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Abstract: We show how to reduce, under certain regularities conditions, a Poisson-
Nijenhuis Lie algebroid to a symplectic-Nijenhuis Lie algebroid with nondegenerate
Nijenhuis tensor. We generalize the work done by Magri and Morosi for the reduc-
tion of Poisson-Nijenhuis manifolds. The choice of the more general framework of
Lie algebroids is motivated by the geometrical study of some reduced bi-Hamiltonian
systems. An explicit example of reduction of a Poisson-Nijenhuis Lie algebroid is
also provided.
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1. Introduction
Poisson-Nijenhuis structures on manifolds were introduced by Magri and

Morosi [16] and then intensively studied by many authors [9, 12, 19, 21, 22].
Recall that a Poisson-Nijenhuis manifold consists of a triple (M,Λ, N), where
M is a manifold endowed with a Poisson bivector field Λ and a (1, 1)-tensor
N whose Nijenhuis torsion vanishes, together with some compatibility con-
ditions between Λ and N . Poisson-Nijenhuis manifolds are very important
in the study of integrable systems since they produce bi-Hamiltonian sys-
tems [9, 12, 16]. In particular, Magri and Morosi showed how to reduce a
Poisson-Nijenhuis manifold to a nondegenerate one, i.e., one where the Pois-
son structure is actually symplectic and the Nijenhuis tensor is kernel-free. In
this paper we show how to perform the same process of reduction in the more
general framework of Lie algebroids. This type of structures have deserved a
lot of interest in relation with the formulation of the Mechanics on disparate
situations as systems with symmetry, systems evolving on semidirect prod-
ucts, Lagrangian and Hamiltonian systems on Lie algebras, and field theory
equations (see, for instance, [3, 11] and the references therein).
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More precisely, in this paper we will see how to reduce a Poisson-Nijenhuis
Lie algebroid to a symplectic-Nijenhuis Lie algebroid with nondegenerate Ni-
jenhuis tensor. One could wonder about the interest of such a generalization.
However, we show that working in the framework of Poisson-Nijenhuis Lie
algebroids one may understand the geometrical structure of some physical
examples related with bi-Hamiltonian systems and hence it is not a mere aca-
demic exercise. Indeed we present, as a motivating example, the study of the
classic Toda lattice which, as is well known, admits a Poisson-Nijenhuis struc-
ture on R2n. Nevertheless, when switching to the more convenient Flaschka
coordinates, one sees that the Poisson-Nijenhuis structure is lost, since there
is no more a recursion operator connecting the hierarchy of Poisson struc-
tures. Nevertheless, the Poisson-Nijenhuis structure can be recovered if the
system is described as a Lie algebroid (see also [2]).
The paper is organized as follows. In Section 2 we recall the notion of

Poisson-Nijenhuis manifolds, then we describe the example of the Toda lat-
tice as a motivation for the introduction of Poisson-Nijenhuis Lie algebroids.
Next, we present the reduced Toda lattice as a Poisson-Nijenhuis Lie alge-
broid (see also [2]). Moreover, we show how this example can be framed in
a more general case by considering a G-invariant Poisson-Nijenhuis struc-
ture on the total space M of a G-principal bundle. Such a structure, in
general does not induce a Poisson-Nijenhuis structure on M/G. Never-
theless, it gives rise to a Poisson-Nijenhuis Lie algebroid on the associated
Atiyah bundle, which allows to build the bi-Hamiltonian system in the re-
duced space M/G. In the following sections we present the reduction of
Poisson-Nijenhuis Lie algebroids. The reduction process is carried on in two
steps. The first step, described in Section 3, consists in selecting a gener-
alized foliation D = ρA(P

♯A∗) on the given Poisson-Nijenhuis Lie algebroid
(A, [·, ·]A , ρA, P, N) and then showing that restricting on each leaf L of D
one obtains a symplectic-Nijenhuis Lie algebroid structure. The leaves of the
foliation D are generally larger than those of the symplectic foliation of the
induced Poisson structure on the base manifold. In Section 4 we deal with Lie
algebroid epimorphisms introducing the notion of projectability of Poisson-
Nijenhuis structures. We prove that given a projectable Poisson-Nijenhuis
structure on a Lie algebroid and a Lie algebroid epimorphism we obtain a
Poisson-Nijenhuis structure on the target Lie algebroid. Finally, we intro-
duce the notion of Poisson-Nijenhuis Lie algebroid morphism. In Section 5
we study the reduction of a Lie algebroid by the foliation generated by the
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vertical and complete lifts of the sections of a Lie subalgebroid using an epi-
morphism of Lie algebroids. In Section 6, we use the previous constructions
to obtain a reduced symplectic-Nijenhuis Lie algebroid with nondegenerate
Nijenhuis tensor from an arbitrary symplectic-Nijenhuis Lie algebroid, under
suitable conditions. In this way we complete the second and final step of the
process of reduction. By putting together the two steps, we obtain our main
result, which is the following one.

Theorem. Let (A, [·, ·]A , ρA, P, N) be a Poisson-Nijenhuis Lie algebroid such
that

i) The Poisson structure P has constant rank in the leaves of the foliation
D = ρA(P

♯(A∗)).

If L is a leaf of D, then, we have a symplectic-Nijenhuis Lie algebroid struc-
ture ([·, ·]AL

, ρAL
,ΩL, NL) on AL = P ♯(A∗)|L → L.

Assume, moreover, that

ii) The induced Nijenhuis tensor NL : AL → AL has constant Riesz index
k;

iii) The dimension of the subspace Bx = kerNk
x is constant, for all x ∈ L

(thus, B = kerNk
L is a vector subbundle of A);

iii) The foliations ρA(B) and FB are regular, where

(FB)a = {X
c(a) + Y v(a)/X, Y ∈ Γ(B)}, for a ∈ AL

iv) (condition FB) For all x ∈ L, ax−a
′
x ∈ Bx if ax and a′x belong to the

same leaf of the foliation FB.

Then, we obtain a symplectic-Nijenhuis Lie algebroid structure

([·, ·]
ÃL
, ρ

ÃL
, Ω̃L, ÑL) on the vector bundle ÃL = AL/F

B → L̃ = L/ρAL
(B)

with ÑL nondegenerate.

The last section of the paper contains an explicit example of reduction
of a Poisson-Nijenhuis Lie algebroid which illustrates our theory. This is
obtained by considering a Lie group G which is the semidirect product of
two Lie groups. We construct a G-invariant Poisson-Nijenhuis structure on
the cotangent bundle T ∗G and then we obtain a Poisson-Nijenhuis structure
on the associated Atiyah Lie algebroid which is degenerate. Thus, it may be
effectively reduced, according to our main theorem.
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2. Poisson-Nijenhuis Lie algebroids: a motivating exam-
ple
In this section we will motivate the introduction of the notion of Poisson-

Nijenhuis Lie algebroids with a simple example: the Toda lattice. Firstly, we
will recall some definitions and results on Poisson-Nijenhuis manifolds.

2.1. Poisson-Nijenhuis manifolds. Let Λ ∈ Γ(∧2TM) be a bivector field
on a manifold M . We denote by Λ♯ the usual bundle map

Λ♯ : T ∗M −→ TM, α 7−→ Λ♯(α) = iαΛ. (1)

Recall that Λ defines a Poisson structure on M if the Schouten bracket [Λ,Λ]
vanishes. In this case, one defines a Poisson bracket by

{f, g}Λ := Λ(df, dg), f, g ∈ C∞(M)

which makes C∞(M) into a Lie algebra, and which is a derivation if either
f or g is fixed. The Poisson bracket on C∞(M) extends to a Lie bracket on
the space Ω1(M) of 1-forms on M defined by

[α, β]Λ = LΛ♯αβ −LΛ♯βα− d (Λ(α, β)) , α, β ∈ Ω1(M), (2)

such that on exact 1-forms one has [df, dg]Λ = d{f, g}Λ.
If a (1, 1)-tensor field N : TM → TM is given on a manifold M , then its

torsion TN ∈ Γ(Λ2T ∗M ⊗ TM) is defined by

TN(X, Y ) := [NX,NY ]−N [X, Y ]N , X, Y ∈ X(M), (3)

where [·, ·]N is given by

[X, Y ]N := [NX, Y ] + [X,NY ]−N [X, Y ], X, Y ∈ X(M). (4)

When TN = 0, the tensor field N is called a Nijenhuis tensor.
Now, if Λ ∈ Γ(∧2TM) is a Poisson structure on M , we say that a bundle

map N : TM → TM is compatible with Λ if NΛ♯ = Λ♯N∗ and the Magri-
Morosi concomitant vanishes:

C(Λ, N)(α, β) = [α, β]NΛ − [α, β]N
∗

Λ = 0,

where [·, ·]NΛ is the bracket defined by the section NΛ ∈ Γ(∧2A) in a similar

way as in (2), and [·, ·]N
∗

Λ is the Lie bracket obtained from the Lie bracket
[·, ·]Λ by deformation along the dual map N∗ : T ∗M → T ∗M in a similar way
as in (4), i.e.

[α, β]N
∗

Λ = [N∗α, β]Λ + [α,N∗β]Λ −N
∗ [α, β]Λ .
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Definition 2.1. ([16]) A Poisson-Nijenhuis manifold (M,Λ, N) is a manifold
M equipped with a Poisson structure Λ and a Nijenhuis tensor N : TM →
TM compatible with Λ.

In such a case, one may obtain a hierarchy of compatible Poisson structures
on M

Λ, NΛ, N2Λ, . . . , NkΛ, . . .

We recall that two Poisson bi-vectors Λ and Λ′ onM are compatible if Λ+Λ′

is again a Poisson structure or equivalently if [Λ,Λ′] = 0.
An example of Poisson-Nijenhuis manifold is given by a manifold M en-

dowed with two compatible Poisson structures Λ1 and Λ2, such that the
first one is nondegenerate. Thus, (M,Λ1, N) is a Poisson-Nijenhuis manifold
where

N := Λ♯2 ◦(Λ♯1)
−1.

If additionally N is nondegenerate then we have a hierarchy of compatible
symplectic structures on M. Moreover, if X is a bi-Hamiltonian vector field
(i.e. a Hamiltonian vector field with respect to both Poisson structures, Λ1

and Λ2) and the first de Rham cohomology group of M is trivial, we obtain
a sequence of integrals of motion in involution (see [16]).

Example 2.2. The Toda lattice. The finite, non-periodic Toda lattice
(see, for instance, [2, 12, 17]) is a system of n particles on the line under
exponential interaction with nearby particles. Its phase space is R2n with
canonical coordinates (qi, pi) where q

i is the displacement of the i-th particle
from its equilibrium position and pi is the corresponding momentum. This
system is particularly interesting when we consider exponential forces. Then
the Hamiltonian function associated with the equations of motion is

H1 =
1

2

n∑

i=1

p2i +

n−1∑

i=1

e(q
i−qi+1).

Now, we consider the following two compatible Poisson structures on R2n

Λ0 =

n∑

i=1

∂

∂qi
∧

∂

∂pi
,

Λ1 = −
∑

i<j

∂

∂qi
∧

∂

∂qj
+

n∑

i=1

pi
∂

∂qi
∧

∂

∂pi
+

n−1∑

i=1

e(q
i−qi+1) ∂

∂pi+1
∧

∂

∂pi
.
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Note that Λ0 is the Poisson bivector corresponding to the canonical sym-
plectic structure of R2n. Furthermore, the Hamiltonian vector field HΛ0

H1
is

bi-Hamiltonian. In fact,

HΛ0

H1
= Λ♯0(dH1) = Λ♯1(dH0),

with H0 =
∑n

i=1 pi.
In what follows, we will reduce the bi-Hamiltonian structure of the Toda

lattice using the action of R over R2n given by

R× R2n −→ R2n

(t, (qi, pi)) 7−→ (qi + t, pi)

which induces the principal bundle

π : R2n −→ R2n/R.

Note that R2n/R may be identified with (R+)n−1 × Rn by

R2n/R −→ (R+)n−1 × Rn, (qi, pi) 7−→ (e(q
i−qi+1), pi). (5)

This identification corresponds to the choice of the so called Flaschka coor-
dinates which are actually global coordinates on R2n/R, usually denoted by
(a1, . . . , an−1, b1, . . . , bn). The Poisson structures Λ0 and Λ1 are R-invariant
so that they descend to the quotient R2n/R ∼= (R+)n−1 × Rn. The reduced
Poisson structures are

Λ̄0 =
n−1∑

i=1

ai
∂

∂ai
∧

(
∂

∂bi
−

∂

∂bi+1

)
,

Λ̄1 =

n−1∑

i=1

ai
∂

∂ai
∧

(
bi
∂

∂bi
− bi+1

∂

∂bi+1

)

+

n−1∑

i=1

ai
∂

∂bi+1
∧

∂

∂bi
+

n−2∑

i=1

aiai+1
∂

∂ai+1
∧

∂

∂ai
.

