2, we will consider the `∞-norm in Defini-
tion 2.2, thus considering regions of the form B∞(x0; ∆).

When we state that f has a sparse Hessian, it is understood that the rep-
resentation of the Taylor second order expansion or any other fully quadratic
model is a sparse linear combination of the elements of the canonical basis φ̄
(see (1)). However, the basis φ̄ is not orthogonal on B∞(x0; ∆). Hence we are
interested in models that have sparse representation in the orthonormal ba-
sis ψ of Definition 4.2. Fortunately, basis ψ can be obtained from φ̄ through
a few simple transformations. In particular, the sparsity of the Hessian of a
quadratic model q will be carried over to sparsity in the representation of q in
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ψ, since, due to the particular structure of ψ, the expansion coefficients in ψQ

will be multiples of the ones in φ̄Q, thus guaranteeing that if the coefficients
in the latter are h−sparse, so are the ones in the former.

We are now able to use the material developed in Section 4.2 to guarantee,
with high probability, the construction, for each x0 and ∆, of a fully quadratic
model of f in B∞(x0; ∆) using a random sample set of only O(n(log n)4)
points, instead of O(n2) points, provided that h = O(n). We find such a
fully quadratic model (assuming without loss of generality that x0 = 0) by
solving the partially recovery version of problem (12) written now in the form

min ‖αQ‖1

s. t. ‖M(ψQ,W )αQ +M(ψL,W )αL − f(W )‖2 ≤ η,
(19)

where η is some appropriate positive quantity. Corollary 4.1 can then be
used to ensure that only O(n(log n)4) points are necessary for recovery of a
sparse model in B∞(x0; ∆), when the number of non-zero components of the
Hessian of f at x0 = 0 is of the order of n.

Note that we are in fact considering “noisy” measurements, because we are
only able to evaluate the function f while trying to recover a fully quadratic
model, whose values are somewhat different from those of f . We will say
that a function q∗ is the solution to the minimization problem (19) if q∗(u) =∑

ι α
∗
lψι(u), where α∗ is the minimizer of (19).

Generally we need to consider a fully quadratic model q for f around some
point x0 rather than the origin. Under a translation of the domain we obtain

min ‖αQ‖1

s. t. ‖M(ψQ,W − x0)αQ +M(ψL,W − x0)αL − f(W − x0)‖2 ≤ η

Thus, without loss of generality, we can consider x0 = 0 and work with the
`1-minimization problem (19).

First we need to prove an auxiliary lemma. Corollary 4.1 provides an
estimate on the `2-norm of the error in the recovered vector of coefficients of
the quadratic model. In the definition of fully quadratic models, the error
between the quadratic model and the function f is measured in terms of the
maximum difference of the function values in B∞(0; ∆) and the maximum
norms of the differences of the gradients and the Hessians in B∞(0; ∆). The
following lemma establishes a bound for the value, gradient, and Hessian of
quadratic polynomials in B∞(0; ∆) in terms of the norm of their coefficient
vector (using the basis ψ).
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Lemma 4.1. Let q be a quadratic function and α be a vector in R(n+1)(n+2)/2

such that

q(u) =
∑

ι

αιψι(u)

with ψ(x) defined in (17). Then

|q(u)| ≤
(
3
√

card(α)
)
‖α‖2

‖∇q(u)‖2 ≤
(
3
√

5
√

card(α)
) 1

∆
‖α‖2∥∥∇2q(u)

∥∥
2 ≤

(
3
√

5
√

card(α)
) 1

∆2‖α‖2,

for all u ∈ B∞(0; ∆), where card(α) is the number of non-zero elements in
α.

Proof : We will again use the indices (0), (1, i), (2, ij) or (2, i) for the elements
of α in correspondence to the indices used in Definition 4.2.

