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1. Introduction

In classical universal algebra, a well known representation theorem due to
Birkhoff states that any member of a variety V is isomorphic to a subdirect
product of subdirectly irreducible members of the variety. This implies that
V = SP (Si) where Si represents the class of subdirectly irreducible algebras
in V . This fact is, in itself, a purpose to the classification of this class within
each variety.
Both Rautenberg [6] and Venema [9] characterized subdirectly irreducible

and simple Boolean algebras with operators. To achieve their goal they
introduced the notion of essential elements in that class of algebras. Our
aim is to establish, in the class of bijective Boolean modules, an entity with
a similar role to the one expressed by an essential element in Boolean al-
gebras with operators (cf. Definition 3.9). We are able to achieve Theo-
rem 3.23 asserting that a bijective Boolean module is subdirectly irreducible
if and only if contains an essential element, a result similar to Theorem
4.16 of [9] for Boolean algebras with operators and Theorem 3.21 of [4] for
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separable dynamic algebras. Moreover, following Sambin [7], in a subdirectly
irreducible bijective Boolean module, we are able to highlight, a Boolean
element playing a decisive role, the greatest among the [1]-closed elements
on a bijective Boolean module. This led us to prove Theorem 3.35 where
such an element appears as the principal filter generator of the set of all
Boolean parts of essential elements united with the Boolean element 1. For-
ward, our study leads us to conclude that this element coincides with the
zero element of the Boolean part, and therefore that both homogeneous and
heterogeneous characterizations of subdirectly irreducible bijective Boolean
modules are equivalent.

2. Boolean modules

Boolean modules were introduced by Brink [1] as homogeneous algebras,
Boolean algebras with a multiplication (Peircean product) from a relation
algebra. A Boolean module is, from a heterogeneous point of view, a two
sorted algebra containing a Boolean algebra, a relation algebra and an opera-
tor (a heterogeneous operation, the Peircean operator) taking a pair of a
relation algebra element and a Boolean algebra element and originating a
Boolean algebra element. We present here the standard definition of relation
algebras given by Brink (originated from Chin and Tarski [2] and modified
in Tarski [8]).

Definition 2.1. A relation algebra is an algebra R = (R,∨,∧,′ , o, 1, ; ,̆ , e)
satisfying the following axioms for each a, b, c ∈ R

R1 (R,∨,∧,′ , o, 1) is a Boolean algebra
R2 a; (b; c) = (a; b); c
R3 a; e = a = e; a
R4 ă ˘= a

R5 (a ∨ b); c = a; c ∨ b; c
R6 (a ∨ b)̆ = ă ∨ b̆

R7 (a; b)̆ = b̆ ; ă
R8 ă ; (a; b)′ ≤ b′.

Notation. For a, b ∈ R we also write ab instead of a; b.

The standard class of models of relation algebras is the class of proper
relation algebras.

Definition 2.2. A proper relation algebra over a non-empty set U is a set of
binary relations on U that contains the identity relation and is closed with
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respect to union, intersection, complementation, relational composition and
converse. If a proper relation algebra consists of all binary relations defined
on U , then this algebra is called the full relation algebra and is denoted by
R(U). More precisely, R(U) is the power set algebra over U 2 endowed with
composition (“; ”), converse (“˘”) and identity (“Id”) operations defined, for
a, b ⊆ U 2, by
a; b = {(s, t) : exists u ∈ U such that (s, u) ∈ a and (u, t) ∈ b}
ă = {(s, t) : (t, s) ∈ a}
Id = {(s, s) : s ∈ U}.

The arithmetic of relation algebras can be described by the facts assembled
on the following theorem.

Theorem 2.3. On any relation algebra R = (R,∨,∧,′ , o, 1, ; ,̆ , e) the follow-
ing hold for any a, b, c, d ∈ R

R9 ĕ = e, ŏ = o, 1̆ = 1
R10 a ≤ b if and only if ă ≤ b̆

R11 (a ∧ b)̆ = ă ∧ b̆ , a′˘= ă ′

R12 a; o = o = o; a, 1; 1 = 1
R13 a(b ∨ c) = ab ∨ ac

R14 If a ≤ b then ca ≤ cb and ac ≤ bc.
R15 (ab)∧c = o if and only if (ă c)∧b = o if and only if (cb̆ )∧a = o
R16 (ab) ∧ (cd) ≤ a

(

(ă c) ∧ (bd )̆
)

d.

Proof : R9-R16 are proved in [2].

Brink introduced the notion of a Boolean R-module B as a homogeneous
algebra. Our attention is now devoted to the heterogeneous approach.

Definition 2.4. A Boolean module is a two-sorted algebra M = (B,R, :)
where B is a Boolean algebra, R is a relation algebra and : is a mapping
R × B −→ B (written a : p) such that for any a, b ∈ R and p, q ∈ B, the
following assertions are satisfied.
M1 a : (p ∨ q) = a : p ∨ a : q
M2 (a ∨ b) : p = a : p ∨ b : p
M3 a : (b : p) = (a; b) : p
M4 e : p = p

M5 o : p = 0
M6 ă : (a : p)′ ≤ p′
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Notation. For a, b ∈ R and p ∈ B we also use ap to represent a : p. We
define the modal operator [ ], that for each a ∈ R assigns [a] : B → B defined
by [a]p =∼ (a(∼ p)), for every p ∈ B.

The standard models of Boolean modules are provided by the class of
proper Boolean modules.