(6)

These bivectors are again compatible and moreover we obtain by projection
a hierarchy of compatible Poisson structures on the reduced space. However,
they cannot be related through a recursion tensor N̄ . Indeed, if this were
the case, then

Λ̄♯1 = N̄ ◦ Λ̄♯0.
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Thus, using that Λ̄♯0(
n∑

i=1

dbi) = 0, we deduce that Λ̄♯1(
n∑

i=1

dbi) = 0 which is

not true.
The problem is that if we want to induce a tensor N̄ : T (R2n/R) →

T (R2n/R) it is necessary that N sends vertical vectors with respect to π :
R2n → R2n/R into vertical vectors. Note that Λ0 and N are R-invariant but
N(kerTπ) * kerTπ.

Furthermore, the Hamiltonian vector field HΛ0

H1
projects just in HΛ̄0

H̄1
and

Λ̄♯0dH̄1 = H
Λ̄0

H̄1
= Λ̄♯1dH̄0

with H̄1 =
1

2

n∑

i=1

b2i +
n−1∑

i=1

ai and H̄0 =
n∑

i=1

bi.

These facts suggest that, although the structure of Poisson-Nijenhuis can
not be reduced, perhaps there exists another structure in a different space
from which we may induce the above structures on the reduced space R2n/R.
The answer to this question is associated with the notion of a Poisson-
Nijenhuis Lie algebroid. ♦

2.2. Poisson-Nijenhuis Lie algebroids. A Lie algebroid is a vector bundle
τA : A→M endowed with

(i) an anchor, i.e. a vector bundle morphism ρA : A→ TM
(ii) a Lie bracket [·, ·]A on the space of the sections of A, Γ(A), such that

the Leibniz rule,

[X, fY ]A = f [X, Y ]A + ρA(X)(f)Y,

is satisfied for all X, Y ∈ Γ(A) and f ∈ C∞(M).

We denote such a Lie algebroid by (A, [·, ·]A , ρA) or simply by A.
In such a case the map ρA induces a morphism of Lie algebras from

(Γ(A), [·, ·]A) to (X(M), [·, ·]) which we denote by the same symbol, i.e.

ρA ([X, Y ]A) = [ρA(X), ρA(Y )] .

Now, we will describe an interesting example of a Lie algebroid. For further
details about Lie algebroids and other examples see e.g. [13].

Example 2.3. The Atiyah algebroid associated with a principal G-
bundle. Let p : M → M/G be a principal G-bundle. It is well-known that
the tangent lift of the principal action of G on M induces a principal action
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of G on TM and the space of orbits TM/G of this action is a vector bundle
over M/G with vector bundle projection τTM/G : TM/G→M/G given by

τTM/G([vx]) = p(x), ∀vx ∈ TxM.

Furthermore, the space of sections Γ(TM/G) may be identified with the set of
G-invariant vector fields on M and the Lie bracket of two G-invariant vector
fields on M is still G-invariant. Thus, the standard Lie bracket of vector
fields induces a Lie bracket [·, ·]TM/G on the space Γ(TM/G) in a natural
way.
On the other hand, the anchor map ρTM/G : TM/G → T (M/G) is given

by

ρTM/G([vx]) = (Txp)(vx), for vx ∈ TxM,

where Tp : TM → T (M/G) is the tangent map to the principal bundle
projection p :M →M/G.
The resultant Lie algebroid (TM/G, [·, ·]TM/G , ρTM/G) is called the Atiyah

algebroid associated with the principal G-bundle p :M →M/G. ♦

Associated to a given Lie algebroid (A, [·, ·]A , ρA) there is a Lie algebroid
differential dA : Γ(∧•A∗)→ Γ(∧•+1A∗) defined by

(dAω)(X0, . . . ,Xk) =
k∑

i=0

(−1)iρA(Xi)
(
ω(X0, . . . , X̂i, . . . , Xk)

)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj]A , X0, . . . , X̂i, . . . , X̂j, . . . , Xk),

for ω ∈ Γ(∧kA∗), X0, . . . , Xk ∈ Γ(A). We have that (dA)2 = 0, which implies
that dA is a cohomology operator. Moreover, if X is a section of A, one
may introduce, in a natural way, the Lie derivative with respect to X as the
operator LAX : Γ(∧kA∗)→ Γ(∧kA∗) given by

LAX = iX ◦dA + dA ◦ iX . (7)

It is easy to prove that the Lie derivative LAX and the Lie bracket [·, ·]A are
related by

LAXiY = iYL
A
X + i[X,Y ]A

, with X, Y ∈ Γ(A). (8)
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The Lie algebra bracket [·, ·]A on Γ(A) can be extended to the exterior
algebra (Γ(∧•A),∧) using the properties

[P,Q]A ∈ Γ(∧p+q−1A)

[P,Q]A = −(−1)(p−1)(q−1) [Q,P ]A ,

[P,Q ∧ R]A = [P,Q]A ∧R + (−1)(p−1)qQ ∧ [P,R]A ,

(9)

with P ∈ Γ (∧pA) , Q ∈ Γ (∧qA) and R ∈ Γ (∧rA).
The resulting bracket is called Schouten bracket (see e.g. [13]). Note that

[X,P ]A(α1, . . . , αp) = ρA(X)(P (α1, . . . , αp))−

p∑

i=1

P (α1, . . . ,L
A
Xαi, . . . , αp)

(10)
for X ∈ Γ(A), P ∈ Γ(∧pA) and α1, . . . , αp ∈ Γ(A∗).
Let (A, [·, ·]A , ρA) be a Lie algebroid over a manifoldM and P be a section

of the vector bundle ∧2A→M . We denote by P ♯ the usual bundle map

P ♯ : A∗ −→ A, α 7−→ P ♯(α) = iαP. (11)

We say that P defines a Poisson structure on A if [P, P ]A = 0. In this case,
the bracket on the sections of A∗ defined by

[α, β]P = LAP ♯αβ −L
A
P ♯βα− dA (P (α, β)) , α, β ∈ Γ(A∗), (12)

is a Lie bracket, P ♯ : (Γ(A∗), [·, ·]P )→ (Γ(A), [·, ·]A) is a Lie algebra morphism
and the tripleA∗P = (A∗, [·, ·]P , ρA ◦P ♯) is a Lie algebroid [14]. In fact, the pair
(A,A∗P ) is a special kind of a Lie bialgebroid called a triangular Lie bialgebroid
[14]. A Poisson structure P ∈ Γ(∧2A) on a Lie algebroid (A, [·, ·]A , ρA)
induces a Poisson structure Λ ∈ Γ(∧2TM) on the base manifold M , defined
by

Λ♯ = ρA ◦P ♯
◦ρ∗A. (13)

An almost symplectic structure on the Lie algebroid (A, [·, ·]A , ρA) is a section
ΩA of the vector bundle ∧2A∗ →M such that ΩA is nondegenerate. In such
a case, the map Ω♭

A : Γ(A)→ Γ(A∗) given by

Ω♭
A(X) = iXΩA, for X ∈ Γ(A),

is an isomorphism of C∞(M)-modules. Thus, one can define from ΩA a
nondegenerate section of the vector bundle ∧2A→M as follows

PΩA
(α, β) = ΩA((Ω

♭
A)
−1(α), (Ω♭

A)
−1(β)), for α, β ∈ Γ(A∗). (14)
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An almost symplectic structure ΩA is called symplectic if dAΩA = 0. In
this case, PΩA

∈ Γ(∧2A) is a Poisson structure on A. Conversely, if P is a
nondegenerate Poisson structure on A, then

ΩP (X, Y ) = P ((P ♯)−1(X), (P ♯)−1(Y )), for X, Y ∈ Γ(A),

defines a symplectic structure ΩP on A (see [1]).
Let (A, [·, ·]A , ρA) be a Lie algebroid over a manifold M . The torsion of a

bundle map N : A→ A (over the identity) is defined by

TN(X, Y ) := [NX,NY ]A −N [X, Y ]N , X, Y ∈ Γ(A), (15)

where [·, ·]N is given by

[X, Y ]N := [NX, Y ]A + [X,NY ]A −N [X, Y ]A, X, Y ∈ Γ(A). (16)

When TN = 0, the bundle map N is called a Nijenhuis operator, the triple
AN = (A, [·, ·]N , ρN = ρ ◦N) is a new Lie algebroid and N : AN → A is a Lie
algebroid morphism (see [4, 9]).
Now, if P ∈ Γ(∧2A) is a Poisson structure on A, we say that a bundle map

N : A → A is compatible with P if N ◦P ♯ = P ♯
◦N∗ and the Magri-Morosi

concomitant

C(P,N)(α, β) = [α, β]NP − [α, β]N
∗

P , for α, β ∈ Γ(A∗) (17)

vanishes, where [·, ·]NP is the bracket defined by the section NP ∈ Γ(∧2A)

in a similar way as in (12), and [·, ·]N
∗

P is the Lie bracket obtained from the
Lie bracket [·, ·]P by deformation along the dual map N∗ : A∗ → A∗, i.e.,

[α, β]N
∗

P = [N∗α, β]P + [α,N∗β]P −N
∗ [α, β]P . (18)

Definition 2.4. ([4]) A Poisson-Nijenhuis Lie algebroid (A, P,N) is a Lie
algebroid A equipped with a Poisson structure P and a Nijenhuis operator
N : A→ A compatible with P .

If, in particular, the Poisson tensor P in Definition 2.4 is nondegenerate, i.e.
it comes from a symplectic structure ΩA on A like in (14), then (A,ΩA, N) is
said to be a symplectic-Nijenhuis Lie algebroid. This is the case of two com-
patible Poisson 2-sections P0 and P1, where P0 is associated with a symplectic
structure.

Example 2.5. The Poisson-Nijenhuis Lie algebroid associated with
the Toda lattice (see [2]). We will describe the Poisson-Nijenhuis Lie al-
gebroid associated to the reduction of the Toda lattice presented in Example
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2.2. Consider the Atiyah algebroid τA : A = (TR2n)/R→ R2n/R associated
with the principal bundle π : R2n → R2n/R.
A global basis of R-invariant vector fields on R2n is

{ei = e(q
i+1−qi)

i∑

k=1

∂

∂qk
, en =

n∑

k=1

∂

∂qk
, fj =

∂

∂pj
} i = 1, .., n− 1

j = 1, .., n

Note that

[ei, ej] = [fi, fj] = [ei, fj] = 0

for i, j ∈ {1, . . . , n}. Moreover, the vector field ek, with k ∈ {1, . . . , n − 1}
(respectively, fl, with l ∈ {1, . . . , n}) is π-projectable over the vector field
∂

∂ak
(respectively,

∂

∂bl
) on (R+)n−1 × Rn. In addition, the vertical bundle of

π is generated by the vector field en.
Thus, the Lie algebroid structure ([·, ·]A, ρA) on A is characterized by the

following conditions

[ei, ej]A = [fi, fj]A = [ei, fj]A = 0,

and

ρA(ei) =
∂

∂ai
(i = 1, . . . , n−1), ρA(en) = 0, ρA(fj) =

∂

∂bj
(j = 1, . . . , n).

We may define the following two Poisson structures on A

π0 =
n−1∑

i=1

aiei ∧ (fi − fi+1) + en ∧ fn

π1 = −

n−2∑

i=1

aiai+1ei ∧ ei+1 − an−1en−1 ∧ en +

n−1∑

i=1

aiei ∧ (bifi − bi+1fi+1)

+bnen ∧ fn −

n−1∑

i=1

aifi ∧ fi+1.

These Poisson structures cover ordinary Poisson tensors on the base manifold
R2n/R which are just the Poisson structures Λ̄0 and Λ̄1 given by (6). Since
π0 is symplectic, the Poisson structures on A are related by the recursion op-
erator N = π♯1 ◦ (π♯0)

−1 and (A, π0, N) is a symplectic-Nijenhuis Lie algebroid.
♦
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This example may be framed within a more general framework as follows.
Let p :M → M̄ = M/G be a principal G-bundle. If a G-invariant Poisson-

Nijenhuis structure (Λ, N) is given onM , then in general we cannot induce a
Poisson-Nijenhuis structure on M/G since the condition N(kerTp) * kerTp
might not be satisfied. Nevertheless, we obtain a reduced Poisson-Nijenhuis
Lie algebroid. In fact, as we know, the space of sections of p̃ : TM/G →
M̄ = M/G (respectively, p̃∗ : (TM/G)∗ ∼= T ∗M/G → M̄ = M/G) may
be identified with the set of G-invariant vector fields XG(M) (respectively,
G-invariant 1-forms Ω1(M)G) on M .
Now, since Λ and N are G-invariant, we deduce that

Λ(α, β) is a p-basic function, for α, β ∈ Ω1(M)G

and
NX ∈ XG(M), for X ∈ XG(M).

Thus, Λ (respectively, N) induces a section Λ̃ (respectively, Ñ) on the vector
bundle ∧2(TM/G) → M̄ = M/G (respectively, TM/G ⊗ T ∗M/G → M̄ =
M/G) in such a way that

Λ̃(α, β) ◦p = Λ(α, β) for α, β ∈ Ω1(M)G,

ÑX = NX, for X ∈ XG(M).

