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3× 3 LEMMA FOR STAR-EXACT SEQUENCES

MARINO GRAN, ZURAB JANELIDZE AND DIANA RODELO

Abstract: A regular category is said to be normal when it is pointed and every
regular epimorphism in it is a normal epimorphism. Any abelian category is nor-
mal, and in a normal category one can define short exact sequences in a similar way
as in an abelian category. Then, the corresponding 3 × 3 lemma is equivalent to
the so-called subtractivity, which in universal algebra is also known as congruence
0-permutability. In the context of non-pointed regular categories, short exact se-
quences can be replaced with “exact forks” and then, the corresponding 3×3 lemma
is equivalent, in the universal algebraic terminology, to congruence 3-permutability;
equivalently, regular categories satisfying the 3×3 lemma are precisely the Goursat
categories. We show how these two seemingly independent results can be unified in
the context of star-regular categories recently introduced in a joint work of A. Ursini
and the first two authors.

1. Introduction

In an abelian category, the 3× 3 lemma states that, given a commutative
diagram

• //

��

• //

��

•

��
• //

��

• //

��

•

��
• // • // •

where all three columns and the second row are short exact sequences, the
top row is a short exact sequence if and only if so is the bottom row. This
can be split up into upper and lower 3 × 3 lemmas, where the upper 3 × 3
lemma states only that the short exactness of the top row follows from the
short exactness of the bottom one, and the lower 3 × 3 lemma states the
converse implication. There is also a middle 3× 3 lemma, which states that
if the composite of the two morphisms in the middle row is null and if the
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top and the bottom rows are short exact, then the middle row is also short
exact. It was recently proved by the second author [16] that, in any normal
category (i.e. a pointed regular category where every regular epimorphism is
a normal epimorphism), the upper and the lower 3×3 lemmas are equivalent,
and they hold precisely when the normal category is subtractive [15]. The
middle 3 × 3 lemma turns out to be stronger than the other two, and it is
equivalent to protomodularity [2].
The “denormalized 3 × 3 lemma”, studied in [4], replaces short exact se-

quences with exact forks, i.e. kernel pairs of regular epimorphisms. It was
shown by S. Lack in [17] that the denormalized 3 × 3 lemma holds in any
Goursat category and, more recently, it was proved by the first and third
authors [12] that in a regular category, the denormalized 3× 3 lemma is ac-
tually equivalent to the category being a Goursat category [6, 5]. Moreover,
just as in the normalized case, the upper and the lower denormalized 3 × 3
lemmas are equivalent.
These two independent works are now brought together in the present arti-

cle where we revisit them in the categorical context of a star-regular category
proposed in [11], where it becomes possible to treat the normalized and the
denormalized 3× 3 lemmas simultaneously. The notion of a star-regular ca-
tegory is in some sense a merger of two notions: that of a regular category
[1] and that of a category equipped with an ideal N of morphisms [8]. In
[11], in a category with an ideal N , we defined a star to be an ordered pair
of parallel morphisms [k1, k2] : K ⇉ X, where the first morphism in the pair
belongs to N . The star-kernel of a morphism f : X → Y is defined as a uni-
versal star such that fk1 = fk2. Then star-regularity refers to the property
that every regular epimorphism is a coequalizer of its star-kernel. In the case
when N is the class of null morphisms in a pointed category, which we call
the pointed context, star-regular categories become precisely the normal ca-
tegories, since there the notion of a star-kernel reduces to the usual notion of
a kernel. In the case when N is the class of all morphisms, which we call the
total context, star-kernels are precisely the kernel pairs, and so star-regular
categories are the same as regular categories. Background material regarding
stars, star-kernels and star-regularity is presented in Section 2 below.
Replacing kernel pairs with star-kernels, we extend from regular categories

to star-regular categories the equivalence of the denormalized 3 × 3 lemma
and the Goursat property (see [6, 5]) that composition of kernel pairs is
3-permutable. We achieve this under additional axioms on a star-regular
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category, which do hold true both in the total and pointed contexts. Ap-
plying our result to the pointed context we get precisely the equivalence of
subtractivity and the normalized 3× 3 lemma in normal categories.
We also extend from normal categories to star-regular categories, the equi-

valence of the short five lemma and the middle 3 × 3 lemma (Section 5).
Applying this result in the total context we see that the denormalized mid-
dle 3×3 lemma holds true in any regular category. This reveals an interesting
“conceptual duality” between the pointed and total contexts, where in the
total context the upper/lower 3 × 3 lemmas are stronger than the middle
3× 3 lemma, whereas in the pointed context they are weaker.

