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Abstract: We study the notion of internal crossed module in terms of cross-effects
of the identity functor. These cross-effects give rise to a concept of commutator which
allows a description of internal categories, (pre)crossed modules, Beck modules, and
abelian extensions in finitely cocomplete homological categories in a way which is
very close to the case of groups. We single out the obstruction which prevents a
Peiffer graph being a groupoid—which in a semi-abelian context is known to vanish
precisely when the Smith is Huq condition holds, so is invisible in the category of
groups—as a certain ternary commutator. Such a ternary commutator is generally
not decomposable into nested binary ones; it appears, for instance, in the Hopf
formula for the third homology with coefficients in the abelianisation functor and
in the interpretation of the second cohomology of an object with coefficients in a
module.
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Introduction
Internal crossed modules in a semi-abelian category [42] may be axiomatised

in several equivalent ways. In all approaches the starting point is a desired
correspondence between crossed modules and internal categories, which deter-
mines the basic properties that such an axiomatisation should satisfy.
In the article [41] Janelidze presents axioms for internal crossed modules in

terms of the internal actions he introduced in his article [20] with Bourn. His
analysis is elegant and efficient and captures all appropriate examples. It also
explains that the extension of the case of groups to semi-abelian categories is
not entirely without difficulties. The most straightforward description of the
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concept of crossed module merely gives so-called star-multiplicative graphs—in
which the composition of morphisms is only defined locally around the origin—
and not the internal groupoids one would expect, in which any composable pair
of morphisms can actually be composed. Of course this defect can be mended,
as it is indeed done in [41]. Unfortunately, the resulting characterisation of
internal crossed modules becomes slightly less natural.
The question thus arose when the two concepts (star-multiplicative graphs

and internal groupoids) are equivalent. It turns out [53] that the gap between
the two is precisely as big as the gap between the Huq commutator of normal
subobjects and the Smith/Pedicchio commutator of internal equivalence rela-
tions. That is to say, in a semi-abelian category they are equivalent if and only
if the Smith is Huq condition holds. This explains why the difference between
the two concepts is invisible in the category of groups, in fact in any of the cat-
egories where internal crossed modules were ever considered: all of those are
strongly protomodular or at least action accessible, so that the Smith/Pedicchio
commutator and the Huq commutator are equivalent. One solution would be
to restrict ourselves to such a somewhat less general context, but then we also
choose to ignore the problem rather than to face it.
Alternatively, another axiomatisation might be found, one which maybe stays

closer to the case of groups, but which shows clearly what has to be added to
make the theory work in general. In the present article we try to do precisely
this. We present a new approach to internal crossed modules, one which is
based on a different notion of internal action, and which from the start takes
the Smith is Huq problem explicitly into account. The resulting character-
isation is an obvious extension of the groups case, but at the same time the
ingredient missing there is brought into focus: it appears as a ternary commuta-
tor. A byproduct of this alternative analysis is that the context is enlarged to a
non-exact setting, as we may work in finitely cocomplete homological categories
instead of semi-abelian ones.

Cross-effects of functors. The main technical innovation which allows us
to consider higher-order commutators and the corresponding actions is the
general theory of cross-effects. The concept of cross-effect of a functor between
abelian categories was introduced by Eilenberg and MacLane in the article [29],
where it was used in the study of polynomial functors. This definition does,
however, not generalise to non-additive contexts. The approach due to Baues
and Pirashvili [5], worked out in the case of groups, does extend easily to more
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general situations. It is such an extension we shall consider in the present
article. Here we will not use cross-effects to define polynomial functors—this
is, for instance, done in the articles [35] and [37]. Actually, in higher degrees
the theory of polynomial functors becomes extremely complicated, so that in
these articles only quadratic functors, which by definition have a trivial third
cross-effect, are worked out in depth. In the present article we shall rather
construct higher-order commutators, and express the higher-order coherence
conditions internal actions may satisfy in terms of higher cross-effects. In fact,
ternary cross-effects will suffice for our present purposes.

Commutators and actions. The concept of internal action introduced by
Hartl and Loiseau [36] blends naturally with the theory of cross-effects. It is
based on the idea that the second cross-effect

pK|Lq � Ker
�A

x1K ,0y
x0,1Ly

E
: K � LÑ K � L

	
of the identity functor 1A of a finitely cocomplete homological category A eval-
uated in the objects K, L P ObpAq behaves as a kind of “formal commutator”
ofK and L. (This was also discovered independently by Mantovani and Metere,
see [50].) If now k : K Ñ X and l : LÑ X are subobjects of an object X, their
(Higgins) commutator rK,Ls ¤ X is the image of the induced morphism

pK|Lq � ,2
ιK,L

,2 K � L
x kl y ,2 X.

Using higher cross-effects it is easy to extend this definition to higher-order
commutators: for instance, given a third subobject m : M Ñ X of X, the
ternary commutator rK,L,M s ¤ X is the image of the composite

pK|L|Mq � ,2
ιK,L,M

,2 K � L�M

B
k
l
m

F
,2 X,

where ιK,L,M is the kernel of

K � L�M

BB
iK
iL
0

F
,

B
iK
0
iM

F
,

B 0
iL
iM

FF
,2 pK � Lq � pK �Mq � pL�Mq.

The basic properties of the (binary) Higgins commutator are explored in the
articles [36] and [50]. In the former it is also explained how this commutator
gives rise to a concept of internal action. We shall recall some of this in sec-
tions 2 and 3; for now it suffices to mention that an action of an object G on
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an object A is a morphism ψ : pA|Gq Ñ A satisfying a certain condition, and
that such an action contains just enough information for reconstructing the
semi-direct product A�ψ G.

The ternary commutator obstruction. The Smith is Huq condition for
homological categories may be expressed in terms of cross-effects as the vanish-
ing of a ternary commutator. Thus a condition which is about locally defined
internal categorical structures admitting a global extension is characterised as
a computational obstruction.
Indeed, we prove that for equivalence relations R and S on X with re-

spective normalisations K, L � X, the relations R and S commute in the
sense of Smith and Pedicchio if and only if rK,Ls and rK,L,Xs are trivial.
As rK,Ls � 0 precisely when K and L commute in the Huq-sense, the ob-
ject rK,L,Xs is the ternary commutator obstruction which should vanish
for the Smith/Pedicchio commutator and the Huq commutator to be equivalent
in the given situation.
In the category of groups, this condition on ternary commutators is invis-

ible, as all ternary commutators are expressible in terms of binary ones. This
explains why crossed modules of groups, which correspond to internal catego-
ries in the category Gp, may be characterised using just a binary commutator
as is done in the final section of MacLane [48]. In general, though, ternary
commutators cannot be written in terms of repeated binary ones.
This new viewpoint on the Smith is Huq condition gives new examples of

categories which satisfy it. A nilpotent category of class 2 is a semi-abelian
category whose identity functor is quadratic, i.e., it has a trivial triple cross-
effect [35]. Hence, almost by definition, any such category satisfies (SH). In
particular, the Smith is Huq condition holds for modules over a square ring,
and specifically for algebras over a nilpotent operad of class two [3].
On the other hand, the category of loops (quasigroups with an identity) does

not satisfy (SH): we give an example of a loopX with an abelian subloop A and
elements a P A, x P X such that the associator element va, a, xw is non-trivial
(Example 4.9). This proves that the triple commutator rA,A,Xs need not
vanish even when the binary commutator rA,As does. As a consequence, Loop
is not action accessible or strongly protomodular—though it is well known to
be semi-abelian [8].
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Definition of internal crossed modules. Consider a quadruple pG,A, µ, Bq
in which G and A are objects, µ : pA|Gq Ñ A is an action of G on A, and
B : AÑ G is a morphism. This quadruple is a crossed module when the fol-
lowing three squares commute.

pA|Gq
µ

,2

pB|1Gq
��

A

B
��

pG|Gq
cG,G

,2 G

pA|Aq
cA,A ,2

p1A|Bq
��

A

pA|Gq µ
,2 A

pA|A|Gq
µ2,1

,2

p1A|B|1Gq
��

A

pA|G|Gq µ1,2

,2 A

The first square expresses the precrossed module condition which says that the
morphism B is G-equivariant with respect to µ and the conjugation action cG,G
of G on itself. Quadruples which satisfy this first condition correspond to
internal reflexive graphs. Commutativity of the middle square is the Peiffer
condition: the conjugation action cA,A of A on itself coincides with the pull-
back B�pµq of µ along B. Quadruples which satisfy the first two conditions
correspond to so-called Peiffer graphs, which admit some kind of composition
locally around the origin, and which are equivalent to star-multiplicative graphs
([49], see also [53]). The square on the right commutes when the ternary com-
mutator obstruction vanishes, which means that the local composition of the
Peiffer graph extends to a globally defined internal groupoid structure.

Internal categories in a homological category. This analysis of internal
crossed modules depends on a new characterisation of internal categories in
terms of internal actions, valid in any finitely cocomplete homological category.
Let us just mention here that an internal reflexive graph

R
d ,2

c
,2 Gelr d�e � c�e � 1G

is an internal category when either one of the following equivalent conditions
holds (Theorem 5.2):

� rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Rs;
� rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Impeqs;
� the conjugation action cA,R : pA|Rq Ñ A of R on A � Kerpdq factors
through the morphism p1A|cq : pA|Rq Ñ pA|Gq;

� cA,R � pe�cq�pcA,Rq.
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Abelian extensions, Beck modules. The concepts of abelian extension and
Beck module allow a similar analysis in terms of internal actions and ternary
commutators. Both are certain internal Mal’tsev operations in a slice category,
known to exist if and only if a Smith/Pedicchio commutator vanishes. We shall
see that a short exact sequence

0 ,2 A
� ,2 a ,2 X

p � ,2 G ,2 0 (A)

is an abelian extension if and only ifA is abelian and rA,A,Xs is zero. Likewise,
an internal G-action ψ : pA|Gq Ñ A on an abelian object A is a G-module
structure on A if and only if a certain induced morphism ψ2,1 : pA|A|Gq Ñ A
is trivial. Alternatively, one could ask that the induced diagram

pA� A|Gq
xpπ1|1Gq,pπ2|1Gqy,2

p�|1Gq
��

pA|Gq � pA|Gq
ψ�ψ

,2 A� A

�
��

pA|Gq
ψ

,2 A

commutes, to mention two of several equivalent conditions.

Applications in homology and cohomology. We give two concrete ap-
plications of these results in semi-abelian (co)homology. First we characterise
double central extensions [31, 40, 60] in terms of binary and ternary commu-
tators, and obtain a Hopf formula for the third homology of an object Z with
coefficients in the abelianisation functor:

H3pZ, abq �
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs
,

where K, L �X are the kernels induced by a double presentation of Z. This
formula is valid in any semi-abelian category with enough projectives, whether
the Smith is Huq condition holds or not.
Then we focus on cohomology in semi-abelian categories, and explain how to

connect the main result of [34] with the torsor theories from [21, 27]. The central
idea here is that for any abelian extension such as (A), the conjugation action
of X on A factors through p to yield an action of G on A. This action, called
the direction of (A), is always a module, and thus we obtain the direction
functor

dG : AbExtGpAq Ñ ModGpAq.
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We give an interpretation of the second cohomology group H2pG, pA,ψqq of G
with coefficients in a module pA,ψq as the group of connected components of
the fibre d�1

G pA,ψq of the direction functor dG over the module pA,ψq. When,
in particular, the action ψ is trivial, we regain the interpretation worked out
in [34] of the second cohomology group of G with coefficients in an abelian
object A as equivalence classes of central extensions of G by A. On the other
hand, the fibre d�1

G pA,ψq consists of torsors of G by pA,ψq, as in [21] and [27].

Structure of the text. In Section 1 we recall the basic categorical notions
we need further on and introduce some conventions and notations. Section 2
is devoted to the definition and first properties of cross-effects and the in-
duced (higher-order) commutators. We recall some properties from [36, 50] and
then prove right exactness results for cross-effect functors: preservation of co-
equalisers of reflexive graphs (Theorem 2.26 and Corollary 2.27) and cokernels
inducing certain exact sequences (Proposition 2.31, Corollary 2.32 and Prop-
osition 2.33). These are used in Section 3 where we explain how to deal with
internal actions and semi-direct products starting from cross-effects. In Sec-
tion 4 we give a characterisation of the Smith is Huq condition (Theorem 4.6) in
terms of ternary commutators, and a formula for the Smith/Pedicchio commu-
tator in terms of cross-effects (Theorem 4.14). We also find a characterisation
of double central extensions (Proposition 4.16) and a Hopf formula for the
third homology of an object (Theorem 4.17). This leads to Section 5 where
we give new characterisations of internal categories (Theorem 5.2), which gives
an elementary description of the concept of internal crossed module. We use
this description to prove some of its most classical properties: Theorem 5.7
and Proposition 5.12. In Section 6 we turn to abelian extensions; we obtain
some equivalent characterisations (Theorem 6.4) and an explicit description
of the reflection of extensions to abelian extensions (Corollary 6.5). Next, in
Section 7, we consider Beck modules; we give several characterisations (The-
orems 7.3, 7.9 and 7.13) and study the relation with internal crossed modules
(Proposition 7.18). In the final Section 8 these results are used in the study of
semi-abelian cohomology (Theorem 8.7).
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1. Preliminaries
As a rule we shall work in a finitely cocomplete homological categoryA unless

where explicitly mentioned. Some proofs need a semi-abelian environment; we
always explain where and why.
We start with an overview of those basic categorical notions and results

needed throughout the text.

1.1. Pointed categories. A pointed category has a zero object, an initial
object that is also terminal. In a pointed category with finite sums, we denote
the coproduct inclusion Xk Ñ X1 � � � � �Xn by iXk

or by ik, and its canonical
retraction C 0

...
1Xk
...
0

G
: X1 � � � � �Xn Ñ Xk

by rXk
or by rk. We further write prk : X1�� � ��Xn Ñ X1�� � ��xXk�� � ��Xn

for the morphism whose restriction to Xj is iXj
when j � k and is the zero

morphism when j � k.
Dually, when working in a pointed category with finite products, we denote

the product projection X1 � � � � � Xn Ñ Xk by πXk
or πk and its canonical

section
x0, . . . , 1Xk

, . . . , 0y : Xk Ñ X1 � � � � �Xn

by σXk
or σk.

1.2. Regular and exact categories. Recall that a regular epimorphism
is the coequaliser of some pair of morphisms. A regular category is finitely
complete and endowed with a pullback-stable (regular epi, mono)-factorisation
system. Given a morphism f : X Ñ Y , we write impfq : Impfq Ñ Y for the
mono-part in this image factorisation of f . If M ¤ X is a subobject
of X, we write fpMq for the direct image of M along f : the image of f �m,
where m : M Ñ X is a monomorphism that represents the subobject.
Regular categories provide a natural context for working with relations. We

denote the kernel relation (= kernel pair) of a morphism f , the pullback of f
along itself, by pRrf s, f1, f2q. A regular category is said to be Barr exact
when every equivalence relation is effective, which means that it is the kernel
pair of some morphism [1].



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES 9

1.3. Homological and semi-abelian categories. A pointed category with
pullbacks is protomodular [11] when the Split Short Five Lemma holds.
When, moreover, the pointed category is regular, then protomodularity is
equivalent to the (Regular) Short Five Lemma: given a commutative dia-
gram (B) with regular epimorphisms p, p1 and their kernels, if a and g are
isomorphisms then also x is an isomorphism. We usually denote the kernel of
a morphism f by pKerpfq, kerpfqq, and say that a morphism is proper when
its image is a kernel. A proper monomorphism is said to be normal, and
when M ¤ X is a normal subobject we write M �X.
A pointed, regular and protomodular category is called homological [7].