Moreover, using the definition of the Lie algebroid structure on the Atiyah
algebroid p : TM/G → M̄ = M/G and the fact that (Λ, N) is a Poisson-
Nijenhuis structure on M , we may prove the following result

Proposition 2.6. Let p : M → M̄ = M/G be a principal G-bundle and
(Λ, N) be a G-invariant Poisson-Nijenhuis structure on M . Then:

i) (Λ, N) induces a Poisson-Nijenhuis Lie algebroid structure (Λ̃, Ñ) on
the Atiyah algebroid p̃ : TM/G→ M̄ =M/G

ii) The Poisson structures Λ and NΛ on M are p-projectable to two com-
patible Poisson structures Λ̄ and NΛ on M̄ = M/G.

iii) The Poisson structures on M̄ = M/G which are induced by the Pois-
son bi-sections Λ̃ and Ñ Λ̃ on the Atiyah algebroid p :M → M̄ =M/G
are just Λ̄ and NΛ, respectively.

3. Reduction of Poisson-Nijenhuis Lie algebroids by re-
striction
We consider the Poisson-Nijenhuis Lie algebroid A = (TR2n)/R associated

with the Toda lattice. It is easy to prove that if we restrict to a suitable
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open subset of the base manifold R2n/R then A = (TR2n)/R is a symplectic-
Nijenhuis Lie algebroid with nondegenerate Nijenhuis tensor. The main re-
sult of this paper is prove that, under regularities conditions, every Poisson-
Nijenhuis algebroid may be reduced to a nondegenerate symplectic-Nijenhuis
Lie algebroid. This reduction has two steps. In the first step we obtain a
symplectic-Nijenhuis Lie algebroid, and then we will reduce it to a symplectic-
Nijenhuis Lie algebroid with nondegenerate Nijenhuis tensor using a general
theory about the projectability of a Poisson-Nijenhuis structure with respect
to a Poisson-Nijenhuis Lie algebroid epimorphism. In this section we will
describe the first step which is a reduction by restriction. Previously, we
recall some notions about Lie algebroid morphisms which will be useful in
the sequel.

3.1. Lie algebroid morphisms and subalgebroids. Let τA : A→M and

τÃ : Ã→ M̃ be vector bundles. Suppose that we have a morphism of vector

bundles (F, f) from A to Ã:

A
F //

τA

��

Ã

τ
Ã

��

M
f

//
M̃

A section of A, X :M → A, is said to be F -projectable if there is X̃ ∈ Γ(Ã)
such that the following diagram is commutative:

A
F // Ã

M

X

OO

f
//
M̃

X̃

OO

A section α : M → ∧kA∗ of τ kA∗ : ∧k A∗ → M is said to be F -projectable if

there is α̃ ∈ Γ(∧kÃ∗) such that α = F ∗α̃, where F ∗α̃ ∈ Γ(∧kA∗) is defined
by

(F ∗α̃)(x)(a1, . . . , ak) = α̃(f(x))(F (a1), . . . , F (ak)) (19)
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with x ∈M and a1, . . . , ak ∈ Ax.
Now, we consider Lie algebroid structures ([·, ·]A , ρA) and ([·, ·]Ã , ρÃ) on A

and Ã, respectively. We say that (F, f) is a Lie algebroid morphism if

dA(F ∗α̃) = F ∗(dÃα̃) for all α̃ ∈ Γ(∧kÃ∗) and all k. (20)

Any Lie algebroid morphism preserves the anchor, i.e.,

ρÃ ◦F = Tf ◦ρA. (21)

Moreover, if X and Y are F -projectable sections on X̃ and Ỹ , respectively,
it follows that [X, Y ]A is a F -projectable section on [X̃, Ỹ ]Ã.

In addition, if X ∈ Γ(A) is F -projectable and α̃ ∈ Γ(Ã∗), then LAX(F
∗α̃) is

a F -projectable section of A∗. In fact, using (7) and (20), we have that

LAX(F
∗α̃) = F ∗(LÃ

X̃
α̃), (22)

where X̃ ∈ Γ(Ã) satisfies F ◦X = X̃ ◦f .

Note that if M = M̃ and f is the identity map for M , then F : A→ Ã is
a Lie algebroid morphism if and only if

F [X, Y ]A = [FX, FY ]Ã , ρÃ(FX) = ρA(X) (23)

for X, Y ∈ Γ(A).
A Lie subalgebroid is a morphism of Lie algebroids I : B → A over ι : N →

M such that ι is an injective immersion and I|Bx
: Bx → Aι(x) is a monomor-

phism, for all x ∈ N (see [7]).

3.2. The first step of the reduction: Reduction of Poisson-Nijenhuis
Lie algebroids by restriction. Let (A, P ) be a Poisson Lie algebroid. In
order to reduceA to a symplectic Lie algebroid, let us consider the generalized
distribution D ⊂ TM defined as follows: for each x ∈M ,

D(x) := ρA(P
♯(A∗x)) ⊂ TxM.

Since P ♯ and ρA are Lie algebroid morphisms over the identity idM :M →M ,
we have [

ρA(P
♯α), ρA(P

♯β)
]
= ρA(P

♯ [α, β]P ),

for any α, β ∈ Γ(A∗), i.e. D is involutive. Furthermore, D is locally finitely
generated as a C∞(M)-module. As a consequence D defines a generalized
foliation of M in the sense of Sussmann [20]. Note that, due to (13), the
tangent distribution S = Λ♯(T ∗M) of the symplectic foliation of the induced
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Poisson structure Λ ∈ Γ(∧2TM) on the base manifold M is a subset of
D = ρA(P

♯(A∗)).
Let L ⊂ M be a leaf of the foliation D and consider the subset AL :=

P ♯(A∗)|L ⊂ A. We assume that the Poisson structure P ♯ : A∗ → A has
constant rank on each leaf L. Then, AL → L is a vector subbundle of the
vector bundle A → M and, since that ρA(AL) ⊆ TL, we deduce that the
Lie algebroid structure ([·, ·]A, ρA) on A induces a Lie algebroid structure
([·, ·]AL

, ρAL
) on AL. In fact, ρAL

= (ρA)|AL
and the Lie bracket [·, ·]AL

is
characterized by the condition

[
P ♯α|L, P

♯β|L
]
AL

= (
[
P ♯α, P ♯β

]
A
)|L = (P ♯ [α, β]P )|L

for all α, β ∈ Γ(A∗). Note that if α, α′ ∈ Γ(A∗) and P ♯(α)|L = P ♯(α′)|L then,

using that the restriction to L of ρA(P
♯(β)) is tangent to L, we obtain that

(
[
P ♯α, P ♯β

]
A
)|L = (

[
P ♯α′, P ♯β

]
A
)|L.

Furthermore, if we denote by I : AL → A and ι : L→M , respectively, the
inclusion mappings of AL in A and of L in M , then I is a monomorphism of
Lie algebroids from AL to A over ι : L→M so that AL is a Lie subalgebroid
of A.
Now, we will prove that the Lie algebroid AL is symplectic.
Note that for any XL ∈ Γ(AL) there exists a section α ∈ Γ(A∗) such that

XL I-projects on P
♯α, i.e., I ◦XL = P ♯α ◦ ι.

Let us define a section ΩL : L→ ∧
2A∗L by setting

ΩL(XL, YL) = P (α, β) ◦ι, for any XL, YL ∈ Γ(AL) (24)

α, β being sections of A∗ such that XL and YL I-project on P ♯α and P ♯β,
respectively. Clearly, ΩL is well defined. Indeed, if P ♯α ◦ ι = P ♯α′ ◦ ι then
P (α, β) ◦ι = P (α′, β) ◦ι, for all β ∈ Γ(A∗).
Moreover, ΩL is nondegenerate. Note that if XL ∈ Γ(AL),

I ◦XL = (P ♯α) ◦ ι

and ΩL(XL, YL) = 0, for all YL ∈ Γ(AL), then P ♯α ◦ ι = 0 and therefore
XL = 0. Hence, ΩL is an almost symplectic structure on AL.
In order to show that ΩL is symplectic, we will prove the following Lemma.

Lemma 3.1. Let XL, YL be sections of AL and α, β ∈ Γ(A∗) such that
I ◦XL = P ♯α ◦ ι and I ◦YL = P ♯β ◦ ι. Then:

(i) Ω♭
L(XL) = −I

∗α,
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(ii) i[XL,YL]AL
ΩL = LAL

XL
βL − L

AL

YL
αL + dAL(P (α, β) ◦ ι),

where αL = iXL
ΩL and βL = iXL

ΩL.

Proof : (i) If YL ∈ Γ(AL) is a section of AL which I-projects on P ♯β, for some
β ∈ Γ(A∗), then

Ω♭
L(XL)(YL) = (β ◦ ι)(P ♯α ◦ ι) = −(α ◦ ι)(P ♯β ◦ ι) = −(α ◦ ι)(I ◦YL) = −I

∗α(YL).

(ii) Note that, since (I, ι) and P ♯ are Lie algebroid morphisms, we have

I ◦ [XL, YL]AL
=

[
P ♯α, P ♯β

]
A

◦ ι = P ♯ [α, β]P ◦ ι.

So, by (i) we obtain

i[XL,YL]AL
ΩL = −I∗ [α, β]P . (25)

Now, from (12), (22) and (25) we obtain the claim.

Proposition 3.2. The 2-section ΩL on AL defined by (24) is symplectic.

Proof : We have only to prove that ΩL is closed. In fact, for any XL, YL ∈
Γ(AL), we have

iXL
iYLd

ALΩL = iXL
LAL

YL
ΩL − iXL

dALiYLΩL

= LAL

YL
iXL

ΩL + i[XL,YL]AL
ΩL − iXL

dALiYLΩL,
(26)

where we have used (7) and (8).
By applying Lemma 3.1, from (26) we get

iXL
iYLd

ALΩL = dALiXL
βL + dAL(P (α, β) ◦ι) = 0.

Now, we consider a Nijenhuis operator N : A→ A on the Lie algebroid A
which is compatible with the Poisson structure P . Using the compatibility
condition N ◦P ♯ = P ♯

◦N∗, we may induce by restriction a new operator
NL : AL → AL on AL such that

I ◦NL(XL) = N(P ♯α) ◦ ι, for all XL ∈ Γ(AL) (27)

where α ∈ Γ(A∗) is a section of A∗ such that XL I-projects on P
♯α.

Note that, from (27), we deduce that

I ◦NL = N ◦I (28)
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which implies that

N∗L(I
∗α) = I∗(N∗α), for α ∈ Γ(A∗). (29)

Theorem 3.3. Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid such that
the Poisson structure has constant rank in the leaves of the foliation D =
ρA(P

♯(A∗)). Then, we have a symplectic-Nijenhuis Lie algebroid (AL,ΩL, NL)
on each leaf L of D.

Proof : From Proposition 3.2, we deduce that (AL,ΩL) is a symplectic Lie
algebroid. Denote by PL the Poisson structure corresponding to ΩL, defined
by P ♯

L := −(Ω♭
L)
−1. Note that, using Lemma 3.1, we have that

PL(I
∗α, I∗β) = P (α, β) ◦ι, for all α, β ∈ Γ(A∗). (30)

Next, we prove thatNL is a Nijenhuis operator compatible with PL. Indeed,
firstly consider XL, YL sections of AL. Then, there are α and β sections of
A∗ such that XL and YL I-project on P

♯α and P ♯β, respectively. Thus, using
(28) and the fact that (I, ι) is a monomorphism of Lie algebroids, we deduce
that

I ◦TNL
(XL, YL) = TN(P

♯α, P ♯β) ◦ι = 0. (31)

On the other hand, for α ∈ Γ(A∗), we consider the section XL ∈ Γ(AL)
defined by

I ◦XL = P ♯α ◦ ι.

Using Lemma 3.1 we deduce that

P ♯
L(I

∗α) = XL. (32)

Now, from (27) and since N ◦P ♯ = P ♯
◦N∗, it follows that

I(NL(XL)) = P ♯(N∗α) ◦ι.

Therefore, using again Lemma 3.1, we obtain that

P ♯
L(I

∗(N∗α)) = NL(XL) = NL(P
♯
L(I

∗α))

which implies that (see (29))

P ♯
L(N

∗
L(I

∗α)) = NL(P
♯
L(I

∗α)).

This proves that P ♯
L ◦N∗L = NL ◦P ♯

L.
Finally, from (17), (18), (22), (27), (30) and using that N ◦P ♯ = P ♯

◦N∗

and the fact that (I, ι) is a Lie algebroid monomorphism, we conclude that

0 = I∗(C(P,N)(α, β)) = C(PL, NL)(I
∗α, I∗β) ◦ι,
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for α, β ∈ Γ(A∗).
This ends the proof of the result.

4. Reduction of Poisson-Nijenhuis Lie algebroids by epi-
morphisms of Lie algebroids
In order to complete the process of reduction, we now deal with the gen-

eral problem of the projectability of a Poisson-Nijenhuis structure on a Lie
algebroid with respect to a vector bundle epimorphism.

Let τA : A → M and τÃ : Ã → M̃ be vector bundles on the manifolds M

and M̃ , respectively, and let (Π, π) be an epimorphism of vector bundles,

A
Π //

τA

��

Ã

τ
Ã

��

M
π //

M̃

i.e., the map π : M → M̃ is a surjective submersion and, for each x ∈ M ,
Πx : Ax → Ãπ(x) is an epimorphism of vector spaces.
Denote by Γp(A) (respectively, Γp(A

∗)) the space of the Π-projectable sec-
tions of A (respectively, of A∗). In [8] a characterization is found to establish
when a vector bundle epimorphism is a Lie algebroid epimorphism.

