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1. Introduction

Poisson-Nijenhuis structures on manifolds were introduced by Magri and
Morosi [16] and then intensively studied by many authors [9, 12, 19, 21, 22].
Recall that a Poisson-Nijenhuis manifold consists of a triple (M, A, N), where
M is a manifold endowed with a Poisson bivector field A and a (1, 1)-tensor
N whose Nijenhuis torsion vanishes, together with some compatibility con-
ditions between A and N. Poisson-Nijenhuis manifolds are very important
in the study of integrable systems since they produce bi-Hamiltonian sys-
tems [9, 12, 16]. In particular, Magri and Morosi showed how to reduce a
Poisson-Nijenhuis manifold to a nondegenerate one, i.e., one where the Pois-
son structure is actually symplectic and the Nijenhuis tensor is kernel-free. In
this paper we show how to perform the same process of reduction in the more
general framework of Lie algebroids. This type of structures have deserved a
lot of interest in relation with the formulation of the Mechanics on disparate
situations as systems with symmetry, systems evolving on semidirect prod-
ucts, Lagrangian and Hamiltonian systems on Lie algebras, and field theory
equations (see, for instance, [3, 11] and the references therein).
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More precisely, in this paper we will see how to reduce a Poisson-Nijenhuis
Lie algebroid to a symplectic-Nijenhuis Lie algebroid with nondegenerate Ni-
jenhuis tensor. One could wonder about the interest of such a generalization.
However, we show that working in the framework of Poisson-Nijenhuis Lie
algebroids one may understand the geometrical structure of some physical
examples related with bi-Hamiltonian systems and hence it is not a mere aca-
demic exercise. Indeed we present, as a motivating example, the study of the
classic Toda lattice which, as is well known, admits a Poisson-Nijenhuis struc-
ture on R?". Nevertheless, when switching to the more convenient Flaschka
coordinates, one sees that the Poisson-Nijenhuis structure is lost, since there
is no more a recursion operator connecting the hierarchy of Poisson struc-
tures. Nevertheless, the Poisson-Nijenhuis structure can be recovered if the
system is described as a Lie algebroid (see also [2]).

The paper is organized as follows. In Section 2 we recall the notion of
Poisson-Nijenhuis manifolds, then we describe the example of the Toda lat-
tice as a motivation for the introduction of Poisson-Nijenhuis Lie algebroids.
Next, we present the reduced Toda lattice as a Poisson-Nijenhuis Lie alge-
broid (see also [2]). Moreover, we show how this example can be framed in
a more general case by considering a G-invariant Poisson-Nijenhuis struc-
ture on the total space M of a G-principal bundle. Such a structure, in
general does not induce a Poisson-Nijenhuis structure on M/G. Never-
theless, it gives rise to a Poisson-Nijenhuis Lie algebroid on the associated
Atiyah bundle, which allows to build the bi-Hamiltonian system in the re-
duced space M/G. In the following sections we present the reduction of
Poisson-Nijenhuis Lie algebroids. The reduction process is carried on in two
steps. The first step, described in Section 3, consists in selecting a gener-
alized foliation D = p4(P*A*) on the given Poisson-Nijenhuis Lie algebroid
(A, [-,-]4,pa, P,N) and then showing that restricting on each leaf L of D
one obtains a symplectic-Nijenhuis Lie algebroid structure. The leaves of the
foliation D are generally larger than those of the symplectic foliation of the
induced Poisson structure on the base manifold. In Section 4 we deal with Lie
algebroid epimorphisms introducing the notion of projectability of Poisson-
Nijenhuis structures. We prove that given a projectable Poisson-Nijenhuis
structure on a Lie algebroid and a Lie algebroid epimorphism we obtain a
Poisson-Nijenhuis structure on the target Lie algebroid. Finally, we intro-
duce the notion of Poisson-Nijenhuis Lie algebroid morphism. In Section 5
we study the reduction of a Lie algebroid by the foliation generated by the
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vertical and complete lifts of the sections of a Lie subalgebroid using an epi-
morphism of Lie algebroids. In Section 6, we use the previous constructions
to obtain a reduced symplectic-Nijenhuis Lie algebroid with nondegenerate
Nijenhuis tensor from an arbitrary symplectic-Nijenhuis Lie algebroid, under
suitable conditions. In this way we complete the second and final step of the
process of reduction. By putting together the two steps, we obtain our main
result, which is the following one.

Theorem. Let (A, [, ], pa, P, N) be a Poisson-Nijenhuis Lie algebroid such
that

i) The Poisson structure P has constant rank in the leaves of the foliation
D = pa(P*(AY)).

If L is a leaf of D, then, we have a symplectic-Nijenhuis Lie algebroid struc-
ture ([, ']AL ,pA, S, NL) on Ap = Pﬂ(A*)|L — L.
Assume, moreover, that

i1) The induced Nijenhuis tensor N, : A, — Ap has constant Riesz index
k;
iii) The dimension of the subspace B, = ker N¥ is constant, for all x € L

(thus, B = ker N¥ is a vector subbundle of A);
iii) The foliations p4(B) and FP are reqular, where

(FB), = {X(a)+Y"(a)/X,Y € I(B)}, forac Ap

iv) (condition FB) For allz € L, a, —d’, € B, if a, and a’, belong to the
same leaf of the foliation FP.

Then, we obtain a  symplectic-Nijenhuis — Lie — algebroid — structure
([ J4 s pi» Qp. Ni) on the vector bundle Ap = Ap/FP — L = L/pa,(B)

with Ny, nondegenerate.

The last section of the paper contains an explicit example of reduction
of a Poisson-Nijenhuis Lie algebroid which illustrates our theory. This is
obtained by considering a Lie group G which is the semidirect product of
two Lie groups. We construct a G-invariant Poisson-Nijenhuis structure on
the cotangent bundle 7*G and then we obtain a Poisson-Nijenhuis structure
on the associated Atiyah Lie algebroid which is degenerate. Thus, it may be
effectively reduced, according to our main theorem.
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2. Poisson-Nijenhuis Lie algebroids: a motivating exam-
ple
In this section we will motivate the introduction of the notion of Poisson-

Nijenhuis Lie algebroids with a simple example: the Toda lattice. Firstly, we
will recall some definitions and results on Poisson-Nijenhuis manifolds.

2.1. Poisson-Nijenhuis manifolds. Let A € T'(A*T'M) be a bivector field
on a manifold M. We denote by A* the usual bundle map
A T*M — TM, a— A(a) =igA. (1)

Recall that A defines a Poisson structure on M if the Schouten bracket [A, A
vanishes. In this case, one defines a Poisson bracket by

{f.9kn = A(df,dg), f,g€C™(M)
which makes C*°(M) into a Lie algebra, and which is a derivation if either

f or g is fixed. The Poisson bracket on C*°(M) extends to a Lie bracket on
the space QY(M) of 1-forms on M defined by

[, Bl = LasaB — Lazga —d (M, 8)),  a, 8 €Q'(M), (2)

such that on exact 1-forms one has [df, dg|y = d{f, g} .
If a (1, 1)-tensor field N : TM — TM is given on a manifold M, then its
torsion Ty € I'(A*T*M @ TM) is defined by

Tn(X,Y):=[NX,NY]| - N[X, Y]y, X, Y e€X(M), (3)
where [-, ] is given by
(X,Y]y = [NX,Y] + [X,NY] - N[X,Y], X,Ye€X(M). (4

When Ty = 0, the tensor field N is called a Nijenhuis tensor.
Now, if A € T(A*T'M) is a Poisson structure on M, we say that a bundle

map N : TM — TM is compatible with A if NA* = A*N* and the Magri-
Morosi concomitant vanishes:

C(A, N)(a, ) = [a, By — [ By =0,

where [+, -]y, is the bracket defined by the section NA € T'(A%A) in a similar

way as in (2), and [-,-]} is the Lie bracket obtained from the Lie bracket
-, -], by deformation along the dual map N* : T*M — T*M in a similar way
as in (4), i.e.

o, By = [N*a, 8], + [, N*B]y — N* [a, 8], -
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Definition 2.1. ([16]) A Poisson-Nijenhuis manifold (M, A, N') is a manifold
M equipped with a Poisson structure A and a Nijenhuis tensor N : TM —
TM compatible with A.

In such a case, one may obtain a hierarchy of compatible Poisson structures
on M

A, NA, N?A,... NFA, ...

We recall that two Poisson bi-vectors A and A’ on M are compatible if A+ A’
is again a Poisson structure or equivalently if [A, A’] = 0.

An example of Poisson-Nijenhuis manifold is given by a manifold M en-
dowed with two compatible Poisson structures A; and As, such that the
first one is nondegenerate. Thus, (M, Ay, V) is a Poisson-Nijenhuis manifold
where

N = Ao (ADH)!
If additionally N is nondegenerate then we have a hierarchy of compatible
symplectic structures on M. Moreover, if X is a bi-Hamiltonian vector field
(i.e. a Hamiltonian vector field with respect to both Poisson structures, A;
and Ay) and the first de Rham cohomology group of M is trivial, we obtain
a sequence of integrals of motion in involution (see [16]).

Example 2.2. The Toda lattice. The finite, non-periodic Toda lattice
(see, for instance, [2, 12, 17]) is a system of n particles on the line under
exponential interaction with nearby particles. Its phase space is R*" with
canonical coordinates (¢', p;) where ¢' is the displacement of the i-th particle
from its equilibrium position and p; is the corresponding momentum. This
system is particularly interesting when we consider exponential forces. Then
the Hamiltonian function associated with the equations of motion is

sz +Z 7=

Now, we consider the following two compatible Poisson structures on R?*"

Yo

(g O 0
Zaq aqﬂ ;plazA_+;e s O

1<]
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Note that Ag is the Poisson bivector corresponding to the canonical sym-
plectic structure of R?". Furthermore, the Hamiltonian vector field 7—[%01 is
bi-Hamiltonian. In fact,

Hip = A§(dH:) = A (dHy),

with H() = Z?:l Di-
In what follows, we will reduce the bi-Hamiltonian structure of the Toda
lattice using the action of R over R?*" given by

R x R — R*"
(t:(¢',pi)) — (¢ +t.pi)
which induces the principal bundle
7 : R — R*/R.
Note that R?"/R may be identified with (RT)"~1 x R" by
R*/R — (RY)" xR", (¢, p;) — (77 py). (5)

This identification corresponds to the choice of the so called Flaschka coor-
dinates which are actually global coordinates on R?" /R, usually denoted by
(@1,...,an-1, by, ..., b,). The Poisson structures Ay and A; are R-invariant

so that they descend to the quotient R**/R = (RT)"! x R". The reduced
Poisson structures are

_ 0

AO_-E:%&M (___amﬂ)’

= 0 0

A o= Z Aix— aal ( 9b; bi+1%) (6)

o ) )
+Z‘“ab ab+za’a’“a " oa

1+1 Aij+1

These bivectors are again compatible and moreover we obtain by projection
a hierarchy of compatible Poisson structures on the reduced space. However,
they cannot be related through a recursion tensor N. Indeed, if this were
the case, then
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Thus, using that /_X%(Z db;) = 0, we deduce that ]\t{(z db;) = 0 which is

i=1 =1
not true.