This is a context where many of the basic diagram lemmas of homological
algebra hold. In particular, here the notion of (short) exact sequence has
its full meaning: a regular (= normal) epimorphism with its kernel such as (A)
above. A short exact sequence (A) is split when there exists a section (or
splitting) s : GÑ X of p, i.e., a morphism s in A such that p�s � 1G.
Note that a split epimorphism p : X Ñ G may have many splittings. When

just one splitting s is chosen, the couple pp, sq is called a point (over G). The
category of points PtpAq has points in A (considered as diagrams p�s � 1G)
as objects and natural transformations between points as morphisms. The
points over a given object G form the full subcategory PtGpAq � p1Aq{pA{Gq
of PtpAq.
Unless where explicitly mentioned in the text, we shall always work in a

finitely cocomplete homological category which we write A.
A Mal’tsev category [24] is finitely complete and such that every reflexive

relation is necessarily an equivalence relation. It is well known that any finitely
complete protomodular category is Mal’tsev [12]. Furthermore, the Mal’tsev
property is preserved by slicing. This is a context in which many of the ba-
sic constructions in commutator theory make sense. In a Mal’tsev category,
internal categories are automatically internal groupoids.
Semi-abelian categories are homological and exact with binary sums [42].

In a semi-abelian category, the direct image of a kernel along a regular epi-
morphism is still a kernel. In this context, the existence of binary sums entails
finite cocompleteness, and any comparison morphism xrX , rY y : X�Y Ñ X�Y
is a regular epimorphism.
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1.4. Extensions and double extensions. An extension in a homological
category is a regular epimorphism. The extensions in A form a full subcat-
egory ExtpAq of the category of arrows ArrpAq � Funp2op,Aq: morphisms are
commutative squares between extensions. Since regular epimorphisms are nor-
mal, an extension p : X Ñ G may equally well be considered as a short exact
sequence (A). Then we call p an extension of G by A.
A double extension in A is a commutative square

X
c ,2

d
��

C
g

��

D
f

,2 Z

X
c

� "*	 �(

d

� �%

D �Z C
� ,2

_��

C
g

_��

D
f

� ,2 Z

such that all arrows in the induced right hand side diagram are extensions [31].
In a semi-abelian category this happens when the square is a pushout of reg-
ular epimorphisms. Double extensions form a full subcategory Ext2pAq of the
category Arr2pAq � ArrpArrpAqq � Funpp22qop,Aq of double arrows in A. By
Lemma 1.5 below, double extensions correspond to short exact sequences in the
category ExtpAq. In other words, the double extensions in A are the normal
epimorphisms in ExtpAq, and in ExtpAq kernels of normal epimorphisms are
computed degree-wise.
Higher extensions were introduced in [31] following [40] in order to capture

the concept of higher centrality which is useful in the study of semi-abelian
(co)homology: see, for instance, Subsection 4.15 below and the articles [30, 31,
60]. We shall also need double extensions for the proof of Theorem 2.26.

Lemma 1.5. [14, 18, 20, 31] Consider, in a homological category, a commu-
tative diagram with exact rows

0 ,2 A1 � ,2 ,2

a
��

X 1
p1 � ,2

x
��

G1

g
��

,2 0

0 ,2 A
� ,2 ,2 X p

� ,2 G ,2 0.

(B)

(i) The right hand square p�x � g�p1 is a pullback if and only if a is an
isomorphism.
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(ii) Suppose that x and g are regular epimorphisms. Then the square p�x �
g�p1 is a double extension if and only if a is a regular epimorphism.

1.6. Abelian objects and internal abelian groups. In a Mal’tsev cat-
egory A, an object A is abelian when it carries a (necessarily unique) internal
Mal’tsev operation: a morphism g : A� A� AÑ A such that gpx, x, zq � z
and gpx, z, zq � x. As soon as A is moreover pointed, such an internal Mal’tsev
operation is the same thing as an internal abelian group structure. However, in
general, the two concepts are different: see, for instance, sections 6 and 7 below
where we consider them in a slice category. To avoid confusion, we denote the
full subcategory of A determined by the abelian objects MalpAq, and we write
AbpAq for the category of internal abelian groups in A. Again, when A is
pointed, AbpAq coincides with the full subcategory MalpAq of A.
For instance, an abelian object in the category of groups is an abelian group,

and an abelian associative algebra over a field is a vector space (equipped with
a trivial multiplication).

1.7. The Huq commutator. A coterminal pair

K
k ,2 X L

llr

of morphisms in a homological category Huq-commutes [19, 39] when there
is a (necessarily unique) morphism ϕ such that the diagram

K
x1K ,0y

z�������� k

�$???????

K � L ϕ ,2 X

L
x0,1Ly

Zd??????? l

:D�������

is commutative. We shall mostly be interested in the case where k and l are
normal monomorphisms (i.e., kernels). The Huq commutator

rk, lsHuq : rK,LsHuq Ñ X

of k and l is the smallest normal subobject of X that should be divided out to
make k and l commute—so that they do commute if and only if rK,LsHuq � 0.
It may be obtained through the colimit Q of the outer square above, as the
kernel of the (normal epi)morphism X Ñ Q. In a homological category, an
object X is abelian when rX,XsHuq � 0.
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2. Cross-effects and commutators
We explain how the cross-effects of the identity functor of a homological

category give rise to (higher-order) commutators. We start with some basic
definitions and properties, give some examples and recall how the binary com-
mutator is a categorical version of the Higgins commutator [36, 38, 50]. Then
we focus on right exactness results for cross-effect functors, mostly those valid
in semi-abelian categories: preservation of coequalisers of reflexive graphs (The-
orem 2.26 and Corollary 2.27) and cokernels inducing certain exact sequences
(Proposition 2.31 and Corollary 2.32).

2.1. Cross-effects of functors. We recall how the definition of cross-effects
given in [5] in the case of groups extends to a general categorical framework [36,
37].

Definition 2.2. [36] Let F : C Ñ D be a functor from a pointed category with
finite sums C to a pointed finitely complete category D. The n-th cross-effect
of F is the functor

crnpF q : Cn Ñ D,
a multi-functor C Ñ D, inductively defined by

cr1pF qpXq � Ker
�
F p0q : F pXq Ñ F p0q

�
and, for n ¡ 1,

crnpF qpX1, . . . , Xnq � Kerpprq,
where

pr : F pX1 � � � � �Xnq Ñ
n¹
k�1

F pX1 � � � � � xXk � � � � �Xnq

is such that πk�pr � F pprkq. We usually write

F pX1| � � � |Xnq � crnpF qpX1, . . . , Xnq

and

kerpprq � ιX1,...,Xn
� ιFX1,...,Xn

: F pX1| � � � |Xnq Ñ F pX1 � � � � �Xnq.

The functor crnpF q acts on morphisms in the obvious way that makes ιX1,...,Xn

natural. When F is the identity functor 1A of A we write

pX1| � � � |Xnq � 1ApX1| � � � |Xnq.



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES 13

Example 2.3. Let us make explicit what happens in the lowest-dimensional
cases, which are essential in the present article. When n � 2 we obtain a short
exact sequence

0 ,2 pX|Y q � ,2
ιX,Y

,2 X � Y
xrX ,rY y� ,2 X � Y ,2 0

for any X, Y in A. Note that the object pX|Y q is denoted X � Y in the
article [50]. When n � 3 and X, Y , Z are objects of A, we consider the
morphism

X � Y � Z

BB
iX
iY
0

F
,

B
iX
0
iZ

F
,

B 0
iY
iZ

FF
,2 pX � Y q � pX � Zq � pY � Zq,

which need no longer be a regular epimorphism; the cross-effect pX|Y |Zq of 1A
is its kernel.

Example 2.4. In the case of groups

pX|Y q � xxyx�1y�1 |x P X, y P Y y,

a kind of “formal commutator” of X and Y as explained in [50] and [36]. This
fact will prove crucial in what follows.
Given groups X, Y and Z with respective chosen elements x, y and z, the

word
xyx�1y�1zyxy�1x�1z�1

is an example of an element of pX|Y |Zq.

Example 2.5. In a pointed variety of algebras V , an element of a sumX�Y�Z
is of the shape

tpx1, . . . , xk, y1, . . . , yl, z1, . . . , zmq

where t is a term of arity k� l�m in the theory of V and x1, . . . , xk P X, y1,
. . . , yl P Y and z1, . . . , zm P Z. It belongs to the cross-effect pX|Y |Zq if and
only if $'&'%

tpx1, . . . , xk, y1, . . . , yl, 0, . . . , 0q � 0 in X � Y ,

tpx1, . . . , xk, 0, . . . , 0, z1, . . . , zmq � 0 in X � Z,

tp0, . . . , 0, y1, . . . , yl, z1, . . . , zmq � 0 in Y � Z.

Here 0 denotes the unique constant of the theory of V .

Proposition 2.6. The multi-functors crnpF q are
(i) reduced: F pX1| � � � |Xnq � 0 if Xk � 0 for some k P t1, . . . , nu;
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(ii) symmetric: for any permutation σ P Σn there is an isomorphism

σF : F pX1| � � � |Xnq Ñ F pXσ�1p1q| � � � |Xσ�1pnqq,

natural in X1, . . . , Xn, and moreover σF �τF � pσ�τqF .

Proof : Assertion (ii) is obvious. For (i), just observe that if Xk � 0, the
morphism prk is an isomorphism, while by definition prk�ιX1,...,Xn

� 0.

2.7. Joins and the sum decomposition. For subobjects

L ,2 l ,2 X Mlrmlr

of an object X in a homological category A we write

L_M � Im
�@

l
m

D
: L�M Ñ X

�
and L_M � L�M when L^M � 0 and L is normal in L_M . Note that
we have L_M � L�M if and only if there is a split short exact sequence

0 ,2 L
� ,2 l ,2 L_M

� ,2
M ,2lr

m
lr 0,

which justifies the semi-direct product notation (see Section 3). As for the
sum, morphisms defined on L � M are completely determined by the effect
on L and M , and written in a column.

Proposition 2.8. [36] Suppose that A is finitely cocomplete homological, C is
pointed with binary sums and F : C Ñ A preserves zero. Then we have a de-
composition

F pX � Y q � pF pX|Y q � F pXqq � F pY q

for any X, Y in C.

2.9. Higher-order commutators. We need the following categorical notion
of commutator (of arbitrary length) which was introduced in [36] and [50] and
is more thoroughly studied in [35].

Definition 2.10. Let X be an object of a finitely cocomplete homological cat-
egory. The n-fold commutator morphism of X is the composite morphism

cXn : pX| � � � |Xq � ,2
ιX,...,X

,2X � � � � �X

B
1X
...

1X

F
,2X.
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When xi : Xi Ñ X for 1 ¤ i ¤ n are subobjects of X, their commutator is
the subobject

rX1, . . . , Xns � Im
�
pX1| � � � |Xnq

px1|���|xnq,2pX| � � � |Xq
cXn ,2X

�
� Im

�
pX1| � � � |Xnq

ιX1,...,Xn ,2X1 � � � � �Xn

C x1
...
xn

G
,2X
�

of X.
Example 2.11. In [35] it is shown that in the category of groups rX1, . . . , Xns
is indeed essentially generated by all n-fold commutators of elements ofX1, . . . ,
Xn. In particular, the n-fold commutator rX, . . . , Xs � ImpcXn q coincides with
the n-th term of the lower central series of X, i.e., with the (normal) subgroup
generated by the commutators of weight n in X.
Remark 2.12. The binary commutator rK,Ls is also studied in [50], where it
is called the Higgins commutator. It is an conceptual generalisation of the
commutator constructed in a varietal context in [38].
In contrast with the Huq commutator, the Higgins commutator rK,Ls need

not be normal in X, even when both K and L are normal subobjects of X.
In fact, the Huq commutator rK,LsHuq of K, L � X is the normal closure
of rK,Ls, so that rrK,Ls, Xs _ rK,Ls � rK,LsHuq by Proposition 2.15 below.
Remark 2.13. Note that an object X is abelian if and only if its commutator
morphism cX2 is trivial: rX,Xs � 0 precisely when rX,XsHuq � 0.
Remark 2.14. The higher-order commutators are generally not built up out
of iterated binary commutators (Example 4.9). Moreover, in general, the lower
central series mentioned in Example 2.11 does not coincide with the concept
considered in [39].
Proposition 2.15. [36, 50] If K, L ¤ X in a semi-abelian category then the
normal closure of K in the join K _ L is rK,Ls _K.
Proposition 2.16. [36] In a semi-abelian category, consider K, L ¤ X. The
subobject K is normal in K _ L if and only if rK,Ls ¤ K. In particular,

(i) K �X if and only if rK,Xs ¤ K;
(ii) a morphism f : X Ñ Y in A is proper if and only if the composite

morphism

pX|Y q
pf |1Y q ,2 pY |Y q

cY2 ,2 Y
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factors through Impfq.

Remark 2.17. As further explained in Example 5.11, the exactness of A is
fundamental here; in fact, it is also shown in [36] that the characterisation (i)
of normal subobjects is valid in a finitely cocomplete homological category if
and only if this category is semi-abelian.

The following basic properties commutators have will be useful throughout
the text.

Proposition 2.18. [35] Let X1, . . . , Xn be subobjects of an object X and
let f : X Ñ Y be a morphism.

(o) Commutators are reduced: if Xi � 0 for some i then rX1, . . . , Xns � 0.
(i) Commutators are symmetric: for any permutation σ P Σn,

rX1, . . . , Xns � rXσ�1p1q, . . . , Xσ�1pnqs.

(ii) Commutators are preserved by direct images:

f rX1, . . . , Xi, . . . , Xns � rfpX1q, . . . , fpXiq, . . . , fpXnqs.

(iii) Commutators are monotone: if M ¤ Xi then

rX1, . . . , Xi�1,M,Xi�1, . . . , Xns ¤ rX1, . . . , Xi�1, Xi, Xi�1, . . . , Xns.

(iv) Removing brackets enlarges the object:

rrX1, . . . , Xis, Xi�1, . . . , Xns ¤ rX1, . . . , Xi, Xi�1, . . . , Xns.

(v) Removing duplicates enlarges the object:

rX1, . . . , Xi, Xi�1, Xi�2, . . . , Xns ¤ rX1, . . . , Xi, Xi�2 . . . , Xns

when Xi � Xi�1.
(vi) Commutators satisfy a distribution rule with respect to joins:

rX1, . . . , Xn, A1 _ � � � _ Ams �
ª

1¤k¤m
1¤i1 ... ik¤m

rX1, . . . , Xn, Ai1, . . . , Aims.

(vii) When A is semi-abelian, if X1 _ . . . _ Xn � X then rX1, . . . , Xns is
normal in X.
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2.19. Inductive nature of cross-effects. We give an alternative inductive
description of the higher-order cross-effects.

Lemma 2.20. For objects X1, . . . , Xn in C and 1 ¤ k ¤ n there exist fac-
torisations ιk, ι1k, ι

2
k as indicated in the following commutative diagram, where

ι � ιFX1,...,Xk�1,Xk�Xk�1,Xk�2,...,Xn
.

