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ABSTRACT: Integro-differential equations of Volterra type arise, naturally, in many
applications such as for instance heat conduction in materials with memory, diffusion
in polymers, diffusion in porous media. The aim of this paper is to study a finite
difference discretization of the mentioned integro-differential equations. Second
convergence order with respect to the H' norm is established which means that the
discretization proposed is supraconvergent in finite difference methods language. As
the finite difference method can be seen as a piecewise linear finite element method
combined with special quadrature formulas, our result establishes the supercloseness
of the gradient in the finite element language. Numerical results illustrating the
discussed theoretical results are included.
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1. Introduction

We consider discretizations of the integro-differential equation

a t
S0+ Ault) = [ Blstu(s)ds+ 50t € (0.7, 1)
0
subject to Dirichlet boundary conditions

ult) = (t) on O x (0,7, 2)
and with the initial condition
u(0) = uy. (3)

In (1) u(t) denotes a function defined on Qx [0, T'] when ¢ is fixed, {2 is a simple
polygonal domain of R%, A and B(s,t) represent the following differential
operators

Au(t) = —V. <A1Vu(t)) V. (Agult)) + agul(t),
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B(s, tyu(t) = —V. (Bl(s, t)Vu(t)) VL(Bo(s, )ult)) + bols, )ult),

where Aj, Ay, ap dependent on (z,y), Ay = [a;], A1 = [aij],4,j = 1,2, and
a12 = az1 = am. Bi, By, by dependent on (x,y), s and t, By = [b;], By =
[bz‘j]; Z,j = 1, 2, and b12 = b21 = bm

The fully discrete scheme is obtained using the so called MOL approach: a
spatial discretization combined with a time integration. The semi-discretization
is obtained by a standard finite difference method (FDM) on a nonuni-
form rectangular grid Q subdividing Q) considering a sequence of grids Qp,
H € A, with maximal mesh-size H,,,, converging to zero without any restric-
tion on the nonuniformity of Q. The resulting semi-discretization is equiva-
lent to a lumped mass semi-discretization obtained combining the piecewise
linear finite element method with quadrature rules defined on a triangulation
of Q) generated by Qp. The time integration is defined by an implicit-explicit
method. It is shown that the error of the semi-discrete approximation and
its gradient are second order convergent being however the truncation error
induced by the spatial discretization only of first order. The stability and
convergence of the fully discrete scheme is proved.

The finite volume approximation of initial boundary value problem (IBVP)
considered in this paper was studied in [31] when a quasi-uniform family of
triangulations are used and the authors prove that the semi-discretization er-
ror is of second order convergent with respect to L?>-norm. We point out that
the authors use the approach introduced in [36] for Galekin methods: the
semi-discrete error is splitted into two terms introducing the Ritz-Galerkin
projection of the semi-discrete approximation. The same approach was fol-
lowed in [26], [33] to study the accuracy of semi-discrete finite element ap-
proximations for the solutions of the same class of integro-differential IBVP.
Second convergence order for the semi-discretization error with respect to
H'-norm was established in [5] for the one-dimensional version of (1) follow-
ing the approach introduced by Wheeler in [36].

In the present paper we prove error estimates for the semi-discrete finite
difference approximation for the solution of (1) and for its gradient avoiding
the approach mentioned above. Considering a convenient representation of
the semi-discretization error we avoid the split of this error and we reduce
the smoothness requirements for the solution of (1), (2), (3), usually needed
when such splitting approach is considered. We show, when the domain
(2 is a rectangle, that the error and its gradient have second convergence
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order while the truncation error is only of first order. This convergence order
is lower when the domain presents an oblique side. The convergence of a
fully discrete scheme established combining this spatial discretization with an
implicit-explicit time integration with an integration rule for the time integral
is studied using the new approach mentioned above. It should be pointed out
that the results introduced in [14] for elliptic problems with smooth solutions
and in [15] for problems with solutions with lower smoothness have a central
role in the proof of the main results of the present paper.

As in [15], our finite difference solution can be seen as a lumped mass ap-
proximation constructed associating a triangulation Ty to the rectangular
grid Qp and applying convenient quadrature formulas to each term of the
variational form that characterizes the semi-discrete piecewise linear finite
element approximation. This means that our finite difference solution can
be seen as a fully discrete piecewise linear finite element solution where the
triangulations Ty does not satisfy any smoothness requirement, and so our
results can be seen as supercloseness results. We do not assume any smooth-
ness requirement to the triangulations Ty. For FDM for elliptic equations
and for parabolic equations, this property is usually called supraconvergence
(12], (9], [10], [14], [15], [18], [19], [23], [21], [24],[28)).

The paper is organized as follows. In Section 2 the semi-discrete approx-
imation is introduced and its stability behavior is studied in Section 3. In
Section 4 it is established an estimate for the semi-discretization error. The
study of the fully discrete scheme obtained combining the semi-discretization
analysed in Section 3, an implicit-explicit time integration methods for or-
dinary differential equations with a quadrature rules for the integral term is
presented in Section 5. Finally some numerical experiments illustrating the
results of this paper are presented in Section 6.

2. A fully discrete Galerkin approximation

In this section we introduce the Galerkin formulation of our IBVP and
its discretization by linear finite elements with quadrature. In order to do
that we need to introduce some functional spaces. For m € Ny, p € [2, +o0],
WmP(Q) denotes the Sobolev space with the semi-norm and norm, respec-
tively, given by

|v|m,p=(2|\a$ala — ) \|v|\m,p:(2\|axifgza2|\ ) ,

|a|=m || <m
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where a = (g, ), a5 € Ny, i = 1,2, |a|] = oy + . For p = oo we consider
the norm
o™v

V]| m.co0 = Z eSSSUp‘W

la|<m

By H™(Q) we represent the Sobolev space W™?2(Q2) and H°(Q) = L*(€2). The
norm ||.||;m.2 is represented by ||.||,, and in L*(Q) we consider the usual inner
product (.,.)g. The subspace of H™(2) of functions null on the boundary is
denoted by H{J' ().