From the K-boundedness conditions (18) we have

|q(u)| ≤
∑

ι

|αι||ψι(u)| ≤ 3‖α‖1 ≤ 3
√

card(α)‖α‖2,

for all u ∈ B∞(0; ∆). Also, from (17),∣∣∣∣ ∂q∂ui
(u)

∣∣∣∣ ≤
∑

ι

|αι|
∣∣∣∣∂ψι

∂ui

∣∣∣∣
= |α1,i|

∣∣∣∣∣
√

3

∆

∣∣∣∣∣ +
∑

j∈{1,...,n}\{i}

|α2,ij|
∣∣∣∣ 3

∆2uj

∣∣∣∣ + |α2,i|

∣∣∣∣∣3
√

5

∆2 ui

∣∣∣∣∣
≤

√
3

∆
|α1,i|+

∑
j∈{1,...,n}\{i}

3

∆
|α2,ij|+

3
√

5

∆
|α2,i|

≤ 3
√

5

∆

∑
ι∈Gi

|αι|,

for all u ∈ B∞(0; ∆), where Gi is the set of indices (1, i), (2, i), and (2, ij) for
every j ∈ {1, . . . , n} \ {i}, with |Gi| = n + 1. Then, by the known relations
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between the norms `1 and `2,

‖∇q(u)‖2 ≤
n∑

i=1

3
√

5

∆

∑
ι∈Gi

|αι| ≤
(
3
√

5
√

card(α)
) 1

∆
‖α‖2,

for all u ∈ B∞(0; ∆).
For the estimation of the Hessian, we need to separate the diagonal from

the non-diagonal part. For the non-diagonal part, with i 6= j,∣∣∣∣ ∂2q

∂ui∂uj
(u)

∣∣∣∣ ≤ ∑
ι

|αι|
∂2ψι(u)

∂ui∂uj
≤ |α2,ij|

3

∆2 .

For the diagonal part, with i = 1, . . . , n,∣∣∣∣∂2q

∂u2
i

(u)

∣∣∣∣ ≤ ∑
ι

|αι|
∂2ψι(u)

∂u2
i

≤ |α2,i|
3
√

5

∆2 .

Since the Hessian has at most card(α) non-zero components one has∥∥∇2q(u)
∥∥

2 ≤
(
3
√

5
√

card(α)
) (

1

∆

)2

‖α‖2

for all u ∈ B∞(0; ∆).

Remark 4.2. The dependency of the error bounds in Lemma 4.1 on card(α)
cannot be eliminated. In fact, the function

g(u) =
n∑

i,j=1, i6=j

√
2

n(n− 1)

3

∆2uiuj

satisfies g(∆, ...,∆) = 3√
2

√
n(n− 1) while the vector of coefficients has norm

equal to 1.

Remark 4.3. Since ψ is orthonormal (with respect to µ) on B∞(0; ∆) we
have that ‖α‖2 = ‖q‖L2(B∞(0;∆),µ). Hence the `2-norm of the vector of the
coefficients is simply the L2-norm of the function q over B∞(0; ∆). If we now
consider ‖q‖L∞(B∞(0;∆)), the L∞-norm of q which is the maximum absolute
value of q(u) over B∞(0; ∆), we see that Lemma 4.1 establishes a relation
between two norms of q. By explicitly deriving constants in terms of card(α)
we strengthen the bounds in Lemma 4.1 for the cases of sparse models.

We are now ready to present our main result.
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Theorem 4.5. Let Assumption 4.2 hold (approximate Hessian sparsity).
Given ∆ and x0, let h be the corresponding sparsity level of the fully qua-
dratic model guaranteed by Assumption 4.2. Given p random points, W =
{w1, ..., wp}, chosen with respect to the uniform measure in B∞(0; ∆), with

p

log p
≥ 9cpartial (h+ n+ 1) log2 (h+ n+ 1) log q, (20)

for some universal constant cpartial > 0, then with probability larger than
1 − n−γ log p, for some universal constant γ > 0, the solution q∗ to the `1-
minimization problem (19) is a fully quadratic model of f on B∞(0; ∆) with
νm

2 = 0 and constants κef , κeg, and κeh not depending on x0 and ∆.

Proof : From our assumptions, q is a fully quadratic model for f on B∞(0; ∆)
with ν2

m = 0 and some constants κ′ef , κ
′
eg, and κ′eh. The quadratic polynomial

q satisfies the assumptions of Corollary 4.1 and, for the purpose of the proof,
is the quadratic that will be approximately recovered. Now, since q is a fully
quadratic model, we have |f(wi)− q(wi)| ≤ κ′ef∆

3. Therefore

‖f(W )− q(W )‖2 ≤ √
p κ′ef∆

3.

Note that one can only recover q approximately given that the values of
q(W ) ' f(W ) are ‘noisy’.

