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SUPRACONVERGENCE AND SUPERCLOSENESS IN
VOLTERRA EQUATIONS
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Abstract: Integro-differential equations of Volterra type arise, naturally, in many
applications such as for instance heat conduction in materials with memory, diffusion
in polymers, diffusion in porous media. The aim of this paper is to study a finite
difference discretization of the mentioned integro-differential equations. Second
convergence order with respect to the H1 norm is established which means that the
discretization proposed is supraconvergent in finite difference methods language. As
the finite difference method can be seen as a piecewise linear finite element method
combined with special quadrature formulas, our result establishes the supercloseness
of the gradient in the finite element language. Numerical results illustrating the
discussed theoretical results are included.
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1. Introduction
We consider discretizations of the integro-differential equation

∂u

∂t
(t) +Au(t) =

∫ t

0

B(s, t)u(s) ds+ f(t), t ∈ (0, T ], (1)

subject to Dirichlet boundary conditions

u(t) =  (t) on ∂Ω× (0, T ], (2)

and with the initial condition

u(0) = u0. (3)

In (1) u(t) denotes a function defined on Ω×[0, T ] when t is fixed, Ω is a simple
polygonal domain of ℝ2, A and B(s, t) represent the following differential
operators

Au(t) = −∇.
(

A1∇u(t)
)

+∇.(A0u(t)) + a0u(t),
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B(s, t)u(t) = −∇.
(

B1(s, t)∇u(t)
)

+∇.(B0(s, t)u(t)) + b0(s, t)u(t),

where A1, A0, a0 dependent on (x, y), A0 = [ai], A1 = [aij], i, j = 1, 2, and
a12 = a21 = am. B1, B0, b0 dependent on (x, y), s and t, B0 = [bi], B1 =
[bij], i, j = 1, 2, and b12 = b21 = bm.
The fully discrete scheme is obtained using the so called MOL approach: a

spatial discretization combined with a time integration. The semi-discretization
is obtained by a standard finite difference method (FDM) on a nonuni-
form rectangular grid ΩH subdividing Ω considering a sequence of grids ΩH ,
H ∈ Λ, with maximal mesh-size Hmax converging to zero without any restric-
tion on the nonuniformity of ΩH . The resulting semi-discretization is equiva-
lent to a lumped mass semi-discretization obtained combining the piecewise
linear finite element method with quadrature rules defined on a triangulation
of Ω generated by ΩH . The time integration is defined by an implicit-explicit
method. It is shown that the error of the semi-discrete approximation and
its gradient are second order convergent being however the truncation error
induced by the spatial discretization only of first order. The stability and
convergence of the fully discrete scheme is proved.
The finite volume approximation of initial boundary value problem (IBVP)

considered in this paper was studied in [31] when a quasi-uniform family of
triangulations are used and the authors prove that the semi-discretization er-
ror is of second order convergent with respect to L2-norm. We point out that
the authors use the approach introduced in [36] for Galekin methods: the
semi-discrete error is splitted into two terms introducing the Ritz-Galerkin
projection of the semi-discrete approximation. The same approach was fol-
lowed in [26], [33] to study the accuracy of semi-discrete finite element ap-
proximations for the solutions of the same class of integro-differential IBVP.
Second convergence order for the semi-discretization error with respect to
H1-norm was established in [5] for the one-dimensional version of (1) follow-
ing the approach introduced by Wheeler in [36].
In the present paper we prove error estimates for the semi-discrete finite

difference approximation for the solution of (1) and for its gradient avoiding
the approach mentioned above. Considering a convenient representation of
the semi-discretization error we avoid the split of this error and we reduce
the smoothness requirements for the solution of (1), (2), (3), usually needed
when such splitting approach is considered. We show, when the domain
Ω is a rectangle, that the error and its gradient have second convergence
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order while the truncation error is only of first order. This convergence order
is lower when the domain presents an oblique side. The convergence of a
fully discrete scheme established combining this spatial discretization with an
implicit-explicit time integration with an integration rule for the time integral
is studied using the new approach mentioned above. It should be pointed out
that the results introduced in [14] for elliptic problems with smooth solutions
and in [15] for problems with solutions with lower smoothness have a central
role in the proof of the main results of the present paper.
As in [15], our finite difference solution can be seen as a lumped mass ap-

proximation constructed associating a triangulation TH to the rectangular
grid ΩH and applying convenient quadrature formulas to each term of the
variational form that characterizes the semi-discrete piecewise linear finite
element approximation. This means that our finite difference solution can
be seen as a fully discrete piecewise linear finite element solution where the
triangulations TH does not satisfy any smoothness requirement, and so our
results can be seen as supercloseness results. We do not assume any smooth-
ness requirement to the triangulations TH . For FDM for elliptic equations
and for parabolic equations, this property is usually called supraconvergence
([2], [9], [10], [14], [15], [18], [19], [23], [21], [24],[28]).
The paper is organized as follows. In Section 2 the semi-discrete approx-

imation is introduced and its stability behavior is studied in Section 3. In
Section 4 it is established an estimate for the semi-discretization error. The
study of the fully discrete scheme obtained combining the semi-discretization
analysed in Section 3, an implicit-explicit time integration methods for or-
dinary differential equations with a quadrature rules for the integral term is
presented in Section 5. Finally some numerical experiments illustrating the
results of this paper are presented in Section 6.

2. A fully discrete Galerkin approximation
In this section we introduce the Galerkin formulation of our IBVP and

its discretization by linear finite elements with quadrature. In order to do
that we need to introduce some functional spaces. For m ∈ ℕ0, p ∈ [2,+∞[,
Wm,p(Ω) denotes the Sobolev space with the semi-norm and norm, respec-
tively, given by

∣v∣m,p =
(

∑

∣�∣=m

∥
∂mv

∂x�1∂y�2
∥pLp

)1/p

, ∥v∥m,p =
(

∑

∣�∣≤m

∥
∂ ∣�∣v

∂x�1∂y�2
∥pLp

)1/p

,
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where � = (�1, �2), �i ∈ ℕ0, i = 1, 2, ∣�∣ = �1 + �2. For p = ∞ we consider
the norm

∥v∥m,∞ =
∑

∣�∣≤m

ess sup
Ω

∣
∂mv

∂x�1∂y�2
∣.

By Hm(Ω) we represent the Sobolev spaceWm,2(Ω) andH0(Ω) = L2(Ω). The
norm ∥.∥m,2 is represented by ∥.∥m and in L2(Ω) we consider the usual inner
product (., .)0. The subspace of Hm(Ω) of functions null on the boundary is
denoted by Hm

0 (Ω).
By Lp(0, T ;Hm(Ω)), p ∈ [2,+∞[, we denote the space of functions v :

(0, T ) → Hm(Ω) such that

∥v∥Lp(0,T ;Hm(Ω)) =
(

∫ T

0

∥v(t)∥pm dt
)1/p

(4)

is finite. We also consider, for m, r ∈ ℕ0, the space W r,p(0, T ;Hm(Ω)) of

functions v : (0, T ) → Hm(Ω) such that
djv

dtj
∈ Lp(0, T ;Hm(Ω)) for j =

0, . . . , r, and

∥v∥W r,p(0,T ;Hm(Ω)) :=
(

r
∑

j=1

∫ T

0

∥
djv

dtj
(t)∥pm dt

)1/p

, (5)

is finite. When p = 2 this space is represented by by Hr(0, T ;Hm(Ω)) where
we consider the inner product