By LP(0,T; H™(Q2)), p € [2,40o0[, we denote the space of functions v :
(0,7) — H™(Q2) such that

r 1/p
lollzsoarmny = ([ o)1, ) 0
is finite. We also consider, for m,r € Ny, the space W"P(0,T; H™(Q))) of
d?
functions v : (0,7) — H™() such that d_; e LP(0,T; H"(?)) for j =

0,...,r, and

p
Jollwrsoamy Z [ i) )

is finite. When p = 2 this space is represented by by H"(0,T; H™(£2)) where
we consider the inner product

d]U d’w
('U 'UJ)Hr 0,7:H™(Q Z / dt] dt] t))Hm(Q) dt . (6)

In (6), (.,.)am@) denotes the usual inner product in H™(2).
We take HY(0,T; H™(Q2)) = L*(0,T; H™(Q)). By L>(0,T; H™(2)) we rep-
resent the space of functions v : (0,7) — H™(2) such that

]| Lo (0,1, m () := €8s [su}?] |v()||m < o0. (7)

0,

, d'v
The space of functions v : (0,7") — H™(£2) such that o7 € L*(0,T; H™(2))
for j =0,...,r, and

r

d’v
[vllwreeo.1.mm () = Zess[soujg HT( )| < oo (8)
j=1
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is denoted by W"™>(0,T; H™(2)).
Let L?(0,T; H *(Q)) be the dual space of L?(0,T; H'(Q2)) where H1(Q)
denotes the dual space of H'(€). We define

d
W(0,T) = {g c L*(0,T; H()) suchthatd—i c L*(0,T; Hl(Q))} :
which is a Hilbert space (see Theorem 25.4 of [35]).
For f € L*(0,T; H }(Q)) and ug € L*(f2), we consider the following varia-

tional formulation of problem (1)-(3): find u € W(0, T') such that u(t) = ¥(t)
on Jf) and

du ! ,
< a(t),v > 4a(u(t),v) = /0 b(s,t,u(s),v)ds+ (f(t),v)o a.ein (0,7,

forallv € Hj(9),

\ U(O) = Uo,
(9)

where < .,. > denotes dual pairing between H*(Q) and H}(Q), a(.,.) and
b(s,t,.,.) are the bilinear forms defined by

a(v,w) = (A Vv, Vw)y — (Agv, Vw)y + (agv, w)o, (10)
for v,w € H'(Q), and
Bi(s,t)Vv, Vw)g — (Bo(s, t)v, Vw)o + (bo(s, t)v,w)y, (11)

b(s,t,v,w) = (
for v,w € HY(Q). In (10) and (11) we use the notation
(

((p1,p2), (q1,2))0 = (p1, 1) + (P2, @2)0, pir i € L*(2),i = 1,2.

The coefficient functions of the integro-differential equation (1) are assumed
to be smooth enough with respect to the space variables z and y, e.g. they
are in W>(Q),m € {1, 2}.

In what follows we introduce the semi-discretization of (9) (see [15]). The
spacial grid Qg is defined by Ry NQ where H = (h, k), h = (h;)z, k = (ki)z
are two sequences of mesh-sizes and Ry = Ry, x Ry is a non-equidistant grid
introduced in R? with

RhZ{ﬂijRi :CjJrl:ﬂfj—i—hj,jEZ},
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where xy € R given and Ry is defined analogously with the mesh-size vector
k in place of h and y, in place of xy. We also introduce

Qg =QNRy, 0y = 00 NRy.

Since we are considering polygonal domains, the following compatibility
condition between the grid Qy and the domain ) is assumed:

(Geom) The intersection of 02 with the rectangles o := (zj,z,41) X
(ye, ye+1) spanned by points (z;,yr), (€j11,Yes1) of Ry is either empty or
it is a diagonal of o.

By Wy we denote the space of grid functions on Qpy and by Why the
subspace of Qy of grid functions vanishing on 9Qy. For convenience we
assume that functions in Wy are also defined outside of Qp with value equal
to zero. For (zj,y,) € Qpu, we represent by oj, the box (19, Tj11/2) X
(Ye—1/2, Yeg1/2) N and we denote its measure by wj,. Then

(vH,wH)H = E WiV Wiyp, for vy, wyg € Wy, (12)
(25,90 €Qm

defines an inner product on Wy. Let Ry denote the operator of pointwise
restriction to the grid Qy and let Ty be a triangulation of 2 using the set Qg
as vertices. By Pyvy we denote the continuous piecewise linear interpolation
of vy with respect to Tg.

The discrete version of L*(0,T; H'(Q)) is denoted by L?(0,T; Wg) and it
is the space of functions wy : [0,7] — Wy such that

/0 lewose ()2 dt (13)

is finite, where ||wg||? = |[wy||% + |Prwg|? being ||.||z the norm induced by
the inner product (12) and |.|; the usual semi-norm in H!(2).
Let Wi, be the dual space of Wy, and

d
Wx(0,T) = {g € L*(0,T; Wg) such that d—i c L*(0,T; W;;)} .
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The discrete problem has the form: find uy € Wy (0, T) such that uy(t) =
Ry(t) on 00y and

p
duH

t
< 1), op > tan(un (1), o) = / bit (5., up(s), vg) ds
0

+(fu(t),ve)n ace. in (0,T),for all vy € Wi, (14)

L UH(O) — U’O,H)

where < .,. >g denotes the duality pairing between Wg and W}, and uo g €
Wy is an approximation of ug. In (14) ag (-, ) and by (s, t, .,.) are sesquilinear
forms that we define in what follows. We take