Then, by Corollary 4.1, with probability larger than 1 − n−γ log p, for a
universal constant γ > 0, the solution q∗ to the `1-minimization problem (19)
with η =

√
p κ′ef∆

3 satisfies

‖α∗ − α‖2 ≤ cpartialκ
′
ef∆

3,

where α∗ and α are the coefficients of q∗ and q in the basis ψ given by (17),
respectively. So, by Lemma 4.1,

|q∗(u)− q(u)| ≤ cpartial

(
3
√

card(α∗ − α)
)
κ′ef∆

3,

‖∇q∗(u)−∇q(u)‖2 ≤ cpartial

(
3
√

5
√

card(α∗ − α)
)
κ′ef∆

2,∥∥∇2q∗(u)−∇2q(u)
∥∥

2 ≤ cpartial

(
3
√

5
√

card(α∗ − α)
)
κ′ef∆,
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for all u ∈ B∞(0; ∆). Therefore, from the fact that m is fully quadratic (with
constants κ′ef , κ

′
eg, and κ′eh), one has

|q∗(u)− f(u)| ≤
(
cpartial

(
3
√

card(α∗ − α)
)
κ′ef + κ′ef

)
∆3,

‖∇q∗(u)−∇f(u)‖2 ≤
(
cpartial

(
3
√

5
√

card(α∗ − α)
)
κ′ef + κ′eg

)
∆2,∥∥∇2q∗(u)−∇2f(u)

∥∥
2 ≤

(
cpartial

(
3
√

5
√

card(α∗ − α)
)
κ′ef + κ′eh

)
∆,

for all u ∈ B∞(0; ∆).
Since q∗ is a quadratic function, its Hessian is Lipschitz continuous with

Lipschitz constant 0, so one has that ν2
m = 0. Hence q∗ is a fully quadratic

model of f on B∞(0; ∆).

Note that the result of Theorem 4.5 is obtained for a number p of sampling
points satisfying (see (20) and recall that q = O(n2))

p

log p
= O(n(log n)3)

when h = O(n), i.e., when the number of non-zero elements of the Hessian
of f at x0 is of the order of n. Since p < (n+ 1)(n+ 2)/2, one obtains

p = O
(
n(log n)4) . (21)

Theorem 4.5 does not directly assume Hessian sparsity of f . It is worth
observing again that Theorem 4.5 can be established under no conditions on
the sparsity pattern of the Hessian of f .

Problem (19) is a second order cone programming problem [1] and can,
hence, be solved in polynomial time. However it is typically easier in practice
to solve linear programming problems. Since the second order Taylor model
T satisfies ‖T (W )− f(W )‖∞ ≤ η/

√
p (where η =

√
p κ′ef∆

3), because T is
fully quadratic for f , instead of (19), one can consider

min
∥∥∥αq

Q

∥∥∥
1

s. t.
∥∥∥M(ψQ,W )αq

Q +M(ψL,W )αq
L − f(W )

∥∥∥
∞
≤ 1√

pη,

which is equivalent to a linear program. In our implementation, as we will
discuss in the next section, we chose to impose the interpolation constraints
exactly which corresponds to setting η = 0 in the above formulations, hence
simplifying parameter choices. Also, recent work has provided some insight
in why this choice works well (see [27]).
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Theorem 4.5 cannot strictly validate a practical setting in DFO, as dis-
cussed in the next section. It serves to provide motivation and insight on the
use of `1-minimization to build underdetermined quadratic models for func-
tions with sparse Hessians. It also is the first result, to our knowledge, that
establishes a reasonable approach to building fully quadratic models with
underdetermined interpolation. However, in the current implementation the
sampling is done deterministically in order to be able to reuse existing sam-
ple points. This may be lifted in future parallel implementations. Note that
the constants in the bound (20) (and thus in (21)) render the current bounds
impractical. In fact, the best known upper bound (see [21]) for the universal
constant ctotal appearing in (13) is ctotal < 17190 (cpartial is of the same order),
making (20) only applicable if n is much greater than the values for which
DFO problems are tractable today (which is of the order of a few dozens).
However, such bound is, most likely, not tight, and, in fact, similar universal
constants appearing in the setting of compressed sensing are known to be
much smaller in practice.