Proposition 4.1. (see [8]) Let (Π, π) : A → Ã be a vector bundle epimor-
phism. Suppose that ([·, ·]A , ρA) is a Lie algebroid structure over A. Then,

there exists a unique Lie algebroid structure on Ã such that (Π, π) is a Lie
algebroid epimorphism if and only if the following conditions hold:

i) The space Γp(A) of the Π-projectable sections of A is a Lie subalgebra
of (Γ(A), [·, ·]A) and

ii) Γ(kerΠ) is an ideal of Γp(A).

In such a case, the structure of Lie algebroid over Ã is characterized by

[X̃, Ỹ ]Ã ◦π = Π ◦ [X, Y ]A , ρÃ(X̃)(f̃) ◦π = ρA(X)(f̃ ◦π), (33)

where X̃, Ỹ ∈ Γ(Ã), f̃ ∈ C∞(M̃) and X, Y ∈ Γ(A) are such that

X̃ ◦π = Π ◦X, Ỹ ◦π = Π ◦Y.
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Note that the real function ρA(X)(f̃ ◦π) on M is basic with respect to π (see
[8]).

Let (A, [·, ·]A , ρA) and (Ã, [·, ·]Ã , ρÃ) be Lie algebroids over M and M̃ , re-

spectively, and let (Π, π) : A→ Ã be an epimorphism of Lie algebroids. We

denote by V π the vertical subbundle of π : M → M̃ . Then, ρA(KerΠ) ⊆ V π
(see (21)).
We can always find a local basis {ξi, Xa} of sections of A such that ξi ∈

Γ(KerΠ), for all i, and Xa is a Π-projectable section, for all a. Indeed,
to obtain such a base we choose a bundle metric on A which gives us the
decomposition A = KerΠ ⊕ (KerΠ)⊥ where (KerΠ)⊥ is the orthogonal
complement defined by the chosen metric. Then we consider a local basis
{ξi} of sections of KerΠ and a local basis {X̃a} of sections of Ã. It follows

that {ξi, Xa = X̃H
a }, where X̃

H
a is the horizontal lift of X̃a, is a local basis of

sections of A. Furthermore, note that if {ηi, αa} is the dual basis of {ξi, Xa},

then αa = Π∗α̃a, where {α̃a} is the dual basis of {X̃a} in Ã. By using these
tools we can prove the following results about projectable sections of A and
A∗.

Proposition 4.2. Let (Π, π) : A → Ã be an epimorphism of Lie algebroids
and suppose that X ∈ Γ(A) and α ∈ Γ(A∗). Then,

i) If X is a Π-projectable section of A, then [ξ,X]A ∈ Γ(KerΠ) for any
ξ ∈ Γ(KerΠ). Moreover, if α is a Π-projectable section of A∗, then
α(ξ) = 0 and LAξ α = 0, for any ξ ∈ Γ(KerΠ).

ii) Assume that ρA(KerΠ) = V π. Then,
a) X is a Π-projectable section of A if and only if [ξ,X]A ∈ Γ(KerΠ),

for any ξ ∈ Γ(KerΠ).
b) α is a Π-projectable section of A∗ if and only if α(ξ) = 0 and
LAξ α = 0, for any ξ ∈ Γ(KerΠ).

Proof : The first part of i) is a consequence of Proposition 4.1.

Assume that there exists α̃ ∈ Γ(Ã∗) such that α = Π∗α̃. If ξ ∈ Γ(KerΠ)
then α(ξ) = Π∗α̃(ξ) = 0 and, by using (22),

LAξ α = LAξ Π
∗α̃ = 0.

To prove ii) we proceed as follows. Let {ξi, Xa} be a local basis of sections
of A such that ξi ∈ Γ(KerΠ), for all i, and Xa is a Π-projectable section over

X̃a ∈ Γ(Ã) for all a.
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a) Suppose that X ∈ Γ(A) is such that [ξ,X]A ∈ Γ(kerΠ), for any ξ ∈
Γ(kerΠ). If

X = f iξi + F aXa with f i, F a local C∞-functions on M

then, by using Proposition 4.1, we have that

0 = Π ◦ [ξi, X]A = Π ◦(ρA(ξi)(F
a)Xa) = ρA(ξi)(F

a)(X̃a ◦π).

So, if Z ∈ Vxπ, with x ∈M, then there exists ξ ∈ Γ(KerΠ) such that
Z = ρA(ξ)(x) and therefore

Z(F a) = ρA(ξ)(F
a)(x) = 0.

We conclude that there exists F̃ a ∈ C∞(M̃) such that

F a = F̃ a
◦π,

and X is a Π-projectable section of A.
b) Assume that α is a section of A∗ such that α(ξ) = 0 and LAξ α = 0, for

any ξ ∈ Γ(KerΠ). Let {ηi,Π
∗α̃a} be the dual basis of {ξi, Xa}. Thus,

α = giηi + σaΠ∗α̃a, with gi, σa ∈ C∞(M).

As α(ξi) = 0, we deduce that gi = 0. On the other hand, using (8)
and Proposition 4.1,

0 = LAξiα(Xa) = ρA(ξi)(σ
a)− α([ξi, Xa]A) = ρA(ξi)(σ

a).

As before, this implies that σa = σ̃a ◦π for some function σ̃a ∈ C∞(M̃).
Hence, α is Π-projectable.

We consider now a section P of the vector bundle ∧2A→M . P is said to
be Π-projectable if, for each α̃ ∈ Γ(Ã∗), we have P ♯Π∗α̃ ∈ Γp(A).

Proposition 4.3. Let (Π, π) : A→ Ã be an epimorphism of Lie algebroids.
If P ∈ Γ(∧2A) is Π-projectable, then

([ξ, P ]A)
♯(Γp(A

∗)) ⊆ Γ(KerΠ) (34)

for any ξ ∈ Γ(KerΠ). Moreover, if ρA(KerΠ) = V π, then P is Π-projectable
if and only if (34) holds.
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Proof : Assume that P is Π-projectable. Then, for any α ∈ Γp(A
∗) and

ξ ∈ Γ(KerΠ), by using (9), (11) and Proposition 4.2 we have

([ξ, P ]A)
♯(α) = [ξ, P ♯α]A − P

♯LAξ α

= [ξ, P ♯α]A ∈ Γ(KerΠ).

Now, we suppose that P satisfies (34) and ρA(KerΠ) = V π. Consider a
local basis of sections {ξi, Xa} of A such that ξi ∈ Γ(KerΠ) and Xa ∈ Γp(A).
Let {ηi,Π

∗α̃a} be the dual basis of {ξi, Xa}. We have

P ♯Π∗α̃a = f iaξi + F b
aXb, with f ia, F

b
a local real C∞-functions on M.

Note that F b
a = −F a

b .
By using (9) and Proposition 4.2 we have

0 =Π ◦(([ξ, P ]A)
♯(Π∗α̃a))(α̃b) = ([ξ, P ]A)(Π

∗α̃a,Π
∗α̃b)

= ρA(ξ)(P (Π
∗α̃a,Π

∗α̃b)) = ρA(ξ)(F
b
a),

for any ξ ∈ Γ(KerΠ).
So, if Z ∈ Vxπ, then there exists ξ ∈ Γ(KerΠ) such that Z = ρA(ξ)(x) and

therefore

Z(F b
a) = 0.

Hence, there exists a local real C∞-function F̃ b
a on M̃ such that

F b
a = F̃ b

a ◦π.

If P is a Π-projectable Poisson structure on A, then we may construct the
2-section P̃ ∈ Γ(∧2Ã) of Ã characterized by

(P̃ ♯α̃) ◦π = Π(P ♯(Π∗α̃)), for any α̃ ∈ Γ(Ã∗) (35)

or equivalently,

P̃ (α̃, β̃) ◦π = P (Π∗α̃,Π∗β̃), for any α̃, β̃ ∈ Γ(Ã∗). (36)

Proposition 4.4. Let (Π, π) : A→ Ã be an epimorphism of Lie algebroids.

If P is a Π-projectable Poisson structure on A, then P̃ is a Poisson structure
on Ã.
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Proof : Let α̃ ∈ Γ(Ã∗). Then, by using (9) and (11) one may prove that

1

2
iα̃[P̃ , P̃ ]Ã = −P̃ ♯(dÃα̃) + [P̃ ♯α̃, P̃ ]Ã (37)

where P̃ ♯(dÃα̃) is the section of the vector bundle ∧2Ã→ M̃ defined by

P̃ ♯(dÃα̃)(β̃1, β̃2) = dÃα̃(P̃ ♯β̃1, P̃
♯β̃2),

for any β̃1, β̃2 ∈ Γ(Ã∗).
From the equality (37) for the Poisson structure P and the 1-section Π∗α̃

of A, we deduce that

P ♯(dAΠ∗α̃) = [P ♯(Π∗α̃), P ]A. (38)

On the other hand, from (20) and (35) we deduce that

∧2 Π ◦P ♯dAΠ∗α̃ = P̃ ♯dÃα̃ ◦π. (39)

Projecting by Π, the equation (38) and using (39) we get

P̃ ♯dÃα̃ ◦π = ∧2Π ◦ [P ♯Π∗α̃, P ]A. (40)

Since (Π, π) is an epimorphism of Lie algebroids, from (22) and (35) we also
obtain

LAP ♯(Π∗α̃)(Π
∗β̃) = Π∗(LÃ

P̃ ♯α̃
β̃) for any β̃ ∈ Γ(Ã∗). (41)

ρA(P
♯(Π∗α̃))(f̃ ◦π) = LAP ♯(Π∗α̃)(f̃ ◦π) = (LÃ

P̃ ♯α̃
f̃) ◦π

= ρÃ(P̃
♯α̃)(f̃) ◦π, with f̃ ∈ C∞(M̃).

(42)

This fact allows us to prove that

∧2 Π ◦ [P ♯(Π∗α̃), P ]A = [P̃ ♯α̃, P̃ ]Ã ◦π, (43)

by using (10).
From (37), (40) and (43) we deduce that

iα̃[P̃ , P̃ ]Ã = 0,

for any α̃ ∈ Γ(Ã∗). In conclusion P̃ is a Poisson structure.

Assume that N : A → A is a Nijenhuis operator on A. N is said to be
Π-projectable if

N(Γp(A)) ⊆ Γp(A) and N(Γ(KerΠ)) ⊆ Γ(KerΠ).
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Proposition 4.5. Let (Π, π) : A→ Ã be an epimorphism of Lie algebroids.
If N is a Π-projectable Nijenhuis operator on A, then

LAξ N(Γp(A)) ⊆ Γ(KerΠ) and N(Γ(KerΠ)) ⊆ Γ(KerΠ), (44)

for any ξ ∈ Γ(KerΠ). Moreover, if ρA(KerΠ) = V π, then N is Π-projectable
if and only if (44) holds.

Proof : Assume that N is Π-projectable. For any X ∈ Γp(A)

(LAξ N)(X) = [ξ, NX]A −N([ξ,X]A).

SinceNX ∈ Γp(A), [ξ, NX]A ∈ Γ(KerΠ) and [ξ,X]A ∈ Γ(KerΠ) (see Propo-
sition 4.1), then

LAξ N(X) ∈ Γ(KerΠ).

Now we suppose that ρA(KerΠ) = V π and that (44) holds. Consider a
local basis of sections {ξi, Xa} of A such that ξi ∈ Γ(KerΠ) and Xa ∈ Γp(A).
Then, X ∈ Γp(A), implies that N(X) ∈ Γp(A). Indeed,

N(X) = f iξi + F aXa with f i, F a local real C∞-functions on M .

Hence, keeping in account that N [ξ,X]A ∈ Γ(KerΠ), we have

0 = Π ◦(LAξ N(X)) = Π ◦([ξ, NX]A −N([ξ,X]A))
= Π ◦([ξ, NX]A) = Π ◦(ρA(ξ)(F

a)Xa).

Therefore, ρA(ξ)(F
a) = 0 for any ξ ∈ Γ(KerΠ).

Let Z ∈ Vxπ, with x ∈M. Hence, there exists ξ ∈ Γ(KerΠ) such that

Z = ρA(ξ)(x).

Thus, we can conclude that Z(F a) = 0, i.e. there exists a local C∞−function

F̃a on M̃ such that
Fa = F̃a ◦π.

If N is a Π-projectable Nijenhuis operator on A, then we can construct a
new operator Ñ : Ã→ Ã as follows.

(ÑX̃) ◦π = Π ◦(NX) for any X̃ ∈ Γ(Ã), (45)

where X ∈ Γp(A) is a projectable section such that Π ◦X = X̃ ◦π. Note that

Ñ is well defined since X ∈ Γp(A) and therefore NX ∈ Γp(A). Moreover, if
X ′ is another section of A such that Π ◦X ′ = Π ◦X then X ′−X ∈ Γ(KerΠ)
and NX = NX ′.
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From previous results, we give conditions for obtaining a Poisson-Nijenhuis
structure on the Lie algebroid image of a Lie algebroid epimorphism.