2

CLH(.,.) ZazzH "’ZazH -I—CLmH( ) (15)

=1

where a;; g(.,.),aim(.,.) are sesqulhnear forms corresponding to different
terms in the continuous sesquilinear form a(.,.) and a,, g(.,.) corresponds
to the mixed terms (aj2 = a2; = ay). The sesquilinear form ayq g(.,.) is

defined by

nnlonon) = 3 () [ (Puva).(Puton), dody. (1)
AeTy A

where A, is the midpoint of the side of A € Ty parallel to the z-axis.
Similarly, if A, represents the midpoint of the side of A parallel to the y-
axis, then we define ag g (., .) by

as. (v, wy) == an(Ay) / (Pyvy),(Pawy), dzdy. (17)
AeTy A

The approximation of the first order terms is achieved by

aq H(vH,wH Z [PH alvH )/(PHEH)x d:Cdy, (18)
AeTy A

a9 H(vH,wH Z [PH CLQUH )/(PHEH)y dxdy. (19)
AeTy A

Finally, we set
CL()vH(UH,fLUH) = ((RHaO)vH,wH)H. (20)
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The function f in the right-hand side of (1) is discretized by the grid function
1
fH('Ijayfat) = _/ f($7y7t)dxdy7 (xj7y€> € QH (21)
Wit Jg,,

To define the sesquilinear form associated with the mixed derivatives, we

consider two special triangulations of {2 that we call Tg) and Tg). They are
obtained from the disjoint decomposition

Ry =RY U R,
2)

where the sum j + ¢ of the indices of the points (z;,y,) in Rg) and in Ry
is even and odd, respectively. In order to simplify the following definitions

we introduce Rg) 1= R(hl,). To each point (z;,y,) € Ry we associate the four

(open) triangles A%, i = 1,2,3,4, that have an angle 7/2 at (z;,y,) and

two of the four horizontal/vertical neighbor grid points of (z;,y,) as further
vertices. We then define for v € {1, 2} the triangulations

T%}l = Aﬁ CQ:(zj,y) € ng),z‘ € {1,2,3,4} ,}

Tirh = (A C (Q\U{AIA € T}« (wj,90) € Ry, i € {1,2,3,4}},
(v) . (v) v
T =Ty, uTh),.
(22)
By T%)Z we denote the set of triangles which have one side on the oblique part

of Q. T is empty for a domain Q2 that is the union of rectangles. Figure
1 shows an example of a triangulation.

For v = 1,2 the continuous piecewise linear interpolation PI(}/ )UH of a grid

function vy € Wy with respect to the triangulations Tg) is well-defined.

\
A// \
A// \\ /

/N P2 N R RN
s N oo 4 \

2h /[N
Ve ~ |/ AN

Figure 1: Triangulation Tg). A indicates triangles of Tg}z.
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For each triangle A € Tg), (xa,ya) denotes the vertex of A associated

with its angle 7/2, (Za,ya) denotes the vertex that has the y-coordinate of
(xa,ya) and (za, Ja) denotes the other vertex of A. Then, for v € {1, 2},

an(A) = am(za,ya) if A€ T%’?l
e am(iA,yA) if A e Tg,)Q ’

: (v)
am(za,ya) A €T
am(Ay) : { ( g o

am(za,ga) A €T,
and .
it (i, wir) = 5 (0} (v, win) + a3 (0, wi)). (23)

for vy € Wy, wy € Wiy. In (23) we use the notation

ot ) = 3 [ (anl BB v (P ),
AeT A

(24)
() (P vir)y (P @), ) dady.
The definition of the sesquilinear form

2 2
br (st ) =Y bin(sit, )+ big(st,..) +bmnu(s,t,..) (25
i=1 i=0
is analogous to the definition of ay(.,.) with the convenient replacements.
The semi-discrete approximation defined by the semi-discrete variational
problem (14) is obtained solving an ordinary differential system. To define
such system we introduce the following finite difference operators

Apvy = —65 2)(a11(53(cl/ 2)UH) — 0x(a120yvp) — 0y(a210,v5)

26
—551/”(@2251(,1/2)@1{) + dp(avp) + 6y(agvy) + apvg, (26)
where ( ) ( )
50 (o) — L2 80) = i1y
1 (i y;) hiy1/2
UH(%‘H, yj) - UH(% ?/j)
Pit1
UH(%‘H, ?/j) - UH(xz‘—la ?Jj)
6$ iy Y5) — )
v (23, 5) hiv1 + hi

?

5§1/2)UH(9€H1/27 yj) =

?




10 J.A. FERREIRA, L.PINTO AND G. ROMANAZZI

hi + i
2
fined analogously.

The finite difference operator By is defined as Ay with the coefficient of
A replaced by the correspondent coefficients of B.

If the operator A (or B) contains mixed derivatives then Ay (or By) acts,
next to oblique parts of the boundary, on grid points outside Qp. As in
[15], in this case the missing quantities in forming Agupy (or Bpyup) are
determined by auxiliary variables which are obtained by a kind of anti-
symmetric extension. For example, let (z;,y,) € Qg be a grid point such
that (z;_1,9041) € Q. In the approximation of (a,,u,), the auxiliary value
uj—1 41 is then determined by

Uj—1041 — Vj10 = —(Uj0 — V1) (27)

Considering the procedure adopted in [2], [5] and in [15], it can be shown
that the solution uy € Wg(0,T) of (14) solves the finite difference problem

and hii 1/ = . The corresponding operators in y-direction are de-

I 1) - A (1) = / By (s, yun(s)ds + fu(t) in Qu,

wi(t) = Rud() on oy, (28)

o\

L UH(O) = uo,H.