(v, w)Hr(0,T ;Hm(Ω)) :=
r

∑

j=0

∫ T

0

(
djv

dtj
(t),

djw

dtj
(t))Hm(Ω) dt . (6)

In (6), (., .)Hm(Ω) denotes the usual inner product in Hm(Ω).
We take H0(0, T ;Hm(Ω)) = L2(0, T ;Hm(Ω)). By L∞(0, T ;Hm(Ω)) we rep-
resent the space of functions v : (0, T ) → Hm(Ω) such that

∥v∥L∞(0,T ;Hm(Ω)) := ess sup
[0,T ]

∥v(t)∥m <∞. (7)

The space of functions v : (0, T ) → Hm(Ω) such that
djv

dtj
∈ L∞(0, T ;Hm(Ω))

for j = 0, . . . , r, and

∥v∥W r,∞(0,T ;Hm(Ω)) :=
r

∑

j=1

ess sup
[0,T ]

∥
djv

dtj
(t)∥r <∞ (8)
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is denoted by W r,∞(0, T ;Hm(Ω)).
Let L2(0, T ;H−1(Ω)) be the dual space of L2(0, T ;H1(Ω)) where H−1(Ω)

denotes the dual space of H1(Ω). We define

W(0, T ) =

{

g ∈ L2(0, T ;H1(Ω)) such that
dg

dt
∈ L2(0, T ;H−1(Ω))

}

,

which is a Hilbert space (see Theorem 25.4 of [35]).
For f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω), we consider the following varia-

tional formulation of problem (1)-(3): find u ∈ W(0, T ) such that u(t) =  (t)
on ∂Ω and

⎧













⎨













⎩

<
du

dt
(t), v > +a(u(t), v) =

∫ t

0

b(s, t, u(s), v) ds+ (f(t), v)0 a.e in (0, T ),

for all v ∈ H1
0(Ω),

u(0) = u0,
(9)

where < ., . > denotes dual pairing between H−1(Ω) and H1
0(Ω), a(., .) and

b(s, t, ., .) are the bilinear forms defined by

a(v, w) = (A1∇v,∇w)0 − (A0v,∇w)0 + (a0v, w)0, (10)

for v, w ∈ H1(Ω), and

b(s, t, v, w) = (B1(s, t)∇v,∇w)0 − (B0(s, t)v,∇w)0 + (b0(s, t)v, w)0, (11)

for v, w ∈ H1(Ω). In (10) and (11) we use the notation

((p1, p2), (q1, q2))0 = (p1, q1)0 + (p2, q2)0, pi, qi ∈ L2(Ω), i = 1, 2.

The coefficient functions of the integro-differential equation (1) are assumed
to be smooth enough with respect to the space variables x and y, e.g. they
are in Wm,∞(Ω), m ∈ {1, 2}.
In what follows we introduce the semi-discretization of (9) (see [15]). The

spacial grid ΩH is defined by ℝH ∩Ω where H = (h,k), h = (ℎj)ℤ, k = (kℓ)ℤ
are two sequences of mesh-sizes and ℝH = ℝh ×ℝk is a non-equidistant grid
introduced in ℝ

2 with

ℝh = {xj ∈ ℝ : xj+1 = xj + ℎj, j ∈ ℤ},
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where x0 ∈ ℝ given and ℝk is defined analogously with the mesh-size vector
k in place of h and y0 in place of x0. We also introduce

ΩH := Ω ∩ ℝH , ∂ΩH := ∂Ω ∩ ℝH .

Since we are considering polygonal domains, the following compatibility
condition between the grid ΩH and the domain Ω is assumed:
(Geom) The intersection of ∂Ω with the rectangles := (xj, xj+1) ×

(yℓ, yℓ+1) spanned by points (xj, yℓ), (xj+1, yℓ+1) of ℝH is either empty or
it is a diagonal of .

By WH we denote the space of grid functions on ΩH and by WH,0 the
subspace of ΩH of grid functions vanishing on ∂ΩH . For convenience we
assume that functions in WH are also defined outside of ΩH with value equal
to zero. For (xj, yℓ) ∈ ΩH , we represent by j,ℓ the box (xj−1/2, xj+1/2) ×
(yℓ−1/2, yℓ+1/2) ∩ Ω and we denote its measure by !j,ℓ. Then

(vH , wH)H :=
∑

(xj ,yℓ)∈ΩH

!j,ℓ vj,ℓwj,ℓ, for vH , wH ∈ WH , (12)

defines an inner product on WH . Let RH denote the operator of pointwise
restriction to the grid ΩH and let TH be a triangulation of Ω using the set ΩH

as vertices. By PHvH we denote the continuous piecewise linear interpolation
of vH with respect to TH .
The discrete version of L2(0, T ;H1(Ω)) is denoted by L2(0, T ;WH) and it

is the space of functions wH : [0, T ] → WH such that

∫ T

0

∥wH(t)∥
2
1 dt (13)

is finite, where ∥wH∥
2
1 = ∥wH∥

2
H + ∣PHwH ∣

2
1 being ∥.∥H the norm induced by

the inner product (12) and ∣.∣1 the usual semi-norm in H1(Ω).
Let W ∗

H be the dual space of WH , and

WH(0, T ) =

{

g ∈ L2(0, T ;WH) such that
dg

dt
∈ L2(0, T ;W ∗

H)

}

.
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The discrete problem has the form: find uH ∈ WH(0, T ) such that uH(t) =
RH (t) on ∂ΩH and

⎧













⎨













⎩

<
duH
dt

(t), vH >H +aH(uH(t), vH) =

∫ t

0

bH(s, t, uH(s), vH) ds

+(fH(t), vH)H a.e. in (0, T ), for all vH ∈WH,0,

uH(0) = u0,H ,

(14)

where < ., . >H denotes the duality pairing betweenWH andW ∗
H , and u0,H ∈

WH is an approximation of u0. In (14) aH(⋅, ⋅) and bH(s, t, ., .) are sesquilinear
forms that we define in what follows. We take

aH(., .) =

2
∑

i=1

aii,H(., .) +

2
∑

i=0

ai,H(., .) + am,H(., .), (15)

where aii,H(., .), ai,H(., .) are sesquilinear forms corresponding to different
terms in the continuous sesquilinear form a(., .) and am,H(., .) corresponds
to the mixed terms (a12 = a21 = am). The sesquilinear form a11,H(., .) is
defined by

a11,H(vH , wH) :=
∑

Δ∈TH

a11(Δx)

∫

Δ

(PHvH)x(PHwH)x dxdy, (16)

where Δx is the midpoint of the side of Δ ∈ TH parallel to the x-axis.
Similarly, if Δy represents the midpoint of the side of Δ parallel to the y-
axis, then we define a22,H(., .) by

a22,H(vH , wH) :=
∑

Δ∈TH

a22(Δy)

∫

Δ

(PHvH)y(PHwH)y dxdy. (17)

The approximation of the first order terms is achieved by

a1,H(vH , wH) := −
∑

Δ∈TH

[PH(a1vH)](Δx)

∫

Δ

(PHwH)x dxdy, (18)

a2,H(vH , wH) := −
∑

Δ∈TH

[PH(a2vH)](Δy)

∫

Δ

(PHwH)y dxdy. (19)

Finally, we set

a0,H(vH , wH) :=
(

(RHa0)vH , wH

)