5. A practical interpolation-based trust-region method
5.1. Interpolation-based trust-region algorithms for DFO. Trust-
region methods are a well known class of algorithms for the numerical solution
of nonlinear programming problems [6, 17]. In this section we will give a brief
summary of these methods when applied to the unconstrained minimization
of a smooth function f : D ⊂ Rn → R,

min
x∈Rn

f(x), (22)

without using the derivatives of the objective function f . For comprehensive
coverage we refer the reader to [9].

At each iteration k, these methods build a modelmk(xk+s) of the objective
function in a trust region of the form Bp(xk; ∆k), typically with p = 2, around
the current iterate xk. The scalar ∆k is then called the trust-region radius.
A step sk is determined by solving the trust-region subproblem

min
s∈B2(0;∆k)

mk(xk + s). (23)

Then, the value f(xk + sk) is computed and the actual reduction in the
objective function (aredk = f(xk)− f(xk + sk)) is compared to the predicted
reduction in the model (predk = mk(xk) −mk(xk + sk)). If the ratio is big
(ρk = aredk/predk ≥ η1 ∈ (0, 1)), then xk + sk is accepted as the new iterate
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and the trust-region radius may be increased. Such iterations are called
successful. If the ratio is small (ρk < η1), then the step is rejected and the
trust-region radius is decreased. Such iterations are called unsuccessful.

The global convergence properties of these methods are strongly depen-
dent on the requirement that, as the trust region becomes smaller, the model
becomes more accurate, implying in particular that the trust-region radius
is bounded away from zero, as long as the stationary point is not reached.
Taylor based-models, when derivatives are known, naturally satisfy this re-
quirement. However, in the DFO setting, some provision has to be taken in
the model and sample set management to ensure global convergence. These
provisions aim at guaranteeing that the models produced by the algorithm
are fully linear or fully quadratic.

Conn, Scheinberg, and Vicente [8] proved global convergence to first and
second order stationary points depending whether fully linear or fully qua-
dratic models are used. The approach proposed in [8] involves special model
improving iterations. Scheinberg and Toint [23] have recently shown global
convergence to first order stationary points for their self-correcting geome-
try approach which replaces model-improving iterations by an appropriate
update of the sample set using only the new trust-region iterates.

Our results derived in Section 4 provide us with a new method to pro-
duce (with high probability) fully quadratic models by considering randomly
sampled sets, instead of model handling iterations as is done in [8] and [23].
On the other hand, to develop full convergence theory of DFO methods us-
ing randomly sampled sets, one needs to adapt the convergence proofs used
in [8] and [23] to the case where successful iterations are guaranteed with
high probability, rather than deterministically. This is a subject for future
research.

5.2. A practical interpolation-based trust-region method. We now
introduce a simple practical algorithm which we chose for testing the per-
formance of different underdetermined models. This algorithm follows some
of the basic ideas of the approach introduced by Fasano, Morales, and No-
cedal [12], which have also inspired the authors in [23]. The quality of the
sample sets is maintained in its simplest form — simply ensuring sufficient
number of sample points (n+ 1 or more) in a reasonable proximity from the
current iterate. This approach is theoretically weak as shown in [23], but
seems to work well in practice.
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Unlike [12], we discard the sample point farthest away from the new it-
erate (rather than the sample point farthest away from the current iter-
ate). Also in [12], only determined quadratic models were built based on
pmax = (n + 1)(n + 2)/2 sample points. We compare approaches that use
minimum Frobenius or `1 norm interpolation to build the models and hence
we allow sample sets of any size less than or equal to pmax. This poses ad-
ditional issues to those considered in [12]. For instance, until the cardinality
of the sample set reaches pmax, we do not discard points from the sample set
and always add new trial points independently of whether or not they are
accepted as new iterates, in an attempt to be as greedy as possible when
taking advantage of function evaluations.

Another difference from [12] is that we discard points that are too far from
the current iterate when the trust-region radius becomes small (this can be
viewed as a weak criticality condition), expecting that the next iterations will
refill the sample set resulting in a similar effect as a criticality step. Thus,
the cardinality of our sample set might fall below pmin = n + 1, the number
required to build fully linear models in general. In such situations, we never
reduce the trust-region radius.

Algorithm 5.1 (A practical DFO trust-region algorithm).
Step 0: Initialization.