We assume in what follows that ag(.,.) is continuous, that is, there exists
a positive constant a. such that

lag (v, wi)| < ac||Prvm|1||Prwwl|1, forallvg, wy € Wy, (29)

and ag(.,.) is coercive, that is, there exists a positive constant a, and A € R
such that

CLH(UH,UH) > CLQHPHUHH% — )‘HUHHJQH'? for allvy € WH,O- (30)

We also suppose that by (s,t,.,.) is bounded uniformly with respect to s,t,
that is, there exists a positive constant b, such that

b (s, t, v, wi)| < be|| Prvg ||| Prwml, for allvg, wy € Why, s,t € [0,T7.
(31)
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3. Stability analysis
In the stability analysis we consider homogeneous boundary conditions
(¢p = 0) and we require some smoothness on the solution of the variational
problem (14), namely, we assume that ug is in C*([0,T]; Wyy), that is,
du
ug ¢ [0,T] — Wy such that —tH :[0,7] — Wpy is continuous when in

Wi o we consider the norm ||.||z.
The proofs of Theorems 1 and 2 differ in small details from the proofs of
Theorem 1 and 2 in [5] and for this reason they are omitted.

Theorem 1. Let us suppose that ag(.,.) and by(s,t,.,.) satisfy (30) and
(31), respectively. If the solution ug of (14) is in C*([0,T]; Wy ) then

t
lum (% + / | P (s)|2 ds
< 1
~ min{1,2(a. — €%)}

I A
(O + 5 [ el u)lds).
N2 Jo

(32)
for t € [0,T], where
 max{2(\ + 1), %5} (33)
~ min{1,2(a, — €2)}
and € # 0 is such that
a. — €& > 0. (34)
O

Theorem 2. Let us suppose that ag(.,.) satisfies (30) with A =0, by (s, t,.,.)
satisfies (31),

3be > 0 such that by (t,t, vy, vy) > be||Pavgl?, (35)

for all vy € Wg,t €10,T], and
Oby
Jbg > 0 such that \W(s,t,vH,wH)\ < by||Pgvg ||| Prwgl|1, (36)

for all vy, wg € Wgy, s,t € [0,T]
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If the solution uy of (14) is in C1([0,T]; Wyy), then

duH
/ 1P ()2, + || Parus ()12 + / | Py (s)|2 ds

2max{1,a.}
- mm{l a. — 1%, 2b. — €

2)}ect(‘|PHUH(O)H% -+ /Ot ecng(S)dS), te0,T],

(37)
where .
o1 (5) = al Parua O + [ 146y ds
and €,m are such that
—n*>0,2b, — > >0, (38)
with
V2T AT
C = e . 39
min{1, a. — n?,2b. — €2)} (39)
Oa

4. Convergence analysis

Let ep(t) = Ryu(t) —ug(t) be the error induced by the spatial discretiza-
tion introduced in Section 2. In what follows we establish a supraconvergent-
superconvergent upper bound for ey (t) avoiding the split of this error intro-
duced in [36] and largely followed in the literature. In fact, following [36],
an estimate for ey(t) is obtained estimating py(t) = Rpu(t) — ug(t) and
(9H(t> = fLH(t) — uH(t) with ﬂH(t) defined by

ag(ug(t),wy) = (gu(t), wy) o, wg € Wi,

where

on(t) = [ (Bls. (o) ds + fulth = (GO

being (B(s, t)u(s))y and (CZ:( t)) g defined by (21) with f replaced by B(s, t)u(s)
and d—?(t) respectively.

An estimate for py(t), depending on certain norm of u(t), can be obtained
considering the convergence analysis for finite difference scheme in the sta-
tionary case as for instance in [15]. In this particular case, assuming that



SUPRACONVERGENCE AND SUPERCLOSENESS IN VOLTERRA EQUATIONS 13

ag(.,.) is elliptic, and when € is a rectangular domain we have

1Papu (IR < H2 (lu() 21 + / lu(s)I2, 1 ds

for p € {1,2}.

An estimate for Og(t) := |0 (t)||5 + /t | P00 (s)||ids is obtained con-
structing an ordinary differential proble?n for ©(t) which depends on
| d'OH( t)||z. Consequently following the proof of Theorem 1, it can be shown

that the upper bound for ©y(t) depends on

B (1 O+ [ N6 )
du

and on H? |— - (t)||3. So, in order to get an upper bound with fourth order

max

d
we need to assume that d_;b c L™(0,T; H*(Q)).

The approach that we follow enable us to reduce the smoothness required
above for u(t). We start by noting that ey(t) satisfies the equality

1d 5 du
thHeH( Wi = (Ru dt( )s GH(t))H +ag(ug(t),en(t))

t (40)
— [ s, (), en(®) ds = (fu(®).cutt)n
As
du !
(fH(t)a eH(t))H = ((%(t))Hv eH(t))H+((Au(t)_/ B(Sv t)u(s) dS)]{? eH(t))Hv
0 (41)
du t ,
where (E(t))ﬂ’ (Au(t) — /0 B(s,t)u(s) ds)H are defined by (21) with f re-

d t
placed by d—?(t) and Au(t) —/ B(s,t)u(s)ds, respectively, from (40) we
obtain "

5 llen Ol + auten(®).en®) = [ bus,teuts).en) ds-+ rleutt),

(42)
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where
(en(t)) = alen(t)) + Talen(t)) + rimlen(t)), (13)
ralen(t) = (R () en(t) — (@) en(tm, (44)
ralen(t) = an(Ruu(t), en(t) — (Au(®)men(®)n (45
and

S /0 (((B(s,t)u(s))H, eH(t))H—bH(s,t,RHu(s),eH(t))> ds.

