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Abstract: We prove L∞ bounds and estimates of the modulus of continuity of
solutions to the Poisson problem for the normalized infinity and p-Laplacian, namely

−∆N
p u = f for n < p ≤ ∞.

We are able to provide a stable family of results depending continuously on the
parameter p. We also prove the failure of the classical Alexandrov-Bakelman-Pucci
estimate for the normalized infinity Laplacian and propose alternate estimates.
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1. Introduction

In this paper we investigate the validity of Alexandrov-Bakelman-Pucci
estimates (ABP for short) for the infinity Laplacian,

∆∞u := 〈D2u∇u,∇u〉 (1)

and its normalized version

∆N
∞u :=

〈

D2u
∇u

|∇u|
,
∇u

|∇u|

〉

(2)

as well as L∞ and C0,α estimates, uniform in p, for the solutions of the Poisson
problem for the normalized p-Laplacian

∆N
p u :=

1

p
|∇u|2−p div

(

|∇u|p−2∇u
)

. (3)

These type of normalized operators have recently received great attention,
mainly since they have an interpretation in terms of random Tug-of-War
games, see [22, 23].
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As an application of these estimates, in Section 6 we prove convergence as
p → ∞ of solutions to

−∆N
p u = f, (4)

to solutions of

−∆N
∞u = f. (5)

It is interesting to compare this result with the results in [4]. An important
feature of this limit process is the lack of variational structure of problem
(4) that yields complications in the proof of the uniform convergence of the
solutions (for instance, Morrey’s estimates, are not available). It is in this
context that our ABP estimate provides a stable L∞ bound that can be used
in combination with our stable regularity results to prove convergence.
The Alexandrov-Bakelman-Pucci maximum principle is well-known since

the decade of 1960 in the context of linear uniformly elliptic equations. It
can be stated as follows,

sup
Ω

u ≤ sup
∂Ω

u+ C(n, λ,Λ) diam(Ω)‖f‖Ln(Ω), (6)

for f the right-hand side of the equation and 0 < λ ≤ Λ the ellipticity
constants.
These estimates have been generalized in several directions, including uni-

formly elliptic fully nonlinear equations where they are the central tool in the
proof of the Krylov-Safonov Harnack inequality and regularity theory (see
[6] and the references therein).
In Theorem 4.3 we recall the classical ABP estimate for solutions of (4)

(see [1, 6, 10, 16] for different proofs of this result) in order to stress that
the constant blows up as p → ∞. This fact is not merely technical, actually
we are able to prove that the classical ABP estimate fails to hold for the
normalized infinity Laplacian (see Section 7). An open question is if an
estimate of the form (6) holds for some other integral norm ‖f‖Lp(Ω) with
p > n.
The failure of the classical ABP estimate reflects the very high degeneracy

of the equation as the normalized infinity Laplacian only controls the second
derivative in the direction of the gradient. Remarkably, this is still enough
to get an estimate of sup u of the type,

(

sup
Ω

u− sup
∂Ω

u
)2

≤ C diam(Ω)2
∫ supΩ u

sup∂Ω u

‖f‖L∞({u=r}) dr,
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since the second derivatives in the directions tangential to the level sets can
be controlled in average using the Gauss-Bonnet theorem, see Section 3 for
a more precise statement. See also Section 7 for an example in which this
estimate is sharper than the estimate with a plain ‖f‖L∞(Ω) in the right-hand
side.
With these ideas we are able to provide a stable family of estimates depend-

ing continuously on the parameter p ∈ (1,∞]. Incidentally, our ABP-type
estimates turn out to be independent of the dimension n. Maybe this could
have some interest in the context of Tug-of-War games in infinity dimensional
spaces.
Let us now briefly discuss the C0,α estimates. The well-known Krylov-

Safonov estimates in [6] apply to the normalized p-Laplacian whenever p <
∞, but degenerate as p → ∞ as they depend upon the ratio between the
ellipticity constants (see also [14, Section 9.7 and 9.8]), which in this case is
p− 1 and blows-up as p → ∞.
We prove Hölder estimates for solutions of the normalized p-Laplacian as

well as Lipschitz estimates for the normalized ∞-Laplacian. The main in-
terest of this estimates is that they are stable in p, so that the whole range
n < p ≤ ∞ can be treated in a coherent way with all the parameters involved
varying continuously.
The ideas behind our proof are somehow reminiscent of the comparison

with cones property in [8] for the homogeneous infinity Laplace equation and
the comparison with polar quadratic polynomials introduced in [2, 19] to
study the non-homogeneous normalized ∞-Laplace equation. Actually, our
Lipschitz estimates in the case of the infinity Laplacian are closely related to
[2, Lemma 5.6].
Although we shall not address this issue here, let us mention that existence

of solutions to (4) and (5) is a nontrivial question as the normalized infinity
and p-Laplacian are non-variational (in contrast to the regular p-Laplacian)
and discontinuous operators (see Section 2).
Existence of viscosity solutions to (5) with Dirichlet boundary conditions

has been proved using game-theoretic arguments, finite difference methods,
and PDE techniques, see [2, 19, 22]. Moreover, solutions to the Dirichlet
problem can be characterized using comparison with quadratic functions.
Uniqueness of solutions to the Dirichlet problem is known if the right-hand

side f ∈ C(Ω) ∩ L∞(Ω) is either 0, or has constant sign (see [2, 17, 19]).
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When this conditions are not met, interesting non-uniqueness phenomena
can happen, see [2] for a detailed discussion.
About (4), we first notice that when the right-hand side is 0, both the

normalized and regular p-Laplacian coincide. For a non-trivial right-hand
side, existence of viscosity solutions can be addressed with a game-theoretic
approach (see [23]). However, to the best of our knowledge, conditions that
guarantee uniqueness are not well understood.
The paper is organized as follows. In Section 2 we introduce some notation

and preliminaries. In Sections 3 and 4 we prove the ABP-type estimates.
Then, in Section 5 we provide stable estimates of the modulus of continuity
of the solutions in the case n < p ≤ ∞. Next, in Section 6 we justify
the limits as p → ∞ and finally, in Section 7 we provide examples showing
the failure of an estimate of the form (6) and analyze the sharpness of our
ABP-type estimate.

2. Notation and preliminaries

In this section we are going to state notations and recall some facts about
the operators we are going to use in the sequel.
In what follows, Ω ⊂ R

n, n ≥ 2, will be an open and bounded set. Br(x)
is the open ball of radius r and center x. We shall denote the diameter
of a domain by d or diam(Ω). We write 1A(x) for the indicator function
of a set A. Given two vectors ξ, η ∈ R

n we denote their scalar product as
〈ξ, η〉 =

∑n
i=1 ξiηi and their tensor product as the matrix ξ⊗η = (ξiηj)1≤i,j≤n.

Sn is the space of symmetric n× n matrices.
Hn−1 stands for the n − 1 dimensional Haussdorff measure, which for C1

manifolds coincide with the classical surface measure. Wherever not specified
otherwise, “a.e.” will refer to the Lebesgue measure.
Given a function u, we shall denote u+ = max{0, u} and u− = max{0,−u}

so that u = u+ − u−. We shall say that a function is twice differentiable at
a point x0 ∈ Ω if

u(x) = u(x0) + 〈ξ, (x− x0)〉+
1

2
〈A(x− x0), (x− x0)〉+ o(|x− x0|

2)

as |x − x0| → 0 for some ξ ∈ R
n and A ∈ Sn, which are easily seen to be

unique and will be denoted by ∇u(x0) and D2u(x0) respectively.
A function u is semiconvex if u(x) + C|x|2 is convex for some constant

C ∈ R. Geometrically, this means that the graph of u can be touched from
below by a paraboloid of the type a+ 〈b, x〉 − C|x|2 at every point.
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The infinity Laplacian and p-Laplacian for 1 < p < ∞, as well as its
normalized versions have already been defined in the introduction, see (1),
(2), and (3). For the record, let us recall here different expressions for the
variational p-Laplacian, 1 < p < ∞,

∆pu := div
(

|∇u|p−2∇u
)

= |∇u|p−2 · trace

[(

I + (p− 2)
∇u⊗∇u

|∇u|2

)

D2u

]

(7)

and its normalized version

∆N
p u =

1

p
trace

[(

I + (p− 2)
∇u⊗∇u

|∇u|2

)

D2u

]

=
1

p
∆u+

p− 2

p
∆N

∞u

=
1

p
|∇u| div

( ∇u

|∇u|

)

+
p− 1

p
∆N

∞u

=
1

p
∆N

1 u+
p− 1

p
∆N

∞u.