The problem is that if we want to induce a tensor N : T(R*/R) —
T(R?"/R) it is necessary that N sends vertical vectors with respect to 7 :
R?" — R*" /R into vertical vectors. Note that Ag and N are R-invariant but
N(kerT'm) € ker T'.

Furthermore, the Hamiltonian vector field H% projects just in H% and

ApdIl, = Hp = NdH,

with H, = Zb2+2az and Hy = Zb

These facts suggest that although the structure of Poisson-Nijenhuis can
not be reduced, perhaps there exists another structure in a different space
from which we may induce the above structures on the reduced space R?"/R.
The answer to this question is associated with the notion of a Poisson-
Nijenhuis Lie algebroid. O

2.2. Poisson-Nijenhuis Lie algebroids. A Lie algebroid is a vector bundle
Ta: A — M endowed with

(1) an anchor, i.e. a vector bundle morphism ps: A — TM
(ii) a Lie bracket [-, -] , on the space of the sections of A, I'(A), such that
the Leibniz rule,

X fY ]y = FIX Y]y + pa(X)(N)Y,
is satisfied for all X,Y € I'(A) and f € C*(M).

We denote such a Lie algebroid by (A, [, ]4, pa) or simply by A.
In such a case the map p4 induces a morphism of Lie algebras from
(I'(A), [-,-]4) to (X(M), -, -]) which we denote by the same symbol, i.e.

pa ([X,Y],) = [pa(X), pa(Y)].

Now, we will describe an interesting example of a Lie algebroid. For further
details about Lie algebroids and other examples see e.g. [13].

Example 2.3. The Atiyah algebroid associated with a principal G-
bundle. Let p: M — M/G be a principal G-bundle. It is well-known that
the tangent lift of the principal action of G on M induces a principal action
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of G on T'M and the space of orbits T'M /G of this action is a vector bundle
over M /G with vector bundle projection 77y : TM/G — M/G given by

oac([ve]) = p(x), Y, € T, M.

Furthermore, the space of sections I'(T'M /G) may be identified with the set of
G-invariant vector fields on M and the Lie bracket of two G-invariant vector
fields on M is still G-invariant. Thus, the standard Lie bracket of vector
fields induces a Lie bracket [, |7,/ on the space I'(T'M/G) in a natural
way.

On the other hand, the anchor map pryyq : TM/G — T(M/G) is given
by

pTM/G([U:c]) = (T:cp) (Ux)a for v, € T:cMa
where Tp : TM — T(M/G) is the tangent map to the principal bundle
projection p : M — M/G.
The resultant Lie algebroid (T'M/G, [, |5/ prassc) is called the Atiyah
algebroid associated with the principal G-bundle p : M — M/G. O

Associated to a given Lie algebroid (A, [-,-] ,, pa) there is a Lie algebroid
differential d*: T(A®A*) — T(A*T1A*) defined by

A~

(dAW) (X, ... X)) = Z(—l)ipA(Xi) (w(Xo, X Xk))

A~ ~

+ (=)™ (X5, X 4, Xoy oo Xy ooy Xy ooy Xi),

0<i<j<k

for w € T(A*A%), Xy, ..., X3 € T(A). We have that (d4)? = 0, which implies
that d4 is a cohomology operator. Moreover, if X is a section of A, one
may introduce, in a natural way, the Lie derivative with respect to X as the
operator L5 : T'(AFA*) — T'(AFA*) given by

L4 =ixodd+d?eiy. (7)

It is easy to prove that the Lie derivative £4 and the Lie bracket [-,], are
related by

Liiy =iy Ly +ipxy],, with X,Y € D(A). (8)
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The Lie algebra bracket [-,:], on I'(A) can be extended to the exterior
algebra (I'(A®A), A) using the properties

[P.Q, € T(ArHatA)
P.Ql, = —(—n V@ P, (9)
[P.QAR], = [P,QI4 AR+ (—=1)""1QA[P R],,

with P € I'(APA),Q € I'(AN?7A) and R € T'(A\"A).
The resulting bracket is called Schouten bracket (see e.g. [13]). Note that

(X, Pla(a, ... ap) = pa(X)(Plav, ..., ap) — ZP(ozl, LR, ay)

(10)
for X e I'(A), P € I'(A\PA) and ay, ..., a, € I'(A¥).
Let (A, [-,-] 4, pa) be a Lie algebroid over a manifold M and P be a section
of the vector bundle A?A — M. We denote by P? the usual bundle map

PP A — A, ar— Pa) =i,P. (11)

We say that P defines a Poisson structure on A if [P, P]4 = 0. In this case,
the bracket on the sections of A* defined by

(o Blp = LpuoS = Ly =AY (P(a, B)), e, B€T(AT), (12)
is a Lie bracket, P* : (I'(A*), [, ]p) — (I'(A), [, -]4) is a Lie algebra morphism
and the triple A% = (A*,[,"]p, pao P?) is a Lie algebroid [14]. In fact, the pair
(A, A}) is a special kind of a Lie bialgebroid called a triangular Lie bialgebroid
[14]. A Poisson structure P € T'(A*A) on a Lie algebroid (A, [, ], p4)
induces a Poisson structure A € I'(A?T'M) on the base manifold M, defined
by

Aﬁ:pAoPﬂopz. (13)
An almost symplectic structure on the Lie algebroid (A, [-, -], , pa) is a section

Q4 of the vector bundle A24* — M such that Q4 is nondegenerate. In such
a case, the map € : T'(4) — T'(4*) given by

QX)) =ixQ4,  for X e ['(A),

is an isomorphism of C°°(M)-modules. Thus, one can define from Q4 a
nondegenerate section of the vector bundle A2A — M as follows

Po,(a, 8) = Qa((2)) (), () 1(8)),  for o, f € T(AY). (14)
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An almost symplectic structure Qy4 is called symplectic if d4Q4 = 0. In
this case, Py, € I'(A%A) is a Poisson structure on A. Conversely, if P is a
nondegenerate Poisson structure on A, then

Qp(X,Y) = P(PHYX),(PH(Y)), for X,Y eT(A),

defines a symplectic structure Qp on A (see [1]).
Let (A, [,-]4,pa) be a Lie algebroid over a manifold M. The torsion of a
bundle map N : A — A (over the identity) is defined by

Tn(X,Y):=[NX,NY],— NX, Y]y, X, Y eI(A4), (15)
where [+, -]y is given by
(X, Y|y = [NX, Y|4+ [X,NY]s— N[X,Y]s, X, Y e€TI(A). (16)
When Ty = 0, the bundle map N is called a Niyjenhuis operator, the triple
Ay = (A, [,]y,pn = poN) is a new Lie algebroid and N : Ay — A is a Lie
algebroid morphism (see [4, 9]).
Now, if P € T'(A?A) is a Poisson structure on A, we say that a bundle map

N : A — Ais compatible with P if NoP* = P*oN* and the Magri-Morosi
concomitant

C(P.N)(e, 8) = [ Blyp = e Blp, fora, BeT(AY)  (17)
vanishes, where [, -] yp is the bracket defined by the section NP € T'(A?A)

in a similar way as in (12), and [-,-]¥ is the Lie bracket obtained from the
Lie bracket [-,-]p, by deformation along the dual map N*: A* — A* ie,

o, Bp = [N", B]p + [, N*B]p — N* [at, B] p . (18)

Definition 2.4. ([1]) A Poisson-Nijenhuis Lie algebroid (A, P, N) is a Lie
algebroid A equipped with a Poisson structure P and a Nijenhuis operator
N : A — A compatible with P.

If, in particular, the Poisson tensor P in Definition 2.4 is nondegenerate, i.e.
it comes from a symplectic structure 24 on A like in (14), then (A, Qy4, V) is
said to be a symplectic-Nijenhuis Lie algebroid. This is the case of two com-
patible Poisson 2-sections Fy and P;, where F is associated with a symplectic
structure.

Example 2.5. The Poisson-Nijenhuis Lie algebroid associated with
the Toda lattice (see [2]). We will describe the Poisson-Nijenhuis Lie al-
gebroid associated to the reduction of the Toda lattice presented in Example
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2.2. Consider the Atiyah algebroid 74 : A = (TR*")/R — R?"/R associated
with the principal bundle 7 : R** — R?"/R.
A global basis of R-invariant vector fields on R?" is

(g =" 5 0 _ En: 0 fi= 9
€ =¢€ ) €p = ) - 1=1,..,n—
{ k=1 dq* k=1 ag*" apj}j;l,-.,n 1

Note that

lei, e = [fi, fi] = les, f] =0
for 7,5 € {1,...,n}. Moreover, the vector field ey, with k € {1,...,n — 1}
(respectively, f;, with [ € {1,...,n}) is m-projectable over the vector field

% (respectively, a%) on (RT)"~! x R™, In addition, the vertical bundle of
a

7 is generated by the vector field e,,.
Thus, the Lie algebroid structure ([-,]4,p4) on A is characterized by the
following conditions

leisejly = [fis fil4 = leis fi]4 =0,
and

0 , 0

pA(ei) = da (Z =1,.. '7n_1)7 pA(en) =0, pA(fj) = BT (] =1,...

We may define the following two Poisson structures on A

n—1
T o= Y aiei A(fi— fir)) Fen A fa
—1
' n—2 n—1
T = — Z a;jQis1€; N\ €jr1 — Ap_1€n—1 N €, + Z ae; N\ (bifi — biv1fiv1)
i=1 1=1
n—1
tben A fo— D aifi A fir.
i—1

These Poisson structures cover ordinary Poisson tensors on the base manifold
R?" /R which are just the Poisson structures Ay and A; given by (6). Since
o is symplectic, the Poisson structures on A are related by the recursion op-
erator N = 7T§ 3 (ﬂg)_l and (A, m, N) is a symplectic-Nijenhuis Lie algebroid.

O
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This example may be framed within a more general framework as follows.

Let p: M — M = M/G be a principal G-bundle. If a G-invariant Poisson-
Nijenhuis structure (A, V) is given on M, then in general we cannot induce a
Poisson-Nijenhuis structure on M /G since the condition N (ker T'p) € ker T'p
might not be satisfied. Nevertheless, we obtain a reduced Poisson-Nijenhuis
Lie algebroid. In fact, as we know, the space of sections of p : TM/G —
M = M/G (respectively, p* : (TM/G)* = T*M/G — M = M/G) may
be identified with the set of G-invariant vector fields X% (M) (respectively,
G-invariant 1-forms Q'(M)%) on M.