Definition 2.5. A proper Boolean module on a non-empty set U is a two-
sorted algebra of a proper Boolean algebra (a field of sets on U) and a proper
relation algebra on U together with Peirce product defined on sets and rela-
tions. For any relation a over U and any subset p of U , the Peirce product :
of a and p is defined by

a : p = {s ∈ U : there exists t ∈ p such that (s, t) ∈ a}.

A full Boolean module M(U) over a non-empty set U is the Boolean module
(B(U),R(U), :), where B(U) is the power set algebra over U , R(U) is the full
relation algebra over U and : is the Peirce product defined set-theoretically.

Below are some facts valid on Boolean modules.

Theorem 2.6. On any Boolean module M = (B,R, :) the following hold for
any a, b ∈ R and p, q ∈ B

M7 If p ≤ q then ap ≤ aq.
M8 If a ≤ b then ap ≤ bp.
M9 a(p ∧ q) ≤ (ap ∧ aq)
M10 (a ∧ b)p ≤ (ap ∧ bp)
M11 ap ∧ q = 0 if and only if ă q ∧ p = 0
M12 If

∑

i∈I pi exists, then so does
∑

i∈I api, and a
∑

i∈I pi =
∑

i∈I api.
M13 a0 = 0
M14 1 : 1 = 1
M15 (a1)′ ≤ a′1
M16 ap ∧ q ≤ a(p ∧ ă q)
M17 1p ≥ p

M18 [1]p ≤ p

M19 If p ≤ q then [a]p ≤ [a]q.
M20 [1]([1]p) = [1]p.

Proof : M7-M17 are proved in [1]. M18 and M19 are immediate consequences
of M17 and M7, respectively. To prove M20 we use mainly M3 and R12. In
fact,
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[1]([1]p) = [1](∼ (1(∼ p)))
=∼ (1(∼ (∼ (1(∼ p)))))
=∼ (1 : (1(∼ p)))
=∼ ((1; 1)(∼ p)) (by M3)
=∼ (1(∼ p)) (by R12)
= [1]p

It is a well known fact that the concept of congruence has a fundamental
role in universal algebra. Next notion follows, once more, a heterogeneous
approach.

Definition 2.7. Let M = (B,R, :) be a Boolean module. A pair θ = (θ1, θ2)
is a (modular) congruence relation on M if θ1 is a congruence relation on B,
θ2 is a congruence relation on R and ap θ1 bq whenever (p θ1 q and a θ2 b).

In a Boolean module M = (B,R, :) we define congruences ∆B and ∇B on
B and ∆R and ∇R on R as expected

∆B = {(p, p) : p ∈ B}, ∇B = {(p, q) : p, q ∈ B},

∆R = {(a, a) : a ∈ R}, ∇R = {(a, b) : a, b ∈ R}.

One can easily show that the pairs (∆B,∆R), (∇B,∇R) and (∇B,∆R) are
congruences on M, but in general (∆B,∇R) is not a congruence on M. In
fact, (∆B,∇R) is a congruence on M if and only if ∆B = ∇B.

Next we state some results for later use.
On any Boolean module the pair (∇B,∇R) is the unique modular congru-

ence having ∇R as relational part.

Proposition 2.8. [4] On a Boolean module M = (B,R, :) the pair (θ1,∇R)
is a modular congruence on M if and only if θ1 = ∇B.

On an arbitrary Boolean module M = (B,R, :) (not full) it is possible
that, for some relation algebra elements a and b, we may have ap = bp for
all p ∈ B without having a = b. Boolean modules for which this situation is
forbidden is presented next.

Definition 2.9. A Boolean module M = (B,R, :) is bijective if and only if,
for all a, b ∈ R we have a = b whenever ap = bp for all p ∈ B.

On a bijective Boolean module the pair (∆B,∆R) is the unique modular
congruence having ∆B as Boolean part.
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Proposition 2.10. [4] Let M = (B,R, :) be a bijective Boolean module.
Then

(∆B, θ2) is a congruence if and only if θ2 = ∆R.

Corollary 2.11. [4] On a bijective Boolean module M = (B,R, :)

(∆B,∇R) is a congruence iff card R = 1 ( iff ∇R = ∆R).

3. Subdirectly Irreducible Bijective Boolean Modules

The importance of the class of the subdirectly irreducible algebras is justi-
fied on the well known representation theorems due to Birkhoff.
For any algebra A we denote by Cong(A) the lattice of all congruences on

A.

Definition 3.1. [3] An algebra A is subdirectly irreducible if and only if A is
trivial or there is a minimum congruence in Cong(A) − {∆} (if and only if
there exist two elements x, y in A such that xθy, for any no trivial congruence
θ). In the latter case the minimum element is given by ∩(Cong(A) − {∆})
(a principal congruence).

Theorem 3.2. (Birkhoff) Every algebra A is isomorphic to a subdirect pro-
duct of subdirectly irreducible algebras (homomorphic images of A).

Theorem 3.3. (Birkhoff) Every finite algebra is isomorphic to a subdirect
product of a finite number of subdirectly irreducible finite algebras.

The class of the simple algebras is a relevant subclass of the subdirectly
irreducible algebras.

Definition 3.4. An algebra A is simple if and only if Cong(A) = {∆,∇}.

In [5] the class of all simple bijective Boolean modules was described.

Theorem 3.5. [5] The degenerate Boolean module M = ({0}, {o}, :) is the
unique simple bijective Boolean module.