(8)

It is worth emphasizing the lack of variational structure of (8), a uniformly
elliptic operator in trace form, in contrast to the regular p-Laplacian (7), a
quasilinear operator in divergence form.
Both normalized operators (2) and (8) (except for p = 2) are undefined

when ∇u = 0, where they have a bounded discontinuity, even if u is regular.
This can be remediated adapting the notion of viscosity solution (see [9,
Section 9] and also [13, Chapter 2]) using the upper and lower semicontinuous
envelopes (relaxations) of the operator.
Let us recall here the definition of viscosity solution to be used in the sequel.

To this end, given a function h defined in a set L, we need to introduce
its upper semicontinuous envelope h∗ and lower semicontinuous envelope h∗

defined by

h∗(x) = lim
r↓0

sup{h(y) : y ∈ Br(x) ∩ L}

h∗(x) = lim
r↓0

inf{h(y) : y ∈ Br(x) ∩ L}

as functions defined in L.
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Definition 2.1. Let F(ξ,X) be defined in a dense subset of Rn × Sn with
values in R and assume F∗ < ∞ and F∗ > −∞ in R

n × Sn.
1. An upper semicontinuous function u : Ω → R is a viscosity subsolution
of

F
(

∇u,D2u
)

= f(x) (9)

in Ω if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that u−ϕ attains a local maximum
at x0, one has

F∗

(

∇ϕ(x0), D
2ϕ(x0)

)

≤ f(x0).

2. A lower semicontinuous function u : Ω → R is a viscosity supersolution
of (9) in Ω if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that u − ϕ attains a local
minimum at x0, one has

F∗
(

∇ϕ(x0), D
2ϕ(x0)

)

≥ f(x0).

3. We say that u is a viscosity solution of (9) in Ω if it is both a viscosity
subsolution and supersolution.

Given a symmetric matrix X ∈ Sn, we shall denote by M(X) and m(X)
its greatest and smallest eigenvalues respectively, that is,

M(X) = max
|ξ|=1

〈Xξ, ξ〉, m(X) = min
|ξ|=1

〈Xξ, ξ〉.

In the case of operators (2) and (8), which are continuous in R
n \{0}×Sn,

Definition 2.1 can be particularized as follows.

Definition 2.2. Let Ω be a bounded domain and 1 < p < ∞. An upper
semicontinuous function u : Ω → R is a viscosity subsolution of

−∆N
p u(x) = f(x) in Ω, (10)

if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that u− ϕ attains a local maximum at
x0, one has


























−∆N
p ϕ(x0) ≤ f(x0) if ∇ϕ(x0) 6= 0,

−
1

p
∆ϕ(x0)−

p− 2

p
M(D2ϕ(x0)) ≤ f(x0) if ∇ϕ(x0) = 0 and p ∈ [2,∞),

−
1

p
∆ϕ(x0)−

p− 2

p
m(D2ϕ(x0)) ≤ f(x0) if ∇ϕ(x0) = 0 and p ∈ (1, 2],
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with ∆N
p u given by (8). A lower semicontinuous function u : Ω → R is a

viscosity supersolution of (10) in Ω if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that
u− ϕ attains a local minimum at x0, one has


























−∆N
p ϕ(x0) ≥ f(x0) if ∇ϕ(x0) 6= 0,

−
1

p
∆ϕ(x0)−

p− 2

p
m(D2ϕ(x0)) ≥ f(x0) if ∇ϕ(x0) = 0 and p ∈ [2,∞),

−
1

p
∆ϕ(x0)−

p− 2

p
M(D2ϕ(x0)) ≥ f(x0) if ∇ϕ(x0) = 0 and p ∈ (1, 2].

We say that u is a viscosity solution of (10) in Ω if it is both a viscosity
subsolution and supersolution.

Remark 2.3. Geometrically, the condition “u− ϕ attains a local maximum
(minimum) at x0” means that up to a vertical translation, the graph of ϕ
touches the graph of u from above (below).

Notice that although this definition is slightly different to the one in [23],
it turns to be equivalent, see [18].
It is worth comparing this definition with the situation in the variational

case in the range 1 < p < 2. In that case the singularity in (7) when
written in trace form is not bounded and it is not possible to use the theory
mentioned above. Instead, one can adopt the definition proposed in a series
of papers by Birindelli and Demengel, see [5] and the references therein. An
alternative but equivalent definition in the case f = 0 can be found in [13,
Section 2.1.3].
Analogously, we have the definition of solution for the normalized ∞-

Laplacian (2).

Definition 2.4. Let Ω be a bounded domain. An upper semicontinuous
function u : Ω → R is a viscosity subsolution of

−∆N
∞u(x) = f(x) in Ω, (11)

if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that u− ϕ attains a local maximum at
x0, one has

{

−∆N
∞ϕ(x0) ≤ f(x0), whenever ∇ϕ(x0) 6= 0,

−M(D2ϕ(x0)) ≤ f(x0), otherwise.
(12)
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A lower semicontinuous function u : Ω → R is a viscosity supersolution of
(11) in Ω if for all x0 ∈ Ω and ϕ ∈ C2(Ω) such that u − ϕ attains a local
minimum at x0, one has

{

−∆N
∞ϕ(x0) ≥ f(x0), whenever ∇ϕ(x0) 6= 0,

−m(D2ϕ(x0)) ≥ f(x0), otherwise.
(13)

We say that u is a viscosity solution of (11) in Ω if it is both a viscosity
subsolution and supersolution.

The above definition agrees with the one in [19, 21] and is slightly different
from the one in [22]. Anyway, it is easy to see that all this definitions are
equivalent.

3. The ABP estimate for the infinity Laplacian

There are two parts in the proof of the classical ABP estimate. The first
one is entirely geometric and allows to bound supΩ u in terms of the integral
of detD2u as follows,

(

supΩ u− sup∂Ω u

diam(Ω)

)n

≤ C(n)

∫

{u=Γ(u)}

| detD2u(x)| dx (14)

where Γ(u) is the concave envelope of u (see Definition 3.1 below). The argu-
ment leading to (14) is entirely geometric and does not involve any equation
for u.
In the second part we take advantage of the fact that we are working in the

contact set (so that the Hessian has a sign) and use the inequality between
the arithmetic and geometric means to bound the determinant in terms of
the trace. In the particular case of the Laplacian, the following estimate is
obtained,

∫

{u=Γ(u)}

| detD2u(x)| dx ≤ n−n

∫

{u=Γ(u)}

(

−traceD2u(x)
)n

dx. (15)

Estimates (14) and (15) altogether yield the ABP estimate
(

supΩ u− sup∂Ω u

diam(Ω)

)n

≤ C(n)

∫

{u=Γ(u)}

(−∆u(x))n dx.

At this stage one can use the equation for u, namely −∆u ≤ f to control the
right-hand side of the estimate.
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It is apparent from the above discussion that if we are able to estimate
| detD2u| in terms of the infinity Laplacian we shall get an ABP-type esti-
mate. However, a different kind of estimate is expected to hold since, as we
have mentioned in the introduction, the classical ABP estimate is false for
the infinity Laplacian (see Section 7).
We have to recall some necessary notions (see [6]).

Definition 3.1. Let u be a continuous function in an open convex set A.
The concave envelope of u in A is defined by

Γ(u)(x) = inf
w

{

w(x) : w ≥ u in A, w concave in A
}

= inf
L

{

L(x) : L ≥ u in A, L is affine
}

for x ∈ A. The upper contact set of u is defined as,

C+(u) = {x ∈ A : u(x) = Γ(u)(x)}.