F pX1| � � � |Xk�1| � |Xk�2| � � � |XnqpXk|Xk�1q_��

ιXk,Xk�1

��

ιk
,2 F pX1| � � � |Xnq

ι2klr

_��

ιFX1,...,Xn

��

+ry

ι1k

ry

F pX1| � � � |Xk�1|Xk �Xk�1|Xk�2| � � � |Xnq
� ,2

ι
,2 F pX1 � � � � �Xnq

Thus ιk and ι2k are mutually inverse isomorphisms, which yields an exact se-
quence

0

��

F pX1| � � � |Xnq_��
ι1k��

F pX1| � � � |Xk�1|Xk �Xk�1|Xk�2| � � � |Xnq

xr1Xk
,r1Xk�1

y
_��

F pX1| � � � |Xk�1|Xk|Xk�2| � � � |Xnq � F pX1| � � � |Xk�1|Xk�1|Xk�2| � � � |Xnq

��
0

where r1Xj
� p1X1

| � � � |1Xj�1
|rXj

|1Xj�1
| � � � |1Xn

q for j P tk, k � 1u.

Proof : The factorisations ιk, ι1k, ι
2
k are obtained successively by checking that

the post-compositions with the morphisms prj are trivial.

Notation 2.21. If F : Cm Ñ D is a multi-functor then for 1 ¤ k ¤ m we
define a multi-functor BkF : Cm�1 Ñ D by

BkF pX1, . . . , Xm�1q � F pX1, . . . , Xk�1,�, Xk�2, . . . , Xm�1qpXk|Xk�1q.

Lemma 2.22. For any sequence of integers k1, . . . , kn�1 such that 1 ¤ kj ¤ j
there is a natural isomorphism crnpF q � Bkn�1

� � � Bk1F .
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This follows immediately from Lemma 2.20 and provides an inductive de-
scription of cross-effects which allows for inductive proofs. The subsequent
result provides an example of this principle.

Proposition 2.23. Suppose in addition that D is homological and that F
preserves regular epimorphisms. Then for all objects X1, . . . , Xn in C the
functor F pX1| � � � |Xk�1| � |Xk| � � � |Xnq : C Ñ D also preserves regular epi-
morphisms.

Proof : This was proved for n � 1 in [36] and then follows for all n by an
induction based on Lemma 2.22.

We now refine this preservation of regular epimorphisms to a more precise
right exactness property: preservation of coequalisers of reflexive graphs.

2.24. Right exactness of cross-effects. We prove that the cross-effects
of a functor which preserves coequalisers of reflexive graphs still preserve co-
equalisers of reflexive graphs. Our proof shall be based on the following basic
principle concerning those coequalisers, valid in semi-abelian categories. (But
not in merely homological ones!) Let

R
d ,2

c
,2

r�xd,cy

�"9999999999999 Gelr

|��������������

q
,2 Q

Rrqs

q1

<G�������������
q2

<G�������������

(C)

be a reflexive graph with its coequaliser, the induced kernel pair pRrqs, q1, q2q
and the comparison morphism r. Certainly both q and r are regular epimorph-
isms. But in fact, the converse also holds: any regular epimorphism q which
coequalises d and c is their coequaliser if and only if r is a regular epimorphism.

Lemma 2.25. Suppose that A is homological, C is pointed with binary sums
and F : C Ñ A is reduced. Then for any X, Y P ObpCq the morphism

xF prXq, F prY qy : F pX � Y q Ñ F pXq � F pY q

is a regular epimorphism. Hence also the comparison natural transformation

F pX � p�qq ñ F pXq � F p�q

is regular epic.
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Proof : Since the functor F is reduced, the triangle

F pXq � F pY q

@
F piXq
F piY q

D
,2

pr � �&
CCCCCCCCC

F pX � Y q

xF prXq,F prY qyx�{{{{{{{{{{

F pXq � F pY q

commutes. The result follows, as pr is a regular epimorphism.

Theorem 2.26. Suppose that A is semi-abelian and C is pointed with binary
sums. Let F : C Ñ A a functor which is reduced and preserves coequalisers of
reflexive graphs. For any object X of C, the induced functor F pX|�q : C Ñ A
also preserves coequalisers of reflexive graphs. Hence, by induction, so do all
resulting functors

F pX1| � � � |Xk�1| � |Xk| � � � |Xnq.

Proof : Consider in C a reflexive graph with its coequaliser (C) and the induced
diagram

0

��

0

��

0

��

0

��

F pX|Rq
r3 ,2

_��

��

RrF p1X |qqs

��

,2
,2 F pX|Gq_��

��

lr
F p1X |qq ,2 F pX|Qq

_��

��

F pX �Rq

(i)

r2 ,2

_��

RrF p1X � qqs

��

,2
,2 F pX �Gq

(ii)

_��

lr
F p1X�qq ,2 F pX �Qq

_��

F pXq � F pRq

��

r1
,2 RrF p1Xq � F pqqs

��

,2
,2 F pXq � F pGq

��

lr
F p1Xq�F pqq

,2 F pXq � F pQq

��
0 0 0 0

in A that shows how the functor F pX|�q works on this reflexive graph. By
the “basic principle” it suffices to prove that both F p1X |qq and r3 are regular
epimorphisms.
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In the bottom row, the morphisms r1 and F p1Xq � F pqq are regular epic by
the assumption that F preserves coequalisers of reflexive graphs and the fact
that also the product functor F pXq � p�q does. Indeed, products preserve
regular epimorphisms and kernel pairs. In particular, F p1Xq � F pqq is the
coequaliser of F p1Xq � F pdq and F p1Xq � F pcq.
In the middle row, the morphisms r2 and F p1X � qq are regular epic because

the sum functor X � p�q and the functor F preserve coequalisers of reflexive
graphs. In particular, F p1X�qq is the coequaliser of F p1X�dq and F p1X�cq.
The four lower vertical arrows in the diagram are regular epimorphisms by

Lemma 2.25 and by the fact that r1 is a regular epimorphism.
In the category ExtpAq, coequalisers are computed degree-wise (see, for in-

stance, [31]). Hence the commutative square (ii) may be considered as a
regular epimorphism in ExtpAq, so that it represents a double extension in A.
Also the square (i) is a double extension in A. To see this, consider the

following diagram with exact rows, in which r1 � 1F pXq � r.

0 ,2 Kerpr2q � ,2 ,2

��

F pX �Rq

(i)

r2 � ,2

_��

RrF p1X � qqs ,2

_��

0

0 ,2 Kerpr1q � ,2 ,2 F pXq � F pRq
r1 � ,2

πF pRq
��

F pXq � RrF pqqs ,2

πRrF pqqs
��

0

0 ,2 Kerpr1q � ,2 ,2 F pRq
r

� ,2 RrF pqqs ,2 0

The right and middle composed vertical arrows in it are compatibly split epi-
morphisms, so that also the left hand side dotted arrows is a split, hence a
regular, epimorphism. Lemma 1.5 now implies that the square (i) is a double
extension.
Since kernels commute with kernel pairs, Lemma 1.5 implies that F p1X |qq

and r3 are regular epic, and the result follows by the “basic principle”.

Corollary 2.27. For any object X in a semi-abelian category A, the induced
functor pX|�q : A Ñ A preserves coequalisers of reflexive graphs.

To understand the behaviour of the functor F pX|�q with respect to cokernels
we introduce the following folding operations between cross-effects of different
order which play a fundamental role in all what follows.
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Definition 2.28. Consider X1, . . . , Xn P ObpCq and let r1, . . . , rn be nonzero
natural numbers. Let

∇ri
Xi
�

C
1Xi
...

1Xi

G
: ri �Xi Ñ Xi

denote the folding morphism, and write Xk
i � Xi for 1 ¤ k ¤ ri. Then a

folding operation SX1,...,Xn
r1,...,rn

is defined by requiring the following square to
commute.

crr1�����rnpF qpX
1
1 , . . . , X

r1
1 , X

1
2 , . . . , X

r2
2 , . . . , X

1
n, . . . , X

rn
n q

S
X1,...,Xn
r1,...,rn ,2

_��
ιX1

1 ,...,X
rn
n

��

crnpF qpX1, . . . , Xnq_��
ιX1,...,Xn

��

F pr2 �X1 � � � � � rn �Xnq
F p∇r1

X1
�����∇rn

Xn
q

,2 F pX1 � � � � �Xnq

Remark 2.29. Note that the folding operations are natural in their arguments.
It is also easily checked by the very definition of cross-effects that the morphism

F p∇r1
X1
� � � � �∇rn

Xn
q�ιX1

1 ,...,X
rn
n

does indeed factor through ιX1,...,Xn
.

Notation 2.30. Taking n � 1 and writing m � r1 we obtain a natural trans-
formation

SFm : crmpF q�∆
m ñ F ,

with ∆m : C Ñ Cm the m-fold diagonal functor, defined by

pSFmqX : crmpF qpX, . . . , Xq
SXm ,2 cr1pF qpXq

ιFX ,2 F pXq

for X P ObpCq.

Proposition 2.31. Suppose that C is pointed with binary coproducts, A is
semi-abelian and F : C Ñ A is reduced. Then F preserves coequalisers of re-
flexive graphs if and only if any cokernel

A
B ,2 G

q � ,2 Q ,2 0

in C gives rise to an exact sequence

F pA|Gq � F pAq

B
pSF2 qG�F pB|1Gq

F pBq

F
,2 F pGq

F pqq � ,2 F pQq ,2 0 (D)

in A.
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Proof : Suppose that F preserves coequalisers of reflexive graphs. For a cokernel
as above, the diagram

A�G

@
B

1G

D
,2@

0
1G

D ,2 GiGlr
q � ,2 Q

is a reflexive graph with its coequaliser, hence so is its image

F pA�Gq

F
�@

B
1G

D	
,2

F
�@

0
1G

D	 ,2 F pGqF piGqlr
F pqq � ,2 F pQq (E)

through F . Since the kernel of F
�@

0
1G

D�
is F pA|Gq�F pAq by Proposition 2.8,

the sequence

F pA|Gq � F pAq
F
�@

B
1G

D	
�j

,2 F pGq
F pqq � ,2 F pQq ,2 0

is a cokernel. Here j : F pA|Gq � F pAq Ñ F pA�Gq is the canonical inclu-
sion, a normal monomorphism. Hence already the morphism F

�@
B

1G

D�
�j, as

any normalisation of a reflexive graph, is proper: it is a composite of a split
epimorphism with a kernel. Furthermore, this morphism decomposes on the
semi-direct product as claimed: first of all, F

�@
B

1G

D�
�F piAq � F pBq; secondly,

F
�@

B
1G

D�
�ιA,G � F

�
∇2
G

�
�F pB � 1Gq�ιA,G

� F
�
∇2
G

�
�ιG,G�F pB|1Gq

� pSF2 qG�F pB|1Gq.

(F)

Conversely, let

R
d ,2

c
,2 Gelr

q � ,2 Q

be a reflexive graph with its coequaliser. Then its normalisation

Kerpdq
c�kerpdq

,2 G
q � ,2 Q ,2 0

is a cokernel, hence for B � c�kerpdq : A � Kerpdq Ñ G we obtain the exact
sequence (D). Then Proposition 2.8 gives the reflexive graph with its coequal-
iser (E). Since R is a regular quotient of A�G this proves the statement.
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Corollary 2.32. Suppose that C is pointed with binary coproducts, A is semi-
abelian and F : C Ñ A is reduced and preserves coequalisers of reflexive graphs.
Consider an object X and a cokernel

A
B ,2 G

q � ,2 Q ,2 0

in C. Then we obtain an exact sequence

F pX|A|Gq � F pX|Aq

B
SX,G1,2 �F p1X |B|1Gq

F p1X |Bq

F
,2 F pX|Gq

F p1X |qq � ,2 F pX|Qq ,2 0

in A.

Proof : By Theorem 2.26 the functor F pX|�q preserves coequalisers of reflexive
graphs, hence by Proposition 2.31 the sequence

F pX|�qpA|Gq � F pX|Aq

C
F
�

1X

���@ B
1G

D	
�ιA,G

F p1X |Bq

G
,2 F pX|Gq

F p1X |qq � ,2 F pX|Qq ,2 0

is exact. Now we only need to prove that

F
�
1X
��@ B

1G

D�
�ιA,G � SX,G1,2 �F p1X |B|1Gq;

but this equality is easily obtained when post-composing with the monomorph-
ism ιX,G.

When the morphism q in the statement of Proposition 2.31 happens to be a
split epimorphism in a homological category, the proof may be simplified and
the result extended to the case where A is not necessarily Barr exact.

Proposition 2.33. Suppose that C is pointed protomodular with binary co-
products, A is finitely cocomplete homological and F : C Ñ A is reduced and
preserves regular epimorphisms. Then any split right-exact sequence

A
B ,2 G

q � ,2 Qlr
s

lr ,2 0

gives rise to split exact sequences

F pA|Gq � F pAq

B
pSF2 qG�F pB|1Gq

F pBq

F
,2 F pGq

F pqq � ,2 F pQqlr
F psq

lr ,2 0 (G)
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and, given an object X in C,

F pX|A|Gq � F pX|Aq

B
SX,G1,2 �F p1X |B|1Gq

F p1X |Bq

F
,2 F pX|Gq

F p1X |qq� ,2 F pX|Qq ,2lr
F p1X |sq

lr 0 (H)

in A.

Proof : Consider the following diagram of solid arrows.

F pA|Gq � F pAq

@
ιFA,G
F piAq

D
,2

_��

F pA�Gq
F prGq � ,2

F
�@

B
s

D	
_��

F pGq ,2 0

KerpF pqqq � ,2 ,2 F pXq
F pqq

� ,2 F pGq ,2 0

Its top row is exact by Proposition 2.8. Moreover, F
�@

B
s

D�
is a regular epi-

morphism by the protomodularity of C and the hypothesis on F . Hence by the
uniqueness of image factorisations, kerpF pqqq is equal to

im
�
F
�@

B
s

D�
�
@ ιFA,G
F piAq

D	
� im

�A
pSF2 qG�F pB|1Gq

F pBq

E	
,

taking (F) into account. Hence the sequence (G) is exact. Now the exactness
of (H) may be deduced as in the proof of Proposition 2.32, noting that the
functor F pX|�q preserves regular epimorphisms (Proposition 2.23).

3. Internal actions and semi-direct products
There are several ways in which the concept of action can be introduced

categorically: starting from monoidal structures [9, 10]; as algebras over a cer-
tain monad, so that an equivalence between actions and points is obtained [20,
41]; or via cross-effects, as explained in [36]. The interpretation of actions
as algebras due to Bourn and Janelidze is conceptually very beautiful and
rests on a deep categorical result: when A is semi-abelian, the kernel func-
tor PtGpAq Ñ A is monadic, so that the resulting category of algebras is equiv-
alent to PtGpAq. Thus the construction of semi-direct products is part of the
definition of action from the start; being algebras of a monad, actions form a
category of which the properties are well-studied.
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In comparison, the definition of actions via cross-effects is rather ad hoc.
But, even when actions-as-algebras are formally equivalent to actions-via-cross-
effects, in some situations the the latter notion is easier to work with. And there
is one further, and more important, advantage: these actions are defined using
binary cross-effects, but there are also higher cross-effects, which may be used
to express properties of actions that are not so easily captured by other means.
In the present article we shall be studying one instance of this phenomenon.

3.1. Basic definition. Let A, G be objects of A and ψ : pA|Gq Ñ A a
morphism. Consider the coequaliser

pA|Gq
ι

,2
iA�ψ ,2

A�G
q � ,2 Q.