We now analyze the degenerate case of the Boolean module M = (B,R, :)
with B = {0}.
If R = {o}, then Cong(M) = {(∆B,∆R) = (∇B,∇R)} and we consider

that M is both simple and subdirectly irreducible.
IfR = {o, 1}, thenM is not bijective and Cong(M) = {(∆B,∆R), (∆B,∇R)}

and once more M is both simple and subdirectly irreducible.
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If R 6⊇ {o, 1}, then M is not bijective and Cong(M) = {(∇B, θ) : θ ∈
Cong(R)}. Therefore M is simple or subdirectly irreducible if and only if R
is, respectively, simple or subdirectly irreducible.

3.1. Use of Essential Elements. Both Rautenberg [6] and Venema [9]
characterized subdirectly irreducible and simple Boolean algebras with opera-
tors. In this section, it is our purpose to establish, in the class of bijective
Boolean modules, an entity with a similar role to the one expressed by an
essential element in Boolean algebras with operators and prove Theorem 3.23
asserting that a bijective Boolean module is subdirectly irreducible if and only
if contains an essential element, a result in accordance with Theorem 4.16
of [9] for Boolean algebras with operators and with Theorem 3.21 of [4] for
separable dynamic algebras.
Similar to a result obtained by Venema [9] for Boolean algebras with opera-

tors, we are now able to establish a lattice isomorphism between the col-
lections of all open filters and all open congruences on a bijective Boolean
module.

Definition 3.6. Let M = (B,R, :) be a bijective Boolean module. A subset
F of B is an open Boolean filter of M if

(1) F is a Boolean filter (p1 ∧ p2 ∈ F , whenever p1, p2 ∈ F ; and q ∈ F

whenever p1 ≤ q and p1 ∈ F );
(2) [a]p ∈ F , for a ∈ R and p ∈ F .

We denote by Fop(M) the collection of all the open Boolean filters on M.

Definition 3.7. Let M = (B,R, :) be a bijective Boolean module. A
Boolean congruence θ is said to be a open Boolean congruence on M if

(1) θ is a Boolean congruence on B;
(2) apθaq whenever pθq and a ∈ R.

We denote by Congop(M) the collection of all the open Boolean congruences
on M.

Proposition 3.8. Let M = (B,R, :) be a bijective Boolean module. Then

(1) the collection of all open Boolean filters, Fop(M), is closed under ta-
king arbitrary intersections and hence forms a lattice with respect to
subset ordering;
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(2) this lattice is isomorphic to the lattice of the open Boolean congruences
on M, Congop(M), through the isomorphism

Π : Fop(M) −→ Congop(M)

given by

ΠF := {(p, q) ∈ B × B : p ↔ q ∈ F}

and its inverse

N : Congop(M) −→ Fop(M)

by

Nθ := {p ∈ B : pθ1}.

Proof : As in Proposition 3.14 of [4].

The notion of essential element on Boolean algebras with operators was
used by Venema [9] to specify the class of subdirectly irreducible algebras.
An entity playing a similar role is now required for bijective Boolean modules.

Definition 3.9. Let M = (B,R, :) be a bijective Boolean module, pe ∈ B

and a ∈ R. The pair (pe, a) is called an essential element in M if

(1) pe 6= 1
(2) ap ≥ p for all p ∈ B

(3) a(∼ p) ≥∼ pe (or, equivalently, [a]p ≤ pe) for every p 6= 1.

We note that if (p, a) is an essential element on a bijective Boolean module
M, then (p, 1) is also an essential element on M.

If, in a bijective Boolean module, the relational element 1 assumes a parti-
cular feature, each pair (p, 1) is an essential element, for each Boolean element
p 6= 1. This will be achieved after the introducing of next definition.

Definition 3.10. [5] Let M = (B,R, :) be a Boolean module with relational
part containing an element ∃s satisfying ∃s0 = 0 and ∃sp = 1, for every
p 6= 0. We call this element of R a simple quantifier.

Proposition 3.11. If M = (B,R, :) is a Boolean module with relational part
containing an element ∃s, then 1p = 1 for every p 6= 0. (If M is bijective,
then ∃s = 1.)
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Corollary 3.12. If M = (B,R, :) is a bijective Boolean module with 1q = 1
for every q 6= 0, then for every p ∈ B, with p 6= 1, the pair (p, 1) is an
essential element in M .

We examine the existence of essential elements on two bijective Boolean
modules.

Example 3.13. Let us consider the Boolean module M = (B,R, :) where
B = {0, 1} and R = {o, 1}.
The pair (0, 1) is the unique essential element on M.

Example 3.14. LetM = (B,R, :) be the proper Boolean module where B =
{∅, {p}, {q}, {p, q}}, R = {Λ, a, b, c}, Λ is the empty relation, a = {(p, p)},
b = {(q, q)} and c = {(p, p), (q, q)}.
We have

Λ ∅̆ = Λ∅ = ∅ ă ∅ = a∅ = ∅ b̆ ∅ = b∅ = ∅ c̆ ∅ = c∅ = ∅
Λ {̆p} = Λ{p} = ∅ ă {p} = a{p} = {p} b̆ {p} = b{p} = ∅ c̆ {p} = c{p} = {p}
Λ {̆q} = Λ{q} = ∅ ă {q} = a{q} = ∅ b̆ {q} = b{q} = {q} c̆ {q} = c{q} = {q}
Λ {̆p, q} = Λ{p, q} = ∅ ă {p, q} = a{p, q} = {p} b̆ {p, q} = b{p, q} = {q} c̆ {p, q} = c{p, q} = {p, q}

The pairs (∅, c), ({p}, c) and ({q}, c) are all possible candidates to be es-
sential elements on M since c is the unique relational element satisfying
condition 2. of Definition 3.9. However, we have, c{p} = {p} 6≥∼ ∅ = {p, q},
c{p} = {p} 6≥∼ {p} = {q} and c{q} = {q} 6≥∼ {q} = {p}, contradicting
condition 3. of Definition 3.9. Therefore M has no essential elements.