H
. (20)
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The function f in the right-hand side of (1) is discretized by the grid function

fH(xj, yℓ, t) :=
1

!j,ℓ

∫

j,ℓ

f(x, y, t)dxdy, (xj, yℓ) ∈ ΩH . (21)

To define the sesquilinear form associated with the mixed derivatives, we

consider two special triangulations of Ω that we call T
(1)
H and T

(2)
H . They are

obtained from the disjoint decomposition

ℝH = ℝ
(1)
H ∪̇ ℝ

(2)
H ,

where the sum j + ℓ of the indices of the points (xj, yℓ) in ℝ
(1)
H and in ℝ

(2)
H

is even and odd, respectively. In order to simplify the following definitions

we introduce ℝ
(3)
H := ℝ

(1)
H . To each point (xj, yℓ) ∈ ℝH we associate the four

(open) triangles Δ
(i)
j,ℓ, i = 1, 2, 3, 4, that have an angle �/2 at (xj, yℓ) and

two of the four horizontal/vertical neighbor grid points of (xj, yℓ) as further
vertices. We then define for � ∈ {1, 2} the triangulations

T
(�)
H,1 :=

{

Δ
(i)
j,ℓ ⊂ Ω : (xj, yℓ) ∈ ℝ

(�)
H , i ∈ {1, 2, 3, 4} ,

}

T
(�)
H,2 :=

{

Δ
(i)
j,ℓ ⊂ (Ω ∖ ∪ {Δ∣Δ ∈ T

(�)
H,1}) : (xj, yℓ) ∈ ℝ

(�+1)
H , i ∈ {1, 2, 3, 4}

}

,

T
(�)
H := T

(�)
H,1 ∪ T

(�)
H,2 .

(22)
By Tobl

H we denote the set of triangles which have one side on the oblique part
of ∂Ω. Tobl

H is empty for a domain Ω that is the union of rectangles. Figure
1 shows an example of a triangulation.

For � = 1, 2 the continuous piecewise linear interpolation P
(�)
H vH of a grid

function vH ∈ WH with respect to the triangulations T
(�)
H is well-defined.
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Figure 1: Triangulation T
(�)
H . Δ indicates triangles of T

(�)
H,2.
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For each triangle Δ ∈ T
(�)
H , (xΔ, yΔ) denotes the vertex of Δ associated

with its angle �/2, (x̃Δ, yΔ) denotes the vertex that has the y-coordinate of
(xΔ, yΔ) and (xΔ, ỹΔ) denotes the other vertex of Δ. Then, for � ∈ {1, 2},

am(Δx) :=

{

am(xΔ, yΔ) if Δ ∈ T
(�)
H,1

am(x̃Δ, yΔ) if Δ ∈ T
(�)
H,2

,

am(Δy) :=

{

am(xΔ, yΔ) if Δ ∈ T
(�)
H,1

am(xΔ, ỹΔ) if Δ ∈ T
(�)
H,2

,

and

am,H(vH , wH) :=
1

2

(

a
(1)
m,H(vH , wH) + a

(2)
m,H(vH , wH)

)

, (23)

for vH ∈ WH , wH ∈ WH,0. In (23) we use the notation

a
(�)
m,H(vH , wH) :=

∑

Δ∈T
(�)
H

∫

Δ

(

am(Δx)(P
(�)
H vH)x(P

(�)
H wH)y

+am(Δy)(P
(�)
H vH)y(P

(�)
H wH)x

)

dxdy.

(24)

The definition of the sesquilinear form

bH(s, t, ., .) =
2

∑

i=1

bii,H(s, t, ., .) +
2

∑

i=0

bi,H(s, t, ., .) + bm,H(s, t, ., .) (25)

is analogous to the definition of aH(., .) with the convenient replacements.
The semi-discrete approximation defined by the semi-discrete variational

problem (14) is obtained solving an ordinary differential system. To define
such system we introduce the following finite difference operators

AHvH = −�
(1/2)
x (a11�

(1/2)
x vH)− �x(a12�yvH)− �y(a21�xvH)

−�
(1/2)
y (a22�

(1/2)
y vH) + �x(a1vH) + �y(a2vH) + a0vH ,

(26)

where

�(1/2)x vH(xi, yj) =
vH(xi+1/2, yj)− vH(xi−1/2, yj)

ℎi+1/2
,

�(1/2)x vH(xi+1/2, yj) =
vH(xi+1, yj)− vH(xi, yj)

ℎi+1
,

�xvH(xi, yj) =
vH(xi+1, yj)− vH(xi−1, yj)

ℎi+1 + ℎi
,
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and ℎi+1/2 =
ℎi + ℎi+1

2
. The corresponding operators in y-direction are de-

fined analogously.
The finite difference operator BH is defined as AH with the coefficient of

A replaced by the correspondent coefficients of B.
If the operator A (or B) contains mixed derivatives then AH (or BH) acts,

next to oblique parts of the boundary, on grid points outside ΩH . As in
[15], in this case the missing quantities in forming AHuH (or BHuH) are
determined by auxiliary variables which are obtained by a kind of anti-
symmetric extension. For example, let (xj, yℓ) ∈ ΩH be a grid point such
that (xj−1, yℓ+1) ∕∈ ΩH . In the approximation of (amux)y the auxiliary value
uj−1,ℓ+1 is then determined by

uj−1,ℓ+1 −  j−1,ℓ = −(uj,ℓ −  j,ℓ+1). (27)

Considering the procedure adopted in [2], [5] and in [15], it can be shown
that the solution uH ∈ WH(0, T ) of (14) solves the finite difference problem

⎧









⎨









⎩

duH
dt

(t) + AHuH(t) =

∫ t

0

BH(s, t)uH(s) ds+ fH(t) in ΩH ,

uH(t) = RH (t) on ∂ΩH ,

uH(0) = u0,H .

(28)

We assume in what follows that aH(., .) is continuous, that is, there exists
a positive constant ac such that

∣aH(vH , wH)∣ ≤ ac∥PHvH∥1∥PHwH∥1, for all vH , wH ∈ WH,0, (29)

and aH(., .) is coercive, that is, there exists a positive constant ae and � ∈ ℝ

such that

aH(vH , vH) ≥ ae∥PHvH∥
2
1 − �∥vH∥

2
H , for all vH ∈ WH,0. (30)

We also suppose that bH(s, t, ., .) is bounded uniformly with respect to s, t,
that is, there exists a positive constant bc such that

∣bH(s, t, vH, wH)∣ ≤ bc∥PHvH∥1∥PHwH∥1, for allvH , wH ∈WH,0, s, t ∈ [0, T ].
(31)
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3. Stability analysis
In the stability analysis we consider homogeneous boundary conditions

( = 0) and we require some smoothness on the solution of the variational
problem (14), namely, we assume that uH is in C1([0, T ];WH,0), that is,

uH : [0, T ] → WH,0 such that
duH
dt

: [0, T ] → WH,0 is continuous when in

WH,0 we consider the norm ∥.∥H .
The proofs of Theorems 1 and 2 differ in small details from the proofs of

Theorem 1 and 2 in [5] and for this reason they are omitted.