The following is one of the main results in this section.

Theorem 3.2. Let f ∈ C(Ω) and consider u ∈ C(Ω) that satisfies

−∆N
∞u ≤ f(x) in Ω (16)

in the viscosity sense. Then, we have

(

sup
Ω

u− sup
∂Ω

u+
)2

≤ 2 d2
∫ supΩ u

sup∂Ω u+

‖f+ · 1C+(u)‖L∞({u+=r}) dr, (17)

where d = diam (Ω). Analogously, whenever

−∆N
∞u ≥ f(x) in Ω (18)

in the viscosity sense, the following estimate holds,

(

sup
Ω

u− − sup
∂Ω

u−
)2

≤ 2 d2
∫ supΩ u−

sup∂Ω u−

‖f− · 1C+(−u)‖L∞({u−=r}) dr. (19)

Proof : We prove the first inequality, since the second one is similar. The
proof is divided in two steps, in the first one we prove the result in the
case of a semiconvex subsolution v of (16) and then we shall remove this
assumption in the second step.
Step 1. We can assume without loss of generality that sup∂Ω v

+ = 0 and
v(x0) > 0 for some x0 ∈ Ω. Let us consider the function v+ extended by 0 to
the whole R

n. Notice that v+ is also semiconvex and satisfies

−∆N
∞v+ ≤ f+ in R

n.
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Let Ω∗ = conv(Ω), the convex hull of Ω and for every σ > 0 let us consider
Γσ(v

+), the concave envelope of v+ in Ω∗
σ, where

Ω∗
σ = {x ∈ R

n such that dist(x,Ω∗) ≤ σ}.

Since we are assuming that v is semiconvex, Lemma A.1 implies that Γσ(v
+)

is C1,1
loc(Ω

∗
σ).

Our aim is to estimate
∫

∇Γσ(v+)(Ω∗
σ)

|ξ|2−ndξ, (20)

both from above and from below. For the sake of brevity, let us denote in
the sequel

M := sup
Ω∗

σ

Γσ(v
+) = sup

Ω
v+ = sup

Ω
v

and

Aσ = C+
σ (v

+) ∩
{

Points of twice differentiability for Γσ(v
+)
}

,

where C+
σ (v

+) is the set of points in Ω∗
σ where v

+ = Γσ(v
+). First we estimate

(20) from above. Applying the Area Formula for Lipschitz maps [12, Theorem
3.2.5], Lemma A.1, and then the Coarea Formula [12, Theorem 3.2.11], we
get,

∫

∇Γσ(v+)(Ω∗
σ)

|ξ|2−ndξ ≤

∫

Ω∗
σ

|∇Γσ(v
+)|2−n · det(−D2Γσ(v

+)) dx

=

∫

Ω∗
σ

1Aσ
(x) · |∇Γσ(v

+)|2−n · det(−D2Γσ(v
+)) dx

=

∫ M

0

∫

{Γσ(v+)=r}

1Aσ
(x) · |∇Γσ(v

+)|1−n · det(−D2Γσ(v
+)) dHn−1dr.

(21)

From Hadamard’s formula [3, Section 2.10] for the determinant of a positive
definite matrix and Proposition A.3, we get that for a.e. r ∈ (0,M),

det(−D2Γσ(v
+)) ≤ −∆N

∞Γσ(v
+)|∇σΓ(v

+)|n−1
n−1
∏

i=1

κi (22)

holdsHn−1-a.e. in {Γσ(v
+) = r}, for κi(x) the principal curvatures of {Γσ(v

+)
= r} at x, as defined in Proposition A.3. Hence, from (21), (22) and Lemma
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A.2 we have,
∫

∇Γσ(v+)(Ω∗
σ)

|ξ|2−ndξ

≤

∫ M

0

∫

{Γσ(v+)=r}

1Aσ
(x) · f+(x) ·

n−1
∏

i=1

κi(x) dH
n−1dr

≤

∫ M

0

‖f+ · 1C+
σ (v+)‖L∞({v+=r})

∫

{Γσ(v+)=r}

n−1
∏

i=1

κi(x) dH
n−1 dr

≤ Hn−1(∂B1(0))

∫ M

0

‖f+ · 1C+
σ (v+)‖L∞({v+=r}) dr.

(23)

The last step follows from the Gauss-Bonnet theorem, Theorem A.4.
To estimate (20) from below, we observe that

∂Kx0,σ(Ω
∗
σ) ⊂ ∇Γσ(v

+)(Ω∗
σ)

where x0 is a maximum point in Ω∗ for v+(x), Kx0,σ(x) is the concave cone
with vertex in (x0, v

+(x0)) and base Ω∗
σ and ∂Kx0,σ its super-differential (see

[15, Section 1.4]). Collecting the previous information we get

∫

∂Kx0,σ(Ω
∗
σ)

|ξ|2−ndξ

≤ Hn−1(∂B1(0))

∫ M

0

‖f+ · 1C+
σ (v+)‖L∞({v+=r}) dr. (24)

We want now to pass to the limit as σ goes to 0. It is easy to see that
∂Kx0,σ(Ω

∗
σ) ↑ ∂Kx0

(Ω∗). We need now to estimate the limit of the right-
hand side, to do this notice that Γσ(v

+) is a decreasing sequence of concave
functions which thus converges to a concave function w defined on Ω such
that w ≥ Γ(v+) ≥ v+, so in particular

lim sup
σ→0

C+
σ (v

+) ⊂ {w = v+} ⊂ C+(v+).

The last equation implies that for every r ∈ (0,M)

lim sup
σ→0

‖f+ · 1C+
σ (v+)‖L∞({v+=r}) ≤ ‖f+ · 1C+(v+)‖L∞({v+=r}).
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Thus, (24) becomes
∫

∂Kx0
(Ω∗)

|ξ|2−ndξ

≤ Hn−1(∂B1(0))

∫ M

0

‖f+ · 1C+(v+)‖L∞({v+=r}) dr. (25)

It is now very easy to see that

BM
d
(0) ⊂ ∂Kx0

(Ω∗).

where d = diam(Ω∗) = diam(Ω) and M = supΩ v = supΩ∗ Kx0
(x). Conse-

quently,
∫

∂Kx0
(Ω∗)

|ξ|2−ndξ ≥

∫

BM
d
(0)

|ξ|2−n dξ =
Hn−1(∂B1(0))

2

(

M

d

)2

. (26)

Collecting (25) and (26) we arrive at

(sup
Ω

v+)2 ≤ 2d2
∫ supΩ v+

0

‖f+ · 1C+(v+)‖L∞({v+=r}) dr.

Step 2. Now we consider the case of a general viscosity subsolution u of
(16). Then, the sup-convolution of u, defined as

uε(x) = sup
y∈Ω

{

u(y)−
1

2ε
|x− y|2

}

, (27)

is semiconvex and verifies

−∆N
∞uε ≤ fε(x) := sup

{

f(y) : y ∈ B2(ε‖u‖L∞(Ω))1/2(x)
}

in Ωε

where

Ωε := {x ∈ Ω : dist(x, ∂Ω) > 2(ε‖u‖L∞(Ω))
1/2}.

Moreover, u ≤ uε and uε → u uniformly as ε → 0 in Ω, see [6, Chapter 5].
From the previous step we know that

(

sup
Ωε

(uε)+ − sup
∂Ωε

(uε)+
)2

≤ 2 diam(Ωε)
2

∫ supΩε(u
ε)+

sup∂Ωε(u
ε)+

‖f+
ε · 1C+((uε)+)‖L∞({(uε)+=r})dr.
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If we are able to pass to the limit in the previous inequality we shall obtain
the desired estimate. It is easy to see that actually we can pass to the limit
once we have proved that

lim sup
ε→0

‖f+
ε · 1C+((uε)+)‖L∞({(uε)+=r}) ≤ ‖f+ · 1C+(u+)‖L∞({u+=r}).