Now, since A and N are G-invariant, we deduce that

A(a, B) is a p-basic function, for o, f € QY(M)“
and
NX e x6(M), for X € X6(M).

Thus, A (respectively, N) induces a section A (respectively, N ) on the vector
bundle A2 (TM/G) — M = M/G (respectively, TM/G @ T*M /G — M =
M/G) in such a way that

A(a, B)op = Ala, B) for a,B € QYM)C,

NX = NX, for X € X¢(M).
Moreover, using the definition of the Lie algebroid structure on the Atiyah

algebroid p : TM/G — M = M/G and the fact that (A, N) is a Poisson-
Nijenhuis structure on M, we may prove the following result

Proposition 2.6. Let p : M — M = M/G be a principal G-bundle and
(A, N) be a G-invariant Poisson-Nijenhuis structure on M. Then:

i) (A, N) induces a Poisson-Nijenhuis Lie algebroid structure (A, N) on
the Atiyah algebroid p: TM/G — M = M/G
i1) The Poisson structures A and NA on M are p-projectable to two com-
patible Poisson structures A and NA on M = M/G.
iii) The Poisson structures on M = M /G which are induced by the Pois-
son bi-sections A and NA on the Atiyah algebroidp : M — M = M/G
are just A and NA, respectively.

3. Reduction of Poisson-Nijenhuis Lie algebroids by re-
striction

We consider the Poisson-Nijenhuis Lie algebroid A = (TR*")/R associated
with the Toda lattice. It is easy to prove that if we restrict to a suitable
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open subset of the base manifold R**/R then A = (TR*")/R is a symplectic-
Nijenhuis Lie algebroid with nondegenerate Nijenhuis tensor. The main re-
sult of this paper is prove that, under regularities conditions, every Poisson-
Nijenhuis algebroid may be reduced to a nondegenerate symplectic-Nijenhuis
Lie algebroid. This reduction has two steps. In the first step we obtain a
symplectic-Nijenhuis Lie algebroid, and then we will reduce it to a symplectic-
Nijenhuis Lie algebroid with nondegenerate Nijenhuis tensor using a general
theory about the projectability of a Poisson-Nijenhuis structure with respect
to a Poisson-Nijenhuis Lie algebroid epimorphism. In this section we will
describe the first step which is a reduction by restriction. Previously, we
recall some notions about Lie algebroid morphisms which will be useful in
the sequel.

3.1. Lie algebroid morphisms and subalgebroids. Let 74: A — M and
T . A — M be vector bundles. Suppose that we have a morphism of vector

bundles (F, f) from A to A:

A—— A
M1

A section of A, X : M — A, is said to be F-projectable if there is X € F(g)
such that the following diagram is commutative:

A—— 4
X‘ .
M1

A section a: M — AFA* of 7h.: AR A* — M is said to be F-projectable if
there is @ € I'(A*A*) such that o = F*a, where F*a € I'(AFA*) is defined
by

(F*a) (@) (an,. .., ar) = &(f(@)(F(ar), ..., Flay)) (19)
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with x € M and ay,...,a; € A,.
Now, we consider Lie algebroid structures ([-,-],,p4) and ([-,-] 7, p5) on A

and Z, respectively. We say that (F, f) is a Lie algebroid morphism if
dA(F*a) = F*(dAa) for all @ € T'(AFA*) and all k. (20)
Any Lie algebroid morphism preserves the anchor, i.e.,
piol'=Tfopa. (21)
Moreover, if X and Y are F-projectable sections on )j(: and i/v', respectively,
it follows that [X, Y], is a F-projectable section on [X, Y] ;.
In addition, if X € I'(A) is F-projectable and & € I'(A*), then £5(F*a) is
a F-projectable section of A*. In fact, using (7) and (20), we have that
LA(FE) = FH(La), (22)

where X € I'(A) satisfies FoX = X of.
Note that if M = M and f is the identity map for M, then F': A — A is
a Lie algebroid morphism if and only if

FIX.Y], = [FX.FY];.  pz(FX) = pa(X) (23)

for X, Y e I'(A).

A Lie subalgebroid is a morphism of Lie algebroids [: B — A over t: N —
M such that ¢ is an injective immersion and I|p, : B, — A, is a monomor-
phism, for all x € N (see [7]).

3.2. The first step of the reduction: Reduction of Poisson-Nijenhuis
Lie algebroids by restriction. Let (A, P) be a Poisson Lie algebroid. In
order to reduce A to a symplectic Lie algebroid, let us consider the generalized
distribution D C T'M defined as follows: for each z € M,

D(x) = pa(P*(A})) C T, M.

Since P* and py4 are Lie algebroid morphisms over the identity idy; : M — M,
we have

[pa(Pra), pa(P*B)] = pa(FF [a, Bp),

for any «, f € I'(A*), i.e. D is involutive. Furthermore, D is locally finitely
generated as a C°°(M)-module. As a consequence D defines a generalized
foliation of M in the sense of Sussmann [20]. Note that, due to (13), the
tangent distribution S = A*(T*M) of the symplectic foliation of the induced
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Poisson structure A € T'(A*T'M) on the base manifold M is a subset of
D = pa(PHAY)).

Let L € M be a leaf of the foliation D and consider the subset A; :=
P*(A*), € A. We assume that the Poisson structure P* : A* — A ha
constant rank on each leaf L. Then, A; — L is a vector subbundle of the
vector bundle A — M and, since that ps(Azr) € T'L, we deduce that the
Lie algebroid structure ([-,-]4, pa) on A induces a Lie algebroid structure
([-,]a,,pa,) on Ap. In fact, pa, = (pa)ja, and the Lie bracket [-,-]4, is
characterized by the condition

[Pﬁa|L7Pﬂ/6|L]AL - ([Pﬁaapﬁ/ﬁ}/l)ul - (Pﬁ [Ozvﬂ]P)|L

for all a, 8 € T'(A*). Note that if a,o/ € T'(A*) and P*(«), = P*(a);1, then,
using that the restriction to L of p4(P*()) is tangent to L, we obtain that

([Pﬂ@7 Pﬁﬁ} A)|L = ([Pﬁala Pﬁﬁ} A)IL-

Furthermore, if we denote by I : Ay, — A and ¢ : L — M, respectively, the
inclusion mappings of Ay in A and of L in M, then I is a monomorphism of
Lie algebroids from Ay to A over ¢ : L — M so that Ay is a Lie subalgebroid
of A.

Now, we will prove that the Lie algebroid Ay, is symplectic.

Note that for any X € I'(Ay) there exists a section o € I'(A*) such that
Xp, I-projects on Pta, ie., [o X = Plaor.

Let us define a section Qp: L — A?A% by setting

Qp(Xp,Yr) = Pla, B)et,  forany X, Yy € I'(Ar) (24)

a, B being sections of A* such that X; and Y; I-project on Pfa and P!B,
respectively. Clearly, € is well defined. Indeed, if Pfaor = Pfa/o¢ then
P(a,B)or = P(d/, B) o, for all 5 € T'(A").
Moreover, 27, is nondegenerate. Note that if X € I'(Ayr),
I-X; = (P'a)et

and Q7 (X7,Yz) = 0, for all Y; € I'(Ar), then PPasr = 0 and therefore
X1, = 0. Hence, 27 is an almost symplectic structure on Aj.
In order to show that €27, is symplectic, we will prove the following Lemma.

Lemma 3.1. Let Xp,Yy be sections of Ap and «,B € T'(A*) such that
[oX; = Plaor and 1Yy = P!Bou. Then:

(i) Qp(X1) = —Ta,
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L Y A A
(ZZ) Z[XL,YL]ALQL — EX?/BL - EYLLQL +d L(P(Oz, 5) OL)?
where ap, = ix,8 and B =1x,€)L.

Proof: (i) If Y, € I'(Ay) is a section of Ay which I-projects on P*3, for some
B eT'(A*), then

Q) (X1)(YL) = (Bor)(Prac) = —(ao) (P Bot) = —(aot)(IoYr) = =T a(Y7).
(ii) Note that, since (I, 1) and P* are Lie algebroid morphisms, we have
[o[X1, Y], = [Pla, P*B]  ov = P*a, B]p o

So, by (i) we obtain

i[XL,YL]ALQL =—I" [047 B]P . (25)
Now, from (12), (22) and (25) we obtain the claim. m
Proposition 3.2. The 2-section 21, on Ay defined by (24) is symplectic.
Proof: We have only to prove that ) is closed. In fact, for any X;,Y; €
['(Ar), we have

. . A . A . A -
ZXLZYLd LQL = ZXL»CYLLQL — ZXLd LZYLQL

. . . . (26)
= ,C{}vLLZXLQL + Z[XL7YL]ALQL — ZXLdALZyLQL,
where we have used (7) and (8).
By applying Lemma 3.1, from (26) we get
ix, iy, Q= d*ix, By + A (P(a, B) ot) = 0.
|

Now, we consider a Nijenhuis operator N : A — A on the Lie algebroid A
which is compatible with the Poisson structure P. Using the compatibility

condition NoP* = P% N* we may induce by restriction a new operator
Ny : A; — Ap on Ay such that
T-N(X1) = N(P*a)ou, for all X; € T'(Ap) (27)

where o € T'(A*) is a section of A* such that X I-projects on Pa.
Note that, from (27), we deduce that

[N = NoI (28)
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which implies that
Ni(I"a) = I"(N*«), for a € I'(A"). (29)

Theorem 3.3. Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid such that
the Poisson structure has constant rank in the leaves of the foliation D =
pa(P*(A%)). Then, we have a symplectic-Nijenhuis Lie algebroid (A, Qr, Ni)
on each leaf L of D.