Theorem 1. Let us suppose that aH(., .) and bH(s, t, ., .) satisfy (30) and
(31), respectively. If the solution uH of (14) is in C1([0, T ];WH,0) then

∥uH(t)∥
2
H +

∫ t

0

∥PHuH(s)∥
2
1 ds

≤
1

min{1, 2(ae − �2)}
eCt

(

∥uH(0)∥
2
H +

1

2�2

∫ t

0

e−Cs∥fH(s)∥
2
Hds

)

,

(32)
for t ∈ [0, T ], where

C =
max{2(�+ �2), b

2
cT
2�2 }

min{1, 2(ae − �2)}
(33)

and � ∕= 0 is such that

ae − �2 > 0. (34)

Theorem 2. Let us suppose that aH(., .) satisfies (30) with � = 0, bH(s, t, ., .)
satisfies (31),

∃be > 0 such that bH(t, t, vH , vH) ≥ be∥PHvH∥
2
1, (35)

for all vH ∈ WH,0, t ∈ [0, T ], and

∃bd > 0 such that ∣
∂bH
∂t

(s, t, vH , wH)∣ ≤ bd∥PHvH∥1∥PHwH∥1, (36)

for all vH , wH ∈WH,0, s, t ∈ [0, T ]
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If the solution uH of (14) is in C1([0, T ];WH,0), then
∫ t

0

∥
duH
ds

(s)∥2Hds+ ∥PHuH(t)∥
2
1 +

∫ t

0

∥PHuH(s)∥
2
1 ds

≤
2max{1, ac}

min{1, ae − �2, 2be − �2)}
eCt

(

∥PHuH(0)∥
2
1 +

∫ t

0

e−CsgH(s)ds
)

, t ∈ [0, T ],

(37)
where

gH(s) = ac∥PHuH(0)∥
2
1 +

∫ s

0

∥fH(&)∥
2
H d&,

and �, � are such that

ae − �2 > 0, 2be − �2 > 0, (38)

with

C =
max{b2cT

�2 ,
b2dT
�2 }

min{1, ae − �2, 2be − �2)}
. (39)

4. Convergence analysis
Let eH(t) = RHu(t)− uH(t) be the error induced by the spatial discretiza-

tion introduced in Section 2. In what follows we establish a supraconvergent-
superconvergent upper bound for eH(t) avoiding the split of this error intro-
duced in [36] and largely followed in the literature. In fact, following [36],
an estimate for eH(t) is obtained estimating �H(t) = RHu(t) − ũH(t) and
�H(t) = ũH(t)− uH(t) with ũH(t) defined by

aH(ũH(t), wH) = (gH(t), wH)H , wH ∈ WH,0,

where

gH(t) =

∫ t

0

(B(s, t)u(s))H ds+ fH(t)H − (
du

dt
(t))H,

being (B(s, t)u(s))H and (
du

dt
(t))H defined by (21) with f replaced byB(s, t)u(s)

and
du

dt
(t) respectively.

An estimate for �H(t), depending on certain norm of u(t), can be obtained
considering the convergence analysis for finite difference scheme in the sta-
tionary case as for instance in [15]. In this particular case, assuming that
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aH(., .) is elliptic, and when Ω is a rectangular domain we have

∥PH�H(t)∥
2
1 ≤ H2�

max

(

∥u(t)∥2�+1 +

∫ t

0

∥u(s)∥2�+1 ds
)

,

for � ∈ {1, 2}.

An estimate for ΘH(t) := ∥�H(t)∥
2
H +

∫ t

0

∥PH�H(s)∥
2
1ds is obtained con-

structing an ordinary differential problem for ΘH(t) which depends on

∥
d�H
dt

(t)∥H . Consequently following the proof of Theorem 1, it can be shown

that the upper bound for ΘH(t) depends on

H2�
max

(

∥
du

dt
(t)∥2�+1 +

∫ t

0

∥
du

dt
(s)∥2�+1 ds

)

and on H4
max∥

du

dt
(t)∥22. So, in order to get an upper bound with fourth order

we need to assume that
du

dt
∈ L∞(0, T ;H3(Ω)).

The approach that we follow enable us to reduce the smoothness required
above for u(t). We start by noting that eH(t) satisfies the equality

1

2

d

dt
∥eH(t)∥

2
H =

(

RH
du

dt
(t), eH(t)

)

H
+ aH(uH(t), eH(t))

−

∫ t

0

bH(s, t, uH(s), eH(t)) ds− (fH(t), eH(t))H .

(40)

As

(fH(t), eH(t))H =
(

(
du

dt
(t))H, eH(t)

)

H
+
((

Au(t)−

∫ t

0

B(s, t)u(s) ds
)

H
, eH(t)

)

H
,

(41)

where
(du

dt
(t)

)

H
,
(

Au(t)−

∫ t

0

B(s, t)u(s) ds
)

H
are defined by (21) with f re-

placed by
du

dt
(t) and Au(t)−

∫ t

0

B(s, t)u(s) ds, respectively, from (40) we

obtain

1

2

d

dt
∥eH(t)∥

2
H + aH(eH(t), eH(t)) =

∫ t

0

bH(s, t, eH(s), eH(t)) ds+ �(eH(t)),

(42)
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where

�(eH(t)) = �d(eH(t)) + �A(eH(t)) + �int(eH(t)), (43)

�d(eH(t)) = (RH
du

dt
(t), eH(t))H − ((

du

dt
(t))H, eH(t))H , (44)

�A(eH(t)) = aH(RHu(t), eH(t))− ((Au(t))H, eH(t))H (45)

and

�int(eH(t)) =

∫ t

0

(

((B(s, t)u(s))H, eH(t))H − bH(s, t, RHu(s), eH(t))
)

ds.

(46)
The estimations for �d(eH(t)), �A(eH(t)) and �int(eH(t)) are obtained in

what follows considering the results presented in [15] for elliptic operators.
Let �(vH) be defined by (43) with eH(t) replaced by vH ∈ WH,0.
Considering now Lemmas 5.1, 5.4, 5.5 and 5.7 of [15] we state the following

proposition where we denote by C a positive constant that does not depend
on u and H and which is not necessarily the same in all expressions.

Proposition 1. Let the grids ΩH , H ∈ Λ, satisfy condition (Geom) and
let � ∈ {1, 2} and assume that the coefficients of A are in W �,∞(Ω) and the
coefficients of B are in W �,∞(Ω) for t, s ∈ [0, T ]. Then, for vH ∈ WH,0, �(vH)
satisfies

∣�(vH)∣ ≤ � (�)(u(t))∥PHvH∥1,

where

� (1)(u(t)) ≤ C
((

∑

Δ∈TH

(

diamΔ)2∥u(t)∥2H2(Δ)

)1/2

+
(

∑

Δ∈TH

(

diamΔ)4∥
du

dt
(t)∥2H2(Δ)

)1/2

+

∫ t

0

(

∑

Δ∈TH

(

diamΔ)2∥u(s)∥2H2(Δ)

)1/2

ds
)

≤ CHmax

(

∥u(t)∥2 + ∥
du

dt
(t)∥2 +

∫ t

0

∥u(s)∥2 ds
)

,

(47)
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provided u ∈ L1(0, T ;H2(Ω)),
du

dt
(t) ∈ H2(Ω), t ∈ (0, T ), and

� (2)(u(t)) ≤ C
((

∑

Δ∈TH

(

diamΔ)4∥u(t)∥2H3(Δ)

)1/2

+
(

∑

Δ∈TH

(

diamΔ)4∥
du

dt
(t)∥2H2(Δ)

)1/2

+

∫ t

0

(

∑

Δ∈TH

(

diamΔ)4∥u(s)∥2H3(Δ)

)1/2

ds
)

+�mix

((

∑

Δ∈Tobl
H

(diamΔ)4(1−1/p)∣u(t)∣2W 2,p(Δ)

)1/2

+

∫ t

0

(

∑

Δ∈Tobl
H

(diamΔ)4(1−1/p)∣u(s)∣2W 2,p(Δ)

)1/2

ds
)

≤ CH2
max

(

∥u(t)∥3 + ∥
du

dt
(t)∥2 +

∫ t

0

∥u(s)∥3ds
)

+C�mixH
3/2−1/p
max

(

∣u(t)∣W 2,p(Ωobl
H ) +

∫ t

0

∣u(s)∣W 2,p(Ωobl
H )ds

)

,

(48)

provided u ∈ L1(0, T ;H3(Ω)),
du

dt
(t) ∈ H2(Ω), t ∈ (0, T ).