Proposition 3.15. Let M = (B,R, :) be a bijective Boolean module and s

any element of B. The set

Fs = {q ∈ B : [1]s ≤ q} (or Fs = {q ∈ B : 1(∼ s) ≥∼ q})

is the smallest open Boolean filter on M containing s.

Proof : First we notice that Fs is a Boolean filter. In fact, if p, q ∈ Fs then
1(∼ s) ≥∼ p and 1(∼ s) ≥∼ q. Therefore 1(∼ s) ∨ 1(∼ s) ≥∼ p∨ ∼ q, i.e.,
1(∼ s) ≥∼ (p ∧ q) and so p ∧ q ∈ Fs. Now let p ∈ Fs and q ∈ B such that
p ≤ q. Then 1(∼ s) ≥∼ p. But since ∼ p ≥∼ q we have 1(∼ s) ≥∼ q and
therefore q ∈ Fs.
Now it has to be proved that for p ∈ Fs and a ∈ R then [a]p ∈ Fs. Since

p ∈ Fs we have 1(∼ s) ≥∼ p hence (a; 1)(∼ s) = a(1(∼ s)) ≥ a(∼ p). But
1(∼ s) ≥ (a; 1)(∼ s) and so 1(∼ s) ≥ a(∼ p) =∼ ([a]p) yielding [a]p ∈ Fs.
The proof that s ∈ Fs is immediate since 1(∼ p) ≥∼ p for every p ∈ B.
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It remains to be proved that Fs is the smallest filter containing s.
Let F be a filter containing s. We intend to show that Fs ⊆ F . For q ∈ Fs

we have [1]s ≤ q. Since s ∈ F , an open Boolean filter of M, and 1 ∈ R then
[1]s ∈ F so q ∈ F .

Remark 3.16. We notice that Fs = {1}, the trivial open filter, if and only if
s = 1.
(In fact, since s ∈ Fs if Fs = {1}, then s = 1. Conversely F1 = {q ∈ B :

1(∼ 1) ≥∼ q} = {q ∈ B : 1(0) ≥∼ q} = {q ∈ B : 1 ≤ q} = {1}.)
Moreover, for M a non-degenerate bijective Boolean module, Fs = B if

and only if 1(∼ s) = 1.
(If Fs = B then 0 ∈ Fs and hence 1(∼ s) ≥∼ 0 and so 1(∼ s) = 1.)

Proposition 3.17. Let M = (B,R, :) be a bijective Boolean module. The
set Fpe is the smallest nontrivial open Boolean filter on M if and only if the
pair (pe, a) is an essential element on M for some a ∈ R (if and only if the
pair (pe, 1) is an essential element on M).

Proof : If F is the smallest nontrivial open Boolean filter on M necessarily
F = Fpe for some pe on B with pe 6= 1. We intend to prove that there exists
a ∈ R such that (pe, a) is an essential element on M. Let q 6= 1 and let
us consider the smallest open Boolean filter on M containing q, Fq. Since
Fpe is the smallest nontrivial open Boolean filter on M then Fpe ⊆ Fq, and
therefore pe ∈ Fq. So 1(∼ q) ≥∼ pe implying (pe, 1) to be an essential element
on M.
Now let us admit that there exists an a ∈ R such that (pe, a) is an essential

element on M. Immediately (pe, 1) is an essential element on M, i.e., pe 6= 1
and 1(∼ p) ≥∼ pe for every p 6= 1. Let F be a nontrivial open Boolean filter
on M. Since F is nontrivial then F 6= {1}, so there exists p ∈ F , p 6= 1. But
since (pe, 1) is essential, then 1(∼ p) ≥∼ pe and so [1]p ≤ pe. The fact that
p ∈ F implies [1]p ∈ F and so pe ∈ F . Therefore Fpe ⊆ F as required.

The existence of Boolean congruences on B which are not the Boolean part
of any modular congruences on a Boolean module M = (B,R, :) was already
previously mentioned in [5]. That fact gave rise to the introducing of the
following definition.

Definition 3.18. [5] Let M = (B,R, :) be a Boolean module. A Boolean
congruence θ1 on B is called pro-modular on M whenever there exists a
congruence θ2 on R such that (θ1, θ2) is a modular congruence on M.
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Proposition 3.19. [5] Let M = (B,R, :) be a Boolean module and let θ1 be a
(Boolean) congruence on B. The congruence θ1 is a pro-modular congruence
on M if and only if the pair (θ1,∆R) is a modular congruence on M.

Proposition 3.20. [5] For θ1 a pro-modular congruence on a Boolean module
M = (B,R, :) the pair (θ1,∆R) is the smallest modular congruence on M
having θ1 as Boolean part.

On a Boolean module the concepts of open Boolean congruence and of
pro-modular congruence are equivalents.

