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1. Introduction

The Rauzy graphs of a subshift X are finite graphs that may be seen as
approximations of the subshift [18, 8]. The vertices are windows (say of
length 2n), centered at the origin, to the biinfinite words in the subshift,
and the edges correspond to the shift of origin in some biinfinite word. A
natural labeling for Rauzy graphs is thus to label each edge by the letter
from which the origin is moved. We call the result a centrally labeled Rauzy
graph, which we view as a non-deterministic automaton in which all vertices
are considered to be both initial and final. The language Fn(X ) it recognizes
consists of all words all of whose factors of length 2n + 1 are blocks of the
subshift, together with their factors.
Rauzy graphs of minimal subshifts may be very complicated. Indeed, by

a result of Salimov [19], every sequence of finite strongly connected directed
graphs with bounded in and out-degrees, has a subsequence in which each
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graph admits a uniform edge subdivision which is isomorphic to a Rauzy
graph of some minimal subshift.
From the point of view of semigroup theory, a first question that comes

up concerning centrally labeled Rauzy graphs is whether their transition
semigroups Tn(X ) are of some significance. In particular, do they coincide
with the syntactic semigroups of the languages Fn(X )? While the answer is
negative in general, even for minimal subshifts, in one of the main results
of this paper (Theorem 4.7), we show that the two semigroups coincide for
Sturmian subshifts, a class which has deserved much attention [15, 13].
It turns out that there is a natural homomorphism from Tm(X ) onto Tn(X )

for m ≥ 2n. In the case of an irreducible proper subshift, the semigroup
Tn(X ) has a zero and all its nonzero regular elements are J -equivalent, that
is they generate the same ideal. We consider these J -classes as partial semi-
groups. It is thus natural to consider the inverse system of partial semigroups
of nonzero regular elements of Tn(X ), with the above connecting homomor-
phisms. Our second main result (Corollary 5.14) states that, for an arbitrary
minimal subshift, its inverse limit is the J -class J (X ) of the free profinite
aperiodic semigroup which is in natural correspondence with the subshift [3].
This result sheds some light over the distribution of idempotents in J (X ).
For a minimal subshift of sublinear complexity, we also show that in each
R-class and in each L-class of J (X ) there is only a bounded number of
idempotents and for only countably many of them there may be more than
one idempotent (Corollary 5.9). These idempotents turn out to be in natural
bijection with the biinfinite words in X .
The natural bijection between minimal subshifts over a finite alphabet

and the regular J -classes of relatively free profinite semigroups all of whose
proper factors are nonregular holds for any pseudovariety V containing all
finite local semilattices. For the absolutely free profinite semigroup, the
maximal subgroups of J (X ) have also been extensively investigated [3, 6].
The distribution of idempotents in J (X ) is independent of the pseudovariety
V. Thus, our present results are somewhat complementary to the study of
the maximal subgroups.

2. Preliminaries

2.1. Subshifts. We assume familiarity with the basics of semigroup the-
ory [17, 1]. Let A be a finite alphabet. All alphabets in this paper are finite.
As in [1], if w ∈ A+ and |w| ≥ n, the prefix of length n of w is denoted
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by in(w); if |w| < n then in(w) = w. Dually, for suffixes one considers the
map tn.
Endow A with the discrete topology and AZ with the product topology.

The shift on AZ is the homeomorphism σ : AZ → AZ sending (xi)i∈Z to
(xi+1)i∈Z. A subshift of AZ is a nonempty closed subspace X of AZ such that
σ(X ) = X . Let x ∈ AZ. By a factor or block of (xi)i∈Z we mean a word
xixi+1 · · · xi+n−1xi+n (briefly denoted by x[i,i+n]), where i ∈ Z and n ≥ 1. If

X is a subset of AZ then L(X ) denotes the set of factors of elements of X ,
and Ln(X ) the set of elements of L(X ) with length n.
A subset K of a semigroup S is factorial if it is closed under taking factors

of its factors; prolongable if, for every s ∈ K, there exist u, v ∈ S such
that us, sv ∈ K; irreducible if, for all s, t ∈ K, there exists u ∈ S such that
sut ∈ K. An irreducible set is prolongable. The mapX 7→ L(X ) is a bijection
from the set of subshifts of AZ to the set of nonempty factorial prolongable
languages of A+. The subshift X is irreducible if L(X ) is irreducible. From
hereon, X is a subshift of AZ.
The subshift X is minimal if it does not contain other subshifts. Minimal

subshifts are irreducible. A substitution over an alphabet A is an endomor-
phism of A+. It is said to be primitive if, for some n ≥ 1, and for all
a ∈ A, the words ϕn(a) have the same letters and lim |ϕk(a)| = ∞. For
a primitive substitution, the set of factors of words in {ϕn(a) : n ≥ 1} is
independent of a ∈ A; it is equal to L(Xϕ) for a unique minimal subshift Xϕ.
One has ϕ(L(Xϕ)) ⊆ L(Xϕ). For the two-letter alphabet A = {a, b}, and
for u, v ∈ A+, denote by [u, v] the unique endomorphism ϕ of A+ such that
ϕ(a) = u and ϕ(b) = v.
The Rauzy graph of order n of X is the directed graph whose set of edges is

Ln+1(X ), whose set of vertices is Ln(X ), and such that an edge w has origin
in in(w) and terminus in tn(w). It is denoted by Σn(X ). Note that in Σn(X )
all vertices have positive in and out-degree. When X = AZ this graph is
usually called the De Bruijn graph of order n.
All automata in this paper are finite, and every state is initial and final.

Since the elements of L2n+1(X ) have odd length, we can assign to each edge
of Σ2n(X ) its middle letter. This defines a nondeterministic automaton over
the alphabet A, also denoted Σ2n(X ), with transitions

a1a2 . . . a2n
an+1

−−→ a2 . . . a2na2n+1, ai ∈ A,
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defined precisely when a1a2 . . . a2na2n+1 belongs to L2n+1(X ). We call this
automaton the centrally labeled Rauzy graph of order 2n of X . See the ex-
ample in Figure 1 of centrally labeled Rauzy graphs of the subshift defined
given by the Fibonacci substitution [ab, a] [15].

b
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Figure 1. Centrally labeled Rauzy graphs of order 4 and 6 as-
sociated to the Fibonacci substitution [ab, a].

Let us denote by Fn(X ) the language of the words that can be read in
the automaton Σ2n(X ). Observe that this language is also factorial and
prolongable. Note also that w ∈ Fn(X ) if and only if w ∈ L(X ) or |w| ≥
2n + 1 and all factors of w with length 2n + 1 belong to L(X ). In general,
one has L(X ) ( Fn(X ). Since

F1(X ) ⊇ F2(X ) ⊇ F3(X ) ⊇ . . . and
⋂

n≥1

Fn(X ) = L(X ) (2.1)

the automatons Σ2n(X ) may be considered as approximative devices for the
study of X .
The transition semigroup of Σ2n(X ) will be denoted by Tn(X ), and the

corresponding transition homomorphism by ηn. If X 6= AZ then the empty
relation belongs to Tn(X ), and it is a zero of Tn(X ). Moreover, in that case
we have η−1n (0) = A+ \ Fn(X ). For not having to deal with the case X = AZ

separately, we will always assume that X ( AZ, if necessarily enlarging the
alphabet. With this supposition, Tn(X ) does not depend on A.
The right context (respectively, left context) of a vertex p of an automaton,

denoted by CR(p) (respectively, by CL(p)) is the set of words that label paths
beginning in p (respectively, ending in p).
For convenience, if u is a word of length 2n, the letter of u at position

i from the left is denoted ui−n−1. For example, if u has length four, then
u = u−2u−1u0u1. The word ukuk+1 . . . uk+l−1uk+l is denoted u[k,k+l].
The following remarks will be useful.
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Remark 2.1. The following properties of Σ2n(X ) hold:

(1) if p ∈ Dom ηn(u) then in(p) u ∈ Fn(X );
(2) if q ∈ Im ηn(u) then u tn(q) ∈ Fn(X );
(3) if (p, q) ∈ ηn(u) then in(p) u tn(q) ∈ Fn(X ).