In (48), �mix = 1 if Ω has an oblique side and am ∕= 0 or bm ∕= 0, �mix = 0
if Ω is a rectangle or am = bm = 0.

Theorem 3. Let the grids ΩH , H ∈ Λ, satisfy condition (Geom) and let
� ∈ {1, 2} and assume that the coefficients of A are in W �,∞(Ω) and the
coefficients of B are in W �,∞(Ω) for t, s ∈ [0, T ]. If aH(., .) and bH(s, t, ., .)
satisfy (30) and (31), respectively, then

∥eH(t)∥
2
H +

∫ t

0

∥PHeH(s)∥
2
1 ds

≤
1

min{1, 2(ae − �2 − �2)}
eC̃t

(

∥eH(0)∥
2
H +

1

2�2

∫ t

0

e−C̃t� (�)c (&)2(s) ds
)

,

(49)
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where � and � are non zero constants such that

ae − �2 − �2 > 0, (50)

C̃ =
max{2�, Tb

2
c

2�2 }

min{1, 2(ae − �2 − �2)}
(51)

and

� (1)c (t)2 = C
(

∑

Δ∈TH

(

diamΔ)2
(

∥u∥2L∞(0,T ;H2(Δ))

+∥
du

dt
∥2L∞(0,T ;H2(Δ)) + ∥u∥2L2(0,t;H2(Δ))

)

≤ CH2
max

(

∥u∥2L∞(0,T ;H2(Ω)) + ∥
du

dt
∥2L∞(0,T ;H2(Ω)) + ∥u∥2L2(0,T ;H2(Ω))

)

,

(52)
provided that u ∈ W 1,∞(0, T ;H2(Ω)), or

� (2)c (t)2 = C
(

∑

Δ∈TH

(

diamΔ)4
(

∥u∥2L∞(0,T ;H3(Δ))

+∥
du

dt
∥2L∞(0,T ;H2(Δ)) + ∥u∥2L2(0,t;H3(Δ))

)

+�mix

∑

Δ∈Tobl
H

(diamΔ)4(1−1/p)
(

∣u∣2L∞(0,T ;W 2,p(Δ)) + ∣u∣2L2(0,t;W 2,p(Δ))

))

≤ CH4
max

(

∥u∥2L∞(0,T ;H3(Ω)) + ∥
du

dt
∥2L∞(0,T ;H2(Ω) + ∥u∥2L2(0,t;H3(Ω))

)

+C�mixH
3−2/p
max

(

∣u∣2L∞(0,T ;W 2,p(Ωobl
H )) + ∣u∣2L2(0,t;W 2,p(Ωobl

H ))

)

,

(53)
provided that u ∈ L∞(0, T ;H3(Ω)) ∩W 1,∞(0, T ;H2(Ω)).
In (53) �mix = 1 if Ω has an oblique side and am ∕= 0 or bm ∕= 0, �mix = 0 if
Ω is a rectangle or am = bm = 0.
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Proof: Considering in (42) the assumptions (30) and (31) for aH(., .) and
bH(s, t, ., .), respectively, we deduce

d

dt
∥eH(t)∥

2
H + 2(ae − �2 − �2)∥PHeH(t)∥

2
1

≤
Tb2c
2�2

∫ t

0

∥PHeH(s)∥
2
1 ds+ 2�∥eH(t)∥

2
H +

1

2�2
� (�)(u(t))2

and consequently, with Y (t) = ∥eH(t)∥
2
H + 2(ae − �2 − �2)∥PHeH(t)∥

2
1, we have

d

dt

(

Y (t)e−C̃t −
1

2�2

∫ t

0

e−C̃s� (�)(u(s))2 ds
)

≤ 0, (54)

for � and � satisfying (50) and with C̃ defined by (51). Inequality (54) leads
to (49).

Remark 1. Considering Corollary 6.2 of [15], under the assumptions of
Theorem 3, if u ∈ L∞(0, T ;C2(Ω ∪ Ω0)), where Ω0 is a neighborhood of the

oblique part of ∂Ω, we can state for �
(2)
c (t) the following estimate

� (2)c (t)2 ≤ C
(

∑

Δ∈TH

(diamΔ)4
(

∥u(t)∥2H3(Δ) + ∥
du

dt
(t)∥2H2(Δ)

+

∫ t

0

∥u(s)∥2H3(Δ) ds
)

+�mix

∑

Δ∈Tobl
H

(diamΔ)4
(

∥u(t)∥2
C2(Δ)

+

∫ t

0

∥u(s)∥2
C2(Δ)

ds
))

≤ CH4
max

(

∥u(t)∥23 + ∥
du

dt
(t)∥22 +

∫ t

0

∥u(s)∥23 ds
)

+�mixH
3
max

(

∑

Δ∈Tobl
H

diamΔ
)(

∥u(t)∥2C2(Ωobl
H ) +

∫ t

0

∥u(s)∥2C2(Ωobl
H ) ds

))
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thai is

� (2)c (t)2 ≤ CH4
max

(

∥u∥2L∞(0,T ;H3(Ω)) + ∥
du

dt
∥2L∞(0,T ;H2(Ω) + ∥u∥2L2(0,t;H3(Ω))

)

+C�mixH
3
max

(

∑

Δ∈Tobl
H

diamΔ
)(

∣u∣2L∞(0,T ;C2(Ωobl
H )) + ∣u∣2L2(0,t;C2(Ωobl

H ))

)

.

We point out that, in this case, if
∑

Δ∈Tobl
H

diamΔ ≤ C max
Δ∈Tobl

H

diamΔ, then

�
(2)
c (t) ≤ CH2

max.

5. Fully discrete approximations
We introduce in [0, T ] a uniform grid {tn, n = 0, . . . , N} with t0 = 0, tN =

T, tn − tn−1 = Δt. By D−t we denote the backward finite difference operator
with respect to time variable. Let unH be the fully discrete approximation in
WH such that unH = RH (tn) on ∂ΩH and
⎧















⎨















⎩

(D−tu
n+1
H , vH)H + aH(u

n+1
H , vH) = Δt

n
∑

j=0

b(tj, tn+1, u
j
H , vH) + (fn+1

H , vH)H ,

n = 0, . . . , N − 1, ∀vH ∈ WH,0,

u0H = u0,H .
(55)

We remark that unH ∈ WH is also solution of the fully discrete finite difference
problem

⎧















⎨















⎩

D−tu
n+1
H +AHu

n+1
H = Δt

n
∑

ℓ=0

BH(tℓ, tn+1)u
ℓ
H + fn+1

H in ΩH

n = 0, . . . , N − 1,
unH = RH (tn) on ∂ΩH, n = 1, . . . , N,

u0H = u0,H .