(46)
The estimations for 7y(eg(t)), Ta(en(t)) and 7, (eg(t)) are obtained in
what follows considering the results presented in [15] for elliptic operators.
Let 7(vg) be defined by (43) with ey (t) replaced by vy € Wiy.
Considering now Lemmas 5.1, 5.4, 5.5 and 5.7 of [15] we state the following
proposition where we denote by C' a positive constant that does not depend
on u and H and which is not necessarily the same in all expressions.

Proposition 1. Let the grids Qn, H € A, satisfy condition (Geom) and
let € {1,2} and assume that the coefficients of A are in WH>(Q) and the
coefficients of B are in WH>(Q) fort,s € [0,T]. Then, for vy € Wy, 7(vy)
satisfies

7 (vm)| < 79 (u(®)) || Prom |,
where

() < (2 (iama)2u(t) )

AeTy

| d 1/2
(3 (@) 1)
AeTy (47)

# (3 @oma s ) ds)

AeTy

< CHpus (0Ol + 15 Ol + [ )] ds),
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du

provided u € L'(0,T; H*(Q)), i

—(t) € H*(Q),t € (0,T), and

() < (L (ama) u(t) o))

AeTy

H(X (diama) | 2 0 )

AeTy

* /0( S (diama) fu(s) o) ) ds)

AeTy

+0mix(< Z (dlamA) (1 l/p \u( )‘WQp(A))l/Z

AeTy

/ Z (diamA)* =Py (s )\Wz,, >1/2ds>

AeTH

<cm%@mwww£@m+4wmmw)

t
+Camsz§{3x 1/p<\u(t)\wz,p(9%)z) +/ \u(s)|W2,p(Q%)z)ds),
0
(48)
d
provided u € LY(0, T; H3(Q)), d—?(t) e H2(Q),t € (0,T).

In (48), omiz = 1 if Q has an oblique side and a,, # 0 or by, # 0, iz = 0
iof Q0 is a rectangle or a,, = b, = 0.

Theorem 3. Let the grids Qp, H € A, satisfy condition (Geom) and let
p € {1,2} and assume that the coefficients of A are in WH>(Q) and the
coefficients of B are in WH>(Q) fort,s € [0,T]. If ag(.,.) and by(s,t,.,.)
satisfy (30) and (31), respectively, then

t
H@@%+AH%W®M%

1 ot 2 1 b t () \2
= min{1, 2(a, — € _772)}60 (”eH(O)HHJ’ 2—772/0 e~ 7 ()% (s) dS) ,(49)

o
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where € and 1 are non zero constants such that

ae — € —n* >0, (50)

max{2\ be}

) Qe

¢= min{1,2(a. — € — n?)}

(51)
and

7O = (D (diamA) (ull oz

AeTy
du 2 2
o2y + HUHLQ(O’“HQ(A))>

du
< CH??M:C(HUH%OO(O,T;HQ(Q)) + HEH%W(O,T;HQ(Q)) + HUH%Q(O,T;HQ(Q)) >,
(52)
provided that u € W'>°(0,T; H*(Q)), or

@ =C( Y (diamA) ([l raeay

AeTy
du 92 2
+\|E|\LW(O,T;H2(A)) T |‘UHL2<O’“H3(A))>

+O—mix Z (diamA)4(1_1/p) (‘U"%OO(O,T;WZP(A)) + |u|%2(0,t;W27P(A)) >>
AeTo

du
< CHémx(HuH%OO(O,T;H?'(Q)) + Ha“%m(oz;m(m + |\u\|%2(o,t;H3(Q)))

+C “mingwg/p('“'iwm,T;W?’p(ﬂ%l)) T ‘“‘i%o,t;wzz’m%l»)’
(53)
provided that v € L>®(0,T; H*(2)) N Wh>(0,T; H*()).
In (53) 0z = 1 if Q has an oblique side and a,, # 0 or by, # 0, 0y = 0 if
Q is a rectangle or a,, = b,, = 0.
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Proof: Considering in (42) the assumptions (30) and (31) for ay(.,.) and
br(s,t,.,.), respectively, we deduce

d

%HeH(t)H% +2(a, — € —n’)|| Paen(t)|}
TH? 1

S 92 2—772

(s)IIT ds + 2X[[en (1)1 + 57" (u(1))?

and consequently, with Y (t) = |leg(t)[|3 + 2(ac — €& — )| Pren(t)||7, we have

d ~ L1 e (1) 2
=5 |, T ls) ds> <0, (54)

for € and 7 satisfying (50) and with C' defined by (51). Inequality (54) leads
o (49).

O

Remark 1. Considering Corollary 6.2 of [15], under the assumptions of
Theorem 3, if u € L>=(0,T; C*(QQUQy)), where Qq is a neighborhood of the

oblique part of OS2, we can state for 752)(15) the followning estimate

207 < 0 3 (@iama)* ()l + 1 (0 B

AeTy
! 2
[ o) s )

bome 3 (am)! (a0, + [ ) Bz )

AT

d t
< CHpo (I + 1013+ / Juu(s) 13 ds)
oo (3 diom) (0 + [ 1) 5))

AETObl
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thai is
(2) (\2 4 2 du, 2
T.(t)” < CHmax(HUHLoo(o,T;HS(Q)) + HEHLOO(O,T;HQ(Q) + HUHLZ(o,t;HB(Q)))

3 : 2 2
+ComaHo (D diamd) (Il gionayey + il coopn )
AeTy

We point out that, wn this case, if Z diamA < C max diamA, then
A€eT?
AeTo "

2(t) < CH?

max-

5. Fully discrete approximations

We introduce in [0, 7] a uniform grid {¢,,n =0,..., N} with t, = 0,ty =
T, t,—t,.1 = At. By D_; we denote the backward finite difference operator
with respect to time variable. Let u% be the fully discrete approximation in
Wy such that u, = Ry(t,) on 02y and

(

n
(D—tuT[L{Jrla UH)H + aH(uT[L{Jrl) UH) = At Z b(tja tn-i—la u%) UH) + ( [T}Jrla UH)H?
j=0

n=20,...,N -1, Vvg € Wyy,

0 __
. uH —UO,H

(55)
We remark that u%, € Wiy is also solution of the fully discrete finite difference
problem

Dy + Agupt = Aty Br(ty, tya)uy + fi7 in Qp

(=0
) n=20,...,N—1, (56)
uy = Ry(t,) on 0Qg,n=1,..., N,

0
L uH — u07H.

This method is of implicit-explicit type and it can be established combining
the spatial discretization introduced before with the left rectangular rule to
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discretize the time integral term. We study in what follows the qualitative
behavior of the solution of (56) having the following result an important role.