Proof : For every vertex p of Σ2n(X ) we have in(p) ∈ CL(p). Therefore, if
p ∈ Dom ηn(u) then there is path labeled in(p) u in Σ2n(X ), which proves (1).
The remaining properties can be checked similarly.

Remark 2.2. Let u, v, w ∈ A+. If uwv ∈ Fn(X ) and u and v have length n,
then there is a path labeled w from vertex u in(wv) to vertex tn(uw)v.

Remark 2.3. Let p ∈ L2n(X ). Consider the automaton Σ2n(X ). Let w be
a word. Let k = min{n, |w|}. Then w ∈ CR(p) implies ik(w) = p[0,k−1] and
w ∈ CL(p) implies tk(w) = p[−k,−1].

2.2. Local automata. Let ℓ and r be nonnegative integers. An automaton
A is (ℓ, r)-local [9, Section 10.3] if for any paths p

u
−→ q

v
−→ r and p′

u
−→ q′

v
−→ r′

with |u| = ℓ and |v| = r, one has q = q′. An automaton is local if it is
(ℓ, r)-local for some ℓ, r ≥ 0. The well known De Bruijn automaton Σ2n(A

Z)
is an important example of a (n, n)-local automaton. Since a subautomaton
of a (ℓ, r)-local automaton is (ℓ, r)-local, the automaton Σ2n(X ) is also (n, n)-
local.
A word u ∈ A+ is synchronizing for an automatonA over A, with transition

homomorphism µ, if Domµ(u)× Imµ(u) ⊆ µ(u). We also say that µ(u) is a
synchronizing element of the transition semigroup of A. The following fact
will be useful (cf. the proof of [9, Proposition 10.3.11]).

Lemma 2.4. Suppose A is (ℓ, r)-local and let u ∈ A+ be a word with length
at least ℓ+ r. Then u is synchronizing.

Moreover, one easily verifies that if u is synchronizing then µ(u)2 = 0 or
µ(u)2 = µ(u). Therefore, the transition semigroup of a local automata is
aperiodic.

Lemma 2.5. Let A be a local (ℓ, r)-automaton with transition homomor-
phism µ. Suppose that µ(u) and µ(v) are not the empty relation. If iℓ+r(u) =
iℓ+r(v) and tℓ+r(u) = tℓ+r(v) then µ(u) = µ(v).

Proof : Suppose that |u|, |v| ≥ ℓ + r (otherwise u = v). Let p ∈ Domµ(u).
Let w ∈ A∗ be such that v = iℓ+r(v)w. Since µ(v) 6= ∅, there are states q, s, t
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such that (q, s) ∈ µ(iℓ+r(v)) and (s, t) ∈ µ(w). Since iℓ+r(u) = iℓ+r(v) is a
synchronizing word and p ∈ Domµ(iℓ+r(u)), one has (p, s) ∈ µ(iℓ+r(v)), thus
(p, t) ∈ µ(v). Hence Domµ(u) ⊆ Domµ(v). By symmetry, one concludes
that Domµ(u) = Domµ(v) and Imµ(u) = Imµ(v) is obtained similarly.
Hence µ(u) = µ(v), since every word of length at least ℓ+ r is synchronizing.

If X is irreducible, then Σ2n(X ) is strongly connected. It is in this con-
text that the following result will be used. It is a special case of [9, Theo-
rem 9.3.10], taking into account [9, Proposition 10.3.11].

Proposition 2.6. Let A be a strongly connected (ℓ, r)-local automaton, with
transition homomorphism µ. Then the set {µ(u) : |u| ≥ ℓ + r} \ {0} is a
0-minimum J -class of the transition semigroup of A, which is regular and
contains all nonzero regular elements of µ(A+).

For an irreducible subshift X , denote by Jn(X ) the 0-minimum J -class of
Tn(X ).

3. Relationship between Tm(X ) and Tn(X )
To describe the relationship between Tm(X ) and Tn(X ) when m ≥ n, we

start with some preparatory remarks.

Remark 3.1. For the case of centrally labeled Rauzy graphs, Lemma 2.5
states the following: given u, v ∈ Fn(X ), if (i2n(u), t2n(u)) = (i2n(v), t2n(v))
then ηn(u) = ηn(v).

The following consequence of Remark 2.3 will be useful.

Remark 3.2. Let u, v ∈ Fn(X ). Suppose that k ≤ n and |u|, |v| ≥ k. If
ηn(u) = ηn(v) then we have (ik(u), tk(u)) = (ik(v), tk(v)).

Remark 3.2 cannot be extended to local automata: consider for example
the local automaton with a unique state q and two loops at q labeled by
two distinct letters. We proceed by giving examples of minimal subshifts
defined by primitive substitutions showing how Remarks 3.1 and 3.2 cannot
be improved.

Example 3.3. Consider the example of the Fibonacci substitution [ab, a]
(see Figure 1). Let u = aba and v = ababa. Then u, v ∈ L(X[ab,a]).
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For n = 2 we have aba = i2n−1(u) = i2n−1(v) = t2n−1(u) = t2n−1(v), but
ηn(u) 6= ηn(v), since (ba2b, baba) ∈ ηn(u) \ ηn(v). Hence Remark 3.1 cannot
be improved.
For n = 3 we have ηn(v) = {(u2, u2)} = ηn(vu

2). Since |v| > n and
tn+1(v) 6= tn+1(vu

2), this shows that Remark 3.2 cannot be extended to the
case k = n+ 1.

Example 3.4. Let ϕ = [bababbaba, ba]. The centrally labeled Rauzy graph
Σ6(Xϕ) is represented in Figure 2. Then η3(bb) = η3(bbabababb) but i3(bb) 6=
i3(bbabababb). Hence in Remark 3.2 the hypothesis |u|, |v| ≥ k cannot be
dropped.

b

a

b

a babb
ababab abbabaababbabababb babababbababbabbab

Figure 2. Rauzy graph associated to ϕ = [bababbaba, ba].

Let m and n be positive integers such that m ≥ n. Let u be a word of
length 2m. Then πm,n(u) denotes the word u[−n,n−1] of length 2n.

Remark 3.5. If p0
a1−→ p1

a2−→ · · ·
ak−1

−−→ pk−1
ak−→ pk is a path in Σ2m(X ) then

πm,n(p0)
a1−→ πm,n(p1)

a2−→ · · ·
ak−1

−−→ πm,n(pk−1)
ak−→ πm,n(pk) is a path in Σ2n(X ).

Proposition 3.6. Let m and n be positive integers such that m ≥ 2n. Let
u, v ∈ Fm(X ). If ηm(u) = ηm(v) then ηn(u) = ηn(v).

Proof : The case in which |u| ≥ 2n and |v| ≥ 2n is a direct consequence of
Remarks 3.2 and 3.1.
Without loss of generality, we suppose that |u| ≤ |v| and |u| < 2n. Since
|u| < m and ηm(u) = ηm(v) 6= ∅, by Remark 2.3 we know that u is a prefix
and a suffix of v. Hence, if |u| = |v| then u = v. Assuming that |u| < |v|,
there is a nonempty word z such that v = uz. Thus we have ηm(u) = ηm(uz)
and so ηm(u) = ηm(u)ηm(z)

k holds for every positive integer k. Therefore,
there is a word u′ of length greater than 2|u| such that ηm(u) = ηm(u

′).
Again by Remark 2.3, we have u′ = uwu for some nonempty word w. Then
ηm(u) = ηm(u)ηm(wu), which implies ηm(u) = ηm(u)ηm(wu)

k for all k ≥ 1.
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We claim that the equality

ηn(u(wu)
m) = ηn(u) (3.1)

holds. This equality holds if and only if ηn(u) ∪ ηn(u(wu)m) ⊆ ηn(u) ∩
ηn(u(wu)

m). Therefore, since ηn(u) ∪ ηn(u(wu)
m) ⊆ Dom ηn(u) × Im ηn(u),

to establish (3.1) it suffices to prove that

Dom ηn(u)× Im ηn(u) ⊆ ηn(u) ∩ ηn(u(wu)
m). (3.2)

We consider an arbitrary element (p, q) of Dom ηn(u)× Im ηn(u) and to prove
that it belongs to ηn(u) ∩ ηn(u(wu)

m), we distinguish two cases.
We first suppose that n < |u| < 2n. Then there are words u1, u2 and u3

such that u = u1u2u3, |u1| = |u3| = |u|−n and |u2| = 2n−|u|. By hypothesis,
there are in Σ2n(X ) paths of the following forms:

p
u1−→ p′

u2u3−−→ • and •
u1u2−−→ q′

u3−→ q. (3.3)

And since |u1u2| = |u2u3| = n, by Remark 2.3 we have p′ = xu and q′ = uy
for some x, y ∈ A+. As xu ∈ L(X ) and uy ∈ L(X ), there are in Σ2m(X )
paths

•
x
−→ p̄

u
−→ • and •

u
−→ q̄

y
−→ •.