Proof: From Proposition 3.2, we deduce that (A, <)) is a symplectic Lie
algebroid. Denote by P;, the Poisson structure corresponding to €2, defined
by P]ﬁL = —(€})~!. Note that, using Lemma 3.1, we have that

Pr(I"oa, I"B) = P(a, B) o1, forall a, f € T'(AY). (30)

Next, we prove that Ny is a Nijenhuis operator compatible with Pr. Indeed,
firstly consider Xy, Y sections of A;. Then, there are o and [ sections of
A* such that X7 and Yz, I-project on Pt and P%3, respectively. Thus, using
(28) and the fact that (1, ¢) is a monomorphism of Lie algebroids, we deduce
that

IoTn, (X1, Y1) = Ta (PP, PPB) ot = 0. (31)

On the other hand, for a € I'(A*), we consider the section X € I'(Az)

defined by

[-X1 = Plas..
Using Lemma 3.1 we deduce that
Pi(I*a) = XJ. (32)

Now, from (27) and since N oP* = P%c N*, it follows that
I(NL(X1)) = PH(N*a) o
Therefore, using again Lemma 3.1, we obtain that
PE(I(N*a)) = Ny(X,) = Ny(PH(TI"a)
which implies that (see (29))
P}(N;(I"a)) = Ni(Pj(I*)).
This proves that P! e N7 = Ny o P},

Finally, from (17), (18), (22), (27), (30) and using that NoP* = P*cN*
and the fact that (7,:) is a Lie algebroid monomorphism, we conclude that

0=I(C(P,N)(, B)) = C(Pr, Np) (I, ") o,
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for a, B € T'(A").
This ends the proof of the result.
|

4. Reduction of Poisson-Nijenhuis Lie algebroids by epi-
morphisms of Lie algebroids

In order to complete the process of reduction, we now deal with the gen-
eral problem of the projectability of a Poisson-Nijenhuis structure on a Lie
algebroid with respect to a vector bundle epimorphism.

Let 74: A — M and 75;: A — M be vector bundles on the manifolds M

and M , respectively, and let (I, ) be an epimorphism of vector bundles,

A—L 7
TA Tg
M —"— 7

i.e., the map m: M — M is a surjective submersion and, for each x € M,
I,: A, — gﬂ(x) is an epimorphism of vector spaces.

Denote by I',(A) (respectively, I',(A*)) the space of the II-projectable sec-
tions of A (respectively, of A*). In [8] a characterization is found to establish
when a vector bundle epimorphism is a Lie algebroid epimorphism.

Proposition 4.1. (see [8]) Let (IL,w) : A — A be a vector bundle epimor-
phism. Suppose that ([-,-] 4, pa) is a Lie algebroid structure over A. Then,

there exists a unique Lie algebroid structure on A such that (IT, ) is a Lie
algebroid epimorphism if and only if the following conditions hold:

i) The space I',(A) of the I1-projectable sections of A is a Lie subalgebra

of (F(A)v ['7 ]A) and
ii) I'(kerII) is an ideal of T')(A).

In such a case, the structure of Lie algebroid over A is characterized by

~ o~ ~

XY gom =T [X. Y]y, pz(X)(f)em = pa(X)(fem),  (33)
where X,V e I(A), f € C’OO(M) and X,Y € I'(A) are such that
XOW:HOX, ?OW:HOY
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Note that the real function p4(X)(fom) on M is basic with respect to 7 (see
[5])-

Let (A, [ -]4,pa) and (A, [, -], pz) be Lie algebroids over M and M, re-
spectively, and let (I, 7) : A — A be an eplmorphlsm of Lie algebroids. We

denote by Vrr the vertical subbundle of 7: M — M. Then, ps(Kerll) C Vr
(see (21)).

We can always find a local basis {{;, X,} of sections of A such that §; €
['(Kerll), for all 7, and X, is a Il-projectable section, for all a. Indeed,
to obtain such a base we choose a bundle metric on A which gives us the
decomposition A = Kerll @& (Kerll)* where (KerIl)!t is the orthogonal
complement defined by the chosen metric. Then we consider a local basis
{&Y of sections of Kerll and a local basis {X,} of sections of A. It follows
that {&, X, = X¥}, where X¥ is the horizontal lift of X,, is a local basis of
sections of A. Furthermore note that if {n;, a,} is the dual basis of {&;, X, },
then «, = [I*a,, where {a,} is the dual basis of {)A(:a} in A. By using these
tools we can prove the following results about projectable sections of A and

A

Proposition 4.2. Let (II,7) : A — A be an epimorphism of Lie algebroids
and suppose that X € I'(A) and o € T'(A*). Then,

i) If X is a ll-projectable section of A, then [€, X], € I'(Kerll) for any
¢ € I'(Kerll). Moreover, if « is a Il-projectable section of A*, then
a() =0 and E?oz =0, for any £ € T'(Kerll).

ii) Assume that pa(Kerll) = V. Then,

a) X is aIll-projectable section of A if and only if [£, X] 4, € I'(Kerll),
for any & € T'(Kerll).

b) a is a Il-projectable section of A* if and only if (&) = 0 and
5?04 =0, for any £ € T'(Kerll).

Proof: The first part of i) is a consequence of Proposition 4.1.
Assume that there exists a € I'(A*) such that a = [T*a. If £ € ['(Kerll)

then a(§) = IT*a(§) = 0 and, by using (22),
55 a = E?H*oz = 0.
To prove ii) we proceed as follows. Let {;, X,} be a local basis of sections
of A such that §; € I'(Kerll), for all ¢, and X, is a Il-projectable section over

X, € T(A) for all a.
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a) Suppose that X € I'(A) is such that [, X]4 € ['(kerIl), for any & €
[(kerIT). If

X = fi&+ F°X, with f*, F* local C™-functions on M
then, by using Proposition 4.1, we have that
0 = ITo [ X1, = To(pa(€)(F")Xa) = pa(6)(F*)(X o).

So, if Z € V,m, with x € M, then there exists £ € I'(Kerll) such that
Z = pa(&)(z) and therefore

Z(F*) = pa(§)(F*)(x) = 0.
We conclude that there exists F* € C*(M) such that
P = ﬁa oTl,

and X is a Il-projectable section of A.
b) Assume that « is a section of A* such that a(§) = 0 and L’gloz =0, for
any ¢ € I'(Kerll). Let {n;, [I*a,} be the dual basis of {¢;, X,}. Thus,

a = g'n; + o1 a,, with ¢', 0" € C(M).

As a(&) = 0, we deduce that g° = 0. On the other hand, using (8)
and Proposition 4.1,

0= Lia(Xa) = pa(&)(0) — all& Xal4) = pa(&)(a”).

As before, this implies that 0 = g% o7 for some function o* € C*°(M).
Hence, « is [I-projectable.

We consider now a section P of tl@ve vector bundle A2A — M. P is said to
be Il-projectable if, for each & € T'(A*), we have P IT*a € T',(A).

Proposition 4.3. Let (II,7) : A — A be an epimorphism of Lie algebroids.
If P € T'(A%A) is I-projectable, then

(1€, Pla)}(Iy(A")) C T(Kerll) (34)

for any & € I'(Kerll). Moreover, if pa(Kerll) = Vr, then P is Il-projectable
if and only if (34) holds.
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Proof: Assume that P is Il-projectable. Then, for any a € I')(A*) and
¢ € I'(Kerll), by using (9), (11) and Proposition 4.2 we have

([€, Pla)¥(a) = [¢, Pala — PPLLa
= [€, P*a]y € T'(KerIl).

Now, we suppose that P satisfies (34) and p4(Kerll) = Vr. Consider a
local basis of sections {&;, X, } of A such that & € I'(KerlIl) and X, € I',(A4).
Let {n;, II*a, } be the dual basis of {&;, X,}. We have

PHT*a, = fi& + FP X, with f!, [ local real C™-functions on M.

Note that F? = —F2.
By using (9) and Proposition 4.2 we have

0 =ITo(([¢, Pla) (IT*) ) () = ([€, Pla)(IT*E, IT* )
= pa(&)(P(II*a,, IT*ay)) = pa(&)(FY),

for any € € I'(Kerll).
So, if Z € V,, then there exists £ € I'(Kerll) such that Z = p4(§)(z) and
therefore

Z(F)) =0.
Hence, there exists a local real C*°-function Ff on M such that
Fb = Fbor.
|

If P is a II-projectable Poisson structure on A, then we may construct the
2-section P € I'(A?A) of A characterized by

(P'@) o = II(PY(IT*@)), for any & € ['(A") (35)
or equivalently,
P(a,B)om = P(IT*&, 11" B), for any &, 3 € [(AY). (36)

Proposition 4.4. Let (Il,7) : A — A be an epimorphism of Lie algebroids.
If P is a Il-projectable Poisson structure on A, then P is a Poisson structure

on A.
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Proof: Let & € I(A*). Then, by using (9) and (11) one may prove that

1~ ~ - 7 -~
SialP, Pl = —PHd*a) + [P'a, P ; (37)
where ﬁﬂ(dg&) is the section of the vector bundle A2A — M defined by
ﬁﬂ(dA&)(E}/l’@) = dA&(ﬁﬁglaﬁﬁgQ)a
for any B1, B € F(g*)
From the equality (37) for the Poisson structure P and the 1-section IT*«
of A, we deduce that

PHAATT*q) = [PH(IT"Q), P) 4. (38)
On the other hand, from (20) and (35) we deduce that
A2 1. PEAATTE = Prdda o, (39)
Projecting by II, the equation (38) and using (39) we get
PtaAa o = A2MTL[PFIT'G, Pl (40)

Since (II, ) is an epimorphism of Lie algebroids, from (22) and (35) we also
obtain

L2, (H*,B) *(/Jg ~§) for any 3 € I'(A"). (41)
PN o) - L (Fem) = (£8P o "
= pA(Pﬁ )(f)om, with f e C™(M).

This fact allows us to prove that

N T [PH(IT*A), P4 = [P*&, P ;om, (43)
by using (10).
From (37), (40) and (43) we deduce that
ia[P,P]; =0,

for any & € I'(A*). In conclusion P is a Poisson structure. |

Assume that N: A — A is a Nijenhuis operator on A. N is said to be
[T-projectable it

N({T,(A)) CTI'y(A) and N(I'(Kerll)) C I'(KerlIl).
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Proposition 4.5. Let (II,7) : A — A be an epimorphism of Lie algebroids.
If N is a Il-projectable Nijenhuis operator on A, then
LEN(T,(A)) CT(Kerll) and N(D(Kerll)) C T'(KerIl), — (44)

forany & € T'(Kerll). Moreover, if pa(Kerll) = Vr, then N is I1-projectable
if and only if (44) holds.

Proof: Assume that N is [I-projectable. For any X € I',(A)
(LEN)(X) = [, NX]a — N([€, X]a)-
Since NX € I'y(A4), [, NX]4 € I'(Kerll) and [, X]4 € I'(Kerll) (see Propo-
sition 4.1), then
LIN(X) € T(Kerll).

Now we suppose that ps(Kerll) = Vr and that (44) holds. Consider a
local basis of sections {&;, X, } of A such that & € I'(KerlIl) and X, € I',(A4).
Then, X € I')(A4), implies that N(X) € I',(A4). Indeed,

N(X) = fi& + F'X, with f*, F® local real C*°-functions on M.
Hence, keeping in account that N[¢, X]4 € I'(Kerll), we have
0 = Io(LEN(X)) = o ([§, NX]a — N([€, X]a))
= Mo ([§, NX]a) = ITe(pa(§) (F) Xa).