Theorem 4.6. Let (Π, π) : A→ Ã be a Lie algebroid epimorphism. Assume
that (P,N) is a Poisson-Nijenhuis structure on A such that P and N are

Π-projectable. Then, (P̃ , Ñ) is a Poisson-Nijenhuis structure on Ã.

Proof : We will show that Ñ is compatible with the Poisson structure P̃ .
Indeed, firstly we show that

Ñ ◦ P̃ ♯ = P̃ ♯
◦Ñ∗. (46)

From (35) and (45) it follows that for any α̃ ∈ Γ(Ã∗)

Ñ(P̃ ♯α̃) ◦π = Π ◦N(P ♯Π∗α̃) = Π ◦P ♯N∗(Π∗α̃) = Π ◦P ♯(Π∗Ñ∗α̃) = P̃ ♯(Ñ∗α̃) ◦π.

On the other hand, using (15), (16) and the fact that (Π, π) is a Lie algebroid
morphism, we get

TÑ(X̃, Ỹ ) ◦π = Π ◦TN(X, Y ) for any X̃, Ỹ ∈ Γ(Ã), (47)

where X, Y ∈ Γ(A) are such that X̃ ◦π = Π ◦X, Ỹ ◦π = Π ◦Y .
Finally, by using (23), (22), (35) and (45), we can prove that

Π∗[α̃, β̃]P̃ = [Π∗α̃,Π∗β̃]P , Π∗[α̃, β̃]ÑP̃ = [Π∗α̃,Π∗β̃]NP

and
Π∗[α̃, β̃]Ñ

∗

P̃
= [Π∗α̃,Π∗β̃]N

∗

P .

As a consequence,

Π∗(C(P̃ , Ñ)(α̃, β̃)) = C(P,N)(Π∗α̃,Π∗β̃), (48)

for any α̃, β̃ ∈ Γ(Ã∗).

From (46), (47) and (48) we obtain that (P̃ , Ñ) is a Poisson-Nijenhuis

structure on Ã.

The above result suggests us to introduce the following definition.

Definition 4.7. Let (Π, π) : A → Ã be a Lie algebroid morphism. We
say that (Π, π) is a Poisson-Nijenhuis Lie algebroid morphism if we have

Poisson-Nijenhuis structures (P,N), (P̃ , Ñ) on A and Ã, respectively, such
that

(P̃ ♯α̃) ◦π = Π ◦(P ♯(Π∗α̃)),

(ÑX̃) ◦π = Π ◦(NX),
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for all α̃ ∈ Γ(Ã∗), X ∈ Γ(A) and X̃ ∈ Γ(Ã) such that X̃ ◦π = Π ◦X.

The following result follows easily from Proposition 4.1 and Theorem 4.6.

Theorem 4.8. Let (Π, π) : A→ Ã be a vector bundle epimorphism. Suppose
that ([·, ·]A , ρA, P, N) is a Poisson-Nijenhuis Lie algebroid structure over A.

Then, there exists a unique Poisson-Nijenhuis Lie algebroid structure on Ã
such that (Π, π) is a Poisson-Nijenhuis Lie algebroid epimorphism if and only
if the following conditions hold:

i) The space Γp(A) of the Π-projectable sections of A is a Lie subalgebra
of (Γ(A), [·, ·]A);

ii) Γ(kerΠ) is an ideal of Γp(A) and
iii) P and N are Π-projectable.

5. Reduction of a Lie algebroid induced by a Lie subal-
gebroid
In this section we will describe, using the above results about reduction by

epimorphisms of Lie algebroids, the reduction of a Lie algebroid by a certain
foliation associated with a given Lie subalgebroid. In the next section, we
will use this construction for obtaining, under suitable regularity conditions,
a reduced nondegenerate Poisson-Nijenhuis Lie algebroid from an arbitrary
Poisson-Nijenhuis Lie algebroid through a suitable choice of the Lie subalge-
broid.
In this reduction procedure of a Lie algebroid, fundamental tools are the

complete and vertical lifts of sections associated with a Lie algebroid. Firstly,
we recall these notions and some properties about them.

5.1. Complete and vertical lifts in a Lie algebroid. Let (A, [·, ·]A , ρA)
be a Lie algebroid over a manifold M and τA : A→M be the corresponding
vector bundle projection.
Given f ∈ C∞(M), we will denote by f c and f v the complete and vertical

lift to A of f . Here f c and f v are the real functions on A defined by

f c(a) = ρA(a)(f), f v(a) = f(τA(a)), (49)

for all a ∈ A.
Now, let X be a section of A. Then, we can consider the vertical lift of X

to A as the vector field Xv on A given by

Xv(a) = X(τA(a))
v
a, for a ∈ A,
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where v
a : AτA(a) → Ta(AτA(a)) is the canonical isomorphism between the

vector spaces AτA(a) and Ta(AτA(a)).
On the other hand, there exists a unique vector field Xc on A, the complete

lift of X to A, characterized by the two following conditions:

(i) Xc is τ -projectable on ρA(X) and

(ii) Xc(α̂) = L̂AXα,

for all α ∈ Γ(A∗) (see [4]). Here, if β ∈ Γ(A∗) then β̂ is the linear function
on A defined by

β̂(a) = β(τA(a))(a), for all a ∈ A.

Complete and vertical lifts may be extended to associate to any section
Q : M → ∧qA of the bundle ∧qA→M a pair of q-multivectors Qc, Qv : A→
∧q(TA) on A. These extensions are uniquely determined by the following
equalities (see [4]):

(Q ∧R)c = Qc ∧ Rv +Qv ∧Rc, (50)

and

(Q ∧R)v = Qv ∧ Rv, (51)

which are satisfied by any pair of sections Q :M → ∧qA, R :M → ∧rA.
A direct computation proves that (see [4])

[Qc, Rc] = [Q,R]cA, [Qc, Rv] = [Q,R]vA, [Qv, Rv] = 0. (52)

Given X ∈ Γ(A), we can also define the complete lift of X to A∗ as the
vector field X∗c over A∗ such that it is τA∗-projectable on ρA(X) and

X∗c(Ŷ ) = ̂[X, Y ]A, (53)

for all Y ∈ Γ(A) (see [5]). Here Ẑ, with Z ∈ Γ(A), is the linear map over A∗

induced by Z. In fact, the complete lifts of a section X ∈ Γ(A) to A and A∗

are related by the following formula

X∗c(Ŷ ) =
d

dt |t=0
(Ŷ ◦ϕ∗t ), for any Y ∈ Γ(A) (54)

where ϕt : A→ A is the flow of Xc ∈ X(A) (see [15, 18]).
Suppose that (xi) are coordinates on an open subset U of M , {eα} is a

basis of sections of τ−1A (U) → U and {eα} is the dual basis of sections of
τ−1A∗ (U) → U . Denote by (xi, yα) the corresponding local coordinates on
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τ−1A (U) and by (xi, yα) the local coordinates on τ−1A∗ (U). Finally, let ρiα and
Cγ
αβ be the corresponding local structure functions of A, defined by

ρA(eα) = ρiα
∂

∂xi
and [eα, eβ]A = Cγ

αβeγ.

If X is a section of A and on U we have

X = Xαeα,

then the coordinate expressions of the lifts are given by

Xv = Xα ∂

∂yα
,

Xc = Xαρiα
∂

∂xi
+

(
ρiβ
∂Xα

∂xi
−XγCα

γβ

)
yβ

∂

∂yα
,

X∗c = Xαρiα
∂

∂xi
−

(
ρiα
∂Xβ

∂xi
yβ + Cγ

αβyγX
β

)
∂

∂yα
.

(55)

In particular,

evα =
∂

∂yα
, ecα = ρiα

∂

∂xi
− Cγ

αβy
β ∂

∂yγ
, e∗cα = ρiα

∂

∂xi
+ Cγ

αβyγ
∂

∂yβ
. (56)

5.2. Reduction procedure of a Lie algebroid induced by a Lie sub-
algebroid. Before describing this procedure, we prove the following general
lemma on vector bundles which will be useful in the sequel.

Lemma 5.1. Let πA : A→M a vector bundle of rank k and πB : B →M ′ be
a surjective submersion. Assume that there exist two smooth maps Φ: A→ B
and φ : M →M ′ in such a way that the following diagram

A
πA //

Φ

��

M

φ

��

B
πB // M ′

is commutative and such that

1) φ is a submersion;
2) ∀x ∈M , Φx : π

−1
A (x)→ π−1B (φ(x)) is a diffeomorphism and
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3) ∀x, y ∈M such that φ(x) = φ(y),

Φ−1y ◦Φx : π
−1
A (x)→ π−1A (y)

is an isomorphism of vector spaces.
Then, πB : B → M ′ is a vector bundle of rank k and (Φ, φ) is a

vector bundle epimorphism.

Proof : Let x′ = φ(x) ∈ M ′. Then, there exists a unique structure of
vector space on the fiber π−1B (x′) in such a way that the diffeomorphism
Φx : π−1A (x) → π−1B (x′) is an isomorphism of vector spaces. Moreover, this
structure doesn’t depend on the chosen point x ∈ M. In fact, if y ∈ M and
φ(y) = φ(x) = x′ then, from (3), we deduce that the map Φ−1y ◦Φx : π

−1
A (x)→

π−1A (y) is an isomorphism of vector spaces.
On the other hand, using that φ is a submersion and the fact that πA :

A→M is a vector bundle, we have that there exists an open neighbourhood
U ⊂ M of x ∈ M , an open neighbourhood U ′ ⊆ M ′ of x′ ∈ M ′ and two
smooth maps s : U ′ → U and ψ : U × Rk → π−1A (U) such that

1) φ ◦s = 1U ′ and s(x′) = x.
2) ψ is a diffeomorphism, πA ◦ψ = pr1 and for each y ∈ U , ψy : Rk →
π−1A (y) is a vector space isomorphism.

Therefore we can construct a diffeomorphism

ψ : U ′ × Rk → π−1B (U ′)

as follows: ψ(y′, g) = (Φ ◦ψs(y′))(g) for (y
′, g) ∈ U ′ × Rk. Note that ψ

−1
(b) =(

πB(b), (ψ
−1
s(πB(b))

◦Φ−1s(πB(b)))(b)
)
. Moreover, if y′ ∈ U ′ it is easy to prove that

ψy′ : R
k → π−1B (y′) is an isomorphism of vector spaces.

Let τA : A → M be a vector bundle and ([·, ·]A , ρA) be a Lie algebroid
structure on A. Consider a Lie subalgebroid τB : B → M of A. Then, we
have the following result.

Proposition 5.2.

1) The generalized distribution ρA(B) on M defined by

ρA(B)x = ρA(Bx) ⊆ TxM, for every x ∈M,

is a generalized foliation. Moreover,

dim(ρA(B)x) ≤ rankB, for every x ∈M.
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2) The generalized distribution FB on A defined by

FB
a = {Xc(a) + Y v(a) | X, Y ∈ Γ(B)} ⊆ TaA, for a ∈ A

is a generalized foliation. Furthermore, dimFB
b = dim(ρA(B))τB(b) +

rankB, for b ∈ B. Thus, if FB has constant rank then ρA(B) also has
constant rank.

Proof :

1) It is clear that ρA(B) is a finitely generated distribution. Moreover, if
X, Y ∈ Γ(B) then, using that [X, Y ]B = [X, Y ]A, we deduce that

[ρA(X), ρB(Y )] = ρA[X, Y ]B

which implies that ρA(B) is an involutive distribution. Thus, ρA(B)
is a generalized foliation.
On the other hand, if x ∈M, we have that

dim(ρA(B)x) ≤ dimBx = rankB.

2) FB is a finitely generated distribution. In fact, let U be an open
subset of M and {Xi} be a basis of Γ(τ−1B (U)). Then, {Xc

i (a), X
v
i (a)}

is a generator system of FB
a , for all a ∈ τ

−1
A (U).

Moreover, since B is a Lie subalgebroid of A, we deduce that FB is
an involutive distribution (see (52))).
Now, let b be a point of Bx, with x ∈M , and suppose that {va, vβ}

is a basis of Bx, such that {ρA(va)} (respectively, {vβ}) is a basis of
ρA(Bx) (respectively,Ker(ρA|Bx

)). Then, we can choose an open subset

U of M , with x ∈ U, and a basis {Xa, Xβ} of Γ(τ
−1
B (U)) satisfying

Xa(x) = va, Xβ(x) = vβ.

We complete the basis {Xa, Xβ} to a basis of Γ(τ−1A (U))

{Xa, Xβ, Xā}

Next, we will assume, without the loss of generality, that on U we
have a system of local coordinates (xi). Thus, we can consider the
corresponding local coordinates (xi, ya, yβ, yā) on τ−1A (U).
Using (55), we deduce that

Xv
a(b) =

∂

∂ya |b
, Xv

β(b) =
∂

∂yβ |b



30 A. DE NICOLA, J. C. MARRERO AND E. PADRÓN

(TτB)(X
c
a(b)) = ρA(va), Xc

β(b) ∈ VbτB =<
∂

∂ya |b
,
∂

∂yβ |b
>

for all a and β.
Therefore,

dimFB
b = dim(ρA(B)τB(b)) + rankB

Remark 5.3. Note that if a ∈ Ax then (TaτA)(F
B
a ) = ρA(Bx).