Since ηm(u) = ηm(u)ηm(wu)
k for all k ≥ 1, the relation ηm(u) is synchronizing

by Lemma 2.4. Therefore, there is a path in Σ2m(X ) as follows:

•
x
−→ p̄

u1−→ p′′
u2−→ q′′

u3−→ q̄
y
−→ •. (3.4)

Then, since ηm(u(wu)
m) = ηm(u), there is also in Σ2m(X ) a path of the

following form:

•
x
−→ p̄

u1−→ p′′′
u2u3(wu)

m−1wu1u2

−−−−−−−−−−−→ q′′′
u3−→ q̄

y
−→ •. (3.5)

From (3.4) and (3.5) and Remark 3.5, we conclude the existence of the fol-
lowing paths in Σ2n(X ):

•
x
−→ πm,n(p̄)

u1−→ πm,n(p
′′)

u2−→ πm,n(q
′′)

u3−→ πm,n(q̄)
y
−→ • (3.6)

•
x
−→ πm,n(p̄)

u1−→ πm,n(p
′′′)

u2u3(wu)
m−1wu1u2

−−−−−−−−−−−→ πm,n(q
′′′)

u3−→ πm,n(q̄)
y
−→ • (3.7)

Since p′ = xu and |u2u3| = n, we have |xu1| = n. Similarly, |u3y| = n.
Therefore, from (3.6), (3.7) and Remark 2.3, one concludes that πm,n(p

′′′) =
πm,n(p

′′) = p′ and πm,n(q
′′′) = πm,n(q

′′) = q′. Then, again by (3.6) and (3.7),
we have (p′, q′) ∈ ηn(u2) ∩ ηn(u2u3(wu)m−1wu1u2). Since (p, p′) ∈ ηn(u1) and
(q′, q) ∈ ηn(u3) (by (3.3)), we conclude that (p, q) ∈ ηn(u) ∩ ηn(u(wu)

m).
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It remains to consider the case |u| ≤ n. Let p′ ∈ π−1m,n(p) and q
′ ∈ π−1m,n(q).

Since |u| ≤ n and p ∈ Dom ηn(u), we know that u is a prefix of the suffix of
length n of p. Hence, u is a prefix of the suffix of length m of p′. Since in p′

begin paths of arbitrarily large length bigger or equal to n, and their labels
all start by u, we conclude that p′ ∈ Dom ηm(u). Similarly, one can show
that q′ ∈ Im ηm(u). Because ηm(u) is synchronizing, we have (p

′, q′) ∈ ηm(u),
thus (p, q) ∈ ηn(u). And since ηm(u) = ηm(u(wu)

m), we also have (p, q) ∈
ηn(u(wu)

m). This concludes the proof of (3.2), and therefore the proof of the
claim that (3.1) holds.
The above argument also shows that there is a nonempty word w′ such

that ηm(v) = ηm(v)ηm(w
′v)k for all k ≥ 1 and

ηn(v) = ηn(v(w
′v)m). (3.8)

In particular, we have

ηm(u(wu)
m) = ηm(u) = ηm(v) = ηm(v(w

′v)m).

Then, since |u(wu)m| > 2n and |v(w′v)m| > 2n, it follows from the observa-
tion made in the first paragraph of this proof that ηn(u(wu)

m) = ηn(v(w
′v)m).

Hence ηn(u) = ηn(v), by (3.1) and (3.8).

Example 3.7. We give an example in which η3(u) = η3(v) and η2(u) 6= η2(v),
thus showing the need of condition m ≥ 2n in Proposition 3.6. Let A
be the two-letter alphabet {a, b}. Let u = b2a2b2 and v = b2ab4u. Con-
sider the periodic subshift P whose set of blocks are the factors of elements
of (a2b7ab7ab2a2bab7)+. Then η3(u) = {(b5a, ab5)} = η3(v) but (bab2, b4) ∈
η2(u) \ η2(v). See Figure 3 for the corresponding Rauzy graphs.

Proposition 3.8. Let X be an irreducible subshift. Let m and n be positive
integers such that m ≥ 2n. If ηm(v) ∈ Jm(X ) then ηn(v) ∈ Jn(X ).

Proof : If ηm(v) ∈ Jm(X ) then ηm(v) = ηm(u) for some word u such that
|u| ≥ 2n, because Jm(X ) is regular. In view of Proposition 3.6, it follows
that ηn(v) = ηn(u) so that, by Proposition 2.6, we have ηn(v) ∈ Jn(X ).

4. Relationship with the syntactic semigroup

If u is a word on the two-letter alphabet A = {a, b} such that every word
of length three is a factor of u, and ϕ is the primitive substitution [u, a],
then L3(Xϕ) = A3. Therefore, the syntactic semigroup of F1(Xϕ) is trivial,
but η1(a) 6= η1(b). So, in general Tn(X ) does not coincide with the syntactic
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Figure 3. Rauzy graphs of P .

semigroup of Fn(X ), even for minimal subshifts. In this section we prove
they are equal when X is a Sturmian subshift [15], a widely studied type
of subshift whose definition we next recall (for more informations, see [15,
Chapter 2] or [13, Chapter 6]).
An element u of L(X ) is right special if there are at least two distinct

letters a and b such that ua, ub ∈ L(X ). Left special words are defined
dually. A subshift of {a, b}Z is Sturmian if for every n there is a unique
right special word in Ln(X ). This means that all but one of the vertices
of the Rauzy graph Σn(X ) have out-degree one, the exceptional one having
out-degree two (Figure 4). Equivalently, all vertices of Σn(X ) have in-degree
one, except one, with in-degree two, that is, for every n there is a unique left
special word in Ln(X ). Sturmian subshifts are minimal subshifts.
A primitive substitution [u, v] over {a, b} defines a Sturmian subshift pre-

cisely when {u, v} generates the free group on {a, b} [15, Theorem 2.3.23].
Therefore, the Fibonacci substitution and the substitution [bababbaba, ba]
(cf. Figure 2) are Sturmian, while the Prouhet-Thue-Morse substitution [ab, ba]
(see [15]) is not.

Figure 4. Cycle structure of Rauzy graphs of Sturmian subshifts.
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For a subshift X , we denote by ≡n the syntactic congruence of Fn(X ).
We proceed to deduce a series of technical lemmas relating ≡n with ηn,
culminating in the proof that ηn is the syntactic homomorphism in the case
of a Sturmian subshift (Theorem 4.7).

Lemma 4.1. Let X be a subshift. Let u, v ∈ Fn(X ) be words of length
greater than or equal to n such that u ≡n v. Then ηn(u) = ηn(v) if and only
if in(u) = in(v) and tn(u) = tn(v).