Therefore, p4(§)(F*) = 0 for any £ € I'(Kerll).
Let Z € V., with x € M. Hence, there exists £ € I'(Kerll) such that

Z = pa(§)(x).
Thus, we can conclude that Z(F*) = 0, i.e. there exists a local C*°—function
/ﬁ’; on M such that
F, = /F; oT.
m

If N is a Tl-projectable Nijenhuis operator on A, then we can construct a
new operator N: A — A as follows.

(NX)omr =Ho(NX)  for any X € I'(A), (45)
where X € I',(A) is a projectable section such that II« X = X o7. Note that

~

N is well defined since X € I')(A) and therefore NX € I',(A). Moreover, if
X' is another section of A such that [To X’ = I1. X then X' — X € I'(Kerll)
and NX = NX".
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From previous results, we give conditions for obtaining a Poisson-Nijenhuis
structure on the Lie algebroid image of a Lie algebroid epimorphism.

Theorem 4.6. Let (II,7) : A — A be a Lie algebroid epimorphism. Assume
that (P,N) is a Poisson-Nijenhuis structure on A such that P and N are

II-projectable. Then, (P, N) is a Poisson-Nijenhuis structure on A.

Proof: We will show that N is compatible with the Poisson structure P.
Indeed, firstly we show that
NoP!= P N*. (46)

From (35) and (45) it follows that for any a € F(:{ﬁ)
N(P'@) om = I1o N(PII*&) = I1o PAN*(IT'®) = [ PHIT*N*&) = PH(N*Q) 0.
On the other hand, using (15), (16) and the fact that (II, 7) is a Lie algebroid
morphism, we get

To(X,Y)omr =ToTy(X,Y)  for any X,Y € ['(A), (47)

where X,Y € I'(A) are such that X o = o X, Yor =Y.
Finally, by using (23), (22), (35) and (45), we can prove that

(&, B3 = [II'&, T Blp, (&, B35 = [T°&, By p

and

(@, pl3 = [a, By
As a consequence,

~

II*(C(P, N)(@, 8)) = C(P, N)(II'G,, IT°3), (48)

for any &, 3 € T'(A%). o
From (46), (47) and (48) we obtain that (P, N) is a Poisson-Nijenhuis

structure on A. |

The above result suggests us to introduce the following definition.
Definition 4.7. Let (II,7) : A — A be a Lie algebroid morphism. We
say that (II,7) is a Poisson-Nijenhuis Lie algebroid morphism if we have
Poisson-Nijenhuis structures (P, N), (P, N) on A and A, respectively, such
that

(P'A) o = o (PHIT*)),

(NX)om = ITo(NX),
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for all & € T(A*), X € ['(A) and X € T'(A) such that X o7 = ITo X.
The following result follows easily from Proposition 4.1 and Theorem 4.6.

Theorem 4.8. Let (II,7) : A — A be a vector bundle epimorphism. Suppose
that ([-,-] 4, pa, P, N) is a Poisson-Nijenhuis Lie algebroid structure over A.

Then, there exists a unique Poisson-Nijenhuis Lie algebroid structure on A
such that (I1, ) is a Poisson-Nijenhuis Lie algebroid epimorphism if and only
iof the following conditions hold:

i) The space I',(A) of the I1-projectable sections of A is a Lie subalgebra
of (T(A), - 1)
i) I'(kerII) is an ideal of I')(A) and
iit) P and N are II-projectable.

5. Reduction of a Lie algebroid induced by a Lie subal-
gebroid

In this section we will describe, using the above results about reduction by
epimorphisms of Lie algebroids, the reduction of a Lie algebroid by a certain
foliation associated with a given Lie subalgebroid. In the next section, we
will use this construction for obtaining, under suitable regularity conditions,
a reduced nondegenerate Poisson-Nijenhuis Lie algebroid from an arbitrary
Poisson-Nijenhuis Lie algebroid through a suitable choice of the Lie subalge-
broid.

In this reduction procedure of a Lie algebroid, fundamental tools are the
complete and vertical lifts of sections associated with a Lie algebroid. Firstly,
we recall these notions and some properties about them.

5.1. Complete and vertical lifts in a Lie algebroid. Let (A,[-,-],,pa)
be a Lie algebroid over a manifold M and 74 : A — M be the corresponding
vector bundle projection.

Given f € C*(M), we will denote by f¢and f" the complete and vertical
lift to A of f. Here f¢ and f" are the real functions on A defined by

f(a) = paa)(f), ["(a) = f(Ta(a)), (49)
for all a € A.

Now, let X be a section of A. Then, we can consider the vertical lift of X
to A as the vector field X" on A given by

X'a) = X(14(a))s, forae€ A,

a’
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where ¢ @ A, o) — Tu(A;, () is the canonical isomorphism between the

vector spaces A, ) and T,(A-,)).
On the other hand, there exists a unique vector field X“ on A, the complete
lift of X to A, characterized by the two following conditions:
(1) X¢is T-projectable on p4(X) and
(i) X°(@) = Lia,
for all a € T(A*) (see [1]). Here, if 8 € I(A*) then § is the linear function
on A defined by

B(a) = B(7a(a))(a), forall a € A.

Complete and vertical lifts may be extended to associate to any section
Q: M — N1A of the bundle A?A — M a pair of g-multivectors Q¢, Q" : A —
NY(TA) on A. These extensions are uniquely determined by the following
equalities (see [1]):

QAR =Q°NR"+ Q"N R, (50)
and
QAR =Q" AR, (51)

which are satisfied by any pair of sections () : M — N1A, R: M — A" A.
A direct computation proves that (see [1])

Q% R =@, Rl3, Q%R =1Q, R}, [Q",R]=0. (52)

Given X € I'(A), we can also define the complete lift of X to A* as the
vector field X*¢ over A* such that it is 74--projectable on p4(X) and

~ L —

XHY) = [X, Y], (53)

for all Y € T'(A) (see [5]). Here Z, with Z € T'(A), is the linear map over A*
induced by Z. In fact, the complete lifts of a section X € I'(A) to A and A*
are related by the following formula

X“(Y)=—= (Youl), for any Y € I'(A) (54)

where @;: A — A is the flow of X¢ € X(A) (see [15, 18]).

Suppose that (z°) are coordinates on an open subset U of M, {e,} is a
basis of sections of 7,1 (U) — U and {e®} is the dual basis of sections of
7 (U) — U. Denote by (x',y®) the corresponding local coordinates on
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7,1 (U) and by (2%, y,) the local coordinates on 7,.'(U). Finally, let pi, and
Cyﬂ be the corresponding local structure functions of A, defined by

;0
palea) =z and [easesla = Clyer

If X is a section of A and on U we have

X = X%,,
then the coordinate expressions of the lifts are given by
0
X" = X*—
oy’
8 GXO‘ 8
X¢ = X% — X7CT5 —
6 (9X 6
X = X° Clay, X7 ) —
paaxz (pa a i yﬁ+ ﬂy’}/ ) a

In particular,

vo__ 9 c _ i 9 Y B Y *C J 4 v 0
Ca = aya7 Ca = paaxz‘

= -+ Oy —. o6
aﬁy ay,ya €a pa(?xz—i_ aﬂy’yayﬁ ( )

5.2. Reduction procedure of a Lie algebroid induced by a Lie sub-
algebroid. Before describing this procedure, we prove the following general
lemma on vector bundles which will be useful in the sequel.

Lemma 5.1. Let mq: A — M a vector bundle of rank k and 7g: B — M’ be
a surjective submersion. Assume that there exist two smooth maps ®: A — B
and ¢: M — M’ in such a way that the following diagram

A—"2

Ll

B _ B WL
18 commutative and such that

1) ¢ is a submersion;
2) Vo € M, ®,: 7, (z) = 75 (¢(x)) is a diffeomorphism and
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3) V,y € M such that ¢(x) = ¢(y),
@;1 o ®,: wgl(:c) — Wil(y)

1s an isomorphism of vector spaces.
Then, tg: B — M’ is a vector bundle of rank k and (®,¢) is a
vector bundle epimorphism.

Proof: Let o' = ¢(x) € M'. Then, there exists a unique structure of
vector space on the fiber 75'(2/) in such a way that the diffeomorphism
®, : 7, (r) — w5 (2') is an isomorphism of vector spaces. Moreover, this
structure doesn’t depend on the chosen point x € M. In fact, if y € M and
¢(y) = ¢(x) = 2’ then, from (3), we deduce that the map &, ' o ®, : () —
7 (y) is an isomorphism of vector spaces.

On the other hand, using that ¢ is a submersion and the fact that m4 :
A — M is a vector bundle, we have that there exists an open neighbourhood
U C M of x € M, an open neighbourhood U" C M’ of 2/ € M’ and two
smooth maps s: U’ — U and ¢: U x R* — 7,1 (U) such that

1) ¢pos =1y and s(a’) = x.
2) 1 is a diffeomorphism, 740t = pr; and for each y € U, v,: RF —
74 (y) is a vector space isomorphism.

Therefore we can construct a diffeomorphism

Y U x RY = 751(U)
as follows: ¥(y/, g) = (P =1y,))(g) for (v, g) € U’ x R¥. Note that E_l(b) =
(wB(b), (ws’(}rB(b)) oCIDS(}rB(b)))(b)). Moreover, if y' € U’ it is easy to prove that
¥, R¥ — 7' (y/) is an isomorphism of vector spaces. |

Let 74: A — M be a vector bundle and ([-,-],,pa) be a Lie algebroid
structure on A. Consider a Lie subalgebroid 753: B — M of A. Then, we
have the following result.

Proposition 5.2.
1) The generalized distribution ps(B) on M defined by

pa(B)s = pa(By) C TLM, for everyz € M,
1s a generalized foliation. Moreover,

dim(pa(B),) < rank B, for every x € M.
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2) The generalized distribution FP on A defined by
FB—{X%a)+Y")| X,Y €e(B)} CT,A, foracA

is a generalized foliation. Furthermore, dim FP = dim(pa(B)) ) +
rank B, for b € B. Thus, if FZ has constant rank then pa(B) also has
constant rank.

Proof:

1) It is clear that p4(B) is a finitely generated distribution. Moreover, if
X,Y € I'(B) then, using that [X,Y]|p = [X, Y], we deduce that

[pA(X), pp(Y)] = pal X, Y]p

which implies that p4(B) is an involutive distribution. Thus, p4(B)
is a generalized foliation.
On the other hand, if x € M, we have that

dim(pa(B),) < dim B, = rank B.