We say that the pair pA,ψq is an action (of G on A) or a G-action when
the morphism kψ � q�iA is a monomorphism. (Compare with the analysis of
actions worked out in [54].) When this happens, we write A �ψ G � Q and
call Q the semi-direct product of A and G along ψ. It fits into the split
short exact sequence

0 ,2 A
� ,2

kψ
,2 A�ψ G

pψ � ,2
G ,2lr

sψ
lr 0 (I)

where pψ is induced by rG : A�GÑ G and sψ � q�iG.
It is further proved in [36] that assigning to an action pA,ψq the point

A�ψ G
pψ � ,2

Glr
sψ

lr

defines one half of an equivalence between the category ActGpAq of G-actions
in A and the category PtGpAq of points in A over G. The other half takes a
point

X
p � ,2

Glr
s

lr

and sends it to the induced dotted arrow ψ in the diagram with short exact
rows

0 ,2 pA|Gq � ,2
ιA,G

,2

ψ
��

A�G
xrA,rGy � ,2@

a
s

D
��

A�G

πG
��

,2 0

0 ,2 A
� ,2

a
,2 X

p � ,2
Glr

s
lr ,2 0.
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Example 3.2. In the category of groups any action ψ : pA|Gq Ñ A is already
a G-group, i.e., the function

pg, aq ÞÑ g � a � ψpgag�1a�1qa

does not only satisfy the rules 1 � a � a and pgg1q � a � g � pg1 � aq, but also
g � paa1q � pg � aqpg � a1q. This agrees with the fact that in Gp, semi-direct
products correspond with G-groups rather than with general actions.

In practice, it is often desirable to construct suitable actions; a rich source of
actions is given by normal monomorphisms as they carry a conjugation action
of the object they are contained in [36].

Example 3.3. For any object X, the conjugation action

cX,X � cX2 � ∇2
X�ιX,X : pX|Xq Ñ X

of X on itself corresponds to the split short exact sequence

0 ,2 X
� ,2
x1X ,0y ,2 X �X

π2 � ,2
X ,2lr

x1X ,1Xy
lr 0.

Proposition 3.4. Let n : N Ñ X be a normal monomorphism in A. Then
there is a unique action cN,X : pN |Xq Ñ N of X on N such that

pN |Xq
cN,X ,2

pn|1Xq
��

N_��
n

��
pX|Xq

cX,X
,2 X

commutes, the conjugation action of X on N . It is natural in the sense
that any commutative square as on the left

N ,2
_��

��

N 1
_��

��

X ,2 X 1

pN |Xq ,2

cN,X
��

pN 1|X 1q

cN
1,X1

��

N ,2 N 1

gives a commutative square as on the right.

Proposition 3.5 (Co-universal property of the semi-direct product). Consider
in A an action ψ : pA|Gq Ñ A and morphisms

A
f

,2 Z G.
g

lr
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Then there exists a (necessarily unique) morphism
@
f
g

D
: A �ψ G Ñ Z such

that
@
f
g

D
�kψ � f and

@
f
g

D
�sψ � g if and only if the square

pA|Gq
ψ

,2

pf |gq
��

A

f
��

pZ|Zq
cZ2

,2 Z

commutes.

Example 3.6. The trivial action of an object G on an object A is the zero
morphism 0: pA|Gq Ñ A. Then the semi-direct productA�0 G isA�G and p0

is the product projection πG : A�GÑ G. Hence two coterminal morphisms f
and g as in Proposition 3.5 Huq-commute if and only if cZ2 �pf |gq is trivial. This
of course also follows immediately from the fact that A � G is the cokernel
of ιA,G : pA|Gq Ñ A�G and the equality cZ2 �pf |gq �

@
f
g

D
�ιA,G.

Example 3.7 (Centrality). The conjugation action cN,X of an object X on a
normal subobject N � X is trivial if and only if N is central in X, which
means that n : N Ñ X and 1X : X Ñ X Huq-commute; indeed n�cN,X �
cX,X�pn|1Xq. (Compare with Theorem 3.2.4 in [25].)

Starting from conjugation actions we may again construct various new actions
by the following device (see Lemma 6.1 below for a partial converse).

Proposition 3.8. [36] Let ψ : pA|Gq Ñ A be an action, let m : M Ñ A be a
monomorphism and h : H Ñ G a morphism. Suppose that M is H-stable un-
der ψ, i.e., the morphism ψ�pm|hq : pM |Hq Ñ A factors through a (necessarily
unique) morphism ϕ : pM |Hq ÑM such that the square

pM |Hq
ϕ

,2

pm|hq
��

M
��
m

��
pA|Gq

ψ
,2 A

commutes. Then ϕ is an action of H on M .
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Definition 3.9. When, in particular, M � A in the above proposition, we
write ϕ � h�pψq

pA|Hq
h�pψq

,2

p1A|hq
��

A

pA|Gq
ψ

,2 A

(J)

and call ϕ the pullback of ψ along h.

Remark 3.10. This choice of terminology may be justified as follows. Through
the equivalence of actions and points, the square (J) matches the morphism of
split short exact sequences

0 ,2 A
� ,2
kϕ

,2 A�ϕ H
pϕ � ,2

1A�h ��

H

h
��

,2lr
sϕ

lr 0

0 ,2 A
� ,2
kψ

,2 A�ψ G
pψ � ,2

G ,2lr
sψ

lr 0;

Lemma 1.5 tells us that the right hand side square of the diagram is a pullback.
(In fact, one easily sees that it is also a pushout.)

Example 3.11. When N �X as in Proposition 3.4,

n�pcN,Xq � cN,N � cN2 .

Indeed, n�cN,X�p1N |nq � cX,X�pn|1Xq�p1N |nq � cX2 �pn|nq, which equals n�cN2
by naturality of conjugation actions.

Example 3.12. For any action ψ : pA|Gq Ñ A,

ψ � cA,A�ψG�p1A|sψq � s�ψpc
A,A�ψGq :

the action ψ coincides with the restriction to G of the conjugation action of
the semi-direct product A�ψ G on A.

3.13. A first encounter with a ternary cross-effect. Any action induces
certain higher-order operations which we shall need in what follows.

Notation 3.14. Let A, G be objects in and ψ : pA|Gq Ñ A a morphism.
Consider n ¥ 2 and 1 ¤ k ¤ n � 1. Define ψk,n�k to be the composite
morphism

ψk,n�k : pA| � � � |A|G| � � � |Gq
SA,Gk,n�k

,2 pA|Gq
ψ

,2 A.
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In particular, taking ψ to be the conjugation action cN,X of an object X on
some normal subobject N �X, we get morphisms

cN,Xk,n�k : pN | � � � |N |X| � � � |Xq Ñ N.

Note that cN,X1,1 � cN,X . Also the other conjugation actions cN,Xk,n�k are inter-
related, the generic relation being the following one:

Lemma 3.15. For any normal monomorphism n : N Ñ X the equality

cN,X2,1 � cN,X1,2 �p1N |n|1Xq : pN |N |Xq Ñ N

holds. In particular, cX,X2,1 � cX,X1,2 � cX3 .

Proof : Post-compose with n and use the commutative diagrams obtained by
injecting the various cross-effects into the corresponding sums.

This coherence condition in terms of ternary cross-effects will appear again
in the analysis of crossed modules: see Theorem 5.7 and Example 5.10 and 5.11
below. We shall also investigate some closely related structures, such as Beck
modules and extensions with abelian kernel. Those structures all satisfy vari-
ations of this condition, variations which may be expressed in terms of higher-
order commutators (sections 6 and 7).

4. The Smith is Huq condition
We explain how the Smith is Huq condition for finitely cocomplete homolo-

gical categories may be expressed in terms of cross-effects as the vanishing of a
ternary commutator. Thus a condition which is about locally defined internal
categorical structures admitting a global extension is characterised as a compu-
tational obstruction. This is the key point of the present article—all results in
the ensuing sections are based on it.
Theorem 4.4 characterises when two given equivalence relations R, S on a

common object X commute in the Smith/Pedicchio sense: if K and L denote
their respective denormalisations,

rK,Ls � rK,L,Xs � 0

is a necessary and sufficient condition. This immediately gives a character-
isation of the Smith is Huq condition (Theorem 4.6), and a formula for the
Smith/Pedicchio commutator in terms of cross-effects (Theorem 4.14). We also
find a characterisation of double central extensions (Proposition 4.16), which



30 MANFRED HARTL AND TIM VAN DER LINDEN

allows us to obtain a Hopf formula for the third homology of an object in any
semi-abelian category with enough projectives (Theorem 4.17).

4.1. The Smith/Pedicchio commutator. Consider a pair of equivalence
relations pR, Sq on a common object X

R

r1 ,2

r2
,2 X∆R

lr ∆S
,2 S,

s1
lr

s2lr

and consider the induced pullback of r1 and s2.

R �X S
πS ,2

πR

��

S

s2

��

R r1
,2 X

(K)

The equivalence relations R and S Smith/Pedicchio-commute [62, 57, 19]
when there is a (necessarily unique) morphism θ (a connector between R
and S) such that the diagram

R
x1R,∆S�r1y

z�������� r2

�$???????

R �X S θ ,2 X

S
x∆R�s2,1Sy

Zd??????? s1

:D�������

is commutative. The connector θ is a partially defined Mal’tsev operation
on X, as the diagram commutes precisely when θpx, x, zq � z for px, zq P S
and θpx, z, zq � x for px, zq P R. It is also the same thing as a pregroupoid
structure [46, 44] on the span pd � coeqpr1, r2q, c � coeqps1, s2qq.
The Smith/Pedicchio commutator rR, SsS of R and S is the smallest

equivalence relation on X that should be divided out to make R and S com-
mute, so that they do commute if and only if rR, SsS � ∆X . It may be obtained
through the colimit Q of the outer square above, as the kernel of the (normal
epi)morphism X Ñ Q.

4.2. The Smith is Huq condition. The normalisationK of an equivalence
relation pR, r1, r2q on X is the monomorphism

r2�kerpr1q : K � Kerpr1q Ñ X.
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We say that a monomorphism is an ideal when it is the normalisation of some
(necessarily unique) equivalence relation [13]. In a homological category, ideals
are direct images of kernels along regular epimorphisms—see [50] for an in-
depth analysis. We shall give a precise characterisation of ideals in terms
of internal actions in Example 5.11. For now, it suffices to note that the
normalisation of an effective equivalence relation is always a kernel; conversely,
any normal subobject N�X (in the strong sense, i.e., it may be represented by
a kernel) admits a denormalisation RN , the kernel pair of its cokernel. This
process determines an order isomorphism between the normal subobjects of X
and the effective equivalence relations on X, which in the semi-abelian case
coincides with the correspondence between ideals and equivalence relations.
It is well known that Smith/Pedicchio-commuting equivalence relations have

Huq-commuting normalisations [19]. However, the converse need not hold;
in [7, 16] a counterexample is given in the category of digroups, which is a
semi-abelian variety, even a variety of Ω-groups [38]. (See also Example 4.9.)
Thus arises a property homological categories may or may not have:

Definition 4.3. A homological category satisfies the Smith is Huq con-
dition (SH) when any two effective equivalence relations on a given object
commute as soon as their normalisations do.

It turns out that the condition (SH) is fundamental in the study of internal
categorical structures: it is shown in [53] that, for a semi-abelian category,
this condition holds if and only if every star-multiplicative graph is an internal
groupoid. As explained in [41] and in Section 5 of the present article, this is
important in the definition of internal crossed modules.
The Smith is Huq condition is known to hold for pointed strongly proto-

modular exact categories [19] (in particular, for any Moore category [58]) and
for action accessible categories [22, 25] (in particular, for any category of in-
terest [55, 56]). Well-known examples are the categories of groups, Lie algebras,
associative algebras, non-unitary rings, and (pre)crossed modules.

Theorem 4.4. For effective equivalence relations R and S on X with respective
normalisations K, L�X, the following are equivalent:

(i) R and S Smith/Pedicchio-commute;
(ii) rK,Ls � 0 � rK,L,Xs.
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Hence a homological category satisfies (SH) when for any pair of effective
equivalence relations of which the normalisations commute, the ternary com-
mutator obstruction vanishes. The proof is an obvious application of the fol-
lowing fundamental lemma. The basic admissibility condition which appears
in it was first discovered by Martins–Ferreira, see e.g. [51]. (Incidentally, we
believe Lemma 4.5 answers part of the question asked in the concluding section
of that paper; see also [52].) We shall consider diagrams of shape

A
f

,2

α
�$??????????? B

r
lr

s
,2

β

��

C
g

lr

γ
z������������

D

(L)

with f �r � 1B � g�s and α�r � β � γ�s. By taking the pullback of f with g,
any diagram such as (L) may be extended to a diagram

A�B C
πC ,2

πA

��

C
e2

lr

g

�� γ

��

A
f

,2

e1

LR

α
&-

B
r

lr

s

LR

β
?????

�$?????

D

in which the square is a double split epimorphism (i.e., also the obvious squares
involving splittings commute). The triple pα, β, γq is said to be admissi-
ble with respect to pf, r, g, sq if there is a (necessarily unique) morphism
ϑ : A�B C Ñ D such that ϑ�e1 � α and ϑ�e2 � γ.

Lemma 4.5. Given any diagram (L), let k : K Ñ D be the image of α�kerpfq,
l : LÑ D the image of γ�kerpgq and β : B Ñ D the image of β. Then the triple
pα, β, γq is admissible with respect to pf, r, g, sq if and only if

rK,Ls � 0 � rK,L,Bs.

Proof : We decompose A, C and A �B C into semi-direct products and then
analyse in terms of the induced actions what it means for ϑ to exist. By the
equivalence between actions and points there are unique actions ϕ, ψ that give
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rise to the morphisms of split short exact sequences

0 ,2 K
� ,2

kerpfq
,2 A

f � ,2
B ,2lr

r
lr 0

0 ,2 K
� ,2
kϕ

,2 K �ϕ B

ρ �

LR

pϕ � ,2
B ,2lr

sϕ
lr 0

and

0 ,2 L
� ,2

kerpgq
,2 C

g � ,2
B ,2lr

s
lr 0

0 ,2 L
� ,2
kψ

,2 L�ψ B

σ �

LR

pψ � ,2
B ,2lr

sψ
lr 0.

By Remark 3.10 we obtain the following commutative diagram with exact rows,
in which ζ � pg�σq�pϕq � ϕ�p1K |pψq.

0 ,2 K
� ,2

kζ
,2 K �ζ pL�ψ Bq

κ�

��

pζ � ,2 L�ψ B ,2lr
sζ

lr

σ�

��

0

0 ,2 K
� ,2

xkerpfq,0y
,2 A�B C

πA

��

πC � ,2
C

g

��

,2lr
e2�xr�g,1Cy

lr 0

0 ,2 K
� ,2

kerpfq
,2 A

f � ,2
B ,2lr

r
lr 0

Now write k � α�kerpfq : K Ñ D and l � γ�kerpgq : L Ñ D. If the desired
morphism ϑ exists then

ϑ�κ � ϑ�
@
xkerpfq,0y
e2�σ

D
� ϑ�

@
x1A,s�fy�kerpfq

e2�σ

D
�
@
ϑ�e1�kerpfq
ϑ�e2�σ

D
�
@
α�kerpfq
γ�σ

D
�

B
α�kerpfq@
γ�kerpgq

β

DF �
A

k@
l
β

DE
.