Let us consider a sequence {εj} such that the lim sup is realized and let
xεj ∈ {(uεj)+ = r} such that

‖f+
εj

· 1C+((uεj )+)‖L∞({(uεj )+=r}) = f+
εj
(xεj) · 1C+((uεj )+)(xεj).

Up to a subsequence, still denoted with εj, we can assume that xεj converges

to x0 ∈ Ω. Since xεj belongs to {(uεj)+ = r} and uεj converge uniformly to
u we obtain u+(x0) = r, in particular x0 /∈ ∂Ω for any r > sup∂Ω u.
Now since fεj converge uniformly to f on compact subsets of Ω and

lim sup
εj→0

C+((uεj)+) ⊂ C+(u+)

thanks to [7, Lemma A.1], we get

lim sup
εj→0

f+
εj
(xεj) · 1C+((uεj )+)(xεj)

≤ f+(x0) · 1C+(u+)(x0) ≤ ‖f+ · 1C+(u+)‖L∞({u+=r}) (28)

and hence the thesis follows.

The following is an easy consequence of Theorem 3.2.

Corollary 3.3. Let f ∈ C(Ω) and consider u ∈ C(Ω) that satisfies

−∆N
∞u ≤ f(x) in Ω

in the viscosity sense. Then, the following estimate holds,

sup
Ω

u ≤ sup
∂Ω

u+ + 2 d2 ‖f+‖L∞(C+(u)).

Analogously, whenever

−∆N
∞u ≥ f(x) in Ω

in the viscosity sense,

sup
Ω

u− ≤ sup
∂Ω

u− + 2 d2 ‖f−‖L∞(C+(−u)),

where d = diam (Ω).
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Remark 3.4. Similar results can be derived from Theorems 3.5, 4.1, and 4.4
below.

If we replace (20) by
∫

∇Γσ(v+)(Ω∗
σ)

|ξ|4−ndξ,

the same proof yields the following result.

Theorem 3.5. Let f ∈ C(Ω) and consider u ∈ C(Ω) that satisfies

−∆∞u ≤ f(x) in Ω

in the viscosity sense. Then, we have

(

sup
Ω

u− sup
∂Ω

u+
)4

≤ 4 · d4
∫ supΩ u

sup∂Ω u+

‖f+ · 1C+(u)‖L∞({u+=r}) dr,

where d = diam (Ω). Analogously, whenever

−∆∞u ≥ f(x) in Ω

in the viscosity sense, the following estimate holds,

(

sup
Ω

u− − sup
∂Ω

u−
)4

≤ 4 · d4
∫ supΩ u−

sup∂Ω u−

‖f− · 1C+(−u)‖L∞({u−=r}) dr.

4. An stable ABP for the normalized p-Laplacian

The following is one of the main results in this section.

Theorem 4.1. Let 1 < p < ∞, f ∈ C(Ω) and consider u ∈ C(Ω) that
satisfies

−∆N
p u ≤ f(x) in Ω

in the viscosity sense. Then, we have

(

sup
Ω

u− sup
∂Ω

u+
)2

≤
2 p d2

p− 1

∫ supΩ u

sup∂Ω u+

‖f+ · 1C+(u)‖L∞({u+=r}) dr, (29)

where d = diam (Ω). Analogously, whenever

−∆N
p u ≥ f(x) in Ω

in the viscosity sense, the following estimate holds,

(

sup
Ω

u− − sup
∂Ω

u−
)2

≤
2 p d2

p− 1

∫ supΩ u−

sup∂Ω u−

‖f− · 1C+(−u)‖L∞({u−=r}) dr. (30)
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Proof : We only sketch the proof of the first inequality, since the second one is
similar. The argument goes exactly in the same way of the one of Theorem
3.2 with the only observation that thanks to the concavity of Γσ(u

+) and
Lemmas A.1 and A.2 and Proposition A.3, at almost every contact point
x ∈ C+

σ (u
+) one has,

−
(p− 1

p

)

∆N
∞Γσ(u

+)(x)

≤ −
(p− 1

p

)

∆N
∞Γσ(u

+)(x) +
1

p
|∇Γσ(u

+)(x)|

n−1
∑

i=1

κi(x)

= −∆N
p Γσ(u

+)(x) ≤ f+(x),

where κi(x) i = 1, . . . , n− 1 denote, as before, the principal curvatures at x
of the level set of Γσ(u

+) passing through x.

Remark 4.2. Estimates (29) and (30) are stable as p → ∞ and, moreover,
allow to recover estimates (17) and (19) in the limit.

It is interesting to compare estimates (29) and (30) with the usual ABP
estimates that are not stable in the limit.
The following theorem can be easily proved with the techniques of [1, 6, 10,

16], the proof we sketch here actually allows a comparison with the previous
one, see the remarks at the end of the proof.

Theorem 4.3. Let 1 < p < ∞, f ∈ C(Ω) and consider u ∈ C(Ω) that
satisfies

−∆N
p u ≤ f(x) in Ω,

in the viscosity sense. Then, the following estimate holds,

sup
Ω

u ≤ sup
∂Ω

u+ +
d p

n|B1(0)|
1
n (p− 1)

1
n

‖f+‖Ln(C+(u)),

where d = diam (Ω).
Analogously, whenever u ∈ C(Ω) satisfies

−∆N
p u ≥ f(x) in Ω

in the viscosity sense, the following estimate holds,

sup
Ω

u− ≤ sup
∂Ω

u− +
d p

n|B1(0)|
1
n (p− 1)

1
n

‖f−‖Ln(C+(−u)),
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Proof : Again we don’t take care of regularity issues which can be easily
handled with the technique we used in the proof of Theorem 3.2.
The standard ABP argument yields,

(

supΩ u− sup∂Ω u
+

d

)n

|B1(0)|

≤ |∇Γ(u+)
(

C+ (u)
)

| ≤

∫

C+(u+)

det(−D2u) dx.

Proposition A.3 yields

∫

C+(u+)

det(−D2u) dx ≤

∫

C+(u+)

−∆N
∞Γ(u+) · |∇Γ(u+)|n−1 ·

n−1
∏

i=1

κi dx.

Now, we multiply and divide by p− 1 the right-hand side of the previous in-
equality, and then apply the inequality between the aritmethic and geometric
mean inequalities. We get,

∫

C+(u+)

−∆N
∞Γ(u+) · |∇Γ(u+)|n−1 ·

n−1
∏

i=1

κi dx

≤
1

(p− 1)nn

∫

C+(u+)

(

− (p− 1)∆N
∞Γ(u

+) + |∇Γ(u+)|

n−1
∑

i=1

κi

)n

dx

=
pn

(p− 1)nn

∫

C+(u+)

(

−∆N
p Γ(u

+)
)n

dx

≤
pn

(p− 1)nn

∫

C+(u)

(

f+
)n

dx.

Some comments are in order. First, it is important to notice that the
estimate in Theorem 4.3 is not stable in p, as the resulting constant blows
up as p → ∞. Hence we don’t recover any estimate in the limit, in contrast
to Theorem 4.1 that yields Theorem 3.2 as a limit case.
This fact can be understood by comparing the proofs of Theorems 4.1 and

4.3. In fact, they make apparent that the infinity Laplacian controls one sin-
gle direction, the direction of steepest descent, totally neglecting the curva-
ture of the level sets (whose average is in turn controlled by the Gauss-Bonet
Theorem). The p-Laplacian, instead, is a weighted mean of the curvatures
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of the level sets and the normal direction. In particular, when p = 2, the
classical Laplacian, all the directions are weighted the same way.
In this sense, it is completely natural that in the p-Laplacian case the ABP

involves an integral norm, an average in all directions, while in the infinity
Laplacian case the average is somehow unidimensional.
If we replace (20) by

∫

∇Γσ(v+)(Ω∗
σ)

|ξ|p−ndξ,

the same proof of Theorem 4.1 yields similar estimates for the variational
p-Laplacian (7).