Proof : The “only if” part is in Remark 3.2. Conversely, suppose in(u) =
in(v) and tn(u) = tn(v). Let (p, q) ∈ ηn(u). Then in(p) u tn(q) ∈ Fn(X ) by
Remark 2.1. Since u ≡n v, the word w = in(p) v tn(q) also belongs to Fn(X ).
By Remark 2.3 and our hypothesis, tn(p) = in(u) = in(v) and in(q) = tn(u) =
tn(v). Therefore i2n(w) = p and t2n(w) = q . Hence v labels a path in Σ2n(X )
from p to q by Remark 2.2, that is, we have (p, q) ∈ ηn(v). By symmetry,
ηn(u) = ηn(v).

According to the next lemma, in the case of irreducible subshifts, to prove
that ηn and the syntactic homomorphism are equal, it suffices to show that
they take the same value for sufficiently large words.

Lemma 4.2. Let X be an irreducible subshift of AZ and let n and N be
positive integers. Suppose that, for all u, v ∈ Fn(X ) such that |u| > N and
|v| > N , we have ηn(u) = ηn(v) whenever u ≡n v. Then, for all u, v ∈ A+,
we have ηn(u) = ηn(v) if and only if u ≡n v.

Proof : Since ηn recognizes Fn(X ), one has u ≡n v whenever ηn(u) = ηn(v).
Conversely, let u and v be elements of A+ such that u ≡n v. Since ηn(x) = ∅

if and only if x ∈ A+\Fn(X ), we are reduced to the case where u, v ∈ Fn(X ).
Moreover, we may as well assume that |u| ≤ |v|.
Since u belongs to the prolongable language Fn(X ), there is x ∈ A+ such

that ux ∈ Fn(X ) and |x| > N . Note that ux ≡n vx, thus ηn(ux) = ηn(vx), by
hypothesis. Hence in(ux) = in(vx), by Remark 3.2. If |u| ≥ n, then in(u) =
in(v) and, dually, tn(u) = tn(v); whence ηn(u) = ηn(v), by Lemma 4.1.
It remains to consider the case |u| < n. Since in(ux) = in(vx) and |u| ≤

min{n− 1, |v|}, we know that u is a prefix of v. If u = v then we are done,
hence we may assume that v = uz for some z ∈ A+. Then u ≡n uz ≡n uz

k,
for all k ≥ 1, whence there is a word w with length greater than 2n such that
u ≡n v ≡n w. Hence, we may assume as well that |v| > 2n.
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Let (p, q) ∈ ηn(u). Recall that we have ηn(ux) = ηn(vx). In particular, p ∈
Dom ηn(v). Dually, q ∈ Im ηn(v). Since |v| ≥ 2n, the word v is synchronizing
for Σ2n(X ) by Lemma 2.4, thus (p, q) ∈ ηn(v). Therefore ηn(u) ⊆ ηn(v).
Conversely, let (p, q) ∈ ηn(v). Then in(p) v tn(q) ∈ Fn(X ) by Remark 2.1.

Since u ≡n v, the word u′ = in(p) u tn(q) is in Fn(X ). The words p′ = i2n(u
′)

and q′ = t2n(u
′) are such that (p′, q′) ∈ ηn(u) by Remark 2.2. As we already

proved that ηn(u) ⊆ ηn(v), it follows that (p
′, q′) ∈ ηn(v). From Remark 2.3

we deduce that tn(p
′) = in(v) = tn(p) and since in(p) is a prefix of p′, we

conclude that p = p′. Similarly q = q′. Hence ηn(u) = ηn(v).

The following is a simple combinatorial property of Sturmian subshifts.

Lemma 4.3. Let X be a Sturmian subshift. For each positive integer n there
is a word sn in Ln(X ) such |Ln(X )sn ∩ L2n(X )| = 1.

Proof : Should the lemma fail then there would be some positive integer
n such that |L2n(X )| ≥ 2|Ln(X )|. However, this inequality is impossi-
ble because the number of factors of length m of a Sturmian subshift is
m+ 1 [15].

Let X be a Sturmian subshift. We shall denote by zn the unique word in
Ln(X )sn ∩ L2n(X ), where sn is a word as in Lemma 4.3. The unique left
special and right special factors in L2n(X ) will be respectively denoted by ln
and rn.
Given two states p and q of a strongly connected graph G, we denote by

d(p, q) the minimal length of a (possibly empty) path from p to q. Note that,
since we are considering oriented paths, we may have d(p, q) 6= d(q, p).

Lemma 4.4. Let X be a Sturmian subshift. Let q1 and q2 be vertices of
Σ2n(X ). If CR(q1) ⊆ CR(q2) then d(q2, zn) ≤ d(q1, zn). Moreover, if CR(q1) =
CR(q2) then d(q1, ln) = d(q2, ln).

Proof : Suppose that CR(q1) ⊆ CR(q2). Let ρi be a path in Σ2n(X ) from
qi to zn of minimum length. Let u be the label of ρ1. By Remark 2.1,
since u tn(zn) ∈ CR(q1) and CR(q1) ⊆ CR(q2), we know that the word v =
in(q2)utn(zn) belongs to Fn(X ). Moreover, by Remark 2.3,

tn(q1) = in(u tn(zn)) = tn(q2), (4.1)

whence i2n(v) = q2. On the other hand, by the definition of zn and the choice
of v, we have t2n(v) = zn. Hence, there is a path labeled u from q2 to zn by
Remark 2.2. Therefore, d(q2, zn) ≤ |u| = d(q1, zn).
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If CR(q1) = CR(q2), then d(q1, zn) = d(q2, zn), by the first part of the lemma.
Hence, if q1 and q2 are in the same simple cycle (since X is Sturmian, each of
its Rauzy graphs has exactly two simple cycles), then q1 = q2. By the same
reason, if q1 and q2 are in distinct simple cycles, then ln is a common vertex
of ρ1 and ρ2, and d(q1, ln) = d(q2, ln).

The next result provides a sufficient condition for two vertices in Σ2n(X )
to have the same right context.

Lemma 4.5. Let X be a subshift. Consider its labeled Rauzy graph of order
2n. Let u, v ∈ Fn(X ) be words of length greater than or equal to n such that
u ≡n v. If u ∈ CL(p), v ∈ CL(q) and tn(p) = tn(q), then CR(p) = CR(q).

Proof : Let w ∈ CR(p) be such that |w| > n. Then w = tn(p)w
′, for some

w′, by Remark 2.3. Since u ∈ CL(p), we have u tn(p)w
′ ∈ Fn(X ). Hence

v tn(p)w
′ ∈ Fn(X ), because u ≡n v. Since v ∈ CL(q) and |v| ≥ n, we have

tn(v) = in(q), by Remark 2.3. Moreover, since tn(p) = tn(q), from v tn(p)w
′ ∈

Fn(X ) we deduce by Remark 2.2 that qw′ ∈ Fn(X ) and so w ∈ CR(q). Since
every element of CR(p) is the prefix of an element of CR(p) with length greater
than n, and every prefix of an element of CR(q) also belongs to CR(q), this
proves CR(p) ⊆ CR(q). By symmetry, we get CR(p) = CR(q).

The following lemma isolates a rather technical tool used later in the proof
of Theorem 4.7.

Lemma 4.6. Let X be a Sturmian subshift. Consider its labeled Rauzy graph
of order 2n. Let v1, v2 ∈ Fn(X ) be words of length greater than or equal to
n such that v1 ≡n v2 and tn(v1) 6= tn(v2). For every q1 ∈ L2n(X ) such that
v1 ∈ CL(q1), there is q2 ∈ L2n(X ) such that q1 and q2 are in distinct simple
paths from rn to ln, v2 ∈ CL(q2), d(q1, ln) = d(q2, ln) > 0 and tn(q1) = tn(q2).