Conversely, if the morphism

ϑ1 �
A

k@
l
β

DE
exists then ϑ � ϑ1�κ�1 satisfies the relevant constraints: it is clear from the
above calculation that ϑ1�κ�1�e2 � γ and that ϑ1�κ�1�e1�kerpfq � α�kerpfq,
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but we also have

ϑ1�κ�1
�e1�r � ϑ1�κ�1

�x1C , s�fy�r � ϑ1�κ�1
�xr, sy � ϑ1�κ�1

�xr�g, 1Cy�s

� ϑ1�κ�1
�e2�s � γ�s � β � α�r.

Thus ϑ1�κ�1�e1 � α. It follows that the desired morphism ϑ exists if and only
if ϑ1 exists, which according to Proposition 3.5 is the case if and only if the
diagram

pK|L�ψ Bq
ζ

,2�
k
���@ lβD	 ��

K

k
��

pD|Dq
cD,D

,2 D

(M)

commutes. To find conditions for this to happen we use sequence (H) on the
identity functor of A in order to decompose the object pK|L �ψ Bq in three
parts, via the regular epimorphismC

S
K,L�ψB

1,2 �p1K |kψ|sψq

p1K |kψq
p1K |sψq

G
: pK|L|Bq � pK|Lq � pK|Bq Ñ pK|L�ψ Bq.

First note that by Example 3.12 and naturality of the conjugation action

k�ζ�p1K |sψq � k�ϕ�p1K |pψq�p1K |sψq � k�ϕ � k�cK,K�ϕB�p1K |sϕq

� cD,D�pk|
@
k
β

D
q�p1K |sψq � cD,D�pk|βq

� cD,D�pk|
@
l
β

D
q�p1K |sψq,

so that Diagram (M) always commutes on pK|Bq.
Next, k�ζ�p1K |kψqq � k�ϕ�p1K |pψq�p1K |kψq � k�ϕ�p1K |0q � 0 by reduced-

ness of the cross-effect. Hence, for the equality

k�ζ�p1K |kψqq � cD,D�pk|
@
l
β

D
q�p1K |kψqq

to hold, the morphism cD,D�pk|lq � cD2 �pk|lq�pk1|l1q has to be trivial. (Here
we write k � k�k1, and similarly for l and β). Noting that pk1|l1q is a reg-
ular epimorphism by Proposition 2.23, we see that cD,D�pk|lq � 0 precisely
when rK,Ls � ImpcD2 �pk|lqq � 0.
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Finally,

k�ζ�S
K,L�ψB
1,2 �p1K |kψ|sψq � k�ϕ�p1K |pψq�S

K,L�ψB
1,2 �p1K |kψ|sψq

� k�ϕ�SK,B1,2 �p1K |pψ|pψq�p1K |kψ|sψq

� k�ϕ�SK,B1,2 �p1K |0|1Bq

is zero, while

cD,D�pk|
@
l
β

D
q�S

K,L�ψB
1,2 �p1K |kψ|sψq � cD,D�SD,D1,2 �pk|

@
l
β

D
|
@
l
β

D
q�p1K |kψ|sψq

� cD3 �pk|l|βq

� cD3 �pk|l|βq�pk1|l1|β1q.

As pk1|l1|β1q is a regular epimorphism by Proposition 2.23, this tells us that Dia-
gram (M) commutes on pK|L|Bq if and only if rK,L,Bs � ImpcD3 �pk|l|βqq � 0,
which concludes the proof.

Theorem 4.6. The following are equivalent:
(i) the Smith is Huq condition holds;
(ii) any two effective equivalence relations on a given object commute as

soon as their normalisations do;
(iii) any two equivalence relations on a given object commute as soon as

their normalisations do;
(iv) for any K, L ideals of X,

rK,L,Xs ¤ rK,LsHuq.

Proof : Conditions (i) and (ii) are equivalent by definition. The equivalence
between (ii) and (iii) is Remark 2.4 in [53], but may also be obtained using
Lemma 4.5. Now suppose that (iii) holds and consider normal subobjects K
and L of X. Divide out their Huq commutator

0 ,2 rK,LsHuq � ,2 ,2 X
q � ,2 Q ,2 0

and write qpKq, qpLq ¤ Q for the direct images of K and L along q. By
Proposition 2.18.ii we obtain a diagram

rK,L,Xs
��

��

� ,2

t|

rqpKq, qpLq, Qs
��

��

0 ,2 rK,LsHuq � ,2 ,2 X q
� ,2 Q ,2 0
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and a factorisation of rK,L,Xs over rK,LsHuq. Indeed, rqpKq, qpLq, Qs is zero
by Theorem 4.4, as rqpKq, qpLqs � qrK,Ls � 0. Finally, (iv) ñ (ii) is again a
consequence of Theorem 4.4.

This at once yields a new class of examples.

Example 4.7. A nilpotent category of class 2 is a semi-abelian category
whose identity functor is quadratic, i.e., it has a trivial triple cross-effect [35].
Hence, almost by definition, any such category satisfies (SH). In particular, the
Smith is Huq condition holds for modules over a square ring, and specifically
for algebras over a nilpotent algebraic operad of class two [3].

Example 4.8. When K, L, M are normal subgroups of a group G,

rK,L,M s � rK, rL,M ss _ rL, rM,Kss _ rM, rK,Lss

by a result in [35]. Hence in Gp all triple commutator words are essentially of
the shape considered in Example 2.4.
This of course also gives (SH). So far it is not clear which categories allow a

similar decomposition of their triple commutators.

For instance, the semi-abelian variety Loop of loops and loop homomorphisms
forms a counterexample. We show that it does not satisfy the Smith is Huq
condition, which also implies that this category is neither action accessible nor
strongly protomodular.

Example 4.9. A loop is a quasigroup with unit, an algebra

pA, �, z, {, 1q

of which the multiplication � and the left and right division z and { satisfy the
axioms

y � x � pxzyq y � xzpx � yq

x � px{yq � y x � px � yq{y

and 1 is a unit for the multiplication, x � 1 � x � 1 � x. We shall sometimes
write xy for x � y. The variety Loop of loops is semi-abelian (as mentioned for
instance in [8]). Loops are “non-associative groups”, and indeed an associative
loop is the same thing as a group. It is easily seen that the abelian objects
in Loop are precisely the abelian groups—which are not to be confused with
the objects in the variety of commutative loops, which have a commutative,
but possibly non-associative, multiplication.
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The associator of three elements x, y, z of a loop X is the unique ele-
ment vx, y, zw of X such that pxyqz � vx, y, zw � xpyzq. Hence vx, y, zw is
equal to ppxyqzq{pxpyzqq. Given three normal subloops K, L and M of X,
we write vK,L,Mw for the associator subloop of X determined by K, L
and M : the normal subloop of K_L_M generated by the elements vx, y, zw,
where either px, y, zq or any of its permutations is in K � L�M .
It is clear that the object vK,L,Mw is a subloop of the triple commuta-

tor rK,L,M s, as for any associator element vx, y, zw, the associators v1, y, zw,
vx, 1, zw and vx, y, 1w are trivial (Example 2.5). In general the triple commu-
tator rK,L,M s is bigger though: otherwise the category of groups would be
quadratic—which it is not, as there exist examples of groups that are not 2-step
nilpotent.
In order to prove that the category Loop does not satisfy the Smith is Huq

condition, it suffices to give an example of a loop X with an abelian normal
subloop A of X such that rA,A,Xs is non-trivial. Then by Theorem 4.4 the
denormalisation RA of A does not Smith/Pedicchio-commute with itself, even
though rA,As � 0. (This situation is further analysed in Theorem 6.4.) In
fact, in our example, already the associator vA,A,Xw is non-trivial.
We take X to be the well-known (and historically important) loop of order

eight occurring in relation with the hyperbolic quaternions: the set

t1,�1, i,�i, j,�j, k, ku

with multiplication determined by the rules

ij � k � �ji

jk � i � �kj ii � jj � kk � 1

ki � j � �ik

and the expected behaviour for �1. The subset t1,�1, j,�ju of L forms a
normal subloopA of index two, isomorphic to the Klein four-group V � Z2�Z2.
Now jpjiq � jp�kq � �i while pjjqi � i, so

1 � vj, j, iw P vA,A,Xw ¤ rA,A,Xs.

4.10. Decomposition of the Smith/Pedicchio commutator. The above
Theorem 4.4 leads to a formula for the Smith/Pedicchio commutator of two
equivalence relations in terms of binary and ternary commutators of their nor-
malisations: Theorem 4.14.
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Lemma 4.11 (cf. Remark 2.12). For any K, L ¤ X in a semi-abelian cat-
egory, the join rK,L,Xs _ rK,Ls is normal in X.

Proof : Consider first the quotient q of X by rK,L,Xs, then the direct image
of rK,Ls along q.

rK,Ls
��

��

� ,2 rqpKq, qpLqs
��

��

0 ,2 rK,L,Xs � ,2 ,2 X q
� ,2 Q ,2 0

Note that rK,L,Xs is normal in X by Proposition 2.18.vii. To prove our claim
we only need to show that the commutator rqpKq, qpLqs is normal inQ � qpXq.
But

rrqpKq, qpLqs, qpXqs ¤ rqpKq, qpLq, qpXqs � qrK,L,Xs � 0

by Proposition 2.18 so that the result follows from Proposition 2.16.

Remark 4.12. When, to the above situation, we add M ¤ X such that
K _ L_M � X,

rK,L,M s _ rK,Ls � rK,L,Xs _ rK,Ls.

Indeed, freely using the rules from Proposition 2.18, we see that

rK,L,K _ L_M s

� rK,L,K,L,M s _ rK,L,K,Ls _ rK,L, L,M s

_ rK,L,K,M s _ rK,L,Ks _ rK,L, Ls _ rK,L,M s

¤ rK,L,M s _ rK,Ls _ rK,L,M s

_ rL,K,M s _ rL,Ks _ rK,Ls _ rK,L,M s

� rK,L,M s _ rK,Ls,

while the other inclusion is obvious.

Remark 4.13. If K, L�X are such that K_L � X then rK,Ls � 0 suffices
for the respective denormalisations R and S of K and L to commute in the
Smith/Pedicchio-sense [32]. In other words, when rK,Ls is trivial, the ternary
commutator rK,L,Xs is trivial as well. By Remark 4.12 this also follows from

rK,L,Xs _ rK,Ls � rK,L, 0s _ rK,Ls � rK,Ls.
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Theorem 4.14. In a semi-abelian category, given equivalence relations R
and S on X with respective normalisations K, L � X, the Smith/Pedicchio
commutator rR, SsS is the left hand side equivalence relation

prK,L,Xs _ rK,Lsq �γ X

B
0
0

1X

F
,2C

rk,l,1X s
rk,ls
1X

G,2 Xsγlr rK,Ls �γ X

@
0

1X

D
,2A

rk,ls
1X

E,2 Xsγlr

where γ is the conjugation action of X on rK,L,Xs _ rK,Ls. When, in ad-
dition, K _ L � X then rR, SsS simplifies to the above right hand side equiv-
alence relation.

Proof : The equivalence relation in the statement above is the denormalisation
of the normal subobject rK,L,Xs_rK,Ls of X considered in Lemma 4.11. By
Theorem 4.4 it satisfies the same universal property as rR, SsS, thus it coincides
with it. The further refinement is just Remark 4.13.

4.15. An application to homology. One situation where expressing the
Smith/Pedicchio commutator in terms of cross-effects yields immediate results
is in semi-abelian (co)homology. For instance, according to [31] the Hopf for-
mula for the third homology object H3pZ, abq of an object Z with coefficients
in the abelianisation functor

ab : A Ñ AbpAq : A ÞÑ A{rA,AsHuq

depends on a characterisation of the double central extensions in A. Such a
characterisation was given in [60] in terms of the Smith/Pedicchio commutator:
a double extension such as (N) below is central if and only if

rRrds,RrcssS � ∆X � rRrds ^ Rrcs,∇Xs
S.

Here ∇X is the largest equivalence relation on X, the denormalisation of 1X .
When (SH) holds this condition may be reformulated in terms of the Huq
commutator, and when A has enough projectives this makes it possible to
express H3pZ, abq as a quotient of commutators. So far, however, it was unclear
how to obtain a similar explicit formula in categories that do not satisfy (SH).
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Proposition 4.16. Given a double extension

X
c ,2

d
��

C
g

��

D
f

,2 Z

(N)

in a semi-abelian category, write K � Kerpcq and L � Kerpdq. Then (N) is
central if and only if

rK,L,Xs � rK,Ls � rK ^ L,Xs � 0.

Proof : Via Theorem 4.4 this is an immediate consequence of Theorem 2.8
in [60].

Recall that a double presentation of an object Z is a double extension
such as (N) in which the objects X, D and C are (regular epi)-projective.

Theorem 4.17. Let A be a semi-abelian category with enough projectives.
Let Z be an object in A and (N) a double presentation of Z with K � Kerpcq
and L � Kerpdq. Then

H3pZ, abq �
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs
.

When, moreover, A is monadic over Set, these homology groups are comonadic
Barr–Beck homology [2] with respect to the canonical comonad on A.

Proof : This follows from Proposition 4.16 and the main result of [30]; see
also [31]. Note that by Lemma 4.11 and Proposition 2.18.vii, the denominator
is indeed normal in X so that the formula makes sense.

5. Internal crossed modules
Now we turn to the study of crossed modules from the viewpoint of the defini-

tion of actions in terms of cross-effects. It turns out that this literally generalises
the classical definition as in the case of groups—except for a higher coherence
condition which does not appear in any of the usual categories where crossed
modules have been considered, such as groups, Lie algebras and associative
algebras. It expresses the property (SH) needed to extend a star-multiplication
to an internal category structure in arbitrary semi-abelian categories, or even
finitely cocomplete homological ones—see [41, 53].
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5.1. Internal categories and internal groupoids, star-multiplicative
graphs and Peiffer graphs. The analysis of the Smith is Huq condition in
terms of higher-order commutators yields new conditions for an internal reflex-
ive graph to be an internal category (or, equivalently, an internal groupoid).

Theorem 5.2. Consider an internal reflexive graph pR,G, d, c, eq.

R
d ,2

c
,2 Gelr d�e � c�e � 1G (O)

The following are equivalent:
(i) pR,G, d, c, eq is an internal category;
(ii) rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Rs;
(iii) rKerpdq,Kerpcqs � 0 � rKerpdq,Kerpcq, Impeqs;
(iv) the conjugation action cA,R : pA|Rq Ñ A of R on A factors through the

morphism p1A|cq : pA|Rq Ñ pA|Gq;
(v) cA,R � pe�cq�pcA,Rq.

Proof : Theorem 4.4 implies that(i) and (ii) are equivalent, because the given
reflexive graph is a groupoid if and only if the kernel pairs Rrds and Rrcs
of d and c Smith/Pedicchio-commute [57]. It is clear that (ii) implies (iii),
while the equivalence between (i) and (iii) may be obtained via Lemma 4.5.
In fact (ii) also follows from (iii) by a direct commutator calculation using
Proposition 2.18, as R � A_ Impeq.
The equivalence between (iii) and (iv) is a consequence of Proposition 2.33.

Finally, if cA,R � c�pϕq then

e�pcA,Rq � e�pc�pϕqq � pc�eq�pϕq � ϕ,

so that cA,R � c�pe�pcA,Rqq � pe�cq�pcA,Rq.