Initial values. Select values for the constants εg(= 10−5) > 0, δ(=
10−5) > 0, 0 < η1(= 10−3), η2(= 0.75) > η1, and 0 < γ1(= 0.5) <
1 < γ2(= 2). Set pmin = n + 1 and pmax = (n + 1)(n + 2)/2. Set the
initial trust-region radius ∆0(= 1) > 0. Choose the norm t = 1 (the
`1-norm) or t = 2 (the Frobenius norm).
Initial sample set. Let the starting point x0 be given. Select as an
initial sample set Y0 = {x0, x0±∆0ei, i = 1, . . . , n}, where the ei’s are
the columns of the identity matrix of order n.
Function evaluations. Evaluate the objective function at all y ∈ Y0.

Set k = 0.
Step 1: Model building.

Form a quadratic model mk(xk + s) of the objective function from Yk.
Solve the problem

min 1
p‖αQ‖t

t

s. t. M(φ̄Q, Yk)αQ +M(φ̄L, Yk)αL = f(Yk),
(24)
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where αQ and αL are, respectively, the coefficients of order 2 and order
less than 2 of the model.

Step 2: Stopping criteria.

Stop if ‖gk‖ ≤ εg or ∆k ≤ δ.

Step 3: Step calculation.

Compute a step sk by solving (approximately) the trust-region subprob-
lem (23).

Step 4: Function evaluation.

Evaluate the objective function at xk + sk. Compute ρk = (f(xk) −
f(xk + sk))/(mk(xk)−mk(xk + sk)).

Step 5: Selection of the next iterate and trust radius update.

If ρk < η1, reject the trial step, set xk+1 = xk, and reduce the trust-
region radius, if |Yk| ≥ pmin, by setting ∆k = γ1∆k (unsuccessful
iteration).
If ρk ≥ η1, accept the trial step xk+1 = xk+sk (successful iteration).
Increase the trust-region radius, ∆k+1 = γ2∆k, if ρk > η2.

Step 6: Update the sample set.

If |Yk| = pmax, set yout
k ∈ argmax‖y − xk+1‖2 (break ties arbitrarily).

If the iteration was successful:
If |Yk| = pmax, Yk+1 = Yk ∪ {xk+1} \ {yout

k }.
If |Yk| < pmax, Yk+1 = Yk ∪ {xk+1}.

If the iteration was unsuccessful:
If |Yk| = pmax, Yk+1 = Yk∪{xk +sk}\{yout

k } if ‖(xk +sk)−xk‖2 ≤
‖yout

k − xk‖2.
If |Yk| < pmax, Yk+1 = Yk ∪ {xk + sk}.

Step 7: Model improvement.

When ∆k+1 < 10−3, discard from Yk+1 all the points outside B(xk+1;
r∆k+1), where r is chosen as the smallest number in {100, 200, 400, 800,
...} for which at least three sample points from Yk+1 are contained in
B(xk+1; r∆k+1).

Increment k by 1 and return to Step 1.

5.3. Numerical results. In this section we describe the numerical exper-
iments which test the performance of Algorithm 5.1 implemented in MAT-
LAB. In particular we are interested in testing two variants of Algorithm 5.1
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defined by the norm used to compute the model in (24). The first variant
makes use of the `2-norm and leads to minimum Frobenius norm models.
The solution of (24) with t = 2 is a convex quadratic problem subject to
equality constraints and hence is equivalent to solving the following linear
system [

M(φ̄Q,W )M(φ̄Q,W )T M(φ̄L,W )
M(φ̄L,W )T 0

] [
λ
αL

]
=

[
f(W )

0

]
with αQ = M(φ̄Q,W )Tλ.

We solved this system using SVD, regularizing extremely small singular
values after the decomposition and before performing the backward solves,
in an attempt to remediate extreme ill conditioning caused by nearly ill-
poised sample sets. The second approach consisted in using t = 1, leading to
minimum `1-norm models and attempting to recover sparsity in the Hessian
of the objective function. To solve problem (24) with t = 1 we formulated it
first as a linear program. In both cases, t = 1, 2, we first scaled the corre-
sponding problems by shifting the sample set to the origin (i.e., translating
all the sample points such that the current iterate coincides with the origin)
and then scaling the points so that they lie in B2(0; 1) with at least one scaled
point at the border of this ball. This procedure, suggested in [9, Section 6.3],
leads to an improvement of the numerical results, especially in the minimum
Frobenius norm case.