Lemma 1. (Discrete Gronwall inequality) Let {n,} be a sequence of nonneg-
ative real numbers satisfying
n—1

Mn < Y winj+ B forn >0,
=0

where w; > 0 and {5,} is a nondecreasing sequence of nonnegative numbers.
Then

n—1

N < B exp (ij) forn > 1. (57)

j=0
Theorem 4. Under the assumptions of Theorem 1, the solution of (55) sat-
1sfies
gl + At (| Paul
= N (58)
< C (Il + At2(a. — )| Pauyl|? + 3 2 Z 1731%),

where n # 0,€ # 0, € is such that

ae — €2 >0, (59)
the time step-size At satisfies

1—2(\+n°)At > 0, (60)

and ,

Tmax{Q()\—l—ng),l;ig
C' B exp(min{1—2(772+772)At,2(a6—62)})
~ min{l — 2(\ + n?)At, 2(a, — €2)}’

Proof: Taking in (55) vy = u/3*! and considering the coercivity of ag(.,.)

((30)) and the uniform continuity of by (s,t,.,.) ((31)) we establish
(D™ uf ) +a6HPHuH+1H1 Al Ml
<b Alﬁz:HPInﬂth 1Pyl + (F T wlg e

- (61)
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As we have

= : b? TAt
beAEY || Pyl | Pauly ™ < > IPaug, |17 + €| Pru )3,
J=0 7=0
and
1
(fgth up™a El\fﬁ“l\wrn (el 7%

for all € # 0,77 # 0, from (61) we deduce

bQTAtQ =
™% — llupl3 +2Ata. — €)|| Pauj )T < Z | P13

+At—|\fﬁ+1|\H +2(A+7 )AtI\Uﬂ“HH

(62)
Summing (62) over m =0,...,n — 1, we get

n—1 n—1 m
i b2 TAt ‘
lugllFr — llugllF + 28t (ac — €)Y || Prug I} < SN Pl

m=0 m=0 j=0
At n—1 n—1
o LA I + 20+ ) A ug
m=0 m=0

and consequently

(1 =2+ n*)At)[lupllF + 2At(ac — € ZHPHUHHl

At .
< [yl + 22t (a. — )| Parsy | + 2—7722 1580 (63)
m=1
n—1
b2 T At
> (55 AtZHPHuH\|1+2<A+n>AtnuH|\H)

m=0 =
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Choosing in (63) At, € and 7 satisfying (60) and (59) we get

n n—1 m
el + e S Pl < S C (il + A>T [ Pawyl)
m=0 m=0 3=0
1

(L — 200 1 P)AL 200, — )]
At G~ s
+2_772mz::1”fHHH>'

(11 3 + 28¢(a, — )| Parsy |3

(64)
with
Atmax{2(\ + 77), %53

min{1 — 2(A + n?)At, 2(a, — €2)}
Finally the application of the discrete Gronwall lemma to (64) leads to (58).

O

C =

The stability of (56) is now established:

Theorem 5. Under the assumptions of Theorem 1, the solution u}; of (56)
with fg(t"™1) = 0 satisfies the estimation

il + A S 1Py < C (a3 + 200 — AU Paiy]2)  (65)

m=0

with

262

exrp (min{12)\At0,2(ae€2)}
min{1 — 2A\Atq, 2(a, — €2)}’
for € # 0 satisfying (59) and At € (0, Aty) where Atgy is such that

2.2
TmaX{Q)\,bCT >

C =

1 — 2\Aty > 0. (66)
O

For \ positive we conclude the stability of (56) without any condition on
the time step-size At. In this case the method (56) is unconditionally stable.
Otherwise, it is conditionally stable.

Let e}, = Rpu(t,) — u}; be the error for the solution u}, defined by (56).
An estimation for this error is established in the next result.
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ob
Theorem 6. Under the assumptions of Theorem 1, if 8H(s,t, . .) 1S uni-
S
formly continuous
Oby
‘ s (S t uH,vH)\ < b, HPHUHH HPHUHHLVUHaUH € WH(),S t e [0 T]

(67)
then there exists a positive constant which does not depend on H, At and u
such that the error €} = Ryu(t,) —uly, with v}, defined by (56), satisfies the
mequality

n
lefrllz + ALY Paeill] < C(QAt(ae — ¢ =% =) Puekli + llekln

m=0

+Atz

! ) b2T*
+CAt (4—%2HRHUHlﬁﬂ(o,T;WH)“L Ay 2 HPHRH“HHWTHI(Q))))

2’73

(68)
with
Tmax{2()\+n%),b§£2
é _ ex}j(min{l2At0()\+)\%),2(a662fy%’yg)})
min{1 — 2(\ +v})Aty, 2(a. — €& — 75 —¥3)}
fore,v; #0,i=1,2,3, such that
ae — €& — 3 — 42 >0,
and for At € (0, Aty), where Aty is fized by
12\ +~D) Aty > 0. (69)

In (68), for u € {1,2}, Tc(“)(tm) is defined by (52) and (53), respectively, for
pw=1and p =2 whent =t,,.