Proposition 3.21. On a Boolean module M = (B,R, :) a congruence θ1 ∈
Congop(M) if and only if the pair (θ1,∆R) ∈ Cong(M) (if and only if θ1 is
a pro-modular congruence on M).

To prove one of our main assertions, Theorem 3.23, a fundamental re-
sult is required. There, the existence of the minimum element on the set
Cong(M)−{(∆B,∆R)} equivalent to the existence of the minimum element
on Congop(M)− {∆B} is assured.

Proposition 3.22. Let M = (B,R, :) be a bijective Boolean module. The
minimum element on Cong(M)−{(∆B,∆R)} exists if and only if there exists
the minimum element on Congop(M)− {∆B}.

Proof : Similar to Proposition 3.20 of [4].

The class of subdirectly irreducible bijective Boolean modules is character-
ized by the existence of an essential element on each subdirectly irreducible
algebra, in agreement with that for the class of Boolean algebras with opera-
tors [9].

Theorem 3.23. A non-degenerate bijective Boolean module M = (B,R, :)
is subdirectly irreducible if and only if there exists an element pe ∈ B such
that the pair (pe, a) is an essential element on M , for some a ∈ R.

Proof : As in Theorem 3.21 of [4].

Corollary 3.24. If M = (B,R, :) is a bijective Boolean module with 1q = 1
for every q 6= 0, then M is subdirectly irreducible.

Proof : Trivial by Corollary 3.12.

Brink on [1] presented, following a homogeneous point of view, a character-
ization of subdirectly irreducible and simple Boolean modules. There, a
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Boolean module is subdirectly irreducible if and only if is simple, if and only
if 1p = 1 for every Boolean element p 6= 0. Therefore each subdirectly irre-
ducible bijective Boolean module under the Brink’ homogeneous approach is
also a subdirectly irreducible bijective Boolean module under our heteroge-
neous point of view. Later on, we will reach an equivalent characterization
that will enable us to obtain the same class on both approaches, as already
ensured by Proposition 3.22.

The following examples give some insight to the result established by The-
orem 3.23.

Example 3.25. Previously in Example 3.13 we presented a Boolean module
M = (B,R, :) with B = {0, 1} and R = {o, 1} containing, as a unique
essential element, the pair (0, 1). Therefore by Theorem 3.23 this Boolean
module is subdirectly irreducible. In fact, since CongB = {∆B,∇B} and
CongR = {∆R,∇R} we have CongM = {(∆B,∆R), (∇B,∆R), (∇B,∇R)}.
The minimum element of the set CongM− {(∆B,∆R)} exists (and is equal
to (∇B,∆R)). Therefore M is subdirectly irreducible.

Example 3.26. In Example 3.14 the Boolean module M = (B,R, :) with
B = {∅, {p}, {q}, {p, q}}, R = {Λ, a, b, c}, Λ is the empty relation, a =
{(p, p)}, b = {(q, q)} and c = {(p, p), (q, q)} contains no essential elements
and so is a non-subdirectly irreducible bijective Boolean module.
We have CongB = {∆B, θ1, γ1,∇B} where

θ1 = ∆B ∪ {(∅, {p}), ({p}, ∅), ({q}, {p, q}), ({p, q}, {q})}

and
γ1 = ∆B ∪ {(∅, {q}), ({q}, ∅), ({p}, {p, q}), ({p, q}, {p})}.

The set {∆R, θ2, γ2,∇R} where

θ2 = ∆R ∪ {(Λ, a), (a,Λ), (b, c), (c, b)}

and
γ2 = ∆R ∪ {(Λ, b), (b,Λ), (a, c), (c, a)}

contains all the Boolean congruences defined on R. Each congruence is
compatible with converse and composition attending to
Λ ∅̆ = Λ∅ = ∅ ă ∅ = a∅ = ∅ b̆ ∅ = b∅ = ∅ c̆ ∅ = c∅ = ∅
Λ {̆p} = Λ{p} = ∅ ă {p} = a{p} = {p} b̆ {p} = b{p} = ∅ c̆ {p} = c{p} = {p}
Λ {̆q} = Λ{q} = ∅ ă {q} = a{q} = ∅ b̆ {q} = b{q} = {q} c̆ {q} = c{q} = {q}
Λ {̆p, q} = Λ{p, q} = ∅ ă {p, q} = a{p, q} = {p} b̆ {p, q} = b{p, q} = {q} c̆ {p, q} = c{p, q} = {p, q}
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and
; Λ a b c

Λ Λ Λ Λ Λ
a Λ a Λ a

b Λ Λ b b

c Λ a b c

Therefore CongR = {∆R, θ2, γ2,∇R}.
Among all pairs of congruences we are obliged to choose

CongM ={(∆B ,∆R), (θ1,∆R), (θ1, θ2), (γ1,∆R), (γ1, γ2), (∇B ,∆R), (∇B , θ2), (∇B , γ2), (∇B ,∇R)}

since:

(i) (∆B, φ) is a modular congruence if and only if φ = ∆R (Prop. 2.10);
(ii) (φ,∇R) is a modular congruence if and only if φ = ∇B (Prop. 2.8);
(iii) (θ1, θ2) and (θ1,∆R) are modular congruences asserted by the table