Proof : As v1 ∈ CL(q1), we have v1tn(q1) ∈ Fn(X ). Hence, from v1 ≡n v2 we
get v2tn(q1) ∈ Fn(X ). Therefore, for q2 = tn(v2)tn(q1), we have q2 ∈ L2n(X )
and v2 ∈ CL(q2). By Lemma 4.5, we know that CR(q1) = CR(q2). Therefore,
d(q1, ln) = d(q2, ln) by Lemma 4.4. Moreover, since in(q1) = tn(v1), in(q2) =
tn(v2) and tn(v1) 6= tn(v2), we have q1 6= q2, thus d(q1, ln) and d(q2, ln) are
positive.
The hypothesis of X being Sturmian guarantees that there are precisely

two simple paths ρ1 and ρ2 from rn to ln. On the other hand, there is a
unique (possibly empty) simple path ρ0 from ln to rn.
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Since d(q1, ln) = d(q2, ln) and q1 6= q2, one cannot have q1 and q2 both in ρ1
or both on ρ2. For the same reason, if ln 6= rn then the vertices q1 and q2 are
not both in ρ0.
Hence, to prove that q1 and q2 are in distinct simple paths from rn to ln, it

suffices to prove that is not possible that one of them is in ρ0\{ln, rn} and the
other one is not. Without loss of generality, we assume that q2 ∈ ρ0 \ {ln, rn}
and q1 ∈ ρ1 \ ρ0.
Since d(q2, ln) = d(q1, ln), the shortest path from q2 to ln includes ρ2, thus
|ρ2| < |ρ1|. The sum |ρ0| + |ρ1| + |ρ2| is equal to |L2n+1(X )|, the number of
edges of Σ2n(X ). Since X is Sturmian, we have |L2n+1(X )| = 2n+2. Let π be
the simple cycle starting in q2 which passes trough q1. Then |π| = |ρ0|+|ρ1|. If
|π| ≤ n+1 then |ρ2| < |ρ1| < n+1, and so |ρ0|+|ρ1|+|ρ2| ≤ (n+1)+(n−1) =
2n, which is absurd. Therefore, |π| ≥ n + 2. Let p be the last vertex in the
path π′ of length n which is a prefix path of π. In figure 5 one represents the
four possible positions I, II, III and IV for p with respect to the positions
of q1 and q2 and to the paths ρ0 and ρ1.

ln rn

ρ0

ρ1

ρ2

q1

q2

I

II

IIIIV

Figure 5. Positions I to IV for vertex p in the proof of Lemma 4.6.

The label of π′ is in(p). Since tn(p) ∈ CR(p), we clearly have p ∈ CR(q2).
Whence, there is a path labeled p starting in q1, because CR(q1) = CR(q2).
In particular, there is a path ζ from q1 to p labeled in(p) (cf. Remark 2.2). In
π there is a unique path of length n ending in p (namely π′), and so ζ is not
contained in π. This, together with the fact that q1 ∈ ρ1 \ ρ0, implies that ζ
contains ρ0 ∪ ρ2.
If p /∈ ρ0 (that is, if p occupies a position like I or II in Figure 5) then, as

ρ0 ∪ ρ2 is contained in ζ, there is a path ζ ′ from q2 to p, contained in π ∩ ζ,
with length less than n. Therefore, we have two distinct paths in π from q2
to p with length less than that of π, namely π′ and ζ ′. But this is impossible,
because π is a simple cycle.
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Therefore p ∈ ρ0, that is, p occupies a position like III or IV in Figure 5.
If p occupies a position of type III, then π′ is strictly contained in ζ, contra-
dicting that π′ and ζ have length n. Therefore p occupies a position of type
IV , whence ρ1 is contained in π′, and so |ρ1| ≤ n. On the other hand we
have |ρ0| + |ρ2| ≤ n, since ρ0 ∪ ρ2 is contained in ζ. But put together, these
inequalities contradict |ρ0|+ |ρ1|+ |ρ2| = 2n+ 2.
Therefore, q1 and q2 are in distinct simple paths from rn to ln, otherwise

we reach a contradiction.

We are finally ready to prove the main result of this section.

Theorem 4.7. If X is a Sturmian subshift then Tn(X ) is isomorphic to the
syntactic semigroup of Fn(X ).

Proof : Let v1 and v2 be elements of Fn(X ) such that v1 ≡n v2 and |v1|, |v2| >
n. We want to prove that in(v1) = in(v2) and tn(v1) = tn(v2). Indeed, if
we prove this, then ηn(v1) = ηn(v2) by Lemma 4.1; since v1 and v2 were
chosen arbitrarily among words in Fn(X ) with length greater than n, the
theorem then follows from Lemma 4.2. The reader may wish to refer to
Figure 6, where various vertices constructed in the remainder of the proof
are represented.
Suppose that tn(v1) 6= tn(v2). Let q1 ∈ L2n(X ) be such v1 ∈ CL(q1) and

choose q2 as in Lemma 4.6. For each i ∈ {1, 2}, let ρi be the simple path from
rn to ln to which qi belongs. Note that ρ1 6= ρ2 by Lemma 4.6. Without loss
of generality, we may assume |ρ1| ≤ |ρ2|. We further assume that d(rn, q1) +
d(rn, q2) is minimum for all such pairs (q1, q2). Let q3 be the unique element
of ρ2 such that d(rn, q3) = d(rn, q1).
Since d(rn, q3)+ d(q2, ln) is equal to d(rn, q1)+ d(q1, ln), which is the length

of ρ1, and since q3 and q2 lie in ρ2, we must have

d(rn, q3) ≤ d(rn, q2). (4.2)

and so
d(q2, ln) ≤ d(q3, ln). (4.3)

We claim that v1 ∈ CL(q3). We know ρ1 and ρ2 are the only two simple
paths from rn to ln, because X is Sturmian. For the same reason, the number
of edges of Σ2n(X ) is 2n+ 2, and so |ρ1| ≤ n+ 1. And since q1 6= ln, we thus
have d(rn, q1) ≤ n. There are unique paths π and π′ with length d(rn, q1)
from rn to q1 and q3 respectively. Note that the labels of π and π′ are equal
to the prefix of length d(rn, q1) of tn(rn), by Remark 2.3. Let ρ be a path
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ending in q1 labeled v1. Since |v1| > d(rn, q1), we have ρ = ρ′π for some path
ρ′. Then ρ′π′ is also a path labeled by v1, and it ends in q3, which proves the
claim.
By Lemma 4.6, we know there is a vertex q4 in ρ1 such that v2 ∈ CL(q4),

d(q3, ln) = d(q4, ln), and tn(q3) = tn(q4). Then

d(rn, q4) + d(q4, ln) = d(rn, ln) = d(rn, q1) + d(q1, ln)

= d(rn, q1) + d(q2, ln)

≤ d(rn, q1) + d(q3, ln) (by (4.3))

= d(rn, q1) + d(q4, ln). (4.4)

Comparing the first and last member of (4.4), we conclude that

d(rn, q4) ≤ d(rn, q1). (4.5)

Then, by (4.2) and (4.5), we have d(rn, q3) + d(rn, q4) ≤ d(rn, q1) + d(rn, q2).

ln rn
ρ0

ρ2

ρ1
q1

q2
q3

q4

Figure 6. Diagram for the proof of Theorem 4.7

By minimality of d(rn, q1) + d(rn, q2), it follows from (4.2) and (4.5) that
d(rn, q4) = d(rn, q1), thus q1 = q4. Since v1 ∈ CL(q1) and v2 ∈ CL(q4), that
implies tn(v1) = tn(v2) by Remark 2.3, which contradicts the assumption
that tn(v1) 6= tn(v2). Hence, the equality tn(v1) = tn(v2) holds. Dually,
in(v1) = in(v2).