Proof: It is easy to show that

(Def ey = (D tRHu( m+1), € )+ am(ut et

—AthH t]7tm+17uH7 erl) ( 177{1+1762+1)H'
7=0

(70)
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Considering that (41) holds with t = t,,,11, from (70), we deduce

m

(D_ef™ e mtan (et eft™) = ALY byt tmrr, el e ) +realefy )
j=0
(71)
with

el ) = T(ef) + alel ™),
where 7(e'7™!) is defined by (43) with eg(t) replaced by e and

Tn(egﬂ) = Tn,l(egﬂ) + Tn,2(€g+1)a

du m—+1

Toi(ef™) = (Do Rpu(tyer) — RH@(%H), e

tm-{-l
Tn’g(ngrl) = / brr (s, tme1, Rau(s), e )ds
0

—ALY “by(ty, tmr, Ru(ty), eft™h).

j=0
(72)
We remark that an estimate for 7(e’;*') is obtained considering Proposition
1. For 7,,1(ef™) we have
41 tm—f—l d2u 41
m
e ) <0 [ IR g Olullen
t’"L
1 (73)
< CAQL—%QHRHUH%p(tm,t,,LH;WH) +illent
where v # 0 is an arbitrary constant.
The estimate for 7, (")
m tmt1 6bH
s < CALS / ( =g (5 tmst, Rau(s), e
7=0 0 (74)

du

b (5. torer, Ry (s). e”H+1)|)ds,
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ob
is obtained using Bramble-Hilbert Lemma. As bgy(s,t,.,.) and —H( ty..)

0s

are uniformly continuous, from (73), we obtain
1 s 1
Tn2(efr )] < CAtD Z/ (I Prru(s)]l + HPHRH ( 1) ds| Prety ™ ls

< WCAthzTHPHRHUH%{l(o,T;Hl( + %5 1P|,
5

(75)

where v5 # 0 is an arbitrary constant.

Combining the estimations (72), (75) with the estimates for 7(e%+t!) ob-
tained considering Proposition 1 we get

(GZH) S 2 47 (g )( m+1) +(’V3 +’Y2)HPH€ HH1+’Y1H mHHH

1
+C (ARt i) + T3 AP PRl o)
2

1 (76)
where p € {1,2}, Tc(l)(tm+1)2 and T(EQ)(L‘erl)2 are given by (52) and (53),
respectively, with t = ¢,,.1.
From (71) and (76), it can be deduced, following the proof of Theorem 4,
that the errors e?{,j =0,...,m+ 1, satisfy

lezr 1% — Nlefillzr + 2At(ae — € — 73 — 3) | Prel I3

V2T m
< A 3 Wl + 2000 Dl + Attt
1 2 N 2
+0At<—2AtHRHUHHQ(tm,thrl;WH) + —QAt HPHRHU’HHl(O,T;Hl(Q)))’
27 273

(77)

which leads, following again the proof of Theorem 4, to (68).
O

Corollary 1. Under the assumptions of Theorem 1, there exists a positive
constant C' which does not depend on H and At such that, for At € (0, Aty)
with Aty satisfying (69), for the error €}y = Ryu(t,) — u}y, with u};, defined
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by (56), holds the following

e ll7 + At Z | Presli< C<H731am(HUHIQ/VLOO(O,T;HQ(Q)) + HUH%Q(O,T;HQ(Q)))

m=1

+ A8 (1Rl o) + 1P Bl ozaniay) )

(78)
provided that u € W10, T; H*(Q)) N H?(0,T;C(Q)) and

n
lefrll7 + At Y | Puei
m=1

< C(H;lm(HUH%/VLoo(o,T;H%Q)) + HUH%w(o,T;HB(Q)) + HUH%Z(O,T;HB(Q)))

+Omi$H§1;i/p(HUH%OO(O,T;WLP(Q%”)) + HuHiQ(O,T;leP(Q%’l)))

+ A8 (1Rl vy + I P Rirulsozianen) )
(79)
for p € [2,00), provided that u € WH(0,T; H*(Q)) N H?(0,T; C()).
In (79) oz = 1 if Q has an oblique side and ay, # 0 or by, # 0, Opiz =0
if Q is a rectangle or ay,, = b, = 0.

O

Remark 2. Considering Corollary 6.2 of [15], under the assumptions of
Corollary 1, if the coefficients functions are in W>>(Q), u € L>*(0,T; C*(QU
Qo)), where Qq is a neighborhood of the oblique part of OS2, then we can state
the following estimate
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n
lefllz + At Y || Prefli

m=1
< C(H;me(HUHIQ/VLOO(O,T;HQ(Q)) + HUH%w(o,T;HB(Q)) + HUH%Z(O,T;HB(Q)))

+Omic g ) diamA((H“”iwoz;wm;fbl» + ““”i%o,f’;m(ﬂ?f!»)
AeTe!

+ A8 (IRl v + 1P Rl o i) )
(80)
If Z diamA < C max diamA, then

AETObl
AeTe! "

el + At 3 1Puesl < O Hbe (lulfinmo sy + luleo zearsn

m=1
2 2 2
Hlll oz + Umm(H“”m%omc%ﬂ%“» + ““”L%O,T;O%ﬂ%l))))
A8 (1 Riullo vy + 1P Rirtln oz ) )
(81)

6. Numerical simulation

We illustrate in what follows the theoretical results obtained for the integro-
differential initial boundary value problem (1), (2), (3).