Condition (ii) on commuting kernels says that a reflexive graph pR,G, d, c, eq
with a multiplication m : Kerpdq � Kerpcq Ñ R defined locally around 0 as in

0
β

�


� �

α
T]11111

γ
lr

mpβ, αq � γ

extends to a globally defined multiplication (i.e., an internal category struc-
ture) if and only if the obstruction rKerpdq,Kerpcq, Rs vanishes. Similar “local
to global” properties were studied in [49, 53] after they appeared naturally



42 MANFRED HARTL AND TIM VAN DER LINDEN

in [41]. Since both are relevant in what follows, we briefly recall their defini-
tion; see [49, 53] and Remark 5.8 for more details and a proof that the structures
are equivalent.
Consider a reflexive graph pR,G, d, c, eq and the pullback

R �G Kerpdq

πR
��

πKerpdq
,2 Kerpdq

B�c�kerpdq
��

R
d

,2 G.

The reflexive graph is star-multiplicative [41] when there is a (necessarily
unique) morphism ς : R �G Kerpdq Ñ Kerpdq such that ς�xkerpdq, 0y � 1Kerpdq

and ςxe�B, 1Kerpdqy � 1Kerpdq.

�
β

�


� 0

α
T]11111

γ
lr

ζpβ, αq � γ

It is Peiffer [49] when there is a (necessarily unique) ω : Kerpdq � Kerpdq Ñ R
such that ω�x1Kerpdq, 0y � kerpdq and ω�x1Kerpdq, 1Kerpdqy � e�c�kerpdq.

0
β

�
 α
��11111

� �γ
lr

ωpβ, αq � γ

5.3. Precrossed modules and crossed modules. A precrossed module is a
normalisation of a reflexive graph, while a crossed module is a normalisation of
an internal groupoid. We describe these structures in terms of internal actions.

Definition 5.4. A precrossed module in a semi-abelian category A is a
quadruple pG,A, µ, Bq where G and A are objects in A, µ : pA|Gq Ñ A is an
action of G on A, and B : AÑ G is a G-equivariant morphism with respect to
the action µ and the conjugation action of G on itself, respectively. In other
words, the following square commutes.

pA|Gq
µ

,2

pB|1Gq
��

A

B
��

pG|Gq
cG,G

,2 G

(P)
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Together with the obvious morphisms, the precrossed modules in A form a
category PXModpAq.

Proposition 5.5. The category PXModpAq is equivalent to RGpAq.

Proof : This is an extension of the equivalence between actions and split epi-
morphisms. Given a precrossed module pG,A, µ, Bq, the action µ corresponds
to a split exact sequence

0 ,2 A
� ,2
kerpdq

,2 R
d � ,2

c
� ,2 G ,2lrelr 0 (Q)

where R � A �µ G. Proposition 3.5 gives a unique morphism c : RÑ G such
that B � c�kerpdq and c�e � 1G precisely when (P) commutes.

In particular, since the category PXModpAq is equivalent to a category of
diagrams in A, it is homological or semi-abelian when so is A.

Definition 5.6. A precrossed module pG,A, µ, Bq is a crossed module if
its associated reflexive graph is an internal category. This gives us the full
reflective [57] subcategory XModpAq of PXModpAq.

Janelidze analysed this concept of crossed module using internal actions in
semi-abelian categories [41]. Our actions are different, and thus we obtain a
different characterisation, valid in finitely cocomplete homological categories:

Theorem 5.7. A precrossed module pG,A, µ, Bq in a finitely cocomplete ho-
mological category is a crossed module if and only if it satisfies the following
two additional conditions:

(i) the conjugation action of A on itself coincides with the pullback of µ
along B, i.e., cA,A � B�pµq so that the square

pA|Aq
cA,A ,2

p1A|Bq
��

A

pA|Gq µ
,2 A

(R)

commutes;
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(ii) the square

pA|A|Gq
µ2,1

,2

p1A|B|1Gq
��

A

pA|G|Gq µ1,2

,2 A

(S)

commutes.

Proof : Using Proposition 2.8, we decompose the object R in such a way that
the fifth condition of Theorem 5.7 falls apart in three distinct statements. One
of those is the commutativity of (R), a second one is the commutativity of (S),
and a third is trivially satisfied.
Indeed, R � A �µ G, so that we may consider the following pair of parallel

morphisms.

ppA|A|Gq � pA|Aqq � pA|Gq � ,2 pA|A�Gq
p1A|qq� ,2 pA|A�µ Gq

cA,R ,2

pe�cq�pcA,Rq

,2 A

On pA|Gq these morphisms coincide, as q�iG � e : G Ñ A �µ G � R by
definition of e, and

pe�cq�pcA,Rq�p1A|eq � e�ppe�cq�pcA,Rqq � pe�c�eq�pcA,Rq

� e�pcA,Rq � cA,R�p1A|eq.

On pA|Aq they coincide if and only if the square (R) commutes. To see this, re-
call that q �

@
kerpdq
e

D
: A�GÑ A�µ G � R, so that q�iA � kerpdq : AÑ R.

Then
kerpdq�cA,R�p1A|kerpdqq � kerpdq�cA,A

by naturality of conjugation actions (Proposition 3.4), and

kerpdq�pe�cq�pcA,Rq�p1A|kerpdqq � kerpdq�cA,R�p1A|e�cq�p1A|kerpdqq

� cR,R�pkerpdq|1Rq�p1A|e�c�kerpdqq

�
@

1R
1R

D
�ιR,R�pkerpdq|e�c�kerpdqq

�
@

kerpdq
e

D
�ιA,G�p1A|c�kerpdqq

� kerpdq�µ�p1A|Bq.

Hence cA,A � µ�p1A|Bq if and only if cA,R and pe�cq�pcA,Rq coincide on pA|Aq.
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Similarly, cA,R and pe�cq�pcA,Rq coincide on pA|A|Gq precisely when (S) com-
mutes. For a proof, consider the commutative diagrams

pA|A|Gq

ι
pA|�q
A,G

��

ιA,A,G

$,QQQQQQQQQQQQQQQQQ

p1A|1A|eq ,2 pA|A|Rq
ιA,A,R

$,QQQQQQQQQQQQQQQQQ

pA|A�Gq ιA,A�G
,2

p1A|qq

��

A� A�G

1A�q

��

1A�1A�e ,2 A� A�R

C
iA

iR�kerpdq
1R

G
nu C

kerpdq
kerpdq

1R

G

ou

kerpdq�kerpdq�1R

��

pA|Rq

cA,R

��

ιA,R
,2 A�R@

kerpdq
1R

D
��

A
� ,2

kerpdq
,2 R R �R �R

∇3
R

lr

and

pA|A|Gq
p1A|1A|eq,2

SA,G2,1

��
µ2,1

�"

pA|A|Rq ιA,A,R

"*

SA,R2,1

��

pA|Gq

µ

��

p1A|eq ,2 pA|Rq

cA,R

��

ιA,R
,2 A�R@

kerpdq
1R

D
��

A� A�R

kerpdq�kerpdq�1R

��

∇A�1Rlr

A A
� ,2

kerpdq
,2 R R �R �R

∇3
R

lr

which show that µ2,1 � cA,R�p1|qq�ι
pA|�q
A,G . Similar diagrams show that

µ1,2�p1A|B|1Gq � pe�cq�pcA,Rq�p1|qq�ι
pA|�q
A,G ,

and these two equalities together are precisely what we need to prove our
claim.
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Remark 5.8. Condition (i) could be called the Peiffer condition. It means
that the reflexive graph induced by pG,A, µ, Bq is a Peiffer graph: the commu-
tativity of (R) gives us a morphism of split short exact sequences

0 ,2 A
� ,2
x1A,0y ,2 A� A

π2 � ,2

ω
��

A

B
��

,2lr
x1A,1Ay
lr 0

0 ,2 A
� ,2

kerpdq
,2 R

d � ,2
G ,2lr

e
lr 0

as in Example 3.3. The conditions kerpdq � ω�x1A, 0y and e�B � ω�x1A, 1Ay tell
us that ω is a Peiffer structure on pR,G, d, c, eq. By Proposition 3.7 in [53] this
is equivalent to the reflexive graph being star-multiplicative in the sense of [41],
or—when A is semi-abelian—the condition that kerpdq and kerpcq commute.
The star-multiplication on pR,G, d, c, eq may also be obtained directly from

the commutativity of (R). Indeed, via the co-universal property of semi-direct
products (Proposition 3.5) we see that the needed morphism

ζ : A�B�pµq A � R �G AÑ A

exists if and only if B�pµq � cA,A.
Hence a semi-abelian category satisfies (SH) if and only if the coherence

condition (ii) always comes for free: any precrossed module that satisfies the
Peiffer condition is a crossed module. This happens, for instance, in all of the
examples considered below in 5.9.
In a non-exact context this is not quite true. As explained in the last

paragraph of [53], in order that (SH) be equivalent to the condition “all star-
multiplications come from internal category structures”, a slight strengthening
of the definitions of star-multiplicative graph and of Peiffer graph imposes itself.
Thus asking that (ii) always holds in a finitely cocomplete homological category
seems formally stronger than assuming (SH), as the Peiffer condition (i) only
gives “weak” Peiffer graphs.

Examples 5.9. WhenA is the category of groups, the above Definition 5.6 of a
crossed module is equivalent with the classical definition, because the coherence
condition (ii) follows from (i). In the case of augmented (i.e., non-unitary)
associative algebras we obtain the definition due to Dedecker and Lue [26, 47]
and Baues [4], and in the case of Lie algebras the one considered by Kassel and
Loday [45].
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Example 5.10 (Kernels). In all classical algebraic examples, any kernel is a
crossed module. This is of course true in general. Given a short exact se-
quence (A), the quadruple pX,A, cA,X , aq is a precrossed module by naturality
of the conjugation action, and it satisfies the Peiffer condition by Example 3.11
and the coherence condition (S) by Example 3.15. The internal category cor-
responding to pX,A, cA,X , aq is the kernel pair Rrps of p. In a semi-abelian
category, any crossed module pG,A, µ, Bq where B is monic is of this shape, as
follows either from the next example or from Proposition 2.16 and the commu-
tativity of the square (P).

Example 5.11 (Ideals). In a non-exact setting, however, the existence of
the action µ is not enough to guarantee that B is a kernel. Actually, when
pG,A, µ, Bq is a crossed module in a finitely cocomplete homological category, B
being a monomorphism is equivalent to the corresponding internal category be-
ing an equivalence relation—but there is no reason why this equivalence relation
would be effective. The kernel of B is precisely

Kerpdq ^ Kerpcq � Kerpxd, cy : RÑ G�Gq,

which is zero if and only if d and c are jointly monic.
In any case, a monic crossed module is the same thing as an ideal (Sub-

section 4.2). Furthermore, any monic precrossed module is automatically a
crossed module, since in a Mal’tsev category any reflexive relation is an equiva-
lence relation. In other words, when B is a monomorphism, the commutativity
of (P) and the naturality of conjugation actions (Proposition 3.4) imply that
also (R) and (S) commute.

Some classical properties of crossed modules of groups easily generalise to
homological or semi-abelian categories. Note that here we do not yet use the
coherence condition (S); it is needed, however, in a refinement of property (ii)
given in Proposition 7.18 below.

Proposition 5.12. Let pG,A, µ, Bq be a crossed module in a finitely cocomplete
homological category A. Then the following properties hold:

(i) K is central in A, so that in particular K is abelian;
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(ii) K is stable under µ: there is a unique action κ such that the square

pK|Gq
κ ,2

pk|1Gq
��

K

k
��

pA|Gq µ
,2 A

commutes;
(iii) when A is semi-abelian, the morphism B is proper; we thus have an

exact sequence

0 ,2 K
� ,2 k ,2 A

B ,2 G
p � ,2 Q ,2 0 (T)

where k � kerpBq and p � cokerpBq.

Proof : Via Example 3.7, to obtain (i) must prove that the conjugation action
of A on K is trivial. By Proposition 3.4 we have that k�cK,A � cA,A�pk|1Aq,
so that the result follows from the Peiffer condition (R) and the symmetry of
cross-effects. Indeed, since ∇A�twA � ∇A : A� AÑ A where twA denotes the
twisting isomorphism

@
r2
r1

D
: A� AÑ A� A, we have

k�cK,A � cA,A�pk|1Aq � cA,A�tw1
�pk|1Aq

� µ�p1A|Bq�tw
1
�pk|1Aq � µ�p1A|Bq�p1A|kq�tw

2 � 0,

where the tw1 and tw2 are the obviously induced twistings of the cross-effect.
Statement (ii) follows from the precrossed module condition (P), which im-

plies B�µ�pk|1Gq � cG,G�pB|1Gq�pk|1Gq � 0, so that µ�pk|1Gq factors uniquely
over the kernel k of B. The resulting morphism κ is an action by Proposition 3.8.
Statement (iii) again follows from Proposition 2.16 since the square (P) com-

mutes. (In general homological categories we only know that ImpBq is an ideal,
as essentially explained in Example 5.11.)

6. Extensions with abelian kernel vs. abelian extensions
There is a subtle difference between the concept of extension with abelian

kernel—any short exact sequence

0 ,2 A
� ,2 a ,2 X

p � ,2 G ,2 0 (U)

where the kernel A is abelian—and the notion of abelian extension, a regular
epimorphism p : X Ñ G which is an abelian object in the slice category A{G.
Since “abelian object” here means that p admits an internal Mal’tsev operation,
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this amounts to the condition rRrps,Rrpss � ∆X (see, for instance, the analysis
made in [21]). We write AbExtpAq the full subcategory of ExtpAq determined
by the abelian extensions in A.
As, for some purposes in homological algebra, one needs extensions with

abelian kernel to be abelian extensions—see for instance Section 8—it is worth
exploring this instance of the Smith is Huq property in more detail. Cer-
tainly, any abelian extension has abelian kernel, while unlike what happens for
groups, in an arbitrary semi-abelian category an extension with abelian kernel
need not be an abelian extension (see [7, 16]; in fact also Example 4.9 gives a
counterexample, as follows easily from Theorem 6.4). In the present section we
investigate the problem from the point of view of internal actions and ternary
commutators.

Lemma 6.1. Suppose that A is semi-abelian. Let ψ : pA|Xq Ñ A be an action
in A and p : X Ñ G a regular epimorphism such that there exists a (necessarily
unique) factorisation

pA|Xq
ψ

,2

p1A|pq _��

A

pA|Gq ϕ
,2 A

of ψ. Then ϕ is an action of G on A.

Proof : This can most conveniently be proved using the extension of ψ to an
algebra structure ξ : A 5X Ñ A, cf. [36] and [20, 41], and using the fact that p
induces a regular epimorphism 1A 5p : A 5X Ñ A 5G. This allows to check the
algebra conditions for the factorisation ζ : A 5G Ñ A of ξ by precomposing
with 1A 5p and using the obvious commutative diagrams.