(56)

This method is of implicit-explicit type and it can be established combining
the spatial discretization introduced before with the left rectangular rule to
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discretize the time integral term. We study in what follows the qualitative
behavior of the solution of (56) having the following result an important role.

Lemma 1. (Discrete Gronwall inequality) Let {�n} be a sequence of nonneg-
ative real numbers satisfying

�n ≤

n−1
∑

j=0

!j�j + �n for n ≥ 0,

where !j ≥ 0 and {�n} is a nondecreasing sequence of nonnegative numbers.
Then

�n ≤ �n exp
(

n−1
∑

j=0

!j

)

for n ≥ 1. (57)

Theorem 4. Under the assumptions of Theorem 1, the solution of (55) sat-
isfies

∥unH∥
2
H +Δt

n
∑

m=0

∥PHu
n
H∥

2
1

≤ C̃
(

∥u0H∥
2
H +Δt2(ae − �2)∥PHu

0
H∥

2
1 +

Δt

2�2

n
∑

m=1

∥fm
H ∥2H

)

,

(58)

where � ∕= 0, � ∕= 0, � is such that

ae − �2 > 0, (59)

the time step-size Δt satisfies

1− 2(�+ �2)Δt > 0, (60)

and

C̃ =
exp

(

T max{2(�+�2),
b2cT

2�2
}

min{1−2(�2+�2)Δt,2(ae−�2)}

)

min{1− 2(�+ �2)Δt, 2(ae − �2)}
.

Proof: Taking in (55) vH = um+1
H and considering the coercivity of aH(., .)

((30)) and the uniform continuity of bH(s, t, ., .) ((31)) we establish

(D−tu
m+1
H , um+1

H )H +ae∥PHu
m+1
H ∥21 − �∥um+1

H ∥2H

≤ bcΔt
m
∑

j=0

∥PHu
j
H∥1∥PHu

m+1
H ∥1 + (fm+1

H , um+1
H )H .

(61)
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As we have

bcΔt
m
∑

j=0

∥PHu
j
H∥1∥PHu

m+1
H ∥1 ≤

b2cTΔt

4�2

m
∑

j=0

∥PHu
j
H∥

2
1 + �2∥PHu

m+1
H ∥21,

and

(fm+1
H , um+1

H )H ≤
1

4�2
∥fm+1

H ∥2H + �2∥um+1
H ∥2H ,

for all � ∕= 0, � ∕= 0, from (61) we deduce

∥um+1
H ∥2H − ∥umH∥

2
H +2Δt(ae − �2)∥PHu

m+1
H ∥21 ≤

b2cTΔt
2

2�2

m
∑

j=0

∥PHu
j
H∥

2
1

+Δt
1

2�2
∥fm+1

H ∥2H + 2(�+ �2)Δt∥um+1
H ∥2H .

(62)
Summing (62) over m = 0, . . . , n− 1, we get

∥unH∥
2
H − ∥u0H∥

2
H + 2Δt(ae − �2)

n−1
∑

m=0

∥PHu
m+1
H ∥21 ≤

b2cTΔt
2

2�2

n−1
∑

m=0

m
∑

j=0

∥PHu
j
H∥

2
1

+
Δt

2�2

n−1
∑

m=0

∥fm+1
H ∥2H + 2(�+ �2)Δt

n−1
∑

m=0

∥um+1
H ∥2H ,

and consequently

(1− 2(�+ �2)Δt)∥unH∥
2
H + 2Δt(ae − �2)

n
∑

m=0

∥PHu
m
H∥

2
1

≤ ∥u0H∥
2
H + 2Δt(ae − �2)∥PHu

0
H∥

2
1 +

Δt

2�2

n
∑

m=1

∥fm
H ∥2H

+
n−1
∑

m=0

(b2cTΔt

2�2
Δt

m
∑

j=0

∥PHu
j
H∥

2
1 + 2(�+ �2)Δt∥umH∥

2
H

)

.

(63)
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Choosing in (63) Δt, � and � satisfying (60) and (59) we get

∥unH∥
2
H +Δt

n
∑

m=0

∥PHu
m
H∥

2
1 ≤

n−1
∑

m=0

C
(

∥umH∥
2
H +Δt

m
∑

j=0

∥PHu
j
H∥

2
1

)

+
1

min{1− 2(�+ �2)Δt, 2(ae − �2)}

(

∥u0H∥
2
H + 2Δt(ae − �2)∥PHu

0
H∥

2
1

+
Δt

2�2

n
∑

m=1

∥fm
H ∥2H

)

.

(64)
with

C =
Δtmax{2(�+ �2), b

2
cT
2�2

}

min{1− 2(�+ �2)Δt, 2(ae − �2)}
.

Finally the application of the discrete Gronwall lemma to (64) leads to (58).

The stability of (56) is now established:

Theorem 5. Under the assumptions of Theorem 1, the solution unH of (56)
with fH(t

n+1) = 0 satisfies the estimation

∥unH∥
2
H +Δt

n
∑

m=0

∥PHu
n
H∥

2
1 ≤ C̃

(

∥u0H∥
2
H + 2(ae − �2)Δt∥PHu

0
H∥

2
1

)

(65)

with

C̃ =
exp

(

T max{2�,
b2cT

2

2�2
}

min{1−2�Δt0,2(ae−�2)}

)

min{1− 2�Δt0, 2(ae − �2)}
,

for � ∕= 0 satisfying (59) and Δt ∈ (0,Δt0) where Δt0 is such that

1− 2�Δt0 > 0. (66)

For � positive we conclude the stability of (56) without any condition on
the time step-size Δt. In this case the method (56) is unconditionally stable.
Otherwise, it is conditionally stable.
Let enH = RHu(tn) − unH be the error for the solution unH defined by (56).

An estimation for this error is established in the next result.
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Theorem 6. Under the assumptions of Theorem 1, if
∂bH
∂s

(s, t, ., .) is uni-

formly continuous

∣
∂bH
∂s

(s, t, uH, vH)∣ ≤ bc∥PHuH∥1∥PHvH∥1, ∀uH , vH ∈ WH,0, s, t ∈ [0, T ],

(67)
then there exists a positive constant which does not depend on H, Δt and u
such that the error enH = RHu(tn)−unH, with u

n
H defined by (56), satisfies the

inequality

∥enH∥
2
H +Δt

n
∑

m=0

∥PHe
m
H∥

2
1 ≤ C̃

(

2Δt(ae − �2 − 22 − 23)∥PHe
0
H∥

2
1 + ∥e0H∥

2
H

+� (�)c (tm)
2 +Δt

n
∑

m=1

1

223

+CΔt2
( 1

421
∥RHu∥

2
H2(0,T ;WH) +

b2cT
2

422
∥PHRHu∥

2
H1(0,T ;H1(Ω))

))

(68)
with

C̃ =
exp

(

T max{2(�+�21),
b2cT

2

2�2
}

min{1−2Δt0(�+�2
1),2(ae−�2−2

2−2
3)}

)

min{1− 2(�+ 21)Δt0, 2(ae − �2 − 22 − 23)}
,

for �, i ∕= 0, i = 1, 2, 3, such that

ae − �2 − 22 − 23 > 0,

and for Δt ∈ (0,Δt0), where Δt0 is fixed by

1− 2(�+ 21)Δt0 > 0. (69)

In (68), for � ∈ {1, 2}, �
(�)
c (tm) is defined by (52) and (53), respectively, for

� = 1 and � = 2 when t = tm.