Assume that ρA(B) and FB are regular foliations, i.e., they have finite
constant rank, M/ρA(B) and A/FB are differentiable manifolds, and

π : M →M/ρA(B) = M̃ and Π: A→ A/FB = Ã

are submersions.
We define τÃ : Ã = A/FB → M̃ = M/ρA(B) such that the following

diagram is commutative

A
Π //

τA

��

Ã = A/FB

τ
Ã

��

M
π // M̃ =M/ρA(B)

The map τÃ is well defined. Indeed, if Π(ax) = Π(ax′) ∈ A/F
B, with ax ∈ Ax,

ax′ ∈ Ax′, x, x
′ ∈ M , then there exists a curve σA : [0, 1] → A continuous,

piecewise differentiable, tangent to FB, such that σA(0) = ax and σA(1) =
ax′. Consider now the curve σM = τA ◦σA : [0, 1] → M which results to be
continuous, piecewise differentiable, tangent to ρA(B) (see Remark 5.3), such
that

σM(0) = x and σM(1) = x′.

Hence, π(x) = π(x′).
Note that τÃ is a submersion since τA,Π and π are submersions. On the

other hand, we have a vector bundle τA : A = A/B → M such that the
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following diagram is commutative

A
Π //

τA

%%JJJJJJJJJJJJJJJJJ A/B = A

τA

��

M

In fact, Π is a vector bundle epimorphism. Therefore, we can induce a

smooth map Π̃ : A/B → A/FB making commutative the following diagram

A = A/B
Π̃ //

τA

��

Ã = A/FB

τ
Ã

��

M
π // M̃ =M/ρA(B)

Indeed, if a′x−ax ∈ Bx, then we can consider the curve σ : [0, 1]→ Ax defined
by

σ(t) = ax + t(a′x − ax).

Note that σ(0) = ax and σ(1) = ax′. Moreover, σ̇(t0) = (a′x−ax)
v
σ(t0)
∈ FB

σ(t0)
.

Hence, Π(ax) = Π(a′x). Π̃ is a smooth map since Π : A → Ā = A/B is a
submersion.
In order to guarantee that τÃ is a vector bundle, we suppose that B satisfies

the condition FB , i.e.

ax, a
′
x ∈ Ax are in the same leaf of FB ⇐⇒ a′x − ax ∈ Bx.

for any x ∈M.

Proposition 5.4. Assume that ρA(B) and FB are regular foliations and that

B satisfies the condition FB. Then, τÃ : Ã = A/FB → M̃ = M/ρA(B) is a

vector bundle, the fiber of Ã over the point π(x) ∈ M̃ is isomorphic to the
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quotient vector space Ax/Bx and the diagram

A = A/B
Π̃ //

τA

��

Ã = A/FB

τ
Ã

��

M
π // M̃ = M/ρA(B)

is a vector bundle epimorphism. In fact, the restriction of Π̃ to the fiber

Āx = Ax/Bx is a linear isomorphism on Ãπ(x).

Proof : We apply Lemma 5.1 to the following diagram

A = A/B

Π̃

��

τA // M

π

��

Ã = A/FB
τ
Ã // M̃ = M/ρA(B)

Note that π and τÃ are submersions. Then, for all x ∈ M , τ−1
Ã

(π(x)) is a

regular submanifold of Ã and TΠ(ax)τ
−1

Ã
(π(x)) = kerTΠ(ax)τÃ for all ax ∈ Ax.

We will see that

Π̃x : Ax/Bx → τ−1
Ã

(π(x))

is a surjective submersion.
Indeed, let Π(ax′) ∈ τ

−1

Ã
(π(x)). Then, τÃ(Π(ax′)) = π(x). Hence, π(x) =

π(x′). Therefore, there exists a continuous, piecewise differentiable path
σ : [0, 1] → M tangent to ρA(B) such that σ(0) = x and σ(1) = x′. In each
differentiable piece we can find X ∈ Γ(B) such that σ is an integral curve of
ρA(X). Assume, without the loss of generality, that the curve σ is smooth
and let ψ : R×M →M be the flow of ρA(X). Then, ψx(0) = x,

dψx
dt

= ρA(X)(ψx(t))

and there exists t0 ∈ R such that ψt0(x) = x′. Let ϕ : R × A → A be the
flow of Xc ∈ X(A). Since Xc projects on ρA(X) we have that the following
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diagram is commutative for any t

A

τA

��

ϕt // A

τA

��

M
ψt // M

Hence ϕ−t0(ax′) ∈ Ax and hence we have a curve ϕax′ on A such that

dϕax′
dt

(t) = Xc(ϕax′(t)) ∈ F
B
ϕa

x′
(t),

ϕax′(0) = ax′ and ϕax′(−t0) = ϕ−t0(ax′). Thus,

Π̃xΠx(ϕ−t0(ax′)) = Πx′(ϕ−t0(ax′)) = Πx′(ax′),

where Πx and Πx′ (respectively, Πx) are the restrictions of Π (respectively,

Π) to the fiber over x and x′. So, Π̃x is surjective. Moreover, using that the
following diagram

Ax/Bx
Π̃x // τ−1

Ã
(π(x))

Ax

Πx

OO

Πx

88qqqqqqqqqqqqqqqq

is commutative, we deduce that Π̃x : Ax/Bx → τ−1
Ã

(π(x)) is smooth.

As a matter of fact Π̃x is a submersion, i.e.,

TΠ(ax)Π̃x : TΠ(ax)(Ax/Bx)→ TΠ(ax)(τ
−1

Ã
(π(x)))

is surjective. Indeed, let X̃ ∈ TΠ(ax)(τ
−1

Ã
(π(x))) = kerTΠ(ax)τÃ. Then, since

Π: A→ Ã = A/FB is a submersion, there exists X ∈ TaxA such that

X̃ = TaxΠ(X). (57)

Hence,

0 = TΠ(ax)τÃ(X̃) = TΠ(ax)(τÃ ◦Π)(X) = Tax(π ◦τA)(X),

i.e. TaxτA(X) ∈ kerTxπ = Vxπ = ρA(Bx).
From Remark 5.3, we deduce that there exists Y ∈ FB

ax such that

TaxτA(Y ) = TaxτA(X),
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or equivalently X − Y ∈ kerTaxτA = Vax(τA) = TaxAx.
Consider now Πx : Ax → Ax/Bx. Then,

Wx = TaxΠx(X − Y ) ∈ TΠ(ax)(Ax/Bx).

We will see now that TΠ(ax)Π̃x(Wx) = X̃ . In fact,

TΠ(ax)Π̃x(Wx) = Tax(Π̃x ◦Πx)(X − Y ) = TaxΠx(X − Y ).

On the other hand, from (57) and since Y ∈ FB
ax
,

X̃ = TaxΠ(X) = TaxΠ(X − Y ).

Therefore, TΠ̄(ax)Π̃x is surjective. Indeed, TΠ̄(ax)Π̃x is a linear isomorphism
since

dimTΠ(ax)(Ax/Bx) = dimAx − dimBx

and by using Proposition 5.2

dimTΠ̃(ax)τ
−1

Ã
(π(x)) = dim Ã− dim M̃

= dimA− rankFB − dim M̃

= dimAx − dimBx.

Thus,

Π̃x : Ax/Bx → τ−1
Ã

(π(x))

is a local diffeomorphism. Therefore (using that Π̃x is bijective), Π̃x is a
global diffeomorphism.
Finally, if π(x) = π(x′), it is clear that

Π̃−1x′ ◦Π̃x : Ax/Bx → Ax′/Bx′

is a linear isomorphism.

Proposition 5.5. Under the same conditions as in Proposition 5.4, we can
define a Lie algebroid structure on the vector bundle

τÃ : Ã = A/FB → M̃ =M/ρA(B)
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such that the diagram

A
Π //

τA

��

Ã = A/FB

τ
Ã

��

M
π // M̃ = M/ρA(B)

is an epimorphism of Lie algebroids.

Proof : Due to Proposition 4.1, it is enough to prove the following facts

i) If X, Y ∈ ΓΠ
p (A) then [X, Y ]A ∈ ΓΠ

p (A) and

ii) If X ∈ ΓΠ
p (A) and Y ∈ Γ(kerΠ) then [X, Y ]A ∈ Γ(kerΠ).

Here ΓΠ
p (A) is the space of Π-projectable sections.

Note firstly that kerΠ = B (see Proposition 5.4 ). Then, we will prove
that

ΓΠ
p (A) = {X ∈ Γ(A) | [X, Y ] ∈ Γ(B), ∀Y ∈ Γ(B)}.

Once we prove that, condition i) above follows by the Jacobi identity and ii)
is a direct consequence.
Let X ∈ ΓΠ

p (A) and Y ∈ Γ(B). We denote by ψ : R ×M → M the flow
of ρA(Y ) and by ϕ : R × A → A the flow of Y c ∈ X(A). Using that Y c is
τA-projectable over ρA(Y ), we deduce that the following diagram

A
ϕt //

τA

��

A

τA

��

M
ψt // M

is commutative and that the couple (ϕt, ψt) is a Lie algebroid morphism (see

[15]). Note that

Π ◦ϕt(ax) = Π ◦ϕax(t) = Π(ax) and π ◦ψt(x) = π ◦ψx(t) = π(x). (58)

On the other hand, X is Π-projectable, thus there exists X̃ ∈ Γ(Ã) such that

X̃ ◦π = Π ◦X.

Therefore, by using (58)

Π(X(ψt(x))− ϕt(X(x))) = X̃(π(ψt(x)))−Π(X(x)) = 0.
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In consequence, there exists Zt ∈ Γ(B) such that

X(ψt(x))− ϕt(X(x)) = Zt(ψt(x)),

i.e.,

(X − Zt)(ψt(x)) = ϕt(X(x)).

Thus, if ϕ∗t : A
∗ → A∗ is the dual map of ϕt : A→ A, it follows that

X̂ − Ẑt = X̂ ◦ϕ∗t

By derivation and using (54) we obtain that

Y ∗c(X̂) =
d

dt |t=0
(X̂ ◦ϕ∗t ) = −

d

dt |t=0
Ẑt.

We denote by Z the section of B characterized by Ẑ = d
dt |t=0

Ẑt. By using

(53) we deduce

[̂X, Y ] = Ẑ

so that [X, Y ] ∈ Γ(B).
Conversely, let X ∈ Γ(A) such that for all Y ∈ Γ(B),

[X, Y ] ∈ Γ(B).

We will see that X ∈ ΓΠ
p (A). In order to prove it, we introduce the map

X̃ : M̃ =M/ρA(B)→ Ã = A/FB

given by X̃(π(x)) = Π(X(x)), which is well defined.
In fact, suppose that x, x′ ∈ M with π(x) = π(x′). Then there exists a

map σ : [0, 1] → M continuous, piecewise differentiable, tangent to ρA(B)
such that σ(0) = x and σ(1) = x′. So, in each piece there exists Y ∈ Γ(B)
such that σ is the integral curve of ρA(Y ). Assume, without the loss of
generality, that σ is smooth and denote by ψt : R×M →M the flow of the
vector field ρA(Y ). We have that there exists t0 ∈ R such that

ψt0(x) = x′.
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Now, let ϕ : R × A → A be the flow of the vector field Y c. Then, for each
t ∈ R, the following diagram

A
ϕt //

τA

��

A

τA

��

M
ψt // M

is commutative.
On the other hand, using that Y ∈ Γ(B), we deduce that there exists

Z ∈ Γ(B) such that
[X, Y ] = Z.

This implies the corresponding relation between the linear maps

(Y ∗)c(X̂) = [̂Y,X] = −Ẑ

or equivalently
d

dt |t=0
(X̂ ◦ϕ∗t ) = −Ẑ.

So, for each t1
d

dt |t=t1
(X̂ ◦ϕ∗t ) = Ẑt1, (59)

where we have denoted by Zt1 the section of the vector bundle τB : B → M

which is characterized by Ẑt1 = −Ẑ ◦ϕ∗t1. Since X̂ ◦ϕ∗0 = X̂, by integrating
(59) we have

X̂ ◦ϕ∗t1 = X̂ + Ŵt1

for each t1 ∈ R with Wt1 ∈ Γ(B). Hence, we get the relation

ϕt ◦X −X ◦ψt =Wt ◦ψt

By applying Π, we get
Π ◦ϕt ◦X = Π ◦X ◦ψt

Now, since the vector field Y c on A is tangent to the foliation FB, it follows
that Π ◦ϕt = Π. Therefore,

Π ◦X = Π ◦X ◦ψt

which implies that

Π ◦X(x) = Π ◦X ◦ψt0(x) = Π ◦X(x′).

In conclusion, X̃ is well defined and X is Π-projectable.
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6. The Reduced nondegenerate symplectic-Nijenhuis Lie
algebroid
First of all, we will prove a result which will be useful in the sequel

Proposition 6.1. Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid. If l
is a positive integer then the couple (P,N l) is a Poisson-Nijenhuis structure
on the Lie algebroid A.

Proof : It is well-known that N l is a Nijenhuis operator (see, for instance,
note 5 in [9]).
On the other hand, it is clear that

P ♯
◦N∗l = N l

◦P ♯. (60)

In addition, a long straightforward computation, using (60), proves that

C(P,N l)(β, β ′) = 0, for β, β ′ ∈ Γ(A∗)

if and only if

(LAP ♯(β)N
l)(X) = P ♯(LAXN

∗lβ − LAN lXβ), for β ∈ Γ(A∗) and X ∈ Γ(A).

