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1. Introduction

Let m and n be two positive integers and let R = (r1, . . . , rm) and S =
(s1, . . . , sn) be vectors of non–negative integers with

∑m
i=1 ri =

∑n
j=1 sj. The

set of all m × n matrices over {0, 1} with ith row sum equal to ri, for 1 6

i 6 m, and jth column sum equal to sj , for 1 6 j 6 n, is commonly denoted
by A (R, S).

Since 1957, the combinatorial properties of A (R, S) have been a prolific
source of several interesting and still open problems (cf. e.g. [2, 3, 4, 5,
7, 8, 9, 17] and references therein). The Gale–Ryser Theorem, originally
proved independently in [10] and [16], describing when (0, 1)–matrices with
given row and column sum vectors exist, lies at the heart of the classical
combinatorial mathematics. In 1963, Herbert J. Ryser wrote in the preface
of his fascinating book [17, p.x]:

Combinatorial mathematics is tremendously alive at this mo-
ment, and we believe that its greatest truths are still to be re-
vealed.

The interesting case in which the nonemptiness is guarantee emerges when
m = n, k is a positive integer such that 0 6 k 6 n, and R = S = (k, . . . , k)
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is the constant vector having each component equal to k. In this case we
simply write A (n, k) for A (R, S).

Motivated by a characterization of the Bruhat order on Sn, the symmetric
group of n elements, in [5] Brualdi and Hwang defined a Bruhat partial order
4 on a nonempty class A (R, S). Specifically, for an m×n matrix A = (aij),
let ΣA = (σij(A)) be the m × n matrix defined by

σij(A) =

i
∑

k=1

j
∑

ℓ=1

akℓ , for 1 6 i 6 m, 1 6 j 6 n .

If A1, A2 ∈ A (R, S), then A1 4 A2 if and only if ΣA1
> ΣA2

in the entrywise
order, i.e., σij(A1) > σij(A2), for all 1 6 i 6 m and 1 6 j 6 n.

Later on, Brualdi and Deaett [4, Theorem 5.1] characterized all families
of the class A (n, k) for which there is a unique minimal element, which are
when k ∈ {0, 1, n− 1, n} or n = 2k.

Since A (n, k) ≃ A (n, n − k), |A (n, 0)| = 1, and A (n, 1) ≃ Sn, the most
interesting case is in fact A (2k, k), for which the minimal matrix is

Pk = Jk ⊕ Jk =

(

Jk Ok

Ok Jk

)

,

where Jk is the matrix of all 1’s and Ok is the zero matrix, both of order k.
As an immediate consequence, the unique maximal element is

Qk =

(

Ok Jk

Jk Ok

)

.

We point out that the sequence of |A (2k, k)| (k ∈ N) is coined as A058527,
cf. [18], in the The On–Line Encyclopedia of Integer Sequences. We observe
also that computing a closed manageable formula for such sequence is a still
open problem which looks quite hard (cf., e.g., [1, 6, 11, 12, 13, 14, 15, 19, 20]
and the references therein for some partial results).

In [4, Section 6] an example is provided to show that Bruhat order 4 is not
graded, and it is asked what the largest size of an antichain in the Bruhat
order in the class A (2k, k) is. Recall that an antichain in A (2k, k) is a set
of pairwise incomparable elements in that class. In this brief note, carrying
on the investigation started in [7], we provide the first estimates which prove
that the answer is O(k8). We remark that this value is asymptotically much
greater than the size of the largest chain, which is k4, as it was shown in [7].
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2. The main result

We start this section with our main result.

Theorem 2.1. For any integer k > 2, let ϑ(k) be the largest size of an

antichain in the Bruhat order in A (2k, k). Then
(

⌊

k

2

⌋4

+ 1

)2

6 ϑ(k) 6

⌊

k8

4

⌋

+ 1 ,

where ⌊x⌋ stands for the largest integer not greater than x.

Proof : We start proving the upper bound for ϑ(k).

As an immediate consequence of the definition of antichain, we have

ϑ(k) 6 1 + max
A∈A (2k,k)

Γ(A) ,

where

Γ(A) = |{M ∈ A (2k, k) such that M is incomparable with A}| .

By definition of Bruhat order, it is evident that A and M in A (2k, k) are
incomparable if and only if there exist (u, v) and (w, z) with 1 6 u, v, w, z 6

2k such that σuv(A) > σuv(M) and σwz(A) < σwz(M).