Example 1. We start by QQ = (0,1) x (0,1) and

_ O%u Pu 5 0 ou 50 ou, 0 0
0*u 0%u

The boundary conditions and the term f are such that the initial boundary
value problem (1), (2), (3) has the solution

u(z,y,t) = e'y(x —1)(y — 1), (x,y) € .
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In the time interval [0,0.01] we consider a grid with step-size At =2 x 1072,
In Table 1 we include the H,,q. for each partition Qg, the number of points
in x and y awis, respectively, N, and Ny, the error EM

m 2 < 2 1/2
Errorfy = ((llen(ta)llfy + A" 1Paen(t)]))
j=0

where tyr = 0.01, the numerical solution uJH was computed using the method
(55), (56). We also include in Table 1 the rate Ry, m,

ln (grrorHlmmw >
WOTH2,max
RHlvHQ = Hl
ln ( ,max)

H2,max

where Hi yq, and Ho ey are the mazimal mesh-size of two consecutive grids.

Hmax Nx Ny E]J‘lvr[ RHl,Hg
9.706 x 1072 22 | 19 [1.729 x 1073 | —
4799 x 1072 | 45 | 35 | 1.599 x 10~*| 3.380
2470 x 1072 | 77 | 84 | 1.189 x 107*| 1.956
1.249 x 1072| 62 | 171]9.270 x 107° | 2.550
8.326 x 1073|246 234 |1.203 x 10~°| 2.023
7.120 x 1073266 | 289 | 1.045 x 1075 | 1.955
6.244 x 1073336 | 317 | 3.667 x 1079 | 2.244
5.553 x 1073356 | 378 | 3.140 x 107 | 2.206
4.997 x 1073405 [ 407 | 2.670 x 1076 | 2.182
4157 x 1073 | 453 | 487 | 4.613 x 1076 | 2.249
3.844 x 1072 | 538 | 509 | 6.767 x 1077 | 2.430
3.569 x 1073 | 567 | 577 |1.247 x 1077 | 2.191

Table 1

The results presented in Table 1 show that for the error E¥ is of second order
mn Hpa

Example 2. Let Q) be the polygonal domain presented in Figure 2.
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0.5

0.5
Figure 2:Polygonal domain.

In the numerical simulation we consider the grids Qg satisfying the condi-
tion Geom, the operators A and B defined by

The boundary conditions are such that the initial boundary value problem
(1), (2), (3) has the solution

w(z,y,t) = eay(z — 1) (y—1)(z+y— g) sin(10zy), (z,y) € Q.

In the time interval [0,0.001] we consider a grid with step-size At = 107°.
In Table 2 we present the grids used and the numerical results obtained. We
use the notations introduced in Example 1. We observe that the convergence

3
rate is 5 which agrees with the error estimate (80).

Hmax Nx Ny E% RHl,Hg
8.5280 x 1072 | 14 | 15 [ 2.5363 x 10~*] 1.0969
4.2640 x 1072 | 28 | 30 | 1.1858 x 107*| 1.3988
2.1320 x 1072 | 56 | 60 |4.4970 x 107° | 1.4518
1.0660 x 10721121120 | 1.6440 x 10~ | 1.4602
5.3300 x 10731224 240 5.9752 x 107%| 1.4696
2.6650 x 1073 | 448 | 480 | 2.1575 x 1076 | 1.4790
1.3325 x 10731896 | 960 | 7.7396 x 107 | —

Table 2
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Example 3. In in what follows we consider the polygonal domain presented

in Figure 2 and the grids Qg satisfying the condition Geom, the operators
A and B defined by

Pu Pu 0,1 7.0u, 0,1 7.0u, O s,

The boundary conditions and the term f are such that the initial boundary
value problem (1), (2), (3) has the solution

u(e,y,t) = eay(z — )y~ Diw+y - 3),(r,y) €0

In the time interval [0,0.002] we consider a grid with step-size At = 107°.
In Table 3 we present the grids used and the numerical results obtained. The
notations used were introduced in Example 1.

Hmax Nx Ny E]Jﬁvfj RH17H2
1.15110 x 1071 10 | 11 [1.8705 x 107 | 1.3627
5.7553 x 1072 | 20 | 22 [7.2734 x 10~*| 1.5405
2.8776 x 1072 | 40 | 44 |2.5003 x 10~* | 1.9386
1.0660 x 1072 | 80 | 88 |6.5227 x 107° | 1.9757
5.3300 x 1073 | 160 | 176 | 1.6583 x 107° | 1.9858
2.6650 x 1072 | 320|352 |4.1869 x 1076 | 1.9872
1.3325 x 107% | 640 | 704 | 1.0561 x 107%| —

Table 3

3
We observe that the convergence rate is 2 which is greater than the 3 given

in the error estimate (80). Nevertheless, such estimate it is according with
the error estimate (81).

7. Conclusions

In this paper numerical methods for the IBVP (1), (2), (3) were proposed.
The methods were defined using MOL approach, that is, they were defined
combining a spatial discretization, which converts the integro-differential
problem in a ordinary differential problem, with a time integration method
of the implicit-explicit type. The semi-discrete solution was studied and a
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supreconvergence result was established. The stability and the convergence
of the fully discrete method were also studied. In the convergence analysis we
introduced a different approach from the one that is usually followed in the
literature (see for instance [36], [32], [33], [37]). Such new approach enable
us to assume lower smoothness of the solution of the IBVP (1), (2), (3), than
those that we need to assume if the approach introduced in [36] was followed.

The methods studied can be seen into different class of methods : the class
of Galerkin methods and the class of finite difference methods. In fact, with
respect to the spatial discretization, the methods were constructed consid-
ering the variational formulation of the differential problem and replacing
the space H(S) by the space of the piecewise linear functions and using
convenient quadrature rules.

We point out that the analysis presented here can be followed if we use
in the time integration methods of higher order than Fuler’s method like
Crank-Nicolson method. This remark holds if we replace the rectangular rule
considered in the approximation of the time integral by higher approximation
methods.
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