2) FP is a finitely generated distribution. In fact, let U be an open
subset of M and {X;} be a basis of I'(5'(U)). Then, {X¢(a), X?(a)}
is a generator system of FZ, for all a € 7,*(U).

Moreover, since B is a Lie subalgebroid of A, we deduce that F7 is
an involutive distribution (see (52))).

Now, let b be a point of B,, with x € M, and suppose that {v,, vz}
is a basis of B, such that {pa(v,)} (respectively, {vg}) is a basis of
pA(B,) (respectively, Ker(pap,)). Then, we can choose an open subset
U of M, with x € U, and a basis {X,, Xg} of ['(75"(U)) satisfying

Xo(z) =04, Xp(x) = v5.
We complete the basis {X,, X3} to a basis of I'(7,(U))
{XLL)Xﬁ?Xd}

Next, we will assume, without the loss of generality, that on U we
have a system of local coordinates (x%). Thus, we can consider the
corresponding local coordinates (7,3, y”, y*) on 7, (U).

Using (55), we deduce that

0 0

X, X5(b) =
o0 ayﬂw

ab — a3 4
) Ay,
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0 0
T7p)(X5(b) = pa(va), X5(b =< 5% 98
(Trs)(X50) = palva), Xi(b) €Virs =< 55 .55 >

for all @ and £.
Therefore,

dim FP = dim(pa(B)r,@e)) + rank B

Remark 5.3. Note that if a € A, then (T,74)(FZP) = pa(B,).

Assume that pa(B) and FP are regular foliations, i.e., they have finite
constant rank, M/pa(B) and A/FP are differentiable manifolds, and

—

T M— M/ps(B)=M and II:A— A/FP=A

are submersions. -
We define 7;: A = A/FP — M = M/pa(B) such that the following
diagram is commutative

A II

A=A/FB
TA Tg

M —"— M = M/p(B)

The map 75 is well defined. Indeed, if II(a,) = (ay) € A/F?, witha, € A,,
ay € Ay, x,2’ € M, then there exists a curve o4: [0,1] — A continuous,
piecewise differentiable, tangent to FZ, such that 04(0) = a, and oa(1) =
a,. Consider now the curve oy = T4004: [0,1] — M which results to be
continuous, piecewise differentiable, tangent to p4(B) (see Remark 5.3), such
that
oy(0)=2 and  oy(l) =2

Hence, n(z) = 7(a2').

Note that 73 is a submersion since 74,1l and 7 are submersions. On the
other hand, we have a vector bundle 7;: A = A/B — M such that the
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following diagram is commutative

A—2A/B=4

eyl

M

In fact, II is a vector bundle epimorphism. Therefore, we can induce a

smooth map I A/B — A/FB making commutative the following diagram

I

A=A/B A=A/FP
TZ Tg
M d M = M/pa(B)

Indeed, if a/, —a, € B,, then we can consider the curve o: [0, 1] — A, defined
by

o(t) = ay + tlal, — ay).

Note that o(0) = a, and o(1) = a,s. Moreover, ¢(ty) = (a;_ax)g(to) < fﬁto)'

Hence, I1(a,) = II(d.). II is a smooth map since Il : A » A = A/Bis a
submersion.

In order to guarantee that 77 is a vector bundle, we suppose that B satisfies
the condition FB | i.e.

az,a, € A, are in the same leaf of FB — a, — a; € By.

for any x € M.

Proposition 5.4. Assume that ps(B) and FP are regular foliations and that
B satisfies the condition F5. Then, 77: A= AJFP — M = M/pa(B) is a
vector bundle, the fiber of A over the point w(x) € M is isomorphic to the
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quotient vector space A, /B, and the diagram

A=A/B——~A=A/FF

ITA TA'

M M = M/pa(B)

is a vector bundle epimorphism. In fact, the restriction of Il to the fiber
A, = A,/ B, is a linear isomorphism on gﬂ(x).
Proof: We apply Lemma 5.1 to the following diagram

T4

A=A/B M

11 m

A= AJFB 2 M = M/pa(B)

Note that 7 and 73 are submersions. Then, for all z € M, Til(ﬁ($)) is a

regular submanifold of A and TH(%)Til(W(w)) = ker Tiy(q,)75 for all a, € A,.
We will see that

ﬁ:c: Ax/B:c — Til(ﬂ(x))

is a surjective submersion.

Indeed, let II(a,/) € Til(w(:c)). Then, 77(Il(a,)) = m(x). Hence, m(z) =
m(x’). Therefore, there exists a continuous, piecewise differentiable path
o:[0,1] — M tangent to pa(B) such that ¢(0) = z and o(1) = 2. In each
differentiable piece we can find X € I'(B) such that ¢ is an integral curve of

pa(X). Assume, without the loss of generality, that the curve o is smooth
and let ¢: R x M — M be the flow of p4(X). Then, ¢,(0) = x,

A ()

and there exists ty € R such that i, () = 2’. Let ¢: R x A — A be the
flow of X¢ € X(A). Since X projects on pa(X) we have that the following




REDUCTION OF POISSON-NIJENHUIS LIE ALGEBROIDS 33

A
M
Hence ¢_;(a,) € A, and hence we have a curve ¢, , on A such that

d@ax/ ¢
0 = X0, (1) € FF ),

©a,,(0) = ay and @, ,(—to) = ©_¢,(a). Thus,
Hxﬁ:c(@fto(ax’)) = L (p—ty(as)) = I (aw),

where II, and I, (respectively, II,) are the restrictions of II (respectively,

diagram is commutative for any ¢

A—>

lT
(o

M ——

II) to the fiber over x and 2’. So, II, is surjective. Moreover, using that the
following diagram

Ay B, —— 751 (n(z))

is commutative, we deduce that I, : A,/B, — T;(w(x)) is smooth.

As a matter of fact II, is a submersion, i.e.,
Titta,) et Tigga, ) (Ae/Br) = Tua,) (77 (m(2))
is surjective. Indeed, let X € TH(%)(T;(W( r))) = ker Tyy(,,)77. Then, since
I: A— A= A/FP is a submersion, there exists X € T, A such that
X =T, II(X). (57)
Hence,
0= TH(%)TA(X) = TH(%)(TgoH)(X) = Taz(ﬂ oTA)(X),

ie. Ty 1A(X) € ker Tym = Vo = pa(By).
From Remark 5.3, we deduce that there exists Y € FZ such that

TazTA(Y) - TazTA(X)7
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or equivalently X —Y € ker T}, 74 = Vo (Ta) = Ty, Ay
Consider now II,: A, — A,/B,. Then,

W, = T TL(X = Y) € Ty (As/B).

~ ~

We will see now that T, )IL;(W,) = X. In fact,

Tt e (W) = T, (I o TL) (X — V) = T, IL(X — Y).

On the other hand, from (57) and since Y € F7Z,

~

X =T, (X)) =T, (X —Y).

Therefore, Tﬁ(%)ﬁx is surjective. Indeed, Tﬁ(%)ﬁx is a linear isomorphism
since

dim T13,,)(Az/By) = dim A, — dim B,
and by using Proposition 5.2
dim T, 77 (7(2)) = dim A — dim M
= dim A — rank F? — dim M
=dimA, — dim B,.

Thus,
M,: Ay/B: — 77 (n(x))

is a local diffeomorphism. Therefore (using that I, is bijective), II, is a
global diffeomorphism.
Finally, if 7(z) = w(2'), it is clear that

ﬁ;,l oﬁxi Ax/Bx — Azl/Bx/
is a linear isomorphism. u

Proposition 5.5. Under the same conditions as in Proposition 5./, we can
define a Lie algebroid structure on the vector bundle

Ti: A= A/fB M = M/pa(B)
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such that the diagram

1s an epimorphism of Lie algebroids.
Proof: Due to Proposition 4.1, it is enough to prove the following facts
i) If X,Y e T}/(A) then [X,Y], € T}/(A) and
i) If X € T))(A) and Y € T'(kerII) then [X, Y], € T'(kerII).
Here T')/(A) is the space of TI-projectable sections.
Note firstly that ker II = B (see Proposition 5.4 ). Then, we will prove

that
I'V(A)={X el(4)| [X,Y]e(B), VY €I'(B)}.

Once we prove that, condition 7) above follows by the Jacobi identity and i)
is a direct consequence.

Let X € T}/(A) and Y € I'(B). We denote by ¢: R x M — M the flow
of pa(Y) and by ¢: R x A — A the flow of Y € X(A). Using that V¢ is
Ta-projectable over p4(Y'), we deduce that the following diagram

A—"— 4
M B M
is commutative and that the couple (¢, 1) is a Lie algebroid morphism (see
[15]). Note that
Mopi(a,) =Hop,, (t) =1(a,) and woth(x) = moh,(t) = w(x). (58)
On the other hand, X is II-projectable, thus there exists X € F(Z) such that
Xom=T-X.
Therefore, by using (58)
(X (v(2)) = (X (2))) = X ((t())) = (X (x)) = 0.
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In consequence, there exists Z; € I'(B) such that

X (W) — (X (2)) = Zi(¢hi()),

(X = Z) () = (X ().
Thus, if ¢y : A* — A" is the dual map of ¢;: A — A, it follows that

A~

X — Z\t == 55 ogpf
By derivation and using (54) we obtain that

d S d =

VX)=— (Xop))=—-—— Z.
(X) dt|t0( 2 dt =0 !

We denote by Z the section of B characterized by Z = Zg. By using

(53) we deduce

d
dt [t=0

X,Y]=2

so that [X,Y] € ['(B).
Conversely, let X € I'(A) such that for all Y € I'(B),

(X,Y] € T(B).

We will see that X € FpH(A). In order to prove it, we introduce the map

X:M=M/ps(B) > A=A/F"
given by X (m(x)) = II(X(z)), which is well defined.

In fact, suppose that x, 2’ € M with 7(x) = w(z’). Then there exists a
map o: [0,1] — M continuous, piecewise differentiable, tangent to pa(B)
such that 0(0) = z and (1) = 2’. So, in each piece there exists Y € ['(B)
such that o is the integral curve of p4(Y). Assume, without the loss of
generality, that o is smooth and denote by 9, : R x M — M the flow of the
vector field p4(Y). We have that there exists ty € R such that

¢to($) =
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Now, let ¢ : R x A — A be the flow of the vector field Y. Then, for each
t € R, the following diagram

Pt

A" i
M

is commutative.
On the other hand, using that Y € ['(B), we deduce that there exists
Z € I'(B) such that
[(X,Y]=Z.
This implies the corresponding relation between the linear maps

—_—

(V*)(X) = ¥, X] = ~Z

or equivalently

d N N
— (Xoy))=—-7
dt|t0( (pt)
So, for each t;
d N .
el Xoo =27 59
G (XebD) =2, (59)

where we have denoted by Z;, the section of the vector bundle 75 : B — M
which is characterized by Z;, = —Z oy}, Since X opj = X, by integrating
(59) we have
X 090:1 = X —|— th
for each t; € R with W;, € I'(B). Hence, we get the relation
proX — Xothy = Wiothy
By applying II, we get
Ho@toX = HoXowt

Now, since the vector field Y on A is tangent to the foliation F7, it follows
that II.¢; = II. Therefore,

HoX - HoX owt
which implies that
HOX(.CU) =1I.X owto(ﬂf) = HOX(.CUI).