(61)
Thus, we must prove (61).
We will proceed by induction on l. Note that

(LAP ♯(β)N
l)(X) = (LAP ♯(β)N

l−1)(NX) +N l−1[P ♯(β), NX]A −N
l[P ♯(β), X]A

Therefore,

(LAP ♯(β)N
l)(X) = P ♯(LANXN

∗l−1β)− P ♯(LAN lXβ) +N l−1[P ♯(β), NX]A
−N l[P ♯β,X]A

Now, since

P ♯(LANXγ) = P ♯(LAXN
∗γ)− (LAP ♯γN)(X), for γ ∈ Γ(A∗),

we deduce that

(LAP ♯(β)N
l)(X) = P ♯(LAXN

∗lβ −LAN lXβ)− (LAP ♯(N∗l−1β), N)(X)

+N l−1[P ♯β,NX]A −N
l[P ♯β,X]A



REDUCTION OF POISSON-NIJENHUIS LIE ALGEBROIDS 39

which implies that

(LAP ♯(β)N
l)(X) = P ♯(LAXN

∗lβ − LAN lXβ)− [P ♯(N∗l−1β), NX]A

+N [P ♯(N∗l−1β), X]A +N l−1[P ♯(β), NX]A

−N l[P ♯β,X]A

= P ♯(LAXN
∗lβ − LAN lXβ)− [N l−1(P ♯β), NX]A

+N [N l−1(P ♯β), X]A +N l−1[P ♯β,NX]A −N
l[P ♯β,X]A

On the other hand, using that 0 = TN(N
l−r(P ♯β), X) for 2 ≤ r ≤ l, it

follows that

−[N l−1(P ♯β), NX]A+N [N l−1(P ♯β), X]A+N
l−1[P ♯β,NX]A−N

l[P ♯β,X]A = 0.

This ends the proof of the result.

Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid. Consider now for any
fixed x ∈M the endomorphism Nx : Ax → Ax. Recall [6, 9] that there exists
a smallest positive integer k such that the sequences of nested subspaces

ImNx ⊇ ImN2
x ⊇ . . .

and
kerNx ⊆ kerN2

x ⊆ . . .

both stabilize at rank k. That is,

ImNk
x = ImNk+1

x = . . . ,

and
kerNk

x = kerNk+1
x = . . . .

The integer k is called the Riesz index of N at x.

Lemma 6.2. If the Riesz index of N at x is k then

Ax = ImNk
x ⊕KerN

k
x

Proof : It is clear that

dim(ImNk
x ) + dim(kerNk

x ) = dimAx

Next, we will prove the following result

Proposition 6.3. Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid with
constant Riesz index k and such that the dimension of the subspace kerNk

x

(respectively, ImNk
x ) is constant, for all x ∈M . Then:
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i) The dimension of the subspace ImNk
x (respectively, kerNk

x ) is con-
stant, for all x ∈M.

ii) The vector subbundles kerNk and ImNk are Lie subalgebroids of A.

Proof : i) it follows from Lemma 6.2.

Since Nk is a Nijenhuis operator, we have that

[NkX,NkY ]A = Nk[X, Y ]Nk , for any X, Y ∈ Γ(A), (62)

where [·, ·]Nk is the bracket defined as in (16). Thus, ImNk is a Lie subalge-
broid of A.
Now, suppose thatX, Y ∈ Γ(A) are sections of A satisfyingNkX = NkY =

0. Then, using (16) and (62), we deduce that

0 = [NkX,NkY ]A = Nk[X, Y ]Nk = −Nk+1[X, Y ]A.

Hence, [X, Y ]A ∈ Γ(kerNk+1) = Γ(kerNk). This implies that kerNk is a Lie
subalgebroid of A.

Let (A, P,N) be a Poisson-Nijenhuis Lie algebroid with constant Riesz
index k. Suppose that the dimension of the subspace kerNk

x is constant, for
all x ∈M. Then, we may consider the Lie subalgebroid kerNk of A and the
corresponding generalized foliations ρA(kerN

k) on M and FkerNk

on A.
As in Section 5, we will assume that these foliations are regular and that

the condition FkerNk

holds, that is, if ax, a
′
x ∈ Ax we have that

a′x−ax ∈ kerNk
x ⇔ a′x and ax belong to the same leaf of the foliation FkerNk

.

Under these conditions, the space Ã = A/FkerNk

of the leaves of the folia-

tion FkerNk

is a Lie algebroid over the quotient manifold M̃ =M/ρA(kerN
k)

and the canonical projections Π : A → Ã = A/FkerNk

and π : M → M̃ =
M/ρA(kerN

k) define a Lie algebroid epimorphism

A
Π //

τA

��

Ã = A/FkerNk

τ
Ã

��

M
π // M̃ =M/ρA(kerN

k)
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Note that kerΠ = kerNk and thus,

V π = ρA(kerN
k) = ρA(kerΠ).

Next, we will prove that P and N are Π-projectable. Indeed, we have that

N(Γ(kerNk)) ⊆ Γ(kerNk).

Moreover, if ξ ∈ Γ(kerNk) one may see that LAξ N(Γp(A)) ⊆ Γ(kerNk). In
order to prove this relation, we recall that

Γp(A) = {X ∈ Γ(A) | [X, ξ]A ∈ Γ(kerNk) ∀ξ ∈ Γ(kerNk)}.

Now, if X ∈ Γp(A) and ξ ∈ Γ(kerNk), we get

Nk(LAξ N(X)) = Nk([ξ, NX]A −N [ξ,X]A) = Nk[ξ, NX]A.

By using the fact that N has zero torsion, it follows that

0 = Nk−1(TN(N
k−1ξ,X)) = −Nk[Nk−1ξ, NX]A (63)

Thus, from (63), we deduce that

0 = Nk(TN(N
k−2ξ,X)) = −Nk+1[Nk−2ξ, NX]A

and, since kerNk+1 = kerNk, we obtain that

Nk[Nk−2ξ, NX]A = 0

Proceeding in a similar way, we may prove that

Nk[Nk−3ξ, NX]A = Nk[Nk−4ξ, NX] = · · · = Nk[ξ, NX] = 0.

Therefore, LAξ N(X) ∈ Γ(kerNk) and N is Π-projectable (see Proposition
4.5).
To see that P is Π-projectable, we have to prove that (see Proposition 4.3)

[ξ, P ]♯A(Γp(A
∗)) ⊆ Γ(kerNk) ∀ξ ∈ Γ(kerNk). (64)

From Proposition 4.2,

Γp(A
∗) = {α ∈ Γ(A∗) | LAξ α = 0, α(ξ) = 0, ∀ξ ∈ Γ(kerNk)}.

If α ∈ Γp(A
∗) then

Nk(([ξ, P ]A)
♯(α)) = Nk(iα[ξ, P ]A) = Nk([ξ, iαP ]A − iLAξ αP )

= Nk[ξ, P ♯α]A = −[P ♯α,Nkξ]A + (LAP ♯αN
k)(ξ) = (LAP ♯αN

k)(ξ).

Hence, using Proposition 6.1, we deduce that

Nk([ξ, P ]♯A(α)) = P ♯(LAξ N
∗kα).
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On the other hand, since α ∈ Γp(A
∗), we get

LAξ (N
∗kα)(X) = ρA(ξ)(α(N

kX))− α(Nk[ξ,X]A)

= LAξ α(N
kX) + α([ξ, NkX]A −N

k[ξ,X]A)

= α([ξ, NkX]A −N
k[ξ,X]A).

Moreover, since the torsion of Nk is zero, we have that

0 = TNk(ξ,X) = −Nk[ξ, NkX]A +N2k[ξ,X]A,

that is,

[ξ, NkX]A −N
k[ξ,X]A ∈ Γ(kerNk).

This implies that

α([ξ, NkX]A −N
k[ξ,X]A) = 0

Hence,

Nk([ξ, P ]♯A(α)) = P ♯(LAξ N
∗kα) = 0

and (64) holds.
Therefore, using Theorem 4.6, we have the following result.

Theorem 6.4. Let (A, [·, ·]A , ρA, P, N) be a Poisson-Nijenhuis Lie algebroid
such that

i) N has constant Riesz index k;
ii) The dimension of the subspace kerNk

x is constant, for all x ∈M (thus,
B = kerNk is a vector subbundle of A) and

iii) ρA(B) and FB are regular foliations and the condition FB is satisfied
for B = kerNk.

Then, we may induce a Poisson-Nijenhuis Lie algebroid structure
([·, ·]Ã , ρÃ, P̃ , Ñ) on Ã = A/FB such that Π : A→ Ã = A/FB is a Poisson-

Nijenhuis Lie algebroid epimorphism over π :M → M̃ =M/ρA(B).

In the particular case of symplectic-Nijenhuis Lie algebroids, we may prove
the following result

Theorem 6.5. Let (A, [·, ·]A , ρA,Ω, N) be a symplectic-Nijenhuis Lie alge-
broid on the manifold M such that

i) N has constant Riesz index k;
ii) The dimension of the subspace kerNk

x is constant, for all x ∈M (thus,
B = kerNk is a vector subbundle of A) and
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iii) ρA(B) and FB are regular foliations and the condition FB is satisfied
for B = kerNk.

Then, we may induce a symplectic-Nijenhuis Lie algebroid structure on Ã
with nondegenerate Nijenhuis tensor, such that the couple Π : A → Ã =
A/FB and π : M → M̃ = M/ρA(B) is a Poisson-Nijenhuis Lie algebroid
epimorphism.

Proof : Denote by (P̃ , Ñ) the Poisson-Nijenhuis structure which is defined in

the previous theorem. It remains to prove that P̃ and Ñ are nondegenerate.
Firstly, we show that Ñ is nondegenerate, i.e. that Ñπ(x) : τ

−1

Ã
(π(x)) →

τ−1
Ã

(π(x)) is an isomorphism, for all x ∈M . Consider the following diagram

Ax
Nx //

Πx

��

Πx

��

Ax

Πx

��

Πx

��

Ax/ kerN
k
x

Nx //

Π̃x

��

Ax/ kerN
k
x

Π̃x

��

τ−1
Ã

(π(x))
Ñπ(x)

// τ−1
Ã

(π(x))

where Πx and Π̃x are defined as in Section 5. Assume that Ñπ(x)(Πx(ax)) = 0.
Then,

Π̃xNx(Πx(ax)) = 0.

Since Π̃x : Ax/ kerN
k
x → τ−1

Ã
(π(x)) is an isomorphism, we deduce that

Nx(Πx(ax)) = 0

or, equivalently ΠxNx(ax) = 0, i.e.

ax ∈ kerNk+1
x = kerNk

x .

It follows that

Πx(ax) = Π̃xΠx(ax) = 0.

In consequence, Ñπ(x) is injective and thus, it is bijective.
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Now we show that P̃ is nondegenerate. Denote by P the Poisson bisection
associated with Ω. Let α̃π(x) ∈ Ã

∗
π(x) be such that

0 = P̃ ♯
π(x)(α̃π(x)) = ΠxP

♯
x(Π

∗
xα̃π(x)).

Using that Π̃x : Ax/ kerNx → τ−1
Ã

(π(x)) is an isomorphism, we deduce that

ΠxP
♯
x(Π

∗
xα̃π(x)) = 0,

i.e. P ♯
x(Π

∗
xα̃π(x)) ∈ kerNk

x . It follows that

0 = Nk
xP

♯
x(Π

∗
xα̃π(x)) = P ♯

xN
∗k
x (Π∗xα̃π(x)).

Since Px is nondegenerate,

N∗kx (Π∗xα̃π(x)) = 0.

Note that N∗kx (Π∗xα̃π(x)) = Ñ∗kπ(x)(α̃π(x)) and that Ñ is nondegenerate. Hence,

we deduce that α̃π(x) = 0.

Under the hypotheses of the previous theorem, we will denote by Ω̃ the

symplectic section defined by Ω̃♭ = −(P̃ ♯)−1.
We summarize the two steps of the reduction procedure given in Theorems

3.3 and 6.5 in the following theorem.

Theorem 6.6. Let (A, [·, ·]A , ρA, P, N) be a Poisson-Nijenhuis Lie algebroid
such that

i) The Poisson structure P has constant rank in the leaves of the foliation
D = ρA(P

♯(A∗)).

If L is a leaf of D, then, we have a symplectic-Nijenhuis Lie algebroid struc-
ture ([·, ·]AL

, ρAL
,ΩL, NL) on AL = P ♯(A∗)|L → L.

Assume, moreover, that

ii) The induced Nijenhuis tensor NL : AL → AL has constant Riesz index
k;

iii) The dimension of the subspace Bx = kerNk
x is constant, for all x ∈ L

(thus, B = kerNk
L is a vector subbundle of A);

iii) The foliations ρA(B) and FB are regular, where

(FB)a = {X
c(a) + Y v(a)/X, Y ∈ Γ(B)}, for a ∈ AL

iv) (condition FB) For all x ∈ L, ax−a
′
x ∈ Bx if ax and a′x belong to the

same leaf of the foliation FB.
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Then, we obtain a symplectic-Nijenhuis Lie algebroid structure

([·, ·]
ÃL
, ρ

ÃL
, Ω̃L, ÑL) on the vector bundle ÃL = AL/F

B → L̃ = L/ρAL
(B)

with ÑL nondegenerate.