Theorem 4.4. Let 1 < p < ∞, f ∈ C(Ω) and consider u ∈ C(Ω) that
satisfies

−∆pu ≤ f(x) in Ω

in the viscosity sense. Then, we have

(

sup
Ω

u− sup
∂Ω

u+
)p

≤
p dp

p− 1

∫ supΩ u

sup∂Ω u+

‖f+ · 1C+(u)‖L∞({u+=r}) dr,

where d = diam (Ω). Analogously, whenever

−∆pu ≥ f(x) in Ω

in the viscosity sense, the following estimate holds,

(

sup
Ω

u− − sup
∂Ω

u−
)p

≤
p dp

p− 1

∫ supΩ u−

sup∂Ω u−

‖f− · 1C+(−u)‖L∞({u−=r}) dr.

5. Stable estimates of the modulus of continuity for p ≤
∞
In this section we obtain Hölder estimates for solutions of the normalized

p-Laplacian as well as Lipschitz estimates for the normalized ∞-Laplacian.
The main interest of this estimates is that they are stable in p, and apply
to the whole range n < p ≤ ∞ with all the parameters involved varying
continuously.
As mentioned in the introduction, the well-known estimates in [6] apply

whenever p < ∞, but degenerate as p → ∞ as they depend upon the ratio
between the ellipticity constants (see also [14], Section 9.7 and 9.8), which in
this case is p− 1 and blows-up as p → ∞.
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For the sake of a unified presentation, throughout this section we are going
to denote

αp =







n− 1

p− 1
for n < p < ∞

0 for p = ∞
(31)

and

Cp =







p

p + n− 2
for n < p < ∞

1 for p = ∞.
(32)

Theorem 5.1. Let Ω be a bounded domain, 2 ≤ n < p ≤ ∞, and u a
viscosity solution of

−∆N
p u = f in Ω. (33)

Then, for any x ∈ Ω

|u(y)− u(x)|

|y − x|1−αp
≤ sup

z∈∂Ω

|u(z)− u(x)|

|z − x|1−αp
+

Cp

1− αp
diam(Ω)1+αp ‖f‖L∞(Ω)

for every y ∈ Ω, with αp and Cp defined in (31) and (32) respectively.

Remark 5.2. Compare with [8, Lemma 2.5].

The following estimate is an easy consequence of Theorem 5.1.

Corollary 5.3. Let Ω be a bounded domain, 2 ≤ n < p ≤ ∞, and u a
viscosity solution of (33). Let αp and Cp defined by (31) and (32). Then,
for any x ∈ Ω we have that

|u(y)− u(x)|

|y − x|1−αp
≤

2‖u‖L∞(Ω)

dist(x, ∂Ω)1−αp
+

Cp

1− αp
diam(Ω)1+αp ‖f‖L∞(Ω)

for every y ∈ Ω.

We also have global estimates for the Dirichlet problem.

Theorem 5.4. Let Ω be a bounded domain, 2 ≤ n < p ≤ ∞, and u a
viscosity solution of

{

−∆N
p u = f in Ω

u = g on ∂Ω
(34)

with g ∈ C0,1−αp(∂Ω) and αp as in (31). Then, for every x, y ∈ Ω,

|u(x)− u(y)|

|x− y|1−αp
≤ Cp ‖f‖L∞(Ω) diam(Ω)1+αp + [g]1−αp,∂Ω (35)
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with Cp as in (32).

Corollary 5.5. Let Ω be a bounded domain, 2 ≤ n < p ≤ ∞, and u a
viscosity solution of (34) with f ∈ C(Ω), g ∈ C0,1−αp(∂Ω) and αp, Cp as in
(31) and (32) respectively. Then,

‖u‖C0,1−αp(Ω) = ‖u‖L∞(Ω) + sup
x,y∈Ω

x6=y

|u(x)− u(y)|

|x− y|1−αp

≤ ‖g‖C0,1−αp(∂Ω) +
(

2 C̃p diam(Ω)2 + Cp diam(Ω)1+αp

)

‖f‖L∞(Ω)

with

C̃p =







p

p− 1
for n < p < ∞

1 for p = ∞.
(36)

Proof : From the ABP estimates (17) and (29) in Theorems 3.2 and 4.1, we
have

‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω) + 2 C̃p diam(Ω)2 ‖f‖L∞(C+(u)).

for C̃p as in (36). This estimate together with (35) yields the result.

We need some lemmas in the proof of Theorems 5.1 and 5.4.

Lemma 5.6. Consider the function

v(x) = h+
A

1− αp
|x− y|1−αp −

B

2
|x− y|2

with A,B > 0, h ∈ R and y ∈ R
n. Let Cp as defined in (32). Then

−∆N
p v(x) = C−1

p B

for x 6= y such that ∇v(x) 6= 0.

Proof : For x 6= y we have

∇v(x) =
(

A |x− y|−1−αp −B
)

(x− y)

and

D2v(x) =
(

A |x− y|−1−αp −B
)

Id−A (1+αp) |x− y|−1−αp
(x− y)⊗ (x− y)

|x− y|2
.

Then,

∆N
∞v(x) = −Aαp |x− y|−1−αp − B
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and the proof is complete in the case p = ∞. If p < ∞,

∆v(x) = trace(D2v(x)) = A (n− 1− αp) |x− y|−1−αp − nB

and hence

∆N
p v(x) =

1

p
∆v(x) +

p− 2

p
∆N

∞v(x) = −C−1
p B.

Remark 5.7. Notice that when p = ∞ this functions v are polar quadratic
polynomials as defined in [2, 19], that replace cones as the functions to which
compare in the context of the non-homogeneous normalized infinity Lapla-
cian.

Remark 5.8. Both operators ∆N
p and ∆N

∞ are linear when applied to radial
functions. This fact motivates using cusps and cones (as they are p-Harmonic
away from the vertex) in Lemma 5.6 altogether with a quadratic perturba-
tion.

Lemma 5.9. Let Ω be a bounded domain, x0 ∈ Ω, p > n,

A > B diam(Ω)1+αp,

and B > 0. Then, the function

v(x) = h+
A

1− αp
|x− x0|

1−αp −
B

2
|x− x0|

2

satisfies ∇v(x) 6= 0 for any x ∈ Ω \ {x0}.

Proof : A direct computation shows that for any x ∈ Ω \ {x0} we have that

|∇v(x)| = |x− x0| ·
∣

∣A |x− x0|
−1−αp −B

∣

∣

≥ |x− x0| ·
(

A diam(Ω)−1−αp −B
)

> 0

by our hypothesis on the size of A.

Lemma 5.10. Let Ω be a bounded domain, x0 ∈ Ω, p > n ≥ 2,

A ≥ (1− αp) sup
z∈∂Ω

|u(z)− u(x0)|

|z − x0|1−αp
+ B diam(Ω)1+αp, (37)

and B = (1 + ε)Cp‖f‖L∞(Ω) with ε > 0. Suppose that h is such that

v(x) = h+
A

1− αp
|x− x0|

1−αp −
B

2
|x− x0|

2
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touches u from above at some point x̃ ∈ Ω. Then, necessarily x̃ ≡ x0 and
h = u(x0).
We arrive at the same conclusion if we suppose instead that h is such that

v(x) = h−
A

1− αp
|x− x0|

1−αp +
B

2
|x− x0|

2

touches u from below at some point x̃ ∈ Ω.

Proof : We provide the proof in the first case as the second one follows in the
same way.
1. First we are going to prove that the contact point x̃ /∈ ∂Ω. Assume for
contradiction that x̃ ∈ ∂Ω. From the contact condition, we get that

h = u(x̃)−
A

1− αp
|x̃− x0|

1−αp +
B

2
|x̃− x0|

2,

and u(x0) < v(x0). This two facts together yield,

u(x0) < u(x̃)−
A

1− αp
|x̃− x0|

1−αp +
B

2
|x̃− x0|

2.

Rearranging terms we get,

A < (1− αp)

(

u(x̃)− u(x0)
)

|x̃− x0|1−αp
+

B

2
(1− αp)|x̃− x0|

1+αp.