2. Stars, constellations and star-regular categories

In this section we give the main notions and properties concerning stars in
a category with finite limits; we refer to [11] for further details.
Let C denote a category with finite limits, and N a distinguished class of

morphisms that forms an ideal, i.e. for any composable pair of morphisms
g, f , if either g or f belongs to N , then the composite gf belongs to N . An
N -kernel of a morphism f : X → Y is defined as a morphism k : K → X

such that fk ∈ N and k is universal with this property (note that such
k is automatically a monomorphism). A pair of morphisms, denoted by
σ = [σ1, σ2] : S ⇉ X with σ1 ∈ N is called a star ; it is called a monic star
when the pair (σ1, σ2) is jointly monomorphic. A star σ = [σ1, σ2] with both
σ1, σ2 ∈ N is said to be a bi-star.
A commutative diagram

S
σ // //

g

��

X

f

��

T //
τ

// Y

of stars and morphisms (here fσ = τg means that fσ1 = τ1g and fσ2 =
τ2g) is called a star-pullback when given another such commutative (outer)
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diagram

S ′

σ′

%%%%

g′

��

h

��

S //
σ

//

g

��

X

f

��

T //
τ

// Y

there exists a unique morphism h : S ′ → S such that gh = g′ and σh = σ′.
A commutative square of stars

H
β

////

��
α

��

E

ε

����

F //
ϕ

// X

is said to be a constellation; the commutativity εβ = ϕα means that the
following diagram commutes:

X E
ε1oo

ε2 // X

F

ϕ2

��

ϕ1

OO

Hα1
oo α2

//

β1

OO

β2

��

F

ϕ2

��

ϕ1

OO

X Eε1
oo

ε2
// X.

A universal constellation (over the stars ϕ and ε) is a constellation as above
such that for any other (outer) constellation, there exists a unique morphism
h : H ′ → H:

H ′

��

α′

��

β′

%%%%

h
  

H //

β
//

α

����

E

ε

����

F //
ϕ

// X

such that αh = α′ and βh = β ′.
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Example 2.1. (The total context) A double equivalence relation is an (in-
ternal) equivalence relation in the category of equivalence relations, pictured
as a commutative diagram:

H ////

����

E

����

F // // X.

In particular, it gives a constellation of (monic) stars. Then, the universal
constellation is given by the following classical construction (see [7], [14]):

H = F�E = {(x, y, t, z) ∈ X4 | xFy ∧ tFz ∧ xEt ∧ yEz}.

Remark 2.2. (The pointed context) A constellation in the pointed context
simply amounts to a commutative square of morphisms

H
β2 //

α2

��

E

ε2

��

F ϕ2

// X.

Such a constellation is universal exactly when it is a pullback.

Given a relation ̺ = (̺1, ̺2) : R ⇉ X on an object X, we denote by ̺∗

the biggest subrelation of ̺ which is a (monic) star; it can be constructed
by setting ̺∗ = [̺1k, ̺2k], where k is the N -kernel of ̺1. In particular, if we
denote the discrete (equivalence) relation on an object X by ∆X = (1X, 1X) :
X ⇉ X, then ∆∗

X = [kX , kX ], where kX denotes the N -kernel of 1X .
The star-kernel of a morphism f : X → Y is a universal star κ = [κ1, κ2] :

K ⇉ X with the property fκ1 = fκ2 (such a star is then automatically
a monic star); it is easy to see that the star-kernel of f coincides with κ∗

f ,
where κf is the kernel pair of f .
Throughout the paper, we omit proofs of those technical observations which

closely mimic corresponding results in the total or pointed context that are
usually well known. Below is one such result:
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Lemma 2.3. [11] Consider a commutative diagram

P
λ // //

e
��

X
c //

f
��

C

m
��

K //
κ

// Y
d

// Q

of morphisms and stars.

(a) Suppose κ is a star-kernel of d and m is a monomorphism. Then, the
left square is a star-pullback if and only if λ is a star-kernel of c.

(b) Suppose c is a coequalizer of λ and e is an epimorphism. Then, the
right square is a pushout if and only if d is a coequalizer of κ.

Convention 2.4. Throughout the rest of the paper, we work in a regular
category C equipped with an ideal N such that every morphism admits an
N -kernel. Following the terminology used in [11], such category will be called
a regular multi-pointed category with kernels.

Definition 2.5. [11] A regular multi-pointed category C with kernels is said
to be star-regular when every regular epimorphism in C is a coequalizer of a
star.