7. An explicit example of reduction of a Poisson-Nijenhuis
Lie algebroid

7.1. A G-invariant Poisson-Nijenhuis structure on the cotangent
bundle of a semidirect product of Lie groups. Let H1 and H2 be two
Lie groups with Lie algebras h1 and h2, respectively. Assume that there is
an action φ : H1 × H2 → H2 of H1 on H2 by Lie group isomorphisms and
consider the semidirect product G = H1×φH2 whose operation is defined by

(h1, h2) · (h
′
1, h
′
2) = (h1 · h

′
1, h2 · φ(h1, h

′
2)).

Note that H2 is a normal subgroup of G. The Lie algebra associated to
G = H1 ×φ H2 is g = h1 ×Φ h2 with the bracket

[(ξ1, ξ2), (η1, η2)]g = ([ξ1, η1]h1,Φ(ξ1, η2)− Φ(η1, ξ2) + [ξ2, η2]h2) ,

for all ξ1, η1 ∈ h1, ξ2, η2 ∈ h2, where Φ = T(e1,e2)φ : h1 × h2 → h2 is the action
induced by φ : H1×H2 → H2. We remark that h1 is a Lie subalgebra and h2
is an ideal of g. Consider now M = T ∗G. It may be identified with G × g∗

as follows:

M = T ∗G −→ G× g∗, αg ∈ T
∗
gG 7−→ (g, T ∗e lg(αg)) ∈ G× g∗,

where lg : G → G denotes the left translation by g ∈ G. Under the identifi-
cation T ∗G ∼= G× g∗, the canonical symplectic structure of T ∗G

Ω: G× g∗ −→ (g× g∗)∗ × (g× g∗)∗

is defined by

Ω(g,µ) ((ξ, π), (ξ
′, π′)) = π′(ξ)− π(ξ′) + µ([ξ, ξ′]g),

for all ξ, ξ′ ∈ g, π, π′ ∈ g∗. Note that Ω is G-invariant.
We define now on T ∗G a singular Poisson structure compatible with Ω. Let

Pg : g = h1 ×Φ h2 −→ h1

be the canonical projection on the first factor. Then we have that h1 ×
P∗g(h

∗
1) →֒ g× g∗ is a symplectic subspace of T(e,µ)(G× g∗) ∼= g× g∗. Indeed,

let ξ ∈ h1, α ∈ h∗1 be such that

Ω(e,µ)

(
(ξ,P∗g(α)), (ξ

′,P∗g(β))
)
= P∗g(β)(ξ)−P

∗
g (α)(ξ

′) + µ([ξ, ξ′]g) = 0,
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for all ξ′ ∈ h1, β ∈ h∗1. Hence, we have

Ω(e,µ)

(
(ξ,P∗g(α)), (0,P

∗
g(β))

)
= β(ξ) = 0⇒ ξ = 0

and

Ω(e,µ)

(
(0,P∗g(α)), (ξ

′,P∗g(β))
)
= −α(ξ′) = 0⇒ α = 0.

We consider now the symplectic subbundle

FB
h1
: (g, µ) ∈ G× g∗ 7−→ (Telg)(h1)× P

∗
g(h
∗
1) = T(e,µ)(lg, id)(h1 × P

∗
g (h
∗
1))

⊂ T(g,µ)(G× g∗).

We show that it is integrable. A basis of sections of this subbundle is

{(
←−
ξ , Cα) | ξ ∈ h1, α ∈ P

∗(h∗1)},

where
←−
ξ is the left invariant vector field associated to ξ and Cα is the vector

field constant at α. The bracket of these basic elements is given by

[(
←−
ξ , Cα), (

←−
ξ ′, Cβ)] = ([

←−
ξ ,
←−
ξ ′], 0) = (

←−−−
[ξ, ξ′]g, 0).

Since FB
h1

is symplectic, we have the decomposition

T (T ∗G) ∼= T (G× g∗) = FB
h1
⊕ (FB

h1
)⊥,

where (FB
h1
)⊥ is the orthogonal to FB

h1
with respect to the symplectic form Ω.

Now, we define a Poisson bracket {·, ·}h1 in T ∗G as follows. For f, g ∈
C∞(T ∗G),

{f, g}h1 = Ω(P(HΩ
f ),P(H

Ω
g )) = P(H

Ω
g (f)) = {f, g}Ω −Q(H

Ω
g )(f),

where P : T (T ∗G) → FB
h1

and Q : T (T ∗G) → (FB
h1
)⊥ are the symplectic pro-

jectors and {·, ·}Ω is the Poisson bracket on T ∗G associated with the canonical
symplectic structure of T ∗G. Here HΩ

s denotes the hamiltonian vector field
of s ∈ C∞(T ∗G) with respect to the canonical symplectic structure of T ∗G.
The symplectic foliation of {·, ·}h1 is F

B
h1

since

H
{·,·}h1
g = P(HΩ

g ),

where H
{·,·}h1
g is the hamiltonian vector field of g with respect to the Poisson

bracket {·, ·}h1.
Keep into account that if θ ∈ T ∗G and Lθ is the leaf of F

B
h1
passing through

θ, then we have

H
ι∗θΩ
f ◦ ιθ

= P(HΩ
f )|Lθ

,
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where ιθ : Lθ →֒ T ∗G is the canonical inclusion. Note that

(ι(P(HΩ
f )|Lθ

)ι∗θΩ)(PX) = Ω|Lθ
(HΩ

f |Lθ
,PX) = d(f ◦ ιθ)(PX).

Thus,

{f ◦ ιθ, g ◦ ιθ}ι∗θΩ = ({f, g}h1)|Lθ
for all f, g ∈ C∞(T ∗G).

Therefore Lθ is the leaf of the symplectic foliation of {·, ·}h1 through the point
θ.
It is clear that the Poisson bracket {·, ·}h1 is G-invariant.
We now study the compatibility between {·, ·}h1 and {·, ·}Ω. We know that

{f, g}h1 = {f, g}Ω −Q(H
Ω
g )(f).

Next, we check that {f, g}h2 = Q(H
Ω
g )(f) is Poisson.

Since FB
h1

and Ω are G-invariant, then (FB
h1
)⊥ is G-invariant. Therefore

for describing (FB
h1
)⊥ is enough to know (FB

h1
)⊥(e, µ). A direct computation

proves that

(FB
h1
)⊥(e, µ) = {(ξ, π) ∈ g× g∗ | ξ ∈ kerP , π|h1 = −ξg∗(µ)|h1},

where ξg∗(µ) = −ad
∗
ξµ. Hence

(FB
h1
)⊥(g, µ) = T(e,µ)(lg, id)

(
(FB

h1
)⊥(e, µ)

)

= {(vg, π) ∈ TgG
∗ × g∗ | (Tglg−1)(vg) ∈ kerP , π|h1 = −ξg∗(µ)|h1}.

The sections of (FB
h1
)⊥ are of the form

{(
←−
ξ ,X) | ξ ∈ kerP , X ∈ X(g∗), X(µ)|h1 = −ξg∗(µ)|h1, ∀µ ∈ g∗} ⊆ X(G)× X(g∗).

and the brackets of them

[(
←−
ξ ,X), (

←−
ξ′ , Y )] = ([(

←−
ξ ,
←−
ξ′ ], [X, Y ]) = (

←−−−
[ξ, ξ′]g, [X, Y ]).

with ξ, ξ′ ∈ kerP , X, Y ∈ X(g∗) such thatX(µ)(η̂) = µ([ξ, η]) and Y (µ)(η̂) =
µ([ξ′, η]), for all µ ∈ g∗, η ∈ h1. Here η̂ : g∗ → R is the linear function induced
by η.
Since ξ, ξ′ ∈ h2 and h2 is a Lie subalgebra of g, it follows that [ξ, ξ′]g ∈ h2.

If µ ∈ g∗ and η ∈ h1, then

[X, Y ](µ)(η̂) = X(µ)(Y (η̂))− Y (µ)(X(η̂)).
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Moreover, Y (v̂)(µ′) = Y (µ′)(η̂) = µ′([ξ′, η]g), for all µ′ ∈ g∗. Therefore,
keeping in account that h1 is an ideal in g we get

X(µ)(Y (η̂)) = X(µ)([̂ξ′, η]g) = µ([ξ, [ξ′, η]g]g),

Y (µ)(X(η̂)) = µ([ξ′, [ξ, η]g]g).

Hence

[X, Y ](µ)(v̂) = µ([ξ, [ξ′, η]g]g+[ξ′, [η, ξ]g]g) = −µ([η, [ξ, ξ
′]g]g) = µ([[ξ, ξ′]g, η]g).

Therefore (FB
h1
)⊥ is a symplectic foliation, so that we can consider the Poisson

bracket {·, ·}h2 associated to (FB
h1
)⊥, given by

{f, g}h2 = Q(H
Ω
g )(f).

Thus {·, ·}Ω and −{·, ·}h1 are compatible, since

{·, ·}Ω + (−{·, ·}h1) = {·, ·}h2.

Consequently, we can consider the Poisson-Nijenhuis manifold (T ∗G,Ω, N),

where N = Λ♯h1 ◦Ω♭ and Λ♯h1 : T
∗(TG)→ T (T ∗G) is the morphism induced by

the Poisson bracket {·, ·}h1. Using that {·, ·}h1 is G-invariant, it follows that
N is G-invariant.

7.2. The Poisson-Nijenhuis Lie algebroid and its reduction. We con-
sider the action of G on T ∗G ∼= G× g∗ by left translations, that is

G× (G× g∗) −→ G× g∗

(g′, (g, η)) 7−→ (g′ · g, η).

and let π : T ∗G→ T ∗G/G be the corresponding principal G-bundle. Since Ω
and N are G-invariant, we can consider the corresponding Atiyah algebroid
on

π̃ : (T (T ∗G))/G −→ T ∗G/G.

We denote by ([·, ·] , ρ) the Lie algebroid structure on π̃ : (T (T ∗G))/G) →
(T ∗G)/G.
Note that Γ(π̃) may be identified with the set XG(T ∗G) of G-invariant

vector fields on T ∗G and that if X ∈ XG(T ∗G) then X is π-projectable. In
fact, ρ(X) = (Tπ)(X). Using Proposition 2.6, we obtain a Poisson-Nijenhuis
structure on π̃ which we denote by (Λ̃, Ñ). The foliation defined by the
distribution D = ρ(Λ̃♯((T ∗(T ∗G))/G)) has just one leaf which is the whole
(T ∗G)/G, since Ω♯((Ω1(T ∗G))G) = XG(T ∗G) and these vector fields generate
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all the vector fields in T ∗G. In fact, Λ̃ is nondegenerate on π̃ : (T (T ∗G))/G→
T ∗G/G.
Next, we compute kerN.
Let X ∈ XG(T ∗G) be such that N(X) = 0. Then, we have Λ♯h1 ◦Ω♭(X) = 0

and hence Ω♭(X) ∈ kerΛ♯h1. Now,

α ∈ kerΛ♯h1 ⇐⇒ Λ♯h1(α) = P(Ω
♯(α)) = 0⇐⇒ α ∈ Ω♭(kerP).

Therefore, ker Ñ = (FB
h1
)⊥. Note that (FB

h1
)⊥ is a G-invariant foliation and

hence it is regular.
Let X ∈ XG(T ∗G) be such that Ñ2(X) = 0. Then, we have Ñ(X) ∈

ker Ñ = kerP . That is, Ω♭(X) ∈ (Λ♯h1)
−1(kerP). Now,

α ∈ (Λ♯h1)
−1(kerP)⇐⇒ Λ♯h1(α) ∈ kerP ⇐⇒ Ω♯(α) ∈ kerP ,

since Ω♯ = Λ♯h1 +Λ♯h2 and Λ♯h2(α) ∈ kerP . Hence ker Ñ2 = (FB
h1
)⊥. Therefore,

the Riesz index is 1.
We study now the foliation FkerN . The complete and vertical lifts of the

sections of kerN are complete and vertical lifts of G-invariant vector fields
in T ∗G. Since kerN is regular, then FkerN is regular.
Then, if Lθ is the leaf of kerN passing through θ, we have that the leaf of
FkerN passing through vθ is

vθ + TLθ = vθ + (
⋃

x∈Lθ

TxLθ) = vθ + (
⋃

x∈Lθ

kerN(x)).

Note that the condition FkerN is therefore also satisfied and hence Theorem
6.6 can be applied.
Finally, note that this example can be generalized if we consider a Lie group

G with Lie algebra g, h a Lie subalgebra of g and Pg : g −→ h a projector
(Pg|h = 1h) such that kerPg is an ideal of g and P is linear. Thus, on T ∗G we
can define two compatible Poisson structures (one of them being the canonical
symplectic structure on T ∗G) and hence we can induce a Poisson-Nijenhuis
structure on T ∗G.
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La Laguna, Tenerife, Canary Islands, Spain

E-mail address : jcmarrer@ull.es

Edith Padrón
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