θ2\θ1 (∅, ∅) ({p}, {p}) ({q}, {q}) ({p, q}, {p, q}) (∅, {p}) ({p}, ∅) ({q}, {p, q}) ({p, q}, {q})
(Λ,Λ) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅)
(a, a) (∅, ∅) ({p}, {p}) (∅, ∅) ({p}, {p}) (∅, {p}) ({p}, ∅) (∅, {p}) ({p}, ∅)
(b, b) (∅, ∅) (∅, ∅) ({q}, {q}) ({q}, {q}) (∅, ∅) (∅, ∅) ({q}, {q}) ({q}, {q})
(c, c) (∅, ∅) ({p}, {p}) ({q}, {q}) ({p, q}, {p, q}) (∅, {p}) ({p}, ∅) ({q}, {p, q}) ({p, q}, {q})
(Λ, a) (∅, ∅) (∅, {p}) (∅, ∅) (∅, {p}) (∅, {p}) (∅, ∅) (∅, {p}) (∅, ∅)
(a,Λ) (∅, ∅) ({p}, ∅) (∅, ∅) ({p}, ∅) (∅, ∅) ({p}, ∅) (∅, ∅) ({p}, ∅)
(b, c) (∅, ∅) (∅, {p}) ({q}, {q}) ({q}, {p, q}) (∅, {p}) (∅, ∅) ({q}, {p, q}) ({q}, {q})
(c, b) (∅, ∅) ({p}, ∅) ({q}, {q}) ({p, q}, {q}) (∅, ∅) ({p}, ∅) ({q}, {q}) ({p, q}, {q})

(iv) similarly to (iii), the pairs (γ1, γ2) and (γ1,∆R) are modular congru-
ences;

(v) (θ1, γ2) and (γ1, θ2) are not modular congruences since we have,
respectively,
{q}θ1{q} and Λγ2b but ∅ = Λ{q} 6 θ1b{q} = {q} and
{p}γ1{p} and Λθ2a but ∅ = Λ{p} 6 γ1a{p} = {p};

(vi) obviously the pairs (∇B,∆R), (∇B, θ2), (∇B, γ2) are modular congru-
ences.

Since the minimum element of the set CongM−{(∆B,∆R)} does not exist,
M is not subdirectly irreducible.

3.2. Use of [1]-closed elements. Some characterizations of subdirectly ir-
reducible bijective Boolean modules is given, agreeing with that of Sambin
[7] for modal algebras satisfying K4. We are able to single out, on a subdi-
rectly irreducible bijective Boolean module, a Boolean element, the greatest
among the [1]-closed elements on a bijective Boolean module. This led us to



14 S. MARQUES PINTO AND M.T. OLIVEIRA-MARTINS

prove Theorem 3.35 where such an element is qualified as the principal filter
generator, of the set of all Boolean parts of essential elements united with
the Boolean element 1. Moreover, we will prove that this element is the zero
element of the Boolean part, allowing us to infer that both homogeneous and
heterogeneous characterizations of subdirectly irreducible bijective Boolean
modules (given, respectively, by Brink and by us) are equivalent.

On a bijective Boolean module M = (B,R, :) we denote by EM the set of
all p ∈ B such that, for some a ∈ R, the pair (p, a) is an essential element
on M, i.e.,

EM = {p ∈ B : (p, a) is an essential element on M, for some a ∈ R}.

Using Theorem 3.23 we can infer that a bijective Boolean module is subdi-
rectly irreducible if and only if EM 6= ∅. By Corollary 3.12 we note that
if M is a bijective Boolean module with 1p = 1 for every p 6= 0, then
EM ∪ {1} = B.
We now prove that if a bijective Boolean module M is subdirectly irre-

ducible then EM ∪ {1} = Fpe for each pe ∈ EM.

Theorem 3.27. Let M = (B,R, :) be a bijective Boolean module. If EM 6= ∅,
then EM ∪ {1} = Fpe for each pe ∈ EM.

Proof : Let pe ∈ EM. We have to prove that EM ∪ {1} = Fpe. If p0 ∈
EM, then there exists b ∈ R with (p0, b) an essential element. Therefore
b(∼ p) ≥∼ p0 for every p 6= 1. Since pe 6= 1 we have b(∼ pe) ≥∼ p0 and then
1(∼ pe) ≥ b(∼ pe) ≥∼ p0. Therefore p0 ∈ Fpe and EM ∪ {1} ⊆ Fpe.
Let q ∈ Fpe and q 6= 1. Then 1(∼ pe) ≥∼ q. Since (pe, 1) is essential we

have 1(∼ p) ≥∼ pe for every p 6= 1, and then 1(1(∼ p)) ≥ 1(∼ pe) for every
p 6= 1, i.e., 1(∼ p) ≥ 1(∼ pe) for every p 6= 1. Therefore 1(∼ p) ≥∼ q for
every p 6= 1. So the pair (q, 1) is an essential element on M, i.e., q ∈ EM.
Therefore Fpe ⊆ EM ∪ {1}.

On a subdirectly irreducible bijective Boolean module M the non-empty
set EM contains an element playing a very special role.

Definition 3.28. LetM = (B,R, :) a bijective Boolean module. An element
q ∈ B is said to be a [1]-closed element on M if [1]q = q (or, equivalently,
1(∼ q) =∼ q ).

In any bijective Boolean module M = (B,R, :) both elements 0, 1 of B are
[1]-closed elements on M.
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Proposition 3.29. If q ∈ B is a [1]-closed element on a bijective Boolean
module M = (B,R, :), then ∼ q is also a [1]-closed element on M.