The Arnoux-Rauzy subshifts [8] generalize Sturmian subshifts, since their
Rauzy graphs have just one vertex with out-degree greater than one, and
also just one vertex with in-degree greater than one. The proof of Lemma 4.4
stands for Arnoux-Rauzy subshifts, and most arguments used in the proofs
of Lemma 4.6 and Theorem 4.7 also hold for them. However, occasionally
the tighter conditions satisfied by Sturmian subshifts were used. No counter-
example was found among the cases calculated by us to the validity of the
extension of Theorem 4.7 to Arnoux-Rauzy subshifts, or to the Prouhet-
Thue-Morse subshift, a problem we leave open.
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5. Relationship with the structure of relatively free profi-

nite semigroups

5.1. Relatively free profinite semigroups and subshifts. A pseudova-
riety of semigroups is a class of finite semigroups closed under taking sub-
semigroups, homomorphic images and finitary direct products. Let V be a
pseudovariety of semigroups. A topological semigroup is a pro-V semigroup
if it is a projective limit of semigroups of V, finite semigroups being endowed
with the discrete topology. The pseudovariety of all finite semigroups is de-
noted S. Pro-S semigroups are called profinite. See [4] for details about pro-V
semigroups not included in this paper.
The category of pro-V semigroups has a free object ΩAV, the free pro-V

semigroup. From hereon we will suppose that V contains the pseudovariety
consisting of all finite semigroups whose local submonoids are semilattices.
This hypothesis is essential for all results from hereon. It is also sufficient to
guarantee that A+ embeds into ΩAV as a discrete dense subspace which we
identify with its image. The elements of ΩAV are called pseudowords.

Lemma 5.1 ([7, Lemma 8.2]). Let u, v ∈ ΩAV. If x is a finite factor of
uv then either x is a factor of u, or of v, or x = sp for some suffix s of
u and some prefix p of v. In particular, if x is a finite factor of uwv and
w ∈ ΩAV \A+, then x is a factor of uw or of wv.

There is a close interplay between the structure of ΩAV and subshifts [4,
3, 10, 5, 11]. We summarize some of its aspects. Let X be a subshift of
AZ. The mirage of X is the set of pseudowords of ΩAV whose finite factors
belong to L(X ). One has

⋂

n≥1 Fn(X ) = M(X ) (compare with (2.1)). In

particular, the inclusion L(X ) ⊆M(X ) always holds, but in general the re-
verse inclusion fails [10]. The irreducible factorial closed subsets of a compact
semigroup contain a unique J -minimal J -class [11]. In case X is irreducible,

the set of elements J -equivalent to L(X ) and the setM(X ) are factorial and
irreducible. We denote by J (X ) and JM(X ) their minimal J -classes, re-
spectively. If X is minimal then JM(X ) = J (X ) =M(X )\A+ and JM(X )
is a maximal regular J -class; moreover, every maximal regular J -class is of
this form [3]. From hereon, all subshifts are irreducible. Sometimes we shall
want to compare different pseudovarieties, and so to emphasize that JM(X )
is a subset of ΩAV we will denote it by JMV(X ).
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It will be convenient to consider the topological spaces AZ−

and AN, en-
dowed with the product topology defined by the discrete space A, where Z−

and N denote the sets of negative and nonnegative integers, respectively. For
AN, we will also require the noninvertible shift action σ+ : AN → AN, which
maps (xi)i∈N to (xi+1)i∈N. The function ν : AZ−

×AN → AZ sending (y, z) to
the bi-infinite word y.z is a homeomorphism; we say that y is the negative
ray of y.z, and that z is the nonnegative ray.
If w ∈ ΩAV \A

+, then there is a unique u ∈ An such that w = uv for some
v ∈ ΩAV. Extending the notation for finite words, denote u by in(w). We
can also analogously extend tn to ΩAV. The maps in and tn are continuous
functions from ΩAV to the discrete space A+ [1, Section 5.2]. If w ∈ ΩAV\A

+,
then we denote by −→w the unique element x of AN such that in(w) = x[0,n−1] for

all n ≥ 1, and by ←−w the unique element y of AZ−

such that tn(w) = x[−n,−1]
for all n ≥ 1. The maps w 7→ −→w and w 7→ ←−w are continuous.

Lemma 5.2. If u, v ∈ JM(X ), then uv ∈ JM(X ) if and only if ←−u .−→v ∈ X .

Proof : Note that, since u, v ∈ JM(X ), we have uv ∈ JM(X ) if and only if
uv ∈M(X ), by the definition of JM(X ). By Lemma 5.1, every finite factor
of uv is either a finite factor of u, of v, or of←−u .−→v . Thus, since u, v ∈M(X ),
we have uv ∈ JM(X ) if and only if all finite factors of←−u .−→v belong to L(X ),
that is, if and only if ←−u .−→v ∈ X .

Lemma 5.3. Let w ∈ JM(X ). Then w is a group element if and only
if ←−w .−→w ∈ X . Moreover, if x ∈ X then there is a maximal subgroup H of
JM(X ) such that ←−w .−→w = x for every w ∈ H.

Proof : The first part follows from Lemma 5.2 and the fact that w is a group
element if and only if w2 ∈ JM(X ). Let x ∈ X . Let u and v be accumulation
points of the sequences (x[−n,−1])n and (x[0,n−1])n. Then u and v belong to

L(X ), and ←−u .−→v = x. Since M(X ) is irreducible, there is a pseudoword z
such that vzu ∈ JM(X ). And since ←−u .−→v ∈ X , the idempotent e = (vzu)ω

belongs to JM(X ) by Lemma 5.2. Note that←−e .−→e = x. Since H-equivalent
elements have the same prefixes and suffixes, it follows that ←−w .−→w = x for
every element w in the maximal subgroup containing e.

For X ⊆ AZ, denote
←−
X and

−→
X respectively the first and second com-

ponents of ν−1(X ). One consequence of Lemma 5.3 is that the mappings

u ∈ JM(X ) 7→ −→u ∈
−→
X and u ∈ JM(X ) 7→ ←−u ∈

←−
X are surjective.
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5.2. The case of minimal subshifts. Maximal regular elements of ΩAV

have the remarkable property that finite prefixes and finite suffixes deter-
mine their R-classes and L-classes, respectively. More precisely, we have the
following result.

Lemma 5.4 ([2] and [5, Lemma 6.6]). Let X be a minimal subshift. If
u, v ∈ JM(X ), then u R v if and only if −→u = −→v , and dually, u L v if and
only if ←−u =←−v . Hence u H v if and only if ←−u .−→u =←−v .−→v .

Therefore, if X is minimal, then nonnegative rays of elements of X param-
eterize R-classes, negative rays parameterize L-classes, and to understand
how groups are distributed in JM(X ) is the same as to understand for

which pairs (y, z) ∈
←−
X ×

−→
X we have y.z ∈ X .

Let z ∈
−→
X . The degree of z is the number of letters a such that az ∈

−→
X .

If z has degree greater than one, then we say z is a left special element of
−→
X .

Every finite prefix of a left special element of
−→
X is a left special factor of

X . For a finite set S of elements of X there is a positive integer N such
that, for all m ≥ N , the prefixes of elements of S with length m are pairwise
distinct. From these facts we get the following remark.

Remark 5.5. Let X be a minimal subshift and k a positive integer. If there
are infinitely many positive integers n such that X has at most k left special

factors of length n, then there are at most k left special elements of
−→
X .

Remark 5.5 relates with the following theorem, where one gets information
about JM(X ) from the number of left special nonnegative rays.

Theorem 5.6. Let X be a minimal subshift for which there are at most k
left special nonnegative rays of X with degree less than or equal to d. Then
each R-class of JM(X ) has at most dk idempotents, and if X is not periodic
then the set of R-classes with more than one idempotent is countable.

In the proof of Theorem 5.6 we use the following auxiliary lemma, which
is probably folklore. We include its proof for the sake of completeness.

Lemma 5.7. In the conditions of Theorem 5.6, for each z ∈
−→
X there are at

most dk elements of X having z as a nonnegative ray.

Proof : If X is periodic, or equivalently, if d = 1, then the lemma clearly
holds. Henceforth we assume that X is not periodic. Consider the graph G
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defined as follows: the set of vertices is
⋃

n∈Z σ
−n
+ (z), for each vertex x there

is a unique edge from x to σ+(x), and there are no other edges. The graph
G is acyclic, otherwise X would contain a periodic element, contradicting
the assumption that X is minimal non-periodic. Every vertex has out-degree
one, and in-degree at most d. Moreover, in a path there are at most k distinct
vertices with in-degree greater than one, otherwise the path would contain a

cycle since by hypothesis
−→
X has at most k left special elements. The number

of elements of X having z as nonnegative ray is precisely the cardinal of the
set P of right infinite paths in G ending in z, that is, infinite paths of the
form · · · −→ • −→ • −→ • −→ z.
Let T be the tree defined as follows: the set of vertices are the vertices of

elements of P with in-degree greater than one, and an edge from x to y is a
(nonempty) path in G from x to y. Since a path in T has at most k elements
and every vertex has at most in-degree d, the tree T has at most dk vertices
with in-degree zero. This concludes the proof because the number of these
vertices is precisely the cardinal of P .