Notice that,
B

2
(1− αp)|x̃− x0|

1+αp < B · diam(Ω)1+αp,

so we arrive at a contradiction with the definition of A and hence x̃ /∈ ∂Ω.
2. Now, assume for contradiction that x̃ 6= x0. We have that v touches u
from above at x̃. From the previous step we know that x̃ must be an interior
point; hence from the hypothesis of contradiction we know that v is C2 in a
neighborhood of x̃. As u solves (33) in the viscosity sense, we can use v as a
test function in the definition of viscosity solution and get

−∆N
p v(x̃) ≤ f(x̃).

On the other hand, Lemma 5.9 implies ∇v 6= 0 and then, from Lemma 5.6,

(1 + ε) ‖f‖L∞(Ω) = C−1
p B = −∆N

p v(x̃),

with ε > 0, a contradiction.

We now complete the proof of Theorem 5.1.



22 F. CHARRO, G. DE PHILIPPIS, A. DI CASTRO AND D. MÁXIMO

Proof of Theorem 5.1: Consider a cusp pointing downwards centered at x,

v(y) = h+
A

1− αp
|y − x|1−αp −

B

2
|y − x|2

with

A = (1− αp) sup
z∈∂Ω

|u(z)− u(x)|

|z − x|1−αp
+B diam(Ω)1+αp

and B = (1 + ε)Cp‖f‖L∞(Ω) with ε > 0. Lemma 5.10 says that if v touches
the graph of u from above, then the contact point is x and h = u(x). We
deduce,

u(y) ≤ v(y) = u(x) +
A

1− αp
|y − x|1−αp −

B

2
|y − x|2

≤ u(x) +
A

1− αp
|y − x|1−αp.

We get,

u(y)− u(x)

|y − x|1−αp
≤ sup

z∈∂Ω

|u(z)− u(x)|

|z − x|1−αp

+ (1 + ε) ‖f‖L∞(Ω)
Cp

1− αp
diam(Ω)1+αp.

As this estimate holds for any ε > 0, we can let ε → 0.
On the other hand, we can do the same with a cusp pointing upwards and

slide it until it touches from below. Namely, we get

u(y) ≥ v(y) = u(x)−
A

1− αp
|y − x|1−αp +

B

2
|y − x|2

≥ u(x)−
A

1− αp
|y − x|1−αp

and then argue as before. The two estimates together yield the result.

Now, we turn to the proof of the global estimates for the Dirichlet problem
in Theorem 5.4. A key point in the proof is the following lemma, similar to
the comparison with cones property in [8].

Lemma 5.11. Consider A > B diam(Ω)1+αp, B = (1 + ε)Cp‖f‖L∞(Ω) with

ε > 0, and x0 ∈ Ω. Let u be a viscosity solution of (33). Then if

u(x) ≤ u(x0) + A|x− x0|
1−αp −

B

2
|x− x0|

2
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for all x in ∂Ω the same inequality holds in the interior, that is

u(x) ≤ u(x0) + A|x− x0|
1−αp −

B

2
|x− x0|

2

for all x in Ω. In the same way, if

u(x) ≥ u(x0)− A|x− x0|
1−αp +

B

2
|x− x0|

2

for all x in ∂Ω the same inequality holds in the interior, that is

u(x) ≥ u(x0)− A|x− x0|
1−αp +

B

2
|x− x0|

2

for all x in Ω.

Proof : We prove just the first claim since the other one is analogous. Denote
as usual

v(x) = u(x0) + A|x− x0|
1−αp −

B

2
|x− x0|

2.

As we intend to prove that u(x) − v(x) ≤ 0 for all x ∈ Ω, assume for the
sake of contradiction that u(x̃) − v(x̃) = maxΩ(u − v) > 0 as we would be
done otherwise. Since u− v ≤ 0 on ∂Ω by hypothesis, x̃ must be an interior
point. Moreover, u(x̃)− v(x̃) > 0 so x̃ 6= x0 and v is C2 in a neighborhood of
x̃. As u is a viscosity solution of (33), we have by definition that

−∆N
p v(x̃) ≤ f(x̃)

On the other hand, as ∇v 6= 0 by the hypothesis on the size of A (see Lemma
5.9) we have by Lemma 5.6 that

−∆N
p v(x̃) = C−1

p B = (1 + ε) ‖f‖L∞(Ω)

a contradiction, as ε > 0.

Proof of Theorem 5.4: Pick x0 ∈ ∂Ω. Since g ∈ C0,1−αp(∂Ω), we have that for
any x ∈ ∂Ω

u(x) = g(x) ≤ u(x0) + L |x− x0|
1−αp

for L = [g]1−αp,∂Ω. Let

A ≥ L+ B diam(Ω)1+αp (38)

and B = (1 + ε)Cp‖f‖L∞(Ω) with ε > 0.
It is easy to see that (38) implies,

u(x) ≤ u(x0) + L |x− x0|
1−αp ≤ u(x0) + A|x− x0|

1−αp −
B

2
|x− x0|

2
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for any x ∈ ∂Ω. Then, Lemma 5.11 implies that the same holds for any
x ∈ Ω.
With the same proof it also holds that

u(x) ≥ u(x0)− A|x− x0|
1−αp +

B

2
|x− x0|

2 (39)

for any x ∈ Ω and x0 ∈ ∂Ω.
Choose now y ∈ Ω, by (39) we know that for any x ∈ ∂Ω we have

u(x) ≤ u(y) +A|x− y|1−αp −
B

2
|x− y|2

and thanks to Lemma 5.11 the same holds also for any x ∈ Ω. Reversing the
role of x and y we obtain

|u(x)− u(y)| ≤ A|x− y|1−αp −
B

2
|x− y|2 ≤ A|x− y|1−αp

and the result follows.

6. Limit equation

Theorem 6.1. Let Ω be a bounded domain, 2 ≤ n < p ≤ ∞, and up a
viscosity solution of

{

−∆N
p up(x) = fp(x) in Ω

up(x) = gp(x) on ∂Ω,
(40)

with fp ∈ C(Ω) and gp ∈ C0,p−n
p−1 (∂Ω). Suppose that fp and gp converge uni-

formly to some f ∈ C(Ω) and g (which in turn is C0,1(∂Ω)). Then, there exists
a subsequence up′ that converge uniformly to some u, a viscosity solution of

{

−∆N
∞u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω.
(41)

Moreover, u ∈ C0,1(Ω).

As it was mentioned in the introduction, this result is related to the results
in [4]. However, a distinct feature of this limit process is the lack of variational
structure of problem (40) that yields complications in the proof of the uniform
convergence of the solutions. Our ABP estimate provides a stable L∞ bound
that can be used in combination with our stable regularity results to prove
convergence.
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It is also interesting to understand the limits of (40) to solutions of (41)
as both equations can be interpreted in the framework of game theory, see
[22, 23].
Once uniform estimates have been established, the proof of Theorem 6.1 is

rather standard, but we include it for the sake of completeness.

Proof : Fix p0 such that n < p0. Then, for p ≥ p0, Corollary 5.5 yields the
following estimate

‖up‖
C
0,

p0−n
p0−1 (Ω)

≤ diam(Ω)

(

p−n
p−1−

p0−n
p0−1

)

· ‖up‖
C
0,

p−n
p−1 (Ω)

≤ diam(Ω)

(

p−n
p−1−

p0−n
p0−1

)

· ‖gp‖
C
0,

p−n
p−1 (∂Ω)

+ diam(Ω)2−
p0−n
p0−1 ·

(

2 p

p− 1
diam(Ω)

p−n
p−1 +

p

p+ n− 2

)

‖fp‖L∞(Ω).

As the right hand side can be bounded independently of p, Arzela-Ascoli
Theorem yields the existence of a subsequence converging uniformly to some
limit u ∈ C(Ω). We will still denote the subsequence by up.
Now, we turn to checking that the limit u is a viscosity solution of (41).