In conclusion, X is well defined and X is [I-projectable. u
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6. The Reduced nondegenerate symplectic-Nijenhuis Lie
algebroid

First of all, we will prove a result which will be useful in the sequel

Proposition 6.1. Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid. If
is a positive integer then the couple (P, N') is a Poisson-Nijenhuis structure
on the Lie algebroid A.

Proof: It is well-known that N' is a Nijenhuis operator (see, for instance,
note 5 in [9]).
On the other hand, it is clear that

P N* = N'o PF, (60)
In addition, a long straightforward computation, using (60), proves that
C(P,N")(8,8) =0, for 8,5 € T(A")
if and only if

(LpspyN(X) = PHLYN'B = Ly B), for f € T(A*) and X € T(A).
(61)

Thus, we must prove (61).

We will proceed by induction on [. Note that

(L NDX) = (L) N'THINX) + NTHPHB), NX]4 — N'[PH(B), X]a

Therefore,
(LN X)) = PHLANTT'B) — PHLY ) + N PH(B), NX]a
_Nl[Pﬂﬁa X]A
Now, since

PH(Lyxy) = PHLYN'Y) = (Lp., N)(X), for v € D(AY),
we deduce that

(LA, NOX) = PHLANS = LA B) = (L sy N)(X)
+NUPB,NX]4 — N'[P*3, X] 4
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which implies that
(L N)(X) = PHLEN'B = L B) — [PHN718), NX]4
+N[PHN*1B), X4+ NHPHB), NX] 4
—N'[P*3, X]4
= PHLYNYB— L3 B) — [NTHPB), NX]4
+N[NEYPB), X4+ NFYPB, NX] 4 — NP3, X]a
On the other hand, using that 0 = Ty (N"""(P*3),X) for 2 < r < [, it
follows that
—[N""YP*B), NX| 4+ N[N"YPB), X|4+ NP3, NX] 4~ NP5, X]4 = 0.
This ends the proof of the result. n

Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid. Consider now for any
fixed z € M the endomorphism N,: A, — A,. Recall [0, 9] that there exists
a smallest positive integer k such that the sequences of nested subspaces

ImN, DImN*D ...

and
ker N, C kerNg c...
both stabilize at rank k£. That is,
Im NF = Im NF* =

and
keer = kerNJ/;erl = ....

The integer k is called the Riesz index of N at x.
Lemma 6.2. If the Riesz index of N at x is k then
A, = ImN¥ @ KerN*
Proof: It is clear that
dim(ImNF) + dim(ker N¥) = dim A,

Next, we will prove the following result

Proposition 6.3. Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid with
constant Riesz index k and such that the dimension of the subspace ker N¥
(respectively, Im N¥ ) is constant, for all x € M. Then:
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i) The dimension of the subspace Im N¥ (respectively, ker N¥) is con-
stant, for all x € M.
ii) The vector subbundles ker N* and Im N* are Lie subalgebroids of A.

Proof: i) it follows from Lemma 6.2.

Since N* is a Nijenhuis operator, we have that
[N*X,N*V]4 = N¥[X,Y]ye,  forany X,Y € I'(A), (62)

where [, ] v is the bracket defined as in (16). Thus, Im N* is a Lie subalge-
broid of A.

Now, suppose that X, Y € I'(A) are sections of A satisfying N*X = N*Y =
0. Then, using (16) and (62), we deduce that

0=[N*X,N*V]4 = N¥[X,Y]yr = —N*[X, Y]a4.

Hence, [X,Y]4 € I'(ker N¥*!) = I'(ker N¥). This implies that ker N* is a Lie
subalgebroid of A.
|

Let (A, P, N) be a Poisson-Nijenhuis Lie algebroid with constant Riesz
index k. Suppose that the dimension of the subspace ker N* is constant, for
all x € M. Then, we may consider the Lie subalgebroid ker N* of A and the
corresponding generalized foliations p4(ker N*) on M and Frer " on A.

As in Section 5, we will assume that these foliations are regular and that
the condition FrerV* holds, that is, if a,, al, € A, we have that

', —a, € ker N¥ < a! and a, belong to the same leaf of the foliation FkrN*,

Under these conditions, the space A = A J FrerN " of the leaves of the folia-
tion FXrN" is a Lie algebroid over the quotient manifold M=M /pa(ker N P

and the canonical projections I : A — A = AJFRN and w - M — M =
M/p(ker N*¥) define a Lie algebroid epimorphism

A

g _ A/JT_'kerNk

TA Tx

M —— M = M/pa(ker N*)



REDUCTION OF POISSON-NIJENHUIS LIE ALGEBROIDS 41

Note that ker I = ker N* and thus,
V= palker N¥) = py(ker IT).
Next, we will prove that P and N are II-projectable. Indeed, we have that
N(T(ker N*)) C I'(ker N*).

Moreover, if ¢ € T'(ker N¥) one may see that £?N(FP(A)) C I'(ker N¥). In
order to prove this relation, we recall that

T,(A) = {X €T (A) | [X,¢&a € T(ker N¥) V¢ € T'(ker N¥)}.
Now, if X € T,(A) and ¢ € T'(ker N¥), we get
NH(LAN(X)) = N¥([€, NX]4 — NE, X].4) = N¥[g, N X1
By using the fact that N has zero torsion, it follows that
0= NN Tu(NM1E X)) = =N¥ [Nk NX]y (63)
Thus, from (63), we deduce that
0= N"(Ty(NF72¢, X)) = —N*NF2¢ N X4
and, since ker N**! = ker N*, we obtain that
NF[N*2¢ NX]4 =0
Proceeding in a similar way, we may prove that
NF[N*3¢ NX]4 = NF[N*1¢ NX] = ... = N*'[¢, NX] = 0.

Therefore, £§1N (X) € I'(ker N¥) and N is Il-projectable (see Proposition
4.5).
To see that P is II-projectable, we have to prove that (see Proposition 4.3)

€, PJ,(T,(A")) C T(ker N*) V¢ € [(ker N¥). (64)
From Proposition 4.2,
[p(A") ={ael(4") | Lia=0, (&) =0, VEeT(kerN¥)}.
If a € I')(A*) then
NE(([¢, Pla) () = N*(ia[€, Pla) = N*([€, iaP)a — igao P)
= N*[¢, Pala = —[Pra, N*€Ja + (Lo, N*)(€) = (L, N)(E).
Hence, using Proposition 6.1, we deduce that
N¥([¢, PYi(a)) = PHLEN o).
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On the other hand, since o € I'j(A*), we get
LENT)(X) = pa(©)(a(N"X)) — a(N¥IE, X]a)
= L{a(N*X) + (&, N X]4 — N¥IE, X]a)
= a([¢, N* X4 — N"[¢, X]a).
Moreover, since the torsion of N* is zero, we have that
0 =Tu(8§, X) = —N*[6, N* X4 + N*g, X] a4,
that is,
(€, N* X4 — N¥[¢, X]4 € T(ker N¥).
This implies that
a(l¢, N X]a — N¥[¢, X]4) = 0
Hence,
N¥([&, PPy (@)) = PHLAN" ) = 0
and (64) holds.

Therefore, using Theorem 4.6, we have the following result.

Theorem 6.4. Let (A, [, ] 4, pa, P, N) be a Poisson-Nijenhuis Lie algebroid
such that
i) N has constant Riesz index k;
i1) The dimension of the subspace ker N¥ is constant, for allx € M (thus,
B = ker N* is a vector subbundle of A) and
iii) pa(B) and FP are reqular foliations and the condition FP is satisfied
for B = ker N*.
Then, we may induce a Poisson-Nijenhuis Lie algebroid —structure
([ g, p5 Py N) on A= AJFP such that 1: A — A= A/FP is a Poisson-
Nijenhuis Lie algebroid epimorphism over m : M — M = M/pa(B).

In the particular case of symplectic-Nijenhuis Lie algebroids, we may prove
the following result

Theorem 6.5. Let (A, [, 4,pa,2 N) be a symplectic-Nijenhuis Lie alge-
broid on the manifold M such that
i) N has constant Riesz index k;

i1) The dimension of the subspace ker N¥ is constant, for all x € M (thus,
B = ker N* is a vector subbundle of A) and
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iii) pa(B) and FB are reqular foliations and the condition FP is satisfied
for B = ker N¥.
Then, we may induce a symplectic-Nijenhuis Lie algebroid structure on A
with nondegenerate Nijenhuis tensor, such that the couple 11 : A — A=
AJFB and m : M — M = M/ps(B) is a Poisson-Nijenhuis Lie algebroid
epimorphism.

Proof: Denote by (]3, N ) the Poisson-Nijenhuis structure which is defined in
the previous theorem. It remains to prove that P and N are nondegenerate.
Firstly, we show that N is nondegenerate, i.e. that N, : Til(w(:c)) —

1 Y(m(z)) is an isomorphism, for all z € M. Consider the following diagram

where TI, and II, are defined as in Section 5. Assume that Nﬂ(x)(l_[x(ax)) = 0.
Then,

I, N, (IT,(a,)) = 0.

Since II,: A,/ ker N — T;(w(x)) is an isomorphism, we deduce that

N, (I, (a,)) =0
or, equivalently IT, N, (a,) = 0, i.e.
a, € ker N1 = ker N,

It follows that
I, (a,) = 10, (a,) = 0.

In consequence, ]T/}r(x) is injective and thus, it is bijective.
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Now we show that P is nondegenerate. Denote by P the Poisson bisection
associated with Q. Let a,) € A;(x) be such that

0= f)ﬁ(x)(&'w(@) = prﬁ(ﬂz&w(w))-

Using that II,: A,/ ker N, — T;(w(x)) is an isomorphism, we deduce that

1L, P} (I () = 0,
i.e. PE(IT%Gy(y) € ker NF. It follows that

0= Ny Pi(I;ax() = PIN; (I a5

Since P, is nondegenerate,

N (IT () = 0.
Note that N:*(IT5e ) = N;k )(Qir(z)) and that N is nondegenerate. Hence,

(x

we deduce that ay(,) = 0. u

Under the hypotheses of the previous theorem, we will denote by Q the
symplectic section defined by €’ = —(P#)~1.
We summarize the two steps of the reduction procedure given in Theorems

3.3 and 6.5 in the following theorem.