Example 6.2 (Central extensions). The conjugation cA,X of a given short exact
sequence (U) induces the trivial action ψp � 0: pA|Gq Ñ A if and only if cA,X
itself is trivial, which by Example 3.7 means that (U) is a central extension:
the kernel A of p : X Ñ G is central in X. (Since the denormalisation of A is
the kernel pair Rrps of p, by Example 3.6 this also means that Rrps is a product
of A and X, cf. [18].)
Note that rA,Xs being trivial immediately implies that also rA,A,Xs is zero

by Proposition 2.18.
In the semi-abelian case this gives another classical “extreme” instance of a

crossed module (cf. Examples 5.10 and 5.11), the situation where the arrow B
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is a regular epimorphism. Indeed, when p is a central extension, the quad-
ruple pG,X, µ, pq where µ : pX|Gq Ñ X is the factorisation of cX,X over the
morphism p1X |pq : pX|Xq Ñ pX|Gq satisfies the three crossed module condi-
tions. First note that such a factorisation exists by Corollary 2.32 since

ImpcX,X�SX,X1,2 �p1X |a|1Xqq � ImpcX3 �p1X |a|1Xqq � rX,A,Xs � rA,Xs � 0

as A � Kerppq is central. Moreover, µ is an action by Lemma 6.1 and satisfies
the Peiffer condition by its very definition. The precrossed module condition
now follows by naturality of conjugation actions (Proposition 3.4) since p1X |pq
is a regular epimorphism. Finally, the square corresponding to (S) commutes
by Lemma 3.15:

µ1,2�p1X |p|1Gq�p1X |1X |pq � µ�SX,G1,2 �p1X |p|pq � µ�p1X |pq�S
X,X
1,2 � cX,X�SX,X1,2

� cX,X�SX,X2,1 � µ�p1X |pq�S
X,X
2,1 � µ�SX,G2,1 �p1X |1X |pq

� µ2,1�p1X |1X |pq,

while p1X |1X |pq is a regular epimorphism by Proposition 2.23.
In fact, as shown in [18], central extensions in a semi-abelian category are

precisely normalisations of internal connected groupoids, i.e., groupoids (O)
where xd, cy : RÑ G�G is regular epic.

Lemma 6.3. Consider a short exact sequence (U).
(i) If p is split by s the conjugation action cA,X of X on A admits a

factorisation

pA|Xq
cA,X ,2

p1A|pq _��

A

pA|Gq
ψp

,2 A

if and only if A is abelian and cA,X2,1 �p1A|1A|sq � 0.
(ii) Suppose that p is arbitrary but A is semi-abelian. Then the conju-

gation action cA,X factors through p1A|pq if and only if A is abelian
and cA,X2,1 � 0. Moreover, when this happens, ψp is an action of G
on A.

Proof : We only treat (ii), the proof of which may easily be adapted to (i) using
Proposition 2.33 instead of Corollary 2.32. The latter tells us that for semi-
abelian A the action cA,X factors through the morphism p1A|pq if and only
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if

cA,X�SA,X1,2 �p1A|a|1Xq and cA,X�p1A|aq

are trivial. But cA,X�p1A|aq � a�cA,A by naturality of the conjugation action,
and cA,X1,2 �p1A|a|1Xq � cA,X2,1 by Lemma 3.15. Lemma 6.1 now says that pA,ψpq
is an action.

The next result is an immediate consequence of Theorem 4.4 and Lemma 6.3.

Theorem 6.4. For an extension with abelian kernel (U) the following are
equivalent:

(i) p is an abelian extension;
(ii) rRrps,Rrpss � ∆X ;
(iii) rA,A,Xs � 0;
(iv) cA,X2,1 � 0.

When A is semi-abelian, these properties are equivalent to:

(v) the conjugation action cA,X of X on A factors through a (necessarily
unique) action ψp of G on A;

(vi) cA,X � p�pψpq for some morphism ψp : pA|Gq Ñ A.

Corollary 6.5. If A is semi-abelian the inclusion AbExtpAq Ñ ExtpAq has a
left adjoint

ab : ExtpAq Ñ AbExtpAq

which takes an extension p : X Ñ G and maps it to its induced quotient

abppq :
X

rA,As _ rA,A,Xs
Ñ G.

Proof : This follows from Lemma 4.11 which says that rA,As _ rA,A,Xs is
normal in X.
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7. Beck modules
Where abelian extensions are abelian objects in a slice category A{G, Beck

modules [6, 2] are abelian groups in A{G or, equivalently, abelian objects in the
category of points PtGpAq. We here provide several equivalent characterisations
of Beck modules in finitely cocomplete homological categories, again in terms
of internal actions and (higher-order) cross-effects.

7.1. Beck modules. Given an object G of a finitely cocomplete homolo-
gical category A, a G-module or Beck module over G is an abelian group
in the slice category A{G. Thus a G-module pp,m, sq consists of a morph-
ism p : X Ñ G in A, equipped with a multiplication m and a unit s as in the
commutative triangles

X �G X
m ,2

p� ��444444
X

p�	







G

G
s ,2

444444

444444 X

p�	







G

satisfying the usual axioms. (Here we write X �G X for the kernel pair Rrps
of p, and we put p� � p�m � p�π1 � p�π2.) In particular we obtain a split
short exact sequence

0 ,2 A
� ,2
kerppq

,2 X
p � ,2

G ,2lr
s

lr 0 (V)

where A is an abelian object in A and p is split by s. Furthermore, since
as an abelian extension it carries an internal Mal’tsev operation, the morph-
ism p satisfies rRrps,RrpssS � ∆X . Conversely, given the splitting s of p,
this latter condition makes it possible to recover the multiplication m. Hence,
for split epimorphisms in A, “being a Beck module” is a property; the en-
tire module structure is contained in the splitting. Using the equivalence
between split epimorphisms and internal actions, we can replace X with a
semi-direct product A�ψ G. By the above, modules are “abelian actions”. We
write ModGpAq for the category AbpA{Gq � MalpPtGpAqq of G-modules in A.

Examples 7.2. [6] In the category Gp, a Beck module over G is the same
thing as a classical module over the group-ring ZG. In the category AlgK of
associative (non-unitary) algebras over a commutative ring K, a Beck module
over G is a G-G-bimodule. On the other hand, when A is an additive category,
the kernel functor determines an equivalence ModGpAq � A.
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Theorem 7.3. Let A be an abelian object in A endowed with an internal G-
action ψ : pA|Gq Ñ A. Then the following are equivalent:

(i) pA,ψq is a G-module;
(ii) pG,A, ψ, 0q is a crossed module;
(iii) ψ2,1 : pA|A|Gq Ñ A is trivial.

Proof : Let (V) be the split short exact sequence induced by ψ. Then pA,ψq is
a G-module if and only if the reflexive graph

X
p

,2

p
,2 Gslr

is an internal category. Since p�kerppq � 0, this proves that (i) and (ii) are
equivalent.
Since A is abelian, already rA,As � 0. So Theorem 5.7 tells us that Con-

dition (ii) holds precisely when ψ2,1 � ψ1,2�p1A|0|1Gq � 0, i.e., when (iii)
holds.

Remark 7.4. Condition (iii) is equivalent with requiring that ψp,q � 0 for
all p ¥ 2 since these morphisms ψp,q clearly factor through ψ2,1.

Corollary 7.5. Suppose that A satisfies (SH). Then any abelian object in A
endowed with an action of an object G is a G-module.

Example 7.6. The situation considered in Example 4.9 is actually a loop
action of the cyclic group of order two Z2 on the Klein four-group V � A
which is not a module structure. Indeed, the short exact sequence

0 ,2 A
� ,2 ,2 X

� ,2 t1, iu ,2lrlr 0

is split by the inclusion of Z2 � t1, iu inX. (But the subloop t1, iu is not normal
in X, as pijqj � kj � �i R t1, iu although p1jqj � 1.) Hence X � V �ψZ2 for
some action ψ : pV |Z2q Ñ V in the category of loops. Now pV, ψq cannot be a
Z2-module, as we know that rRA, RAs

S � ∆X ; so ψ2,1 must be non-trivial—and
indeed, ψ2,1vj, j, iw � �1.

Corollary 7.7. Suppose that A is semi-abelian. Then for any object G in A
the forgetful functor

ModGpAq Ñ ActGpAq
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has a left adjoint abG : ActGpAq Ñ ModGpAq, determined by the natural exact
sequence

pA|Aq � pA|A|Gq

@
cA,A
ψ2,1

D
,2 A

ηGA � ,2 abGpA,ψq ,2 0

where ηGA is a cokernel of the left-hand morphism. Moreover, the natural trans-
formation ηG defined in this way is the unit of the adjunction.

Proof : We must show that abGpA,ψq carries aG-module structure such that ηG

is G-equivariant. We first check that the morphism kψ�
@
cA,A
ψ2,1

D
represents a

normal subobject of X � A�ψ G: in fact,

kψ�ψ2,1 � kψ�ψ�SA,G2,1 � kψ�c
A,X

�p1A|sψq�S
A,G
2,1 � cX,X�pkψ|sψq�S

A,G
2,1

� cX,X�SX,X2,1 �pkψ|kψ|sψq � cX3 �pkψ|kψ|sψq,

whence Impkψ�ψ2,1q � rA,A,Xs. Thus Impkψ�
@
cA,A
ψ2,1

D
q � rA,As _ rA,A,Xs

which is normal in X by Lemma 4.11. Now consider the commutative diagram

0 ,2 A
� ,2

kψ
,2

ηGA _��

X

η1 _��

pψ � ,2 G ,2 0

0 ,2 Cokerp
@
cA,A
ψ2,1

D
q � ,2

kψ

,2 Cokerpkψ�
@
cA,A
ψ2,1

D
q

pψ

� ,2 G ,2 0

with η1 � cokerpkψ�
@
cA,A
ψ2,1

D
q. Both rows are exact; for the bottom row this

follows from the Noether isomorphism theorem. Furthermore, sψ � η1�sψ is a
section of pψ. It follows that ppψ, sψq is a point in A, giving rise to an action ψ
of G on abGpA,ψq; moreover, η1 : ppψ, sψq Ñ ppψ, sψq is a morphism of points,
so that ηGA : pG,A, ψq Ñ pG,A, ψq is G-equivariant. It remains to show that ψ
is a G-module structure; by Theorem 7.3 it suffices to show that ψ2,1 � 0.
But this easily follows from naturality of the morphisms S2,1 and the fact that
pηGA |η

G
A |1Gq is a (regular) epimorphism by Proposition 2.23.

Example 7.8. In a semi-abelian variety of algebras V , consider an abelian
object A and an internal G-action ψ : pA|Gq Ñ A. Then the coherence condi-
tion ψ2,1 � 0 which must hold for ψ to be a module structure may be expressed
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as follows (cf. Example 2.5):$'&'%
tpa1, . . . , ak, ak�1, . . . , ak�l, 0, . . . , 0q � 0 in A� A

tpa1, . . . , ak, 0, . . . , 0, g1, . . . , gmq � 0 in A�G

tp0, . . . , 0, ak�1, . . . , ak�l, g1, . . . , gmq � 0 in A�G

ñ

ψptpa1, . . . , ak�l, g1, . . . , gmqq � 0,

for any term t of arity k � l �m in the theory of V and all a1, . . . , ak�l P A
and g1, . . . , gm P G. We believe this is a basic condition; certainly it is of the
same level of complexity as for instance the characterisation of ideals due to
Ursini [63], valid in semi-abelian varieties [43].

Theorem 7.9 (cf. Theorem 6.4). Let A be an abelian object in A endowed
with an internal G-action ψ : pA|Gq Ñ A. Then pA,ψq is a G-module if and
only if the conjugation action of A �ψ G on A factors through the G-action
on A via the projection pψ : A�ψ GÑ G. In other words,

cA,A�ψG � ψ�p1A|pψq � p�ψpψq.

Proof : We pass via Condition (iii) in Theorem 7.3. Recall that X � A�ψ G.
Applying Lemma 6.3 to the split extension (I) shows that the action

cA,X : pA|Xq Ñ A

factors through p1A|pψq if and only if cA,X2,1 �p1A|1A|sψq � 0. However,

cA,X2,1 �p1A|1A|sψq � cA,X�SA,X2,1 �p1A|1A|sψq

� cA,X�p1A|sψq�S
A,G
2,1

� ψ�SA,G2,1 � ψ2,1.

Now suppose that cA,X does factor as a composite morphism

pA|Xq
p1A|pψq

,2 pA|Gq
c ,2 A;

then c � c�p1A|pψq�p1A|sψq � cA,X�p1A|sψq � ψ, which proves our claim.

Remark 7.10. This directly leads to the (known) result that in an action
representable category [9, 10], any action on an abelian object is a module
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structure. Indeed, it was shown in [22] that any semi-abelian category A for
which the functors

Actp�, Aq : A Ñ Set�

are representable satisfies (SH). Hence Corollary 7.5 yields the claimed result.
Let us now prove this in a different way, passing via Theorem 7.9.
Recall that the functor Actp�, Aq assigns to G P ObpAq the pointed set of

actions of G on A. We shall only assume that for any abelian object A, the
functor Actp�, Aq : A Ñ Set� is representable. This means that there exists an
object rAs in A together with a natural equivalence

α : Actp�, Aq ñ Ap�, rAsq.

Since the functor Ap�, rAsq preserves split short exact sequences, any ac-
tion ψ : pA|Gq Ñ G induces a short exact sequence

0 ,2 ActpG,Aq
Actppψ,Aq

,2 ActpA�ψ G,Aq
Actpkψ,Aq

,2

Actpsψ,Aq
lr ActpA,Aq ,2 0

of pointed sets. (Recall that the category Setop
� is semi-abelian [17].) Now

consider the action cA,A�ψG P ActpA�ψ G,Aq. We have

Actpkψ, Aqpc
A,A�ψGq � cA,A�ψG�p1A|kψq � kψ�c

A,A � 0

by naturality of conjugation actions (Proposition 3.4) and by Remark 2.13
as A is abelian. Hence cA,A�ψG is in the image of Actppψ, Aq � p�ψp�q, so that
already cA,A�ψG � p�ψpϕq for some action ϕ of G on A. Now

ϕ � s�ψpp
�
ψpϕqq � s�ψpc

A,A�ψGq � ψ

by Example 3.12, and ψ is a G-module by Theorem 7.9.

7.11. The biproduct of two modules. We now work towards Theorem 7.13
which characterises modules in even more elementary terms. To do so, we shall
express the biproduct in the additive categoryModGpAq as a product of actions.

Lemma 7.12. The biproduct pA,ψq ` pB,ϕq in ModGpAq has as underlying
G-action the product pA,ψq � pB,ϕq in ActGpAq, which is the object A�B
in A equipped with the diagonal action

ψ ` ϕ : pA�B|Gq
xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

ψ�ϕ
,2 A�B.
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Proof : Let

0 ,2 A
� ,2 a ,2 X

p � ,2
G ,2lr

s
lr 0

be the split short exact sequence corresponding to pA,ψq and

0 ,2 B
� ,2 b ,2 Y

q � ,2
G ,2lr

t
lr 0

the one corresponding to pB,ϕq; then the biproduct pA,ψq`pB,ϕq corresponds
to the split short exact sequence

0 ,2 A�B � ,2a�b ,2 X �G Y
� ,2
G ,2lr

xs,ty
lr 0

in A. By naturality of the conjugation action, the squares

pA�B|X �G Y q
cA�B,X�GY

,2

pπA|πXq
��

A�B

πA
��

pA|Xq
cA,X

,2 A

pA�B|X �G Y q
cA�B,X�GY

,2

pπB |πXq
��

A�B

πB
��

pB|Y q
cB,Y

,2 B

commute, so that the conjugation action of X �G Y on A�B decomposes as

pA�B|X �G Y q
xpπA|πXq,pπB |πY qy,2 pA|Xq � pB|Y q

cA,X�cB,Y ,2 A�B.