Proof : Since q is a [1]-closed element we have

1(∼ q) = ∼ q

(1(∼ q)) ∧ q = (∼ q) ∧ q

1 q̆ ∧ ∼ q = 0 (using M11)

1q ∧ ∼ q = 0 (using R9)

so 1q ≤ q. But byM17 we have 1q ≥ q hence 1q = q. Therefore [1](∼ q) =∼ q,

as required.

Proposition 3.30. If M is a bijective Boolean module with 1p = 1 for every
p 6= 0, then 0 and 1 are all [1]-closed elements on M.

Proof : If p0 is a [1]-closed element on M, then 1(∼ p0) =∼ p0. But if
∼ p0 = 0, then p0 = 1. If ∼ p0 6= 0 then 1(∼ p0) = 1, so 1 =∼ p0, i.e.,
p0 = 0.

An equivalent condition to the [1]-closed element’s definition is given below.

Proposition 3.31. Let M = (B,R, :) a bijective Boolean module. An ele-
ment p0 ∈ B is [1]-closed element on M if and only if [a]p0 ≥ p0 (or,
equivalently, a(∼ p0) ≤∼ p0) for every a ∈ R.

Proof : If p0 ∈ B is a [1]-closed element on M, then 1(∼ p0) =∼ p0. But, for
every a ∈ R we have a(∼ p0) ≤ 1(∼ p0) and then a(∼ p0) ≤∼ p0. Conversely,
if a(∼ p0) ≤∼ p0 for every a ∈ R, then for a := 1 we have 1(∼ p0) ≤∼ p0.
But, by M17 we have 1(∼ p0) ≥∼ p0, therefore 1(∼ p0) =∼ p0.

The two following conditions will be of fundamental importance in the
proof of Theorem 3.35.

Proposition 3.32. On a bijective Boolean module M = (B,R, :) each ele-
ment [1]p is a [1]-closed element on M for every p ∈ B.

Proof : By M20 we have [1]([1]p) = [1]p for every p ∈ B, as required.

A Boolean element emerges from next proposition. In fact, on a bijec-
tive Boolean module, we have [1]p1 = [1]p2, for arbitrary essentials elements
(p1, a) and (p2, b).
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Proposition 3.33. The set {[1]p : (p, a) is an essential element for some a}
⊆ EM, on a bijective Boolean module M = (B,R, :), is either singular or
empty.

Proof : Let (p1, a) and (p2, b) be essential elements on M. Then (p1, 1) is an
essential element on M and so 1(∼ p) ≥∼ p1 for every p 6= 1, i.e., [1]p ≤ p1
for every p 6= 1. Since (p2, b) is an essential element then p2 6= 1 and then
[1]p2 ≤ p1. Using M19 we have [1]([1]p2) ≤ [1]p1 and by M20 we infer that
[1]p2 ≤ [1]p1. And similarly.
It remains to be proved that such an element, ([1]pe, 1), for any essential

element (pe, a), is essential on M . We have 1(∼ p) ≥∼ pe for any p 6= 1.
Hence

1(∼ p) ≥ ∼ pe

1 : (1(∼ p)) ≥ 1(∼ pe)

1(∼ p) ≥ ∼ [1]pe, for every p 6= 1.

On a subdirectly irreducible bijective Boolean module, the greatest [1]-
closed element, distinct from 1, coincides with the element of the singular set
described above.

Proposition 3.34. On a subdirectly irreducible bijective Boolean module
M = (B,R, :), for each pe ∈ EM, the element [1]pe is the greatest [1]-closed
element distinct from 1.

Proof : Since (pe, a) is an essential element on M , for some a ∈ R, then
(pe, 1) is an essential element on M . The element [1]pe is a [1]-closed element
(Proposition 3.32). Let p1 a [1]-closed element with p1 6= 1. So [1]p1 = p1.
Since (pe, 1) is an essential element we have 1(∼ p) ≥∼ pe for every p 6= 1 and
since p1 6= 1 we get 1(∼ p1) ≥∼ pe, i.e., [1]p1 ≤ pe. Therefore [1]([1]p1) ≤ [1]pe
so [1]p1 ≤ [1]pe. Since [1]p1 = p1 we obtain p1 ≤ [1]pe. Since (pe, a) is essential
we have pe 6= 1 so [1]pe ≤ pe 6= 1 and immediately [1]pe 6= 1. Therefore [1]pe
is the greatest [1]-closed element distinct from 1.

A similar result to the one obtained by Sambin [7] for modal algebras satis-
fying K4 can now be asserted for bijective Boolean modules. Next Theorem
states, among other results, that if M is a subdirectly irreducible bijective
Boolean module then the set EM∪{1} is a principal filter generated by [1]pe
for any pe ∈ EM.
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Theorem 3.35. For a bijective Boolean module M = (B,R, :) the following
assertions are equivalent:

(1) M is subdirectly irreducible;
(2) EM ∪ {1} is a principal filter distinct from {1};
(3) M has a [1]-closed element p0 such that there exists an element a ∈ R

with (p0, a) an essential element;
(4) M has a greatest [1]-closed element distinct from 1.