The trust-region subproblems (23) have been solved using the routine
trust.m from the MATLAB Optimization Toolbox which corresponds es-
sentially to the algorithm of Moré and Sorensen [16]. To solve the linear
programs (24), with t = 1, we have used the routine linprog.m from the
same MATLAB toolbox. In turn, linprog.m uses in most of the instances
considered in our optimization runs the interior-point solver lipsol.m, de-
veloped by Zhang [28].

In a first set of experiments, we considered the test set of unconstrained
problems from the CUTEr collection [14] used in [15], and in [12]. We used
the same dimension choices as in [15] but we removed all problems considered
there with less than 5 variables. This procedure resulted in the test set
described in Table 1. Most of these problems exhibit some form of sparsity
in the Hessian of the objective function, for instance, a banded format.

In order to present the numerical results for all problems and all methods
(and variants) considered, we have used the so-called performance profiles,
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problem n DFO-TR Frob (acc = 6) DFO-TR l1 (acc = 6)
ARGLINB 10 57 59
ARGLINC 8 56 57
ARWHEAD 15 195 143
BDQRTIC 10 276 257
BIGGS6 6 485 483
BROWNAL 10 437 454
CHNROSNB 15 993 1004
CRAGGLVY 10 548 392
DIXMAANC 15 330 515
DIXMAANG 15 395 451
DIXMAANI 15 429 361
DIXMAANK 15 727 527
DIXON3DQ 10 – –
DQDRTIC 10 25 25
FREUROTH 10 249 252
GENHUMPS 5 1449 979
HILBERTA 10 8 8
MANCINO 10 106 73
MOREBV 10 111 105
OSBORNEB 11 1363 1023
PALMER1C 8 – –
PALMER3C 8 56 53
PALMER5C 6 29 29
PALMER8C 8 60 55
POWER 10 466 428
VARDIM 10 502 314

Table 1. The test set used in the first set of experiments and
the corresponding dimensions (first two columns). The last two
columns report the total number of function evaluations required
by Algorithm 5.1 to achieve an accuracy of 10−6 on the objec-
tive function value (versions DFO-TR Frob and DFO-TR l1). Both
approaches failed to solve two of the problems.

as suggested in [10]. Performance profiles are, essentially, plots of cumulative
distribution functions ρ(τ) representing a performance ratio for the different
solvers. Let S be the set of solvers and P the set of problems. Let tp,s denote
the performance of the solver s ∈ S on the problem p ∈ P — lower values of
tp,s indicate better performance. This performance ratio ρ(τ) is defined by
first setting rp,s = tp,s/min{tp,s̄ : s̄ ∈ S}, for p ∈ P and s ∈ S. Then, one
defines ρs(τ) = (1/|P|)|{p ∈ P : rp,s ≤ τ}|. Thus, ρs(1) is the probability
that solver s has the best performance among all solvers. If we are only
interested in determining which solver is the most efficient (is the fastest
on most problems), then we should compare the values of ρs(1) for all the
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solvers. On the other hand, solvers with the largest value of ρs(τ) for large
τ are the ones which solve the largest number of problems in P , hence are
the most robust. We are interested in considering a wide range of values for
τ , hence, we plot the performance profiles in a log-scale (now, the value at 0
represents the probability of winning over the other solvers).

Figure 1. Performance profiles comparing Algorithm 5.1 (min-
imum Frobenius and `1 norm versions) and NEWUOA [18, 20],
on the test set of Table 1, for two levels of accuracy (10−4 above
and 10−6 below).
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In our experiments, we took the best objective function value from [15]
(obtained by applying a derivative-based Non-Linear Programming solver),
as a benchmark to detect whether a problem was successfully solved up to
a certain accuracy 10−acc. The number tp,s is then the number of function
evaluations needed to achieve an objective function value within an abso-
lute error of 10−acc of the best objective function value; otherwise a failure
occurs and the value of rp,s used to build the profiles is set to a large num-
ber (see [10]). Other measures of performance could be used for tp,s but
the number of function evaluations is the most appropriate for expensive
objective functions. In Figure 1, we plot performance profiles for the two
variants of Algorithm 5.1 mentioned above and for the state-of-the-art solver
NEWUOA [18, 20]. Following [11], and in order to provide a fair comparison,
solvers are run first with their own default stopping criterion and if conver-
gence can not be declared another run is repeated with tighter tolerances. In
the case of Algorithm 5.1, this procedure led to εg = δ = 10−7 and a maxi-
mum number of 15000 function evaluations. For NEWUOA we used the data
prepared for [15] also for a maximum number of 15000 function evaluations.