The asserted decomposition of the diagonal action, which by Example 3.12
is equal to xs, ty�pcA�B,X�GY q � cA�B,X�GY �p1A�B|xs, tyq, now follows, as the
diagram

pA�B|Gq

p1A�B |xs,tyq
��

xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

p1A|sq�p1B |tq
��

ψ�ϕ
,2 A�B

pA�B|X �G Y q
xpπA|πXq,pπB |πY qy

,2 pA|Xq � pB|Y q
cA,X�cB,Y

,2 A�B

commutes.
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It is clear that any G-module pp,m, sq corresponds to a morphism of split
short exact sequences

0 ,2 A� A � ,2
a� ,2

�
��

X �G X
p� � ,2

m
��

Glr
s�

lr ,2 0

0 ,2 A
� ,2

a
,2 X

p � ,2
Glr

s
lr ,2 0

where � : A� AÑ A is the abelian group structure on A, the morphism a�
is a � a : A� AÑ X �G X and s� � xs, sy. Hence via Lemma 7.12, the
correspondence between actions and points gives us

Theorem 7.13. Let A be an abelian object in A endowed with an internal
G-action ψ : pA|Gq Ñ A. Then pA,ψq is a G-module if and only if the
sum � : A� AÑ A is G-equivariant with respect to the diagonal action of G
on A� A, i.e., if and only if the diagram

pA� A|Gq
xpπ1|1Gq,pπ2|1Gqy,2

p�|1Gq
��

pA|Gq � pA|Gq
ψ�ψ

,2 A� A

�
��

pA|Gq
ψ

,2 A

(W)

commutes.

Example 7.14. Note the parallel with the equality g �pa�bq � g �a�g �b which
holds in the case of groups. As explained in Example 3.2, this latter condition
is automatically fulfilled, as any action is already a G-group. Theorem 7.13
expresses the precise internal sense in which the same property should hold:
the rectangle (W) must commute on all of pA � A|Gq—which it always does
in Gp, as a consequence of the Smith is Huq property.

Example 7.15. Let us come now back to Example 7.6 with this viewpoint in
mind. We already know that the action pV, ψq is not a Z2-module. As a matter
of fact, we can prove directly that the function

m : X �Z2
X Ñ X : px, yq ÞÑ x � y

is not a loop homomorphism, by simply taking into account that

mppj, 1q � pi, iqq � mp�k, iq � �ki � �j

even though
mpj, 1q �mpi, iq � j1 � ii � j.
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Of course also the diagram corresponding to (W) should fail to commute, so
let us confirm this with a concrete example. Note that the expression

pj, jq � ppj, 1qi � p1, jqqi

determines an element of the formal commutator pV � V |Z2q. Now ψ�p�|1Z2
q

of it is jj � pji � jqi � p�kjqi � ii � 1, while going around the rectangle (W)
the other way gives

pj � pjiqiq � pj � pijqiq � jp�kiq � pj � kiq � jp�jq � jj � �1.

7.16. The module in a crossed module. We add another statement to
Proposition 5.12, but to do so we first need a refinement of Proposition 3.8
with respect to module structures.

Lemma 7.17. Under the hypotheses and with the notation of Proposition 3.8
the following properties hold.

(i) If ψ is a G-module structure then ϕ is a H-module structure.
(ii) Suppose that m is an isomorphism and h is a regular epimorphism.

If ϕ is a H-module structure then ψ is a G-module structure.

Proof : This is an easy consequence of Theorem 7.3 using the commutative
diagram

pM |M |Hq

pm|m|hq
��

SM,H
2,1

,2 pM |Hq
ϕ

,2

pm|hq
��

M
��
m

��
pA|A|Gq

SA,G2,1

,2 pA|Gq
ψ

,2 A

and the fact that in (ii) the morphism pm|m|hq is a regular epimorphism by
Proposition 2.23.

Proposition 7.18. Let pG,A, µ, Bq be a crossed module in a semi-abelian cat-
egory A and consider the induced exact sequence (T). The action κ of G on K
constructed in Proposition 5.12 induces a unique action ρ of Q on K such that
the square

pK|Gq
κ ,2

p1K |pq _��

K

pK|Qq ρ
,2 K

commutes. Moreover, ρ is a Q-module structure on K.
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Proof : The first claim is an immediate consequence of Lemma 6.1 once we
can prove that the factorisation exists. We obtain it via Corollary 2.32: we
have to show that κ�p1K |Bq and κ�SK,G1,2 �p1K |B|1Gq are trivial. To prove this
for κ�p1K |Bq, compose with the monomorphism k and use the Peiffer condition.
In fact,

k�κ�p1K |Bq � µ�pk|Bq � µ�p1A|Bq�pk|1Aq � cA,A�pk|1Aq � k�cK,A,

which is zero since K is central in A by Proposition 5.12.i. To prove that the
morphism κ�SK,G1,2 �p1K |B|1Gq is trivial consider the following diagram where τ
is the symmetry isomorphism p1 2q1A of the ternary cross-effect induced by the
transposition p1 2q, cf. Proposition 2.6.

pA|K|Gq

p1A|k|1Gq

��

pK|A|Gq

pk|1A|1Gq

��

τlr
p1K |B|1Gq,2 pK|G|Gq

pk|1G|1Gq

��

SK,G1,2
,2 pK|Gq

pk|1Gq

��

κ ,2 K
��

k

��
pA|A|Gq

SA,G2,1

��

pA|A|Gq

SA,G2,1

��

τ
lr

p1A|B|1Gq
,2 pA|G|Gq

SA,G1,2

,2 pA|Gq µ
,2 A

pA|Gq pA|Gq µ
,2 A

The diagram commutes; for the lower rectangle this is condition (S). Thus

k�κ�SK,G1,2 �p1K |B|1Gq � µ�SA,G2,1 �p1A|k|1Gq�τ

� µ�SA,G1,2 �p1A|B|1Gq�p1A|k|1Gq�τ

� µ�SA,G1,2 �p1A|0|1Gq�τ � 0.

It remains to show that ρ is a Q-module structure. By Lemma 7.17.ii it suffices
to show that κ is a G-module structure, i.e., that κ2,1 � 0. But

k�κ2,1 � k�κ�SK,G2,1 � µ�pk|1Gq�S
K,G
2,1

� µ�SA,G2,1 �pk|k|1Gq � µ�SA,G1,2 �p1A|B|1Gq�pk|k|1Gq

� µ�SA,G1,2 �pk|0|1Gq � 0

as desired.



THE TERNARY COMMUTATOR OBSTRUCTION FOR INTERNAL CROSSED MODULES 61

8. An application to cohomology
The above Lemma 7.17 may also be used in the study of semi-abelian cohomo-

logy. In the present article we shall limit ourselves to the lowest-dimensional
case, and extend the interpretation given in [34]—of the second cohomology
group H2pG,Aq of an object G with coefficients in a trivial module A in terms
of central extensions—to arbitrary modules, and make the link with the torsor
theories established in [21] and [27] explicit. In fact, the article [21] already
contains some form of Theorem 8.7, based on properties of points rather than
a calculus of internal actions. However, we believe the techniques developed
here clarify the connections between several approaches to the same problem,
while they may also be used to extend the analysis of the higher cohomology
groups developed in [61] to arbitrary coefficients.
We work towards Theorem 8.7 which gives an isomorphism

H2pG, pA,ψqq � OpextrG, pA,ψqs

between the second cohomology group of G with coefficients in pA,ψq and the
group of equivalence classes of extensions of G by pA,ψq. Of course, when the
action ψ is trivial, those extensions are precisely the central extensions of G
by A, and we regain Theorem 6.3 in [34].
According to Lemma 7.17, any abelian extension (U) of an object G by an

object A gives rise to a unique module structure ψp of G on A through which
the conjugation action ofX on A factors. This defines a functor which is crucial
in the directions approach to cohomology, see [15, 23, 59, 60, 61].
Throughout this section we shall work in a semi-abelian category A.

Definition 8.1. Given an abelian extension (U), the induced G-module struc-
ture on A is called the direction of p and denoted dGppq : pA|Gq Ñ A. This
defines a functor

dG : AbExtGpAq Ñ ModGpAq : p ÞÑ pKerppq, ψpq

called the direction functor.
The fibre d�1

G pA,ψq of dG over a given G-module pA,ψq is the category
OpextpG, pA,ψqq of all extensions of G by pA,ψq.

Remark 8.2. The direction functor dG is completely determined by a pull-
back/pushout property as in [15], where the concept was originally introduced.
Indeed, as essentially explained in Remark 3.10, an abelian extension (U) has
direction pA,ψq if and only if the downward-pointing square in the induced
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morphism of points

Rrps
1A�p� ,2

p1
_��

A�ψ G

pψ
_��

X

LR

LR

p
� ,2 G

LR
sψ

LR

is both a pullback and a pushout.
Let us make this somewhat more explicit. As recalled in Example 5.10, via

Remark 3.10 the conjugation action cA,X of X on A corresponds to the kernel
pair projection p1 : Rrps Ñ X. Hence giving a pullback/pushout square as
above amounts to giving a morphism of actions

pA|Xq
p1A|pq,2

cA,X
��

pA|Gq

ψ
��

A A.

This means that p has direction pA,ψq if and only if p1 is a pullback of pψ
along p.

This allows us to interpret extensions of an object G by a G-module pA,ψq
as certain torsors in the sense of Duskin and Glenn [27, 28, 33]. Given an
object G and a G-module pA,ψq in a semi-abelian category A, a one-torsor
of G by pA,ψq is a KppA,ψq, 1q-torsor in the slice categoryA{G, i.e., a diagram

Rrps

_��

p1 � ,2

p2

� ,2 Xlrlr
p � ,2

p

_��

G

A�ψ G
pψ � ,2

pψ

� ,2 Glrlr G

in A, where the squares on the left are pullbacks—see [27] or the analysis given
in [61]. Morphisms of such torsors are defined as in the slice category over the
bottom line of this diagram, and thus the category Tors1pG, pA,ψqq is obtained.
From Remark 8.2 we now easily obtain the following:

Proposition 8.3. Let G be an object and pA,ψq a G-module in a semi-
abelian category A. Then there is a category equivalence Tors1pG, pA,ψqq �
OpextpG, pA,ψqq.
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It is explained in [27] that the set Tors1rG, pA,ψqs of connected components
of the category Tors1pG, pA,ψqq comes with a suitable abelian group structure
which may be considered as the cohomology group H2pG, pA,ψqq. Furthermore,
when A is monadic over Set, this cohomology group is isomorphic to the second
Barr-Beck comonadic cohomology group [2] of G with coefficients in pA,ψq
relative to the canonically induced comonad on A. We shall now prove that
the connected components OpextrG, pA,ψqs � π0pd

�1
G pA,ψqq of the category

OpextpG, pA,ψqq form an abelian group isomorphic to Tors1rG, pA,ψqs, and
thus to H2pG, pA,ψqq.

Proposition 8.4. For any object G, the direction functor dG preserves finite
products.

Proof : The terminal object of AbExtGpAq is 1G, of which the direction is 0,
considered as a G-module. Hence dG preserves terminal objects.
Now we show that dG preserves binary products. On one hand, Lemma 7.12

says that the biproduct pA,ψq ` pB,ϕq in ModGpAq has as underlying G-
action the product pA,ψq�pB,ϕq in ActGpAq, which is the object A�B in A
equipped with the morphism

ψ ` ϕ : pA�B|Gq
xpπA|1Gq,pπB |1Gqy ,2 pA|Gq � pB|Gq

ψ�ϕ
,2 A�B.

On the other hand, given two abelian extensions p : X Ñ G and q : Y Ñ G ofG
with respective kernels A and B, their product in AbExtGpAq is the pullback
p � q : X �G Y Ñ G, of which the kernel is A � B. It remains to check that
this kernel carries pA,ψq � pB,ϕq as G-module structure, but this we may see
by taking into account Remark 8.2. Indeed, if p1 is a pullback of pψ and q1 is
a pullback of pϕ, then pp� qq1 is a pullback of pψ`ϕ.

Proposition 8.5 (dG is a fibration). Given an abelian extension p and a G-
module morphism f as in the diagram

0 ,2 A

f
��

� ,2 a ,2 X
p � ,2

g
��

G ,2 0

0 ,2 B
� ,2
b

,2 Y q
� ,2 G ,2 0

where A carries the direction of p as G-module structure, there exists an abelian
extension q which completes the diagram in such a way that dGpqq is the given
action of G on B.
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Proof : We generalise the proof of Corollary 3.3 in [34]: we split the problem
in two separate cases (f is split monic, f is regular epic in A) by factoring the
morphism f as

pA,ψq
x1pA,ψq,0y

,2 pA,ψq ` pB,ϕq

@
f

1pB,ϕq

D
,2 pB,ϕq

in ModGpAq. Here ψ and ϕ denote the given G-module structures.
The first step involves the product in AbExtGpAq of p with pϕ : B �ϕ GÑ G,

which gives us the diagram

0 ,2 A_��
x1A,0y

��

� ,2 a ,2 X
p � ,2

_��

��

G ,2 0

0 ,2 A�B

πA

_LR

� ,2 ,2 X �G pB �ϕ Gq

πX

_LR

p�pϕ

� ,2 G ,2 0

with short exact rows in A. Proposition 8.4 says that the direction of the lower
extension is the biproduct G-module pA,ψq ` pB,ϕq.
For the second step, assume that f is a regular epimorphism, and consider

its kernel k as in the following diagram.

K_��
k

��

K
��
a�k

��

0 ,2 A

(i)f
_��

� ,2 a ,2 X
p � ,2

g
_��

G ,2 0

0 ,2 B
� ,2
b

,2 Y q
� ,2 G ,2 0

If we can prove that the monomorphism a�k is normal, we can take g to be
its cokernel. Then the thus arising square (i) is a pullback and a pushout by
Lemma 1.5, which gives the rest of the diagram and also implies that b is a
monomorphism, hence a kernel as a direct image of a kernel. Now K is indeed
normal in X by Proposition 2.16.ii, because cA,X�pk|1Xq factors through the
kernel k of f , as

f �cA,X�pk|1Xq � f �ψ�p1A|pq�pk|1Xq � ϕ�pf |1Xq�p1A|pq�pk|1Xq � 0.

Also pf |gq : pA|Xq Ñ pB|Y q is a regular epimorphism and, by Proposition 3.4,

ϕ�p1B|qq�pf |gq � ϕ�pf |1Gq�p1A|pq � f �ψ�p1A|pq � f �cA,X � cB,Y �pf |gq.

Hence cB,Y factors through ϕ : pB|Gq Ñ B, which finishes the proof.
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Corollary 8.6. For any G in A, the application

pA,ψq ÞÑ OpextrG, pA,ψqs

defines a finite product-preserving functor OpextrG,�s : ModGpAq Ñ Set.

Proof : This may be proved as in [34, Proposition 6.1] using Proposition 8.5.

Since ModGpAq � AbpA{Gq is a category of internal abelian groups, this
implies that the sets OpextrG, pA,ψqs carry a natural abelian group structure.

Theorem 8.7. Let G be an object and pA,ψq a G-module in a semi-abelian
category A.

(i) We have a group isomorphism

H2pG, pA,ψqq � TorsrG, pA,ψqs � OpextrG, pA,ψqs.

(ii) If A is monadic over Set then these cohomology groups are comonadic
Barr–Beck cohomology with respect to the canonical comonad on A.

(iii) If (SH) holds in A then every extension with abelian kernel occurs in
some cohomology class.

Proof : By Corollary 8.6, to obtain (i) we only have to prove that the abelian
groups TorsrG, pA,ψqs and OpextrG, pA,ψqs have the same underlying sets.
This, however, follows immediately from Proposition 8.3. Statement (ii) follows
from [27] and (iii) from Theorem 6.4.
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