Let x0 ∈ Ω and a function ϕ ∈ C2(Ω) such that u−ϕ attains a local minimum
at x0. Up to replacing ϕ(x) with ϕ(x) − |x − x0|

4, we can assume without
loss of generality that minimum to be strict.
As u is the uniform limit of the subsequence up and x0 is a strict minimum

point, there exists a sequence of points xp → x0 as p → ∞ such that (up −
ϕ)(xp) is a local minimum for each p in the sequence.
Assume first that |∇ϕ(x0)| > 0. Then, |∇ϕ(xp)| > 0 for p large enough

and, as up is a viscosity supersolution of (40), we have that,

−
1

p
trace

[(

I + (p− 2)
∇ϕ(xp)⊗∇ϕ(xp)

|∇ϕ(xp)|2

)

D2ϕ(xp)

]

= −∆N
p ϕ(xp)

≥ fp(xp).

(42)

Letting p → ∞ we get

−
〈

D2ϕ(x0)
∇ϕ(x0)

|∇ϕ(x0)|
,
∇ϕ(x0)

|∇ϕ(x0)|

〉

= −∆N
∞ϕ(x0) ≥ f(x0).

If we assume otherwise that ∇ϕ(x0) = 0, we have to consider two cases.
Suppose first that there exists a subsequence still indexed by p such that
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|∇ϕ(xp)| > 0 for all p in the subsequence. Then, by Definition 2.4, we can
let p → ∞ to get

− lim inf
p→∞

〈

D2ϕ(xp)
∇ϕ(xp)

|∇ϕ(xp)|
,
∇ϕ(xp)

|∇ϕ(xp)|

〉

= −m
(

D2ϕ(x0)
)

= −∆N
∞ϕ(x0) ≥ f(x0).

If such a subsequence does not exists, according to Definition 2.2, we have
that

−
1

p
∆ϕ(xp)−

(p− 2)

p
m
(

D2ϕ(xp)
)

= −∆N
p ϕ(xp) ≥ fp(xp)

for every p large enough. Letting p → ∞, we have

−m
(

D2ϕ(x0)
)

= −∆N
∞ϕ(x0) ≥ f(x0).

We have proved (13), so u is a viscosity supersolution of (41). The subsolu-
tion case is similar.
Finally, we conclude that u ∈ C0,1(Ω) either letting p0 → ∞ or using that

u is a solution of (41), and hence the estimates in Corollary 5.5 apply.

7. Examples

In this section we provide some examples. The first one shows that the
classical ABP estimate in the form

sup
Ω

u ≤ sup
∂Ω

u + C(n,Ω)‖∆N
∞u‖Ln(Ω)

fails to hold. In order to prove this we shall construct a sequence of functions
{uε} defined on B1(0), vanishing on the boundary such that

sup
B1(0)

uε(x) ≈ 1 and ‖∆N
∞uε‖Ln(B1(0)) → 0,

as ε → 0. To do this we define

uε(x) = vε(|x|) =
1

1 + ε

(

1− |x|1+ε
)

,

so that,

sup
B1(0)

uε =
1

1 + ε

and

−∆N
∞uε(x) = −v′′ε (|x|) =

ε

|x|1−ε
. (43)
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Now a straightforward computation gives

‖∆N
∞uε‖

n
Ln(B1(0))

= c(n)εn
∫ 1

0

dρ

ρ1−nε
= c(n)εn−1.

Notice however that equation (43) is a pointwise computation and one has
to give it a meaning in the viscosity sense. However this difficulty can be
easily overcome considering, for instance, the functions

uε,δ(|x|) =
(1 + δ2)

1+ε
2

1 + ε
−

(|x|2 + δ2)
1+ε
2

1 + ε

which are C2, details are left to the reader.
As we said in the introduction we are not able to provide a counterexample

to the validity of an estimate of the form

sup
Ω

u ≤ sup
∂Ω

u+ C(n, p,Ω) ‖∆N
∞u‖Lp(Ω) (44)

for p > n. Our strategy, which is to approximate the “infinity harmonic” cone
1−|x| with radial functions, cannot be used to obtain such a counterexample.
In fact, it is easy to see that if vε(|x|) uniformly converge to 1 − |x|, then
the sequence of unidimensional functions v′′ε (ρ) has to converge in the sense
of distributions to −2δ0, twice a Dirac mass in the origin. Hence to find a
counterexample to (44) with our strategy one essentially needs to construct
a sequence vε(ρ) such that

∫ 1

0

v′′ε (ρ) dρ → 1 and

∫ 1

0

(v′′ε (ρ))
pρn−1 dρ → 0.

An application of Hölder inequality gives that this is impossible for p > n.
The second example we provide shows that our estimate is, in some sense,

sharper than the plain L∞ bound

sup
Ω

u ≤ sup
∂Ω

u + c(n,Ω)‖∆N
∞u‖L∞(Ω). (45)

Let us consider the functions

wε(x) =

{

1− |x| if ε < |x| ≤ 1

1− ε
2
− |x|2

2ε.
if |x| ≤ ε.

One immediately sees that

sup
B1(0)

wε ≈ 1 and ‖∆N
∞wε‖L∞(B1(0)) =

1

ε
,
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while
∫ supB1(0)

wε

0

‖∆N
∞wε‖L∞({wε=r})dr ≈ 1,

so our estimate can give more information than (45).

Appendix A

For the sake of completeness we provide here the proof of some technical
details needed in the foregoing.

Lemma A.1. Let Ω∗ be a convex domain and u a continuous semiconvex
function such that u ≤ 0 in R

n \ Ω∗ and u(x0) > 0 for some x0 ∈ Ω∗. Let
Γσ(u

+) be the concave envelope of u+ (extended by 0 outside Ω∗) in

Ω∗
σ = {x ∈ R

n such that dist(x,Ω∗) ≤ σ}.

Then Γσ(u) is C
1,1
loc in Ω∗

σ (and hence second order differentiable a.e.). More-
over,

{x ∈ Ω∗ : detD2Γσ(u) 6= 0} ⊂ C+
σ (u),

where C+
σ (u) is the set of points in Ω∗

σ where u = Γσ(u).

Proof : This lemma can be easily deduced from the arguments of [6, Lemma
3.5]. However, since our statement is slightly different, we shall briefly sketch
the proof for the sake of completeness. Obviously the second derivative of
Γσ(u) is bounded from above by 0 and hence to prove the C1,1

loc regularity it is
enough to show they are locally bounded from below. Since the graph of u
can be touched from below by a paraboloid with fixed opening this is clearly
true for every point in the contact set C+

σ (u).
Let now choose a compact set Ω∗ ⊂ K ⊂ Ω∗

σ, pick x ∈ K \C+
σ (u) and let L

be a supporting hyperplane at x to the graph of Γσ(u
+). Following the same

argument of [6, Lemma 3.5] one can prove that

x ∈ conv{y ∈ Ω∗
σ such that u+(y) = L(y)},

where conv denotes the closed convex hull of a set. Moreover, by Caratheo-
dory’s Theorem, we can write

x = λ1x1 + · · ·+ λn+1xn+1

with xi ∈ {u+ = L}, λi ≥ 0 and
∑n+1

i=1 λi = 1. We conclude that x belongs to
the simplex conv{x1, . . . , xn+1} and that L ≡ Γσ(u

+) in this set. Moreover,
all the xi ∈ Ω∗ ∩ C+

σ (u) with the exception of at most one, that may belong
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to ∂Ω∗
σ; otherwise by concavity one would have that Γσ(u

+) = 0 everywhere
in Ω∗

σ since u+ = 0 in Ω∗
σ \ Ω

∗.
We now claim that there exists a constant C = C(σ, n,Ω∗, K) and an index

i0 such that xi0 ∈ Ω∗ and λi0 ≥ C, this is true with C = 1/(n+ 1) if all the
xi belong to Ω∗. Otherwise we can assume without loss of generality that
xn+1 ∈ ∂Ω∗