Proof : We prove that (4) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4).
(4) ⇒ (3)
Let p0 the greatest [1]-closed element distinct from 1. By Proposition 3.32

the element [1]p is [1]-closed for every p ∈ B, so [1]p ≤ p0, for every p 6= 1.
Therefore (p0, 1) is an essential element on M.
(3) ⇒ (2)
If M has a [1]-closed element p0 such that there exist a ∈ R with (p0, a)

an essential element, then (p0, 1) is an essential element and EM 6= ∅. By
Theorem 3.27 we have EM∪{1} = Fpe for any pe such that there exists a ∈ R

with (pe, a) an essential element. We put pe := p0. So
EM ∪ {1} = Fp0

= {q ∈ B : 1(∼ p0) ≥∼ q}
= {q ∈ B :∼ p0 ≥∼ q} (since p0 is [1]-closed)
= {q ∈ B : p0 ≤ q}

and therefore EM∪{1} is a principal filter. Since EM∪{1} = Fp0 and p0 6= 1
((p0, 1) is an essential element), then EM ∪ {1} is a principal filter distinct
from {1} (Remark 3.16).
(2) ⇒ (1)
It is trivial by Theorem 3.23.
(1) ⇒ (4)
If M is subdirectly irreducible, then there exists an element p0 ∈ B such

that the pair (p0, a) is an essential element on M for some a ∈ R. Then the
required result follows from Proposition 3.34.

Proposition 3.36. On a bijective Boolean module M, if pe ∈ EM − {0},
then 1pe = 1.

Proof : For any pe ∈ EM, since [1](∼ pe) is a [1]-closed element, we have either
[1](∼ pe) = 1 or [1](∼ pe) ≤ [1]pe, by Proposition 3.34. If [1](∼ pe) = 1,
then ∼ (1pe) = 1, i.e., 1pe = 0. Since pe ≤ 1pe we have pe = 0. Now if
[1](∼ pe) ≤ [1]pe, then ∼ (1pe) ≤∼ (1(∼ pe)) and 1pe ≥ 1(∼ pe). Therefore



18 S. MARQUES PINTO AND M.T. OLIVEIRA-MARTINS

1pe ∨ 1(∼ pe) = 1pe, i.e., 1(pe ∨ (∼ pe)) = 1pe. Hence 1 : 1 = 1pe, i.e.,
1pe = 1.

Proposition 3.37. A bijective Boolean module M = (B,R, :) is subdirectly
irreducible if and only EM ∪ {1} = B.

Proof : If EM ∪ {1} = B, then EM 6= ∅ for every M distinct from the
degenerate Boolean module, ({0}, {o}, :) that will be assumed as subdirectly
irreducible. Then M is subdirectly irreducible, using Theorem 3.23.
Now, for M subdirectly irreducible, using Theorem 3.35, M has a [1]-

closed element p0 such that there exists an element a ∈ R with (p0, a) an
essential element. Let us admit that p0 6= 0. Then, using Proposition 3.36,
we have 1p0 = 1. Since p0 is a [1]-closed element then ∼ p0 is also a [1]-
closed element, by Proposition 3.29. Hence 1(∼∼ p0) =∼∼ p0, i.e., 1p0 = p0.

Therefore p0 = 1 contradicting the definition of (p0, a) as essential element.
So p0 = 0.

We note that we have just proved that on a subdirectly irreducible bijective
Boolean module M = (B,R, :), for each Boolean element p 6= 1, there exists
a ∈ R such that (p, a) (and , consequently, (p, 1)) is an essential element on
M. In particular, since (0, 1) is an essential element onM, then 1(∼ q) ≥∼ 0
for any q 6= 1, i.e., 1(s) = 1 for any s 6= 0. Therefore our characterization be-
comes equivalent to the one given by Brink, [1], as previously alleged. There,
the classes of simple bijective Boolean modules and subdirectly irreducible
bijective Boolean modules coincide. But next section contains a heteroge-
neous characterization for simple bijective Boolean modules that gives rise
to a class of simple bijective Boolean modules reduced to the degenerated
Boolean module M = ({0}, {o}, :) already determined in [5] and differing
from the class described by Brink.

4. Simple Bijective Boolean Modules

The definition of essential element used by us on bijective Boolean modules
is suitable to obtain a result analogous to Rautenberg’s characterization of
simple Boolean algebras with operators. Here, the simple bijective Boolean
modules are again fully characterized by its essential elements.

Proposition 4.1. Let M = (B,R, :) be a bijective Boolean module. If for
some a ∈ R the pair (0, a) is an essential element on M then a = 1.



SUBDIRECTLY IRREDUCIBLE BIJECTIVE BOOLEAN MODULES 19

Proof : By definition we have ap ≥∼ 0 = 1 for any p 6= 0. Immediately we
get ap = 1 for every p 6= 0. The result follows from Proposition 3.11.

The Rautenberg’s characterization obtained for Boolean algebras with ope-
rators can now be revisited for bijective Boolean modules.

Theorem 4.2. A bijective Boolean module M = (B,R, :) is simple if and
only if, for every element 1 6= pe ∈ B, and a ∈ R, the pair (pe, a) is an
essential element.

Proof : The unique simple bijective Boolean module is the degenerated
Boolean module (B = {0}, R = {o}, :) and the required condition is
trivially satisfied.
If, for every Boolean element pe 6= 1 and a ∈ R, the pair (pe, a) is an

essential element, then in particular, on a Boolean module with B 6⊇ {0}
the element (0, o) is an essential element asserting that, for every p ∈ B we
have op ≥ p, i.e., 0 ≥ p, and so B = {0} a contradiction. Now the fact that
B = {0} implies that R = {o} since we are assuming that M is bijective.
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