Proof: It is easy to show that

(D−te
m+1
H , em+1

H )H = (D−tRHu(tm+1), e
m+1
H )H + aH(u

m+1
H , em+1

H )

−Δt
m
∑

j=0

bH(tj, tm+1, u
j
H , e

m+1
H )− (fm+1

H , em+1
H )H .

(70)
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Considering that (41) holds with t = tm+1, from (70), we deduce

(D−te
m+1
H , em+1

H )H+aH(e
m+1
H , em+1

H ) = Δt

m
∑

j=0

bH(tj, tm+1, e
j
H , e

m+1
H )+�cd(e

m+1
H )

(71)
with

�cd(e
n+1
H ) = �(en+1

H ) + �n(e
n+1
H ),

where �(em+1
H ) is defined by (43) with eH(t) replaced by em+1

H and

�n(e
m+1
H ) = �n,1(e

m+1
H ) + �n,2(e

m+1
H ),

�n,1(e
m+1
H ) =

(

D−tRHu(tm+1)−RH
du

dt
(tm+1), e

m+1
H

)

H
,

�n,2(e
m+1
H ) =

∫ tm+1

0

bH(s, tm+1, RHu(s), e
m+1
H )ds

−Δt
m
∑

j=0

bH(tj, tm+1, RHu(tj), e
m+1
H ).

(72)
We remark that an estimate for �(em+1

H ) is obtained considering Proposition
1. For �n,1(e

m+1
H ) we have

∣�n,1(e
m+1
H )∣ ≤ C

∫ tm+1

tm

∥RH
d2u

dt2
(s)∥H∥e

m+1
H ∥H

≤ CΔt
1

421
∥RHu∥

2
H2(tm,tm+1;WH) + 21∥e

m+1
H ∥2H ,

(73)

where 1 ∕= 0 is an arbitrary constant.
The estimate for �n,2(e

m+1
H )

∣�n,2(e
m+1
H )∣ ≤ CΔt

m
∑

j=0

∫ tm+1

tj

(

∣
∂bH
∂s

(s, tm+1, RHu(s), e
m+1
H )∣

+∣bH(s, tm+1, RH
du

dt
(s), en+1

H )∣
)

ds,

(74)
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is obtained using Bramble-Hilbert Lemma. As bH(s, t, ., .) and
∂bH
∂s

(s, t, ., .)

are uniformly continuous, from (73), we obtain

∣�n,2(e
m+1
H )∣ ≤ CΔtbc

m
∑

j=0

∫ tj+1

tj

(

∥PHu(s)∥1 + ∥PHRH
du

dt
(s)∥1

)

ds∥PHe
m+1
H ∥1

≤
1

422
CΔt2b2cT∥PHRHu∥

2
H1(0,T ;H1(Ω)) + 22∥PHe

m+1
H ∥21,

(75)
where 2 ∕= 0 is an arbitrary constant.
Combining the estimations (72), (75) with the estimates for �(em+1

H ) ob-
tained considering Proposition 1 we get

�(em+1
H ) ≤

1

423
� (�)c (tm+1)

2 + (23 + 22)∥PHe
m+1
H ∥21 + 21∥e

m+1
H ∥2H

+C
( 1

421
Δt∥RHu∥

2
H2(tm,tm+1;WH) +

1

422
b2cTΔt

2∥PHRHu∥
2
H1(0,T ;H1(Ω))

)

(76)

where � ∈ {1, 2}, �
(1)
c (tm+1)

2 and �
(2)
c (tm+1)

2 are given by (52) and (53),
respectively, with t = tm+1.
From (71) and (76), it can be deduced, following the proof of Theorem 4,

that the errors ejH , j = 0, . . . , m+ 1, satisfy

∥em+1
H ∥2H − ∥emH∥

2
H + 2Δt(ae − �2 − 22 − 23)∥PHe

m+1
H ∥21

≤ Δt2
b2cT

2�2

m
∑

j=0

∥PHe
j
H∥

2
1 + 2Δt(�+ 21)∥e

m+1
H ∥2H +Δt

1

223
� (�)c (tm+1)

2

+CΔt
( 1

221
Δt∥RHu∥

2
H2(tm,tm+1;WH) +

b2cT

222
Δt2∥PHRHu∥

2
H1(0,T ;H1(Ω))

)

,

(77)
which leads, following again the proof of Theorem 4, to (68).

Corollary 1. Under the assumptions of Theorem 1, there exists a positive
constant C which does not depend on H and Δt such that, for Δt ∈ (0,Δt0)
with Δt0 satisfying (69), for the error enH = RHu(tn) − unH , with u

n
H defined
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by (56), holds the following

∥enH∥
2
H +Δt

n
∑

m=1

∥PHe
m
H∥

2
1≤ C

(

H2
max

(

∥u∥2W 1,∞(0,T ;H2(Ω)) + ∥u∥2L2(0,T ;H2(Ω))

)

+Δt2
(

∥RHu∥
2
H2(0,T ;WH) + ∥PHRHu∥

2
H1(0,T ;H1(Ω))

))

,

(78)
provided that u ∈ W 1,∞(0, T ;H2(Ω)) ∩H2(0, T ;C(Ω)) and

∥enH∥
2
H +Δt

n
∑

m=1

∥PHe
m
H∥

2
1

≤ C
(

H4
max

(

∥u∥2W 1,∞(0,T ;H2(Ω)) + ∥u∥2L∞(0,T ;H3(Ω)) + ∥u∥2L2(0,T ;H3(Ω))

)

+�mixH
3−2/p
max

(

∥u∥2L∞(0,T ;W 1,p(Ωobl
H )) + ∥u∥2L2(0,T ;W 1,p(Ωobl

H ))

)

+Δt2
(

∥RHu∥
2
H2(0,T ;WH) + ∥PHRHu∥

2
H1(0,T ;H1(Ω))

))

,

(79)
for p ∈ [2,∞), provided that u ∈ W 1,∞(0, T ;H3(Ω)) ∩H2(0, T ;C(Ω)).
In (79) �mix = 1 if Ω has an oblique side and am ∕= 0 or bm ∕= 0, �mix = 0

if Ω is a rectangle or am = bm = 0.

Remark 2. Considering Corollary 6.2 of [15], under the assumptions of
Corollary 1, if the coefficients functions are inW 2,∞(Ω), u ∈ L∞(0, T ;C2(Ω∪
Ω0)), where Ω0 is a neighborhood of the oblique part of ∂Ω, then we can state
the following estimate
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∥enH∥
2
H +Δt

n
∑

m=1

∥PHe
m
H∥

2
1

≤ C
(

H4
max

(

∥u∥2W 1,∞(0,T ;H2(Ω)) + ∥u∥2L∞(0,T ;H3(Ω)) + ∥u∥2L2(0,T ;H3(Ω))

)

+�mixH
3
max

∑

Δ∈Tobl
H

diamΔ(
(

∥u∥2L∞(0,T ;C2(Ωobl
H )) + ∥u∥2L2(0,T ;C2(Ωobl

H ))

)

+Δt2
(

∥RHu∥
2
H2(0,T ;WH) + ∥PHRHu∥

2
H1(0,T ;H1(Ω))

))

.