Theorem 6.6. Let (A, [, -] 4, pa, P, N) be a Poisson-Nijenhuis Lie algebroid
such that

i) The Poisson structure P has constant rank in the leaves of the foliation
D = pa(PHAY)).
If L is a leaf of D, then, we have a symplectic-Nijenhuis Lie algebroid struc-
ture ([+,-]4, , pa,, Qr, NL) on Ap = Pﬂ(A*)|L — L.
Assume, moreover, that
i1) The induced Nijenhuis tensor N : Ay — Ay, has constant Riesz index
k,}.
iii) The dimension of the subspace B, = ker N¥ is constant, for all x € L
(thus, B = ker N¥ is a vector subbundle of A);
iii) The foliations ps(B) and FP are regular, where
(FB)o = {X(a) +Y"(a)/X,Y €T(B)}, forac A

iv) (condition FB) For allz € L, a, —ad, € B, if a, and a’, belong to the
same leaf of the foliation FP.
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Then, —we obtain a  symplectic-Nijenhuis — Lie  algebroid — structure
(4 s P+ Qp. Ni) on the vector bundle Ap = ApJFP — L = L/pa,(B)

with Ny, nondegenerate.

7. An explicit example of reduction of a Poisson-Nijenhuis
Lie algebroid
7.1. A G-invariant Poisson-Nijenhuis structure on the cotangent
bundle of a semidirect product of Lie groups. Let H; and Hs be two
Lie groups with Lie algebras b, and b, respectively. Assume that there is
an action ¢: Hy x Hy — Hs of Hy on Hy by Lie group isomorphisms and
consider the semidirect product G = H; x4 Hy whose operation is defined by
(h17 h2) ’ (h/b hIQ) - (hl ’ hll) h2 ’ ¢(h17 hlZ))
Note that Hy is a normal subgroup of G. The Lie algebra associated to
G = Hy x4 Hyis g = b1 X¢ hy with the bracket
(&1, &), (mm2)]g = ([€1, mpys P(&m2) — P, &) + [€2, m20,)

for all §&1,m € b1, &2, m2 € b2, where @ = T{,, ., $: b1 X b2 — bha is the action
induced by ¢: Hy x Hy — Hy. We remark that b, is a Lie subalgebra and s
is an ideal of g. Consider now M = T*G. It may be identified with G x g*
as follows:

M=TG-—Gxg", o e€T,Gr—(g,T;l)(ag)) €G xg,

where [,: G — G denotes the left translation by g € G. Under the identifi-
cation T*G = GG x g*, the canonical symplectic structure of T*G

Q:Gxg'— (gxg) x(gxg)
is defined by

Qg ((§,m), (€, 7)) = 7'(§) = (&) + nll€. ),
for all £, € g, m, 7" € g*. Note that Q is G-invariant.
We define now on 7T*G a singular Poisson structure compatible with 2. Let
Pg: g =01 X by —> by

be the canonical projection on the first factor. Then we have that bh; X
Py (h1) — g x g" is a symplectic subspace of T(, ,,(G x g*) = g x g*. Indeed,
let £ € b1, a € ] be such that

Qe (€ Ps()), (€, PE(B))) = Pr(B)(E) — Pi(a) (&) + u([€, €q) =0,
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for all £ € by, B € b]. Hence, we have
Qe (€ Py (), (0.P5(5)) = B(§) =0= € =0

and
ey ((0,Pg(a)), (€, P4(8))) = —a(¢) =0=a=0.
We consider now the symplectic subbundle
For: (9.1) € G x g" = (Tely)(h1) x Py(b7) = Tie )y, id) (b1 x Py (b7))
C T(g,u)(G X g*).
We show that it is integrable. A basis of sections of this subbundle is

(6.0 | € €by, a e PA(B))Y.

%
where ¢ is the left invariant vector field associated to £ and C|, is the vector
field constant at a. The bracket of these basic elements is given by
%

(E,C0), (€. = (€, €7.0) = (&, €5, 0).

Since Ffﬁ is symplectic, we have the decomposition
T(I"G) = T(G x g") = Fy, ® (Fy)) ™

where (]ﬂﬁ )+ is the orthogonal to ]:{ﬁ with respect to the symplectic form €.
Now, we define a Poisson bracket {-,-}y, in 7°G as follows. For f,g €
C>*(T*G),

{f. g0, = UP(HF). P(Hy)) = P(H,(f) = {f, 9}a — QH) (),

where P: T(T*G) — f,f and Q: T(T*G) — (J’:hl?)l are the symplectic pro-

jectors and {-, - }q is the Poisson bracket on 7*G associated with the canonical

symplectic structure of T*G. Here H'! denotes the hamiltonian vector field

of s € C*(T*G) with respect to the canonical symplectic structure of T*G.
The symplectic foliation of {-, -}y, is }-,f since

Hy " = P(HY),

where H{ 11 i the hamiltonian vector field of g with respect to the Poisson
bracket { oy

Keep into account that if § € T*G and Ly is the leaf of F£ passing through
0, then we have

Hf oLy - ’P(H?MLO’
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where 1p: Ly < TG is the canonical inclusion. Note that
((PHD) 1) (PX) = Qi (K}, PX) = d(f o 19)(PX).
Thus,
{few,got}iyo={f 9te.)) 1, for all f,g € C*(T"G).

Therefore Ly is the leaf of the symplectic foliation of {-, - }5, through the point
0.

It is clear that the Poisson bracket {-, -}y, is G-invariant.

We now study the compatibility between {-, -}, and {-,-}o. We know that

{f.q}e, = {f. 9to — QHN(]).

Next, we check that {f, g}y, = Q(H{)(f) is Poisson.
Since ffﬁ and € are G-invariant, then (.7:5 )+ is G-invariant. Therefore

for describing (F)* is enough to know (F)*(e, ). A direct computation
proves that

(Fo)) (e 1) ={(&;m) € g x g7 [ € € ker P, mpp, = Lo (1), }-
where &< (1) = —ad;p. Hence
(Fo) (9, 1) = Tie o Uy, id) ((Fg))* (e, 1)
= {(vg,m) € T,G" x g" | (Tyly-1)(vg) € ker P, 7y, = =g (1)), }-

The sections of (]ﬂﬁ )+ are of the form

< * * *
{6, X)[§€kerP, X € X(g"), X(1)y, = —&e=(1)p,, Vi € g7} C X(G) x X(g7).
and the brackets of them

with ¢, " € ker P, X,V € X(g7) such that X (1) (1) = p([§, n]) and Y (1)(7) =
w([€ n)]), for all p € g*,n € hy. Here 7 : g* — R is the linear function induced

by 7.
Since &, &' € by and by is a Lie subalgebra of g, it follows that [, ']y € ba.
If p e g* and n € by, then

(X, Y] () () = X () (Y(7)) = Y (1) (X (7).
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Moreover, Y (0)(¢') = Y (i')() = p([¢'.nlg), for all y/ € g*. Therefore,
keeping in account that f; is an ideal in g we get

X () (Y (@) = X () ([€.y) = p((€, [€smlgla),
Y ()(X (7)) = p(€, (€ nlg):

Hence

(XY () (0) = ul(€, [§, mlala (S [, lala) = —nl[n, €, Eala) = w([€, €' mlg):

0
Therefore (Fy ) is a symplectic foliation, so that we can consider the Poisson
bracket {-, };,2 associated to (F2)*, given by

{f. g}, = QH)().

Thus {-,-}q and —{-,-}4, are compatible, since

{-. to+ (—{, '}51) ={ '}f)z'

Consequently, we can consider the Poisson-Nijenhuis manifold (T*G, 2, N),
where N = AEM - and Agl : T*(TG) — T(T*@G) is the morphism induced by
the Poisson bracket {-,-}y,. Using that {-, -}y, is G-invariant, it follows that
N is G-invariant.

7.2. The Poisson-Nijenhuis Lie algebroid and its reduction. We con-
sider the action of G on T*"G = G x g* by left translations, that is

Gx(Gxg)—Gxg
(g (g:m) — (g"- g,m).

and let 7: T*G — T*G /G be the corresponding principal G-bundle. Since (2
and N are G-invariant, we can consider the corresponding Atiyah algebroid
on

7 (T(17G))/G — TG/G.
We denote by ([-,-],p) the Lie algebroid structure on 7 : (T(1T*G))/G) —
(T*G)/G.

Note that I'(7) may be identified with the set X%(T*G) of G-invariant
vector fields on T*G and that if X € X%(T*G) then X is m-projectable. In
fact, p(X) = (T'r)(X). Using Proposition 2.6, we obtain a Poisson-Nijenhuis
structure on 7 which we denote by (A, N). The foliation defined by the
distribution D = p(A*((T*(T*G))/G)) has just one leaf which is the whole
(T*Q) /G, since Q*((QYT*G))Y) = X(T*G) and these vector fields generate
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all the vector fields in 7*G. In fact, A is nondegenerate on 7 : (T(T*G))/G —
T*G/G.

Next, we compute ker V.

Let X € X%(T*G) be such that N(X) = 0. Then, we have Agl (X)) =0

and hence (X)) € ker Agl. Now,

a € ker/\g1 = Agl(oz) = P(0()) =0 <= a € Q(ker P).
b is a G-invariant foliation and

Therefore, ker N = (F¥)*. Note that (F,
hence it is regular. . .
Let X € XY(T*G) be such that N?(X) = 0. Then, we have N(X) €

ker N = ker P. That is, Q*(X) € (Agl)_l(kerP). Now,

B\ L
)

a € (Agl)’l(kerP) = Agl(oz) € ker P <= Q*(a) € ker P,

since OF = Agl '+ Agz and Afh(oz) € ker P. Hence ker N2 = (F¢))*. Therefore,
the Riesz index is 1.

We study now the foliation F**. The complete and vertical lifts of the
sections of ker NV are complete and vertical lifts of G-invariant vector fields
in T*G. Since ker N is regular, then F* is regular.

Then, if Ly is the leaf of ker NV passing through 0, we have that the leaf of
FrerN passing through vy is

v+ TLg = vy + ( U T.Lg) = vg + ( U ker N(x)).

xE€Lg x€Lg

Note that the condition F*¥ is therefore also satisfied and hence Theorem
6.6 can be applied.

Finally, note that this example can be generalized if we consider a Lie group
G with Lie algebra g, h a Lie subalgebra of g and Py: g — b a projector
(Pgjy = 1p) such that ker Py is an ideal of g and P is linear. Thus, on T*G we
can define two compatible Poisson structures (one of them being the canonical
symplectic structure on 7*G) and hence we can induce a Poisson-Nijenhuis
structure on T*G.
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