Moreover, since A (2k, k) admits a minimum Pk and a maximum Qk, ob-
viously

σij(Pk) 6 σij(A) 6 σij(Qk) ,

for all 1 6 i, j 6 2k.

For any fixed A ∈ A (2k, k), we split ΣM , for any M ∈ A (2k, k), as the
disjoint union of

Σ< = {σij(M), with 1 6 i, j 6 2k, such that σij(M) < σij(A)} ,

Σ= = {σij(M), with 1 6 i, j 6 2k, such that σij(M) = σij(A)} ,

Σ> = {σij(M), with 1 6 i, j 6 2k, such that σij(M) > σij(A)} ,

and clearly an upper bound for Γ(A) is given by η1, the number of all possible
choices for Σ<, times η2, the number of all possible choices for Σ>.

In [7] it is shown that

ϕ(Pk, Qk) :=
m
∑

i=1

n
∑

j=1

[σij(Pk) − σij(Qk)] = k4 ,
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and an algorithm is presented showing that for any integer value 0 6 c 6 k4

there exists at least a matrix N such that ϕ(Pk, N) = c and ϕ(N, Qk) = k4−c.

Hence we get η1 + η2 6 k4.

We restrict now to the case k ≡ 0 (mod 2). Since the real variables function
f defined by f(x, y) = xy in the domain x > 0, y > 0, and x+y 6 k4, admits

only a maximum when x = y = k4

2 , we may conclude that maxA∈A (2k,k) Γ(A)
is achieved when A is such that

ϕ(Pk, A) = ϕ(A, Qk) =
k4

2
, (1)

and both η1 and η2 admit as an upper bound k4

2
, and therefore

max
A∈A (2k,k)

Γ(A) 6
k8

4
.

If k ≡ 1 (mod 2), analogously we get

max
A∈A (2k,k)

Γ(A) 6

(

k4 − 1

2

)(

k4 + 1

2

)

=
k8 − 1

4
6

⌊

k8

4

⌋

.

Next, we present a lower bound for ϑ(k) when k ≡ 0 (mod 2).

Let us consider the matrix

A =











Jk

2

Jk

2

Ok

2

Ok

2

Ok

2

Ok

2

Jk

2

Jk

2

Ok

2

Ok

2

Jk

2

Jk

2

Jk

2

Jk

2

Ok

2

Ok

2











=











Jk

2

Ok

2

Pk

2

Ok

2

Jk

2

Ok

2

Jk

2

Qk

2

Jk

2

Ok

2











=













J∗
k

2

O∗
k

2

P •
k

2

O∗
k

2

J∗
k

2

O
†
k

2

J
†
k

2

Q⊙
k

2

J
†
k

2

O
†
k

2













which satisfies (1) (and actually it is the matrix generated at step k4

2 by the

algorithm in [7]). We use symbols •, ⊙, ∗, and † just to mark and indicate
the corresponding submatrices of A. Note that • ≃ ∗ ≃ Pk

2

and ⊙ ≃ † ≃ Qk

2

.

The Chain algorithm of [7] generates a chain of maximal length n4 between
Pn and Qn, for any integer n > 2, and it is straightforward to see that it can
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be reverted, viz. we can consider the Rev–Chain algorithm which generates
the same chain backwards from Qn and Pn.

Clearly applying simultaneously Chain and Rev–Chain algorithms to • and
⊙, and denoting this operation as central–antichain algorithm, we get (k

2)
4+1

elements incomparable, and the same is true considering submatrices ∗ and
†. This last operation is denoted by lateral–antichain algorithm .

In fact, it is possible to apply independently both central–antichain and
lateral–antichain algorithms to A and still getting an antichain, viz. Z =
{Aij | 0 6 i, j 6 (k

2)
4} is an antichain, where Aij is the matrix obtained from

A applying i–times the central–antichain algorithm and j–times the lateral–
antichain algorithm, so we get an instance of an antichain having size

(

(

k

2

)4

+ 1

)2

.

It is easy to see that Z is an antichain because the upper half of the matrix
A is the disjoint union of two submatrices Pk

2

, whereas the lower half is the

disjoint union of two submatrices Qk

2

, hence for any transformation we apply,

the upper half goes up in the Bruhat order, and the lower half goes down,
and therefore the resulting elements are incomparable.

For any integer k > 3, not necessary even, we obviously have ϑ(k − 1) 6

ϑ(k), and the desired result follows.
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