(80)

If
∑

Δ∈Tobl
H

diamΔ ≤ C max
Δ∈Tobl

H

diamΔ, then

∥enH∥
2
H +Δt

n
∑

m=1

∥PHe
m
H∥

2
1 ≤ C

(

H4
max

(

∥u∥2W 1,∞(0,T ;H2(Ω)) + ∥u∥2L∞(0,T ;H3(Ω))

+∥u∥2L2(0,T ;H3(Ω)) + �mix

(

∥u∥2L∞(0,T ;C2(Ωobl
H )) + ∥u∥2L2(0,T ;C2(Ωobl

H ))

))

+Δt2
(

∥RHu∥
2
H2(0,T ;WH) + ∥PHRHu∥

2
H1(0,T ;H1(Ω))

))

.

(81)

6. Numerical simulation
We illustrate in what follows the theoretical results obtained for the integro-

differential initial boundary value problem (1), (2), (3).

Example 1. We start by Ω = (0, 1)× (0, 1) and

Au = −
∂2u

∂x2
+
∂2u

∂y2
−10−2 ∂

∂x

(

xy
∂u

∂y

)

−10−2 ∂

∂y

(

xy
∂u

∂x

)

+
∂

∂x

(

xu
)

+
∂

∂y

(

yu
)

−2,

Bu =
∂2u

∂x2
∂2u

∂y2
.

The boundary conditions and the term f are such that the initial boundary
value problem (1), (2), (3) has the solution

u(x, y, t) = ety(x− 1)(y − 1), (x, y) ∈ Ω.
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In the time interval [0, 0.01] we consider a grid with step-size Δt = 2× 10−5.
In Table 1 we include the Hmax for each partition ΩH , the number of points
in x and y axis, respectively, Nx and Ny, the error EM

H

ErrormH =
(

(

∥eH(tM)∥2H +Δt

M
∑

j=0

∥PHeH(tj)∥
2
1

)

)1/2

where tM = 0.01, the numerical solution ujH was computed using the method
(55), (56). We also include in Table 1 the rate RH1,H2

RH1,H2
=

ln
(

ErrorH1,max

ErrorH2,max

)

ln
(

H1,max

H2,max

)

where H1,max and H2,max are the maximal mesh-size of two consecutive grids.

Hmax Nx Ny EM
H RH1,H2

9.706× 10−2 22 19 1.729× 10−3 —
4.799× 10−2 45 35 1.599× 10−4 3.380
2.470× 10−2 77 84 1.189× 10−4 1.956
1.249× 10−2 62 171 9.270× 10−5 2.550
8.326× 10−3 246 234 1.203× 10−5 2.023
7.120× 10−3 266 289 1.045× 10−5 1.955
6.244× 10−3 336 317 3.667× 10−6 2.244
5.553× 10−3 356 378 3.140× 10−6 2.206
4.997× 10−3 405 407 2.670× 10−6 2.182
4.157× 10−3 453 487 4.613× 10−6 2.249
3.844× 10−3 538 509 6.767× 10−7 2.430
3.569× 10−3 567 577 1.247× 10−7 2.191

Table 1

The results presented in Table 1 show that for the error EM
H is of second order

in Hmax.

Example 2. Let Ω be the polygonal domain presented in Figure 2.
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Figure 2:Polygonal domain.

In the numerical simulation we consider the grids ΩH satisfying the condi-
tion Geom, the operators A and B defined by

Au = −
∂2u

∂x2
−
∂2u

∂y2
−

∂

∂x

(

(x− y)
∂u

∂y

)

−
∂

∂y

(

(x− y)
∂u

∂x

)

+
∂

∂x

(

xu
)

+
∂

∂y

(

yu
)

and

Bu = −
∂2u

∂x2
−
∂2u

∂y2
.

The boundary conditions are such that the initial boundary value problem
(1), (2), (3) has the solution

u(x, y, t) = etxy(x− 1)(y − 1)(x+ y −
3

2
) sin(10xy), (x, y) ∈ Ω.

In the time interval [0, 0.001] we consider a grid with step-size Δt = 10−6.
In Table 2 we present the grids used and the numerical results obtained. We
use the notations introduced in Example 1. We observe that the convergence

rate is
3

2
which agrees with the error estimate (80).

Hmax Nx Ny EM
H RH1,H2

8.5280× 10−2 14 15 2.5363× 10−4 1.0969
4.2640× 10−2 28 30 1.1858× 10−4 1.3988
2.1320× 10−2 56 60 4.4970× 10−5 1.4518
1.0660× 10−2 112 120 1.6440× 10−5 1.4602
5.3300× 10−3 224 240 5.9752× 10−6 1.4696
2.6650× 10−3 448 480 2.1575× 10−6 1.4790
1.3325× 10−3 896 960 7.7396× 10−7 −

Table 2
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Example 3. In in what follows we consider the polygonal domain presented
in Figure 2 and the grids ΩH satisfying the condition Geom, the operators
A and B defined by

Au = −
∂2u

∂x2
−
∂2u

∂y2
−
∂

∂x

( 1

10
(x+y−

7

5
)
∂u

∂y

)

−
∂

∂y

( 1

10
(x+y−

7

5
)
∂u

∂x

)

+
∂

∂x

(

xu
)

+
∂

∂y

(

yu
)

and

Bu = −
∂2u

∂x2
−
∂2u

∂y2
.

The boundary conditions and the term f are such that the initial boundary
value problem (1), (2), (3) has the solution

u(x, y, t) = etxy(x− 1)(y − 1)(x+ y −
3

2
), (x, y) ∈ Ω.

In the time interval [0, 0.002] we consider a grid with step-size Δt = 10−6.
In Table 3 we present the grids used and the numerical results obtained. The
notations used were introduced in Example 1.

Hmax Nx Ny EM
H RH1,H2

1.15110× 10−1 10 11 1.8705× 10−3 1.3627
5.7553× 10−2 20 22 7.2734× 10−4 1.5405
2.8776× 10−2 40 44 2.5003× 10−4 1.9386
1.0660× 10−2 80 88 6.5227× 10−5 1.9757
5.3300× 10−3 160 176 1.6583× 10−5 1.9858
2.6650× 10−3 320 352 4.1869× 10−6 1.9872
1.3325× 10−3 640 704 1.0561× 10−6 −

Table 3

We observe that the convergence rate is 2 which is greater than the
3

2
given

in the error estimate (80). Nevertheless, such estimate it is according with
the error estimate (81).

7. Conclusions
In this paper numerical methods for the IBVP (1), (2), (3) were proposed.

The methods were defined using MOL approach, that is, they were defined
combining a spatial discretization, which converts the integro-differential
problem in a ordinary differential problem, with a time integration method
of the implicit-explicit type. The semi-discrete solution was studied and a
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supreconvergence result was established. The stability and the convergence
of the fully discrete method were also studied. In the convergence analysis we
introduced a different approach from the one that is usually followed in the
literature (see for instance [36], [32], [33], [37]). Such new approach enable
us to assume lower smoothness of the solution of the IBVP (1), (2), (3), than
those that we need to assume if the approach introduced in [36] was followed.
The methods studied can be seen into different class of methods : the class

of Galerkin methods and the class of finite difference methods. In fact, with
respect to the spatial discretization, the methods were constructed consid-
ering the variational formulation of the differential problem and replacing
the space H1

0(Ω) by the space of the piecewise linear functions and using
convenient quadrature rules.
We point out that the analysis presented here can be followed if we use

in the time integration methods of higher order than Euler’s method like
Crank-Nicolson method. This remark holds if we replace the rectangular rule
considered in the approximation of the time integral by higher approximation
methods.
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