Proof of Theorem 5.6: Let R be an R-class of JM(X ). Let z be the corre-

sponding element of
−→
X given by the parameterization of R-classes resulting

from Lemma 5.4. By Lemmas 5.3 and 5.4, there are as many idempotents
in R as elements of X having z as nonnegative ray. Therefore, by Lemma 5.7,
it only remains to prove that if X is not periodic then there is only a count-
able set of R-classes with at least two idempotents. By Lemma 5.3 and 5.4,

this amounts to prove that if Z is the set of elements z of
−→
X such that z is

the nonnegative ray of at least two elements of X , then Z is countable. Note
that σ+(Z) ⊆ Z, thus Z is infinite, since X is not periodic. Let z ∈ Z. Then,

denoting by F the (by hypothesis, finite) set of left special elements of
−→
X ,

there are z′ ∈ F and m ≥ 0 such that σm
+ (z

′) = z. Therefore, Z is contained
in the set

⋃

n≥0 σ
n
+(F ), which is at most countable since F is finite.

Example 5.8. If X is a Sturmian subshift of {a, b}Z, then (see [13, Subsec-
tion 6.1.3]) there are x, x′ ∈ X such that

• x = · · ·x−4x−3x−2a.bx1x2x3 · · · ;
• x′ = · · ·x−4x−3x−2b.ax1x2x3 · · · ;
• if w,w′ ∈ X have a common (negative or nonnegative) ray, then w =
w′ or {w,w′} = {σn(x), σn(x′)} for some n ∈ Z.
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The conditions of Theorem 5.6 and its dual are satisfied, with k = 1 and
d = 2, whence each R-class and each L-class of JM(X ) has at most two
idempotents, and only a countable number of them have two idempotents.
The R-classes (respectively, L-classes) with two idempotents are those pa-
rameterized by the nonnegative rays of elements of the form σn(x) with n ≥ 1
(respectively, of the form σ−n(x) with n ≥ 1). See Figure 7.
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Figure 7. Picture representing a portion of JM(X ) when X
is Sturmian. Rows represent R-classes, columns represent L-
classes, and stars indicate H-classes with idempotents. In each
row/column is indicated the nonnegative/negative ray parame-
terizing it.

A subshift X has sublinear complexity if the mapping n 7→ |Ln(X )| (known
as the complexity function) is bounded by a monomial of degree one. For
more information about the complexity function of a subshift, see the sur-
vey [12] and the more recent book [13]. Arnoux-Rauzy subshifts (and there-
fore Sturmian subshifts) have sublinear complexity. All minimal subshifts
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defined by primitive substitutions have sublinear complexity [16]. Suppose
that the minimal subshift X has sublinear complexity. Then it has a fi-
nite number of left and right special rays [13, Proposition 5.1.12]. Applying
Theorem 5.6, we thus obtain the following result.

Corollary 5.9. Let X be a minimal subshift of sublinear complexity. Then
the R-classes and L-classes of JM(X ) have a bounded number of idempo-
tents, and either none of them (in case X is periodic) or only a countably
infinite number of them (in case X is not periodic) has more than one idem-
potent.

5.3. The J -classes Jn(X ) as finite approximations of JM(X ). Let
S be a set endowed with a partial binary operation ∗. Adding to S a new
element, denoted by 0, we obtain the set S0. Extend the operation ∗ to an
operation ⊛ in S0, by letting s ⊛ t = s ∗ t if s ∗ t is defined and s ⊛ t = 0
otherwise. We say that (S, ∗) is a partial semigroup if (S0,⊛) is a semigroup.
A homomorphism from a partial semigroup S to a partial semigroup T is a
function ϕ : S → T such that, for all s1, s2 ∈ S, if s1 ∗ s2 is defined then
ϕ(s1) ∗ ϕ(s2) is defined and ϕ(s1 ∗ s2) = ϕ(s1) ∗ ϕ(s2). This defines the
category of partial semigroups.
In the sequel X is always an irreducible subshift of AZ. Let m and n be

positive integers such that m ≥ 2n. By Proposition 3.6, the following map
is a well-defined homomorphism of partial semigroups:

ψm,n : Tm(X ) \ {0} → Tn(X ) \ {0}

ηm(u) 7→ ηn(u), u ∈ Fm(X ).

Lemma 5.10. If m ≥ 2n then ψm,n(Jm(X )) = Jn(X ).

Proof : Let s be an element of Jm(X ). There is some idempotent e ∈ Jm(X )
such that s = es, and therefore ψm,n(s) = ψm,n(e)ψm,n(s). Since ψm,n(e) is
an idempotent and the (n, n)-local Rauzy automaton Σ2n(X ) satisfies the
hypothesis of Proposition 2.6, we conclude that ψm,n(s) ∈ Jn(X ).
On the other hand, let t ∈ Jn(X ). By Proposition 2.6, there is u ∈ L(X )

such that |u| ≥ 2m and t = ηn(u). Then ηm(u) ∈ Jm(X ) by Proposition 2.6,
and ψm,n(ηm(u)) = t.
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We endow Z+ with the following partial order: n � m if and only if 2n ≤ m.
Consider the following inverse system:

D(X ) = {ψm,n : Jm(X )→ Jn(X ) |n,m ∈ Z+, n � m}.

Let u ∈ JM(X ). Let Wn(u) be the set of elements w of A∗ such that
i2n(u) · w · t2n(u) belongs to L(X ). Note that Wn(u) is nonempty because
X is irreducible. For each n ≥ 1, choose an element θn(u) ∈ Wn(u). Note
that ηn

(

i2n(u) · θn(u) · t2n(u)
)

∈ Jn(X ), by Proposition 2.6. If m ≥ 2n then
applying Remark 3.1, we obtain:

ψm,n

[

ηm
(

i2m(u) · θm(u) · t2m(u)
)

]

= ηn
(

i2m(u) · θm(u) · t2m(u)
)

= ηn
(

i2n(u) · θn(u) · t2n(u)
)

.

Therefore, the following mapping is a well-defined function:

ψ : JM(X ) → lim←−D(X )

u 7→
(

ηn
(

i2n(u) · θn(u) · t2n(u)
)

)

n
.

The component function ψn : JM(X ) → Jn(X ) is continuous, since i2n
and t2n are continuous and ψn(u) is independent of the choice of θn(u) among
elements of Wn(u), by Remark 3.1. Hence ψ is continuous.
The continuity of ψ suggests to consider the following notion: a compact

partial semigroup is a partial semigroup (S, ∗) endowed with a compact topol-
ogy such that the set

D(S) = {(s, t) ∈ S × S : s ∗ t is defined}

is closed in S × S, and if (si, ti)i∈I is a net converging in D(S) to (s, t),
then (si ∗ ti)i∈I converges to s ∗ t. For example, every J -class of a compact
semigroup is a compact partial semigroup under the induced operation. One
may be tempted to include in the definition of compact partial semigroup
that D(S) must be open, because then S0 would be a compact semigroup,
with 0 as an isolated point. However, under such definition JM(X ) would
not in general be a compact partial semigroup as shown in the following
proposition.

Proposition 5.11. Let τ be the Prouhet-Thue-Morse substitution [ab, ba].
The set D(JM(Xτ)) is not open.
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Proof : The words τn(a) and τn(a2) belong to L(Xτ) for every n ≥ 1. Since

L(Xτ) is prolongable, there are infinite pseudowords un, vn such that αn =

unτ
n!(a) and βn = τn!(a2)vn belong to L(Xτ). The word τn!(a)3 is a factor

of αnβn. It is well known that L(Xτ) does not contain cubes [15, Proposi-
tion 3.1.1], whence αnβn /∈M(Xτ).
Let (u, v) be a accumulation point in ΩAV×ΩAV of the sequence (un, vn).