Note that NEWUOA requires an interpolation of fixed cardinality in the
interval [2n+ 1, (n+ 1)(n+ 2)/2] throughout the entire optimization proce-
dure. We looked at the extreme possibilities, 2n + 1 and (n + 1)(n + 2)/2,
and are reporting results only with the latter one (NEWUOA quad in the plots)
since it was the one which gave the best results. The two variants of Algo-
rithm 5.1, are referred to as DFO-TR Frob (minimum Frobenius norm models)
and DFO-TR l1 (minimum `1-norm models). Two levels of accuracy (10−4

and 10−6) are considered in Figure 1. One can observe that DFO-TR l1 is
the most efficient version (τ = 0 in the log scale) and basically as robust as
the DFO-TR Frob version (large values of τ), and that both versions of the
Algorithm 5.1 seem to outperform NEWUOA quad in efficiency and robustness.

In a second set of experiments we ran Algorithm 5.1 for the two variants
(minimum Frobenius and `1 norm models) on the test set of CUTEr uncon-
strained problems used in the paper [5]. These problems are known to have
a significant amount of sparsity in the Hessian (this information as well as
the dimensions selected is described in Table 2). We used εg = δ = 10−5

and a maximum number of 5000 function evaluations. In Table 3, we re-
port the number of objective function evaluations taken as well as the final
objective function value obtained. In terms of function evaluations, one can
observe that DFO-TR l1 wins in approximately 8/9 cases, when compared to
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problem n type of sparsity
ARWHEAD 20 sparse
BDQRTIC 20 banded
BDVALUE 22 banded
BRYDN3D 20 banded
CHNROSNB 20 banded
CRAGGLVY 22 banded
DQDRTIC 20 banded
EXTROSNB 20 sparse
GENHUMPS 20 sparse
LIARWHD 20 sparse
MOREBV 20 banded
POWELLSG 20 sparse
SCHMVETT 20 banded
SROSENBR 20 banded
WOODS 20 sparse

Table 2. The test set used in the second set of experiments.
For each problem we included the number of variables and the
type of sparsity, as described in [5].

the DFO-TR Frob version, suggesting that the former is more efficient than
the latter in the presence of Hessian sparsity. Another interesting aspect of
the DFO-TR l1 version is some apparent ability to produce the final model
with gradient of smaller norm.

6. Conclusion
Since compressed sensing emerged, it has been deeply connected to opti-

mization, using it as a fundamental tool (in particular, to solve `1-minimization
problems). In this paper, however, we have shown that compressed sensing
methodology can also serve as a powerful tool for optimization, in partic-
ular for Derivative-Free Optimization (DFO), where structure recovery can
improve the performance of optimization methods. Namely, our goal was
to construct fully quadratic models (essentially models with an accuracy as
good as second order Taylor models; see Definition 2.2) of a function with
sparse Hessian using underdetermined quadratic interpolation on a sample
set with much less than O(n2) points. We were able to achieve this as is
shown in Theorem 4.5, by considering an appropriate polynomial basis and
random sample sets of only O(n(log n)4) points when the number of non-zero
components of the Hessian is O(n). The corresponding quadratic interpo-
lation models were built by minimizing the `1-norm of the entries of the
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problem DFO-TR Frob/l1 # f eval f val model ∇ norm
ARWHEAD Frob 338 3.044e-07 3.627e-03
ARWHEAD l1 218 9.168e-11 7.651e-07
BDQRTIC Frob 794 5.832e+01 5.419e+05
BDQRTIC l1 528 5.832e+01 6.770e-02
BDVALUE Frob 45 0.000e+00 0.000e+00
BDVALUE l1 45 0.000e+00 1.297e-22
BRYDN3D Frob 41 0.000e+00 0.000e+00
BRYDN3D l1 41 0.000e+00 0.000e+00
CHNROSNB Frob 2772 3.660e-03 2.025e+03
CHNROSNB l1 2438 2.888e-03 1.505e-01
CRAGGLVY Frob 1673 5.911e+00 1.693e+05
CRAGGLVY l1 958 5.910e+00 8.422e-01
DQDRTIC Frob 72 8.709e-11 6.300e+05
DQDRTIC l1 45 8.693e-13 1.926e-06
EXTROSNB Frob 1068 6.465e-02 3.886e+02
EXTROSNB l1 2070 1.003e-02 6.750e-02
GENHUMPS Frob 5000 4.534e+05 7.166e+02
GENHUMPS l1 5000 3.454e+05 3.883e+02
LIARWHD Frob 905 1.112e-12 9.716e-06
LIARWHD l1 744 4.445e-08 2.008e-02
MOREBV Frob 539 1.856e-04 2.456e-03
MOREBV l1 522 1.441e-04 3.226e-03
POWELLSG Frob 1493 1.616e-03 2.717e+01
POWELLSG l1 5000 1.733e-04 2.103e-01
SCHMVETT Frob 506 -5.400e+01 1.016e-02
SCHMVETT l1 434 -5.400e+01 7.561e-03
SROSENBR Frob 456 2.157e-03 4.857e-02
SROSENBR l1 297 1.168e-02 3.144e-01
WOODS Frob 5000 1.902e-01 8.296e-01
WOODS l1 5000 1.165e+01 1.118e+01