σ and suppose that λi < C for i = 1, . . . , n. Then,

0 < dist(K, ∂Ω∗
σ) ≤ |x− xn+1| ≤

n
∑

i=1

λi |xi − xn+1| < nC(diam(Ω∗) + 2σ),

a contradiction if C is small enough. Assume without loss of generality that
i0 = 1, by the semiconvexity assumption we know that

Γσ(u
+)(x1 + h) ≥ u+(x1 + h) ≥ L(x1 + h)−M |h|2

for |h| ≤ dist(Ω∗, ∂Ω∗
σ) and L an affine function whose graph is the supporting

hyperplane to the graph of Γσ(u
+) at x1. Writing

x+ h = λ1

(

x1 +
h

λ1

)

+ · · ·+ λn+1xn+1,

thanks to the concavity of Γσ(u
+) and the fact that L ≡ Γσ(u

+) in the
simplex conv{x1, . . . , xn+1}, we get

Γσ(u
+)(x+ h) ≥ λ1Γσ(u

+)
(

x1 +
h

λ1

)

+ λ2Γσ(u
+)(x2) + · · ·+ λn+1Γσ(u

+)(xn+1)

≥ λ1L
(

x1 +
h

λ1

)

−
M

λ1
|h|2 + λ2L(x2) + · · ·+ λn+1L(xn+1)

= L(x+ h)−
M

λ1
|h|2 ≥ L(x+ h)− M̃(n, σ,Ω∗, K)|h|2

for |h| ≤ ε(n, σ,Ω∗, K) small enough, which is the claimed C1,1
loc regularity. To

prove the last assertion in the statement of the Lemma, just notice that for
any x ∈ Ω∗ \C+

σ (u) the function Γσ(u
+) coincides with an affine function on

a segment.

Lemma A.2. Let u be a viscosity subsolution of

F
(

∇u,D2u
)

= f(x) in Ω
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and let x0 ∈ Ω. If ϕ is a function such that u − ϕ has a local maximum at
x0 and ϕ is twice differentiable at x0, then

F∗

(

∇ϕ(x0), D
2ϕ(x0)

)

≤ f(x0).

Proof : By assumption

ϕ(x) = ϕ(x0)+〈∇ϕ(x0), (x−x0)〉+
1

2
〈D2ϕ(x0)(x−x0), (x−x0)〉+o(|x−x0|

2).

Thus for every ε > 0 the C2 function

ϕε(x) = ϕ(x0)+〈∇ϕ(x0), (x−x0)〉+
1

2
〈D2ϕ(x0)(x−x0), (x−x0)〉+

ε

2
|x−x0|

2.

touches u from above at x0, so by definition of viscosity subsolution we have

F∗

(

∇ϕ(x0), D
2ϕ(x0) + εId

)

≤ f(x0)

and passing to the limit in ε we obtain the thesis.

Before stating the next Proposition, we recall that a Lipschitz function
v : M → N between two C1 manifolds is differentiable Hn−1-a.e. and we
shall denote with ∇Mv its tangential gradient, that is, the linear operator
between TxM and TxN defined by

∇Mv · ξ := lim
t→0

f(x+ tξ)− f(x)

t
,

see for instance [12, Section 3.1].

Proposition A.3. Let w be a concave C1,1 function in a ball BR(0) with
w = 0 on ∂BR(0). Then,

(1) For every level r ∈ (0, supBR(0)w), ∇w 6= 0 and Mr := {w = r} is a

C1,1 manifold.
(2) For a.e. r ∈ [0, supBR(0)w], Hn−1-a.e. x ∈ Mr is a point of twice

differentiability for w.
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(3) Let r ∈ (0, supBR(0)w), if x ∈ Mr is a point of twice differentiability,
then,

−D2w(x) =|∇w(x)|

n−1
∑

i=1

κi(x) τi(x)⊗ τi(x)

−

n−1
∑

i=1

∂2
ντiw(x)

(

τi(x)⊗ ν(x) + ν(x)⊗ τi(x)
)

−∆N
∞w(x) ν(x)⊗ ν(x),

(46)

where:
(a) ν(x) is the exterior normal to Mr at x, i.e.

ν(x) = −
∇w(x)

|∇w(x)|
.

(b) τi(x) for i = 1, . . . , n − 1 is an orthonormal basis of TxMr that
diagonalizes the Weingarten operator ∇Mν at x.

(c) κi(x) are the eigenvalues of ∇Mν at x, which are the principal
curvatures of Mr at x.

Proof : (1) As w is concave we have that ∇w(x) = 0 if and only if x is such
that w(x) = supBR(0)w. Then, by the Implicit Function theorem, for every
r ∈ (0, supBR(0)w) the level set Mr can be locally represented as a graph of

a C1,1 function. Hence, up to a change of coordinates, we can suppose that
there exists f : U ⊂ R

n−1 → R such that

w(x′, f(x′)) = r, and ∂nw(x
′, f(x′)) ≥ c > 0 ∀x′ ∈ U ,

where we denote x = (x′, xn) ∈ R
n−1 × R. In particular,

∇′f(x′) = −
∇′w(x′, f(x′))

∂nw(x′, f(x′))

is Lipschitz.
(2) Now, let D be the set of points of twice differentiability for w. Then,
we know that |BR(0) \D| = 0 (see [11]) and by the Coarea Formula,

0 =

∫

BR(0)\D

|∇w(x)| dx =

∫ supBR(0) w

0

Hn−1
(

Mr ∩ (BR(0) \D)
)

dr.

(3) Let now x0 be a point of twice differentiability for w. By part (1), we
know that ∇w(x0) 6= 0. Without loss of generality we can assume x0 = 0.
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By means of an axis rotation, we can also suppose that ν(0) = en, that is,

∇w(0) = ∂nw(0, 0) en

with ∂nw(0, 0) < 0.
There exists f : B′

δ(0) ⊂ R
n−1 → R such that w(x′, f(x′)) = r, in particu-

lar, f(0) = 0 and ∇′f(0) = 0. Moreover,

∇′f(x′) = −
∇′w(x′, f(x′))

∂nw(x′, f(x′))

is differentiable at 0.
Using another rotation of axis affecting only the first n − 1 variables, we

can suppose that the matrix D2
x′f(0) is diagonal in our coordinates, namely,

D2
x′f(0) = diag(−κ1, . . . ,−κn−1). (47)

Moreover, the Gauss map coincides with

x′ 7→
1

√

1 + |∇′f(x′)|2

(

−∇′f(x′), 1
)

,

so differentiating, we obtain

∇Mν(0) = −D2
x′f(0).

In particular, from this equality and (47), we deduce that τ1(0), . . . , τn−1(0)
and e1, . . . , en−1 coincide.
Differentiating twice the expression w(x′, f(x′)) = r with respect to x′ we

finally obtain,

D2
x′w(0, 0) = −∂nw(0, 0)D

2
x′f(0)

= |∇w(0)|D2
x′f(0) = −|∇w(0)|∇Mν(0).

Moreover, we also have ∂2
ν,νw(0) = 〈D2w(0)ν(0), ν(0)〉 = ∆N

∞w(0) and the
thesis is proved.

We recall the following version of the Gauss-Bonnet Theorem, the proof of
which easily follows from the Area Formula between rectifiable sets (see [12,
Corollary 3.2.20]).

Theorem A.4. Let K ⊂ R
n a C1,1 convex set and νK its outer normal.

Then,
∫

∂K

n−1
∏

i=1

κi(x) dH
n−1 =

∫

∂K

det(∇∂KνK) dH
n−1 = Hn−1

(

∂B1(0)
)

. (48)
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Proof : By the Area Formula (see [12, Corollary 3.2.20]) we have
∫

∂K

det(∇∂KνK) dH
n−1 =

∫

∂B1(0)

deg(νK, ∂K, ∂B1(0)) dH
n−1

= Hn−1
(

∂B1(0)
)

,

where deg(νK, ∂K, ∂B1(0)) is the Brouwer degree of the Gauss map νK :
∂K → ∂B1(0) which can be easily seen to be 1.
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