The endomorphism τ : A+ → A+ has a unique extension to a continuous en-
domorphism ΩAV→ ΩAV. The monoid of endomorphisms of ΩAV, endowed
with the pointwise convergence topology, is profinite [14]. For an element s
of a profinite semigroup S, the sequence (sn!)n converges to an idempotent,
denoted sω. The pseudowords α = uτω(a) and β = τω(a2)v are accumulation
points of the sequences αn and βn, respectively. Note that αβ = uτω(a)3v.
Since τω(a) is an infinite pseudoword and the pseudowords uτω(a), τω(a)2 and
τω(a)v belong toM(Xτ), from Lemma 5.1 we deduce that αβ ∈M(Xτ ).
Because Xτ is minimal, we haveM(Xτ ) \ A

+ = JM(Xτ ). Hence (αn, βn)
has a subsequence of elements of JM(Xτ )×JM(Xτ)\D(JM(Xτ )) converg-
ing to an element of D(JM(Xτ)). Therefore D(JM(Xτ )) is not open, even
as a subset of JM(Xτ ).

Denote by E(X) the set of idempotents of a subset X of a semigroup S.
The inverse image of an idempotent by an onto homomorphism of finite
semigroups contains at least one idempotent. This fails for the onto ho-
momorphism ψm,n : Jm(X ) → Jn(X ) of partial finite semigroups. As an
example, for the Sturmian substitution ϕ = [aabaa, aabaaa], one can easily
check that |E(J4(Xϕ))| = 11 < 15 = |E(J2(Xϕ))| by direct computation.
The following lemma characterizes the idempotents whose inverse image by
ψm,n contains some idempotent.

Lemma 5.12. Let s be an idempotent element of Jn(X ). Let m ≥ 2n. Then
s = ψn(e) for some idempotent e of JM(X ) if and only if s = ψm,n(t) for
some idempotent t of Jm(X ).

Proof : If e is an idempotent of JM(X ) then ψm(e) is an idempotent of
Jm(X ) and ψm,n(ψm(e)) = ψn(e). Conversely, suppose that s = ψm,n(t) for
some idempotent t of Jm(X ). By Proposition 2.6, there is an element u of
L(X ) such that ηm(u) = t and |u| ≥ 2m. Since t is idempotent, u2 belongs
to Fm(X ), thus tm(u) im(u) ∈ L(X ). Therefore, by Lemma 5.3, there is an
idempotent e in JM(X ) such that tm(e) = tm(u) and im(e) = im(u). Then,
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ψn(e) = ηn
(

i2n(e) · θn(e) · t2n(e)
)

= ηn(u) by Remark 3.1. On the other hand
we have the following sequence of equalities

ηn(u) = ψm,n(ηm(u)) = ψm,n(t) = s,

thus s = ψn(e).

Theorem 5.13. The mapping ψ : JM(X ) → lim←−D(X ) is an onto homo-
morphism of partial semigroups. The kernel of ψ is the kernel of the map
w ∈ JM(X ) 7→ ←−w .−→w . Moreover, ψ maps E(JM(X )) onto E

(

lim←−D(X )
)

.

Proof : Let u and v be elements of JM(X ) such that uv ∈ JM(X ). Then,
for every n ≥ 1, we have t2n(u) i2n(v) ∈ L(X ), and therefore there exist
xn, yn ∈ A+ such that

i2n(u) xnt2n(u) i2n(v) ynt2n(v) ∈ L(X ).

By Remark 3.1 we have

ψn(uv) = ηn
[

i2n(u) xnt2n(u) i2n(v) ynt2n(v)
]

= ηn
[

i2n(u) xnt2n(u)
]

· ηn
[

i2n(v) ynt2n(v)
]

= ψn(u)ψn(v).

Hence ψ(uv) = ψ(u)ψ(v), and so ψ is a homomorphism of partial semigroups.
Let u, v ∈ JM(X ) be such that ψ(u) = ψ(v). For every positive integer n,

the equality ψn(u) = ψn(v) implies in(u) = in(v) and tn(u) = tn(v), by
Remark 3.2. Hence ←−u .−→u =←−v .−→v . Conversely, if ←−u .−→u =←−v .−→v then ψ(u) =
ψ(v) by Remark 3.1.
We claim that the mapping ψn : JM(X ) → Jn(X ) is onto. To prove it,

let v ∈ Fn(X ) be such that |v| ≥ 2n. Then i2n(v) and t2n(v) are elements of
L(X ). SinceM(X ) is irreducible, it follows that for all w ∈ JM(X ) there
are z, t ∈ ΩAV such that the pseudoword u = i2n(v) zwt t2n(v) belongs to
M(X ). Then u ∈ JM(X ) by the definition of JM(X ), and ψn(u) = ηn(v)
by Remark 3.1, which establishes the claim. If follows from well-known prop-
erties of projective limits of compact spaces that the mapping ψ is onto (the
result we use is formulated in [5, Proposition 2.1]).
Finally, let s = (sn)n be an idempotent element of lim←−D(X ). By Lemma 5.12,

for each n there is an idempotent en ∈ JM(X ) such that ψn(en) = sn. Since
sn = ψm,n(ψm(em)) = ψn(em) it follows that

em ∈
⋂

n�m

(ψ−1n (sn) ∩ E(JM(X ))).
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Therefore, the family (ψ−1n (sn)∩E(JM(X )))n≥1 of closed sets has the finite
intersection property, thus it has nonempty intersection, since JM(X ) is
compact. An element of the intersection of the family is an idempotent e
such that ψ(e) = s.

If X is minimal, then the kernel of the mapping w ∈ JM(X ) 7→ ←−w .−→w is
the restriction of Green’s relation H to JM(X ), by Lemma 5.4. Therefore,
from Theorem 5.13 we deduce the following result.

Corollary 5.14. If X is minimal and V is a pseudovariety of aperiodic semi-
groups then ψ : JMV(X )→ lim←−D(X ) is a continuous isomorphism of com-
pact partial semigroups.

Hence, when X is minimal and V ⊆ A (where A is the pseudovariety
of finite aperiodic semigroups) then JMV(X ) is isomorphic to JMA(X ).
This can be deduced more directly from Lemma 5.4: if U and W are pseu-
dovarieties such that U ⊆ W then we may consider a canonical continu-
ous onto homomorphism pW,U : ΩAW → ΩAU, and it is easy to prove that

pW,U(JMW(X )) = JMU(X ); since
−→
X and

←−
X respectively parameterize R-

classes and L-classes of both JMW(X ) and JMU(X ), the kernel of the
restriction pW,U|JMW is contained in H.

6. Final remarks

Searching for how the maximal subgroups of JM(X ) are spread, with
the help of the approximation of JM(X ) via the projective limit of the
partial semigroups Jn(X ), one is lead to investigate how the idempotents
from J2n(X ) are related with the idempotents of Jn(X ), for an infinity of
values of n. Hence, it seems to be worthy to investigate how the semi-
groups Tn(X ) evolve with n. For the subshift X[ab,a] associated with the
Fibonacci substitution, Figure 8 displays J8(X[ab,a]) and J4(X[ab,a]), with the
idempotents of J8(X[ab,a]) grouped in the kernel classes of the restriction
ψ8,4 : E(J8(X[ab,a])) → E(J4(X[ab,a])). Each number in the egg-box dia-
gram of J8(X[ab,a]) represents the idempotent in the kernel class of ψ8,4 :
E(J8(X[ab,a])) → E(J4(X[ab,a])) determined by the idempotent of J4(X[ab,a])
represented by the same number in the egg-box diagram of J4(X[ab,a]). The
stars represent idempotents in J4(X[ab,a]) which are not images of idempotents
of J8(X[ab,a]).
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Figure 8. Egg-box diagrams of J8(X[ab,a]) and J4(X[ab,a]).
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