Table 3. Results obtained by DFO-TR Frob and DFO-TR l1 on
the problems of Table 2 (number of evaluations of the objective
function, final value of the objective function, and the norm of
the final model gradient).

Hessian model. We then tested the new model selection approach in a de-
terministic setting, by using the minimum `1-norm quadratic models in a
practical interpolation-based trust-region method (see Algorithm 5.1). Our
algorithm was able to outperform state-of-the-art DFO methods as shown in
the numerical experiments reported in Section 5.3.

One possible way of solving the `1-minimization problem (4) in the con-
text of interpolation-based trust-region methods is to rewrite it as a linear
program. This approach was used to numerically test Algorithm 5.1 when
solving problems (24) for t = 1. For problems of up to n = 20, 30 variables,
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this way of solving the `1-minimization problems has produced excellent re-
sults in terms of the derivative-free solution of the original minimization
problems (22) and is reasonable in terms of the overall CPU time.

However, for larger values of n, the repeated solution of the linear pro-
grams introduces significant overhead. Besides the increase in the dimension,
one also has to consider possible ill-conditioning arising due to badly poised
sample sets. Although related linear programming problems are solved in
consecutive iterations, it is not trivial to use warmstart. In fact, the number
of rows in the linear programs change frequently, making it difficult to warm-
start simplex-based methods. An alternative is to attempt to approximately
solve problem (4) by solving min ‖M(φ̄,W )α− f(W )‖2 + τ‖αQ‖1 for appro-
priate values of τ > 0. We conducted preliminary testing along this avenue
but did not succeed in outperforming the linear programming approach in
any respect. However, it is out of the scope of this paper a deeper study of
the numerical solution of the `1-minimization problem (4) in the context of
interpolation-based trust-region methods.

Finally, we would like to stress that building accurate quadratic models
for functions with sparse Hessians from function samples could be of interest
outside the field of Optimization. The techniques and theory developed in
Section 4 could also be applicable in other settings of Approximation Theory
and Numerical Analysis.
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pressed sensing and to Anke Tröltzsch (CERFACS, Toulouse) for providing
us assistance with the testing environment of Section 5.3.

References
[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Program., 95:3–51, 2003.
[2] A. Bandeira, K. Scheinberg, and L. N. Vicente. On partially sparse recovery. 2011.
[3] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted

isometry property for random matrices. Constr. Approx., 28:253–263, 2008.
[4] E. Candès and T. Tao. Near optimal signal recovery from random projections: universal

encoding strategies? IEEE Trans. Inform. Theory, 52:5406–5425, 2006.
[5] B. Colson and Ph. L. Toint. Optimizing partially separable functions without derivatives.

Optim. Methods Softw., 20:493–508, 2005.
[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on

Optimization. SIAM, Philadelphia, 2000.



COMPUTATION OF SPARSE LOW DEGREE INTERPOLATING POLYNOMIALS 39

[7] A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algorithm in prac-
tice. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, Missouri, September 2-4, 1998.

[8] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-free
trust-region algorithms to first and second order critical points. SIAM J. Optim., 20:387–415,
2009.

[9] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.
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