In the total context, a star-regular category is precisely a regular category.
In the pointed context, a star-regular category is the same as a normal ca-
tegory [16], i.e. a regular category in which any regular epimorphism is a
normal epimorphism.
The following lemma, in the total context, appears as Proposition 1.1 in

[4]:

Lemma 2.6. In a star-regular category, consider a commutative diagram

P
λ ////

e
��

X
c //

f
��

C

m
��

K //
κ

// Y
d

// Q

of stars and morphisms, where κ is a star-kernel of d and c is a regular
epimorphism. Any two of the following conditions imply the third one:

(a) m is a monomorphism;
(b) λ is a star-kernel of c;
(c) the left hand side square is a star-pullback.
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3. Star-exact sequences and the 3× 3 lemma

In a star-regular category, a (short) star-exact sequence is a diagram

K
κ // // X

f
// Y

where κ = [κ1, κ2] is a star-kernel of f and f is a coequalizer of κ1 and
κ2 (which, by star-regularity, is the same as to say that f is a regular epi-
morphism). In the total context, the notion of a star-kernel of a morphism
becomes the notion of a kernel pair of a morphism and a star-exact sequence
is just an exact fork, while in the pointed context they represent a kernel of
a morphism and a short exact sequence, respectively.
In this section we formulate a 3 × 3 lemma for star-exact sequences. Its

diagrammatic shape, therefore, resembles the denormalized 3× 3 lemma [4],
although it captures both the denormalized 3×3 lemma for the total context
[4] as well as the 3 × 3 lemma in the pointed context [3], which in the case
of abelian categories gives the classical 3× 3 lemma.
In a star-regular category, our 3×3 lemma concerns a commutative diagram

H
β

// //

��
α

��
1

E
b //

��
ε

��

G

γ

����

F
ϕ

////

a

��

X
f

//

e

��
2

Y

g

��

D //

δ
// W

d
// Z

(1)

of stars and morphisms. In particular, the commutativity of 1 means that
1 is a constellation. A commutative diagram (1) will be called a 3 × 3
diagram when all columns are star-exact sequences. The upper 3× 3 lemma
states that in a 3×3 diagram (1), if the second and third rows are star-exact
sequences, then so is the first row; the lower 3× 3 lemma states that, if the
first and second rows are star-exact sequences, then so is the third row. The
middle 3 × 3 lemma states that, in a 3 × 3 diagram (1) where fϕ1 = fϕ2

and the first and third rows are star-exact sequences, the second row is a
star-exact sequence. In the total context, the upper and the lower 3 × 3
lemmas are equivalent, and they hold in a regular category precisely when it
is a Goursat category [12]. In the pointed context, they are also equivalent,
and they hold precisely when the normal category is subtractive [16]. In the
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total context the middle 3 × 3 lemma always holds true and, consequently,
the denormalized 3 × 3 lemma for regular categories is usually stated only
in the upper and lower formulations. However, in the pointed context, the
middle 3 × 3 lemma is very meaningful since it characterizes protomodular
categories [3].
In the rest of this section we study conditions which lead to a technical

simplification of our upper and lower 3×3 lemmas (see Section 4). This study
is essentially a direct generalization of the corresponding study in the total
context carried out in [4]. For the generalization to work, we need additional
assumptions on the star-regular category, which always hold true in the total
and pointed contexts. While our approach to the 3× 3 lemma for star-exact
sequences is very similar to the one adopted in [4] for the denormalized 3× 3
lemma, it is quite different from the approach to the normalized 3×3 lemma
used in [16] which is based on the classical diagram chasing method (a direct
“denormalization” of the approach used in [16] seems to fail).
An object X is said to be N -trivial when 1X ∈ N ; equivalently, X is N -

trivial when any morphism whose domain or codomain is X belongs to N .
Because of the presence of N -kernels, we have that if a composite fg belongs
to N and g is a regular epimorphism, then also f belongs to N . This easily
implies that N -trivial objects are closed under quotients.

Definition 3.1. We say that there are enough trivial objects in C whenN is a
closed ideal [13], i.e. any morphism in N factors through an N -trivial object,
and moreover, the class of N -trivial objects, apart from being closed under
quotients, is also closed under subobjects and squares (the latter meaning
that, for any N -trivial object X, the object X2 = X ×X is N -trivial).

A sufficient condition for the presence of enough trivial objects is when N
is a closed ideal and N -trivial objects do not have either proper subobjects
or proper quotients. This is a corollary of the following

Proposition 3.2. Suppose that N is a closed ideal and that N -trivial ob-
jects do not have proper subobjects (i.e. every monomorphism with N -trivial
codomain is an isomorphism). Then the following conditions are equivalent:

(a) There are enough trivial objects in C.
(b) Every morphism W → 1 from an N -trivial object W to the terminal

object is a monomorphism.
(c) Every morphism W → X whose domain is an N -trivial object, is a

monomorphism.
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(d) N -trivial objects do not have proper quotients (i.e. any regular epi-
morphism with N -trivial domain is an isomorphism).

Proof : (a)⇔(b): W → 1 is a monomorphism if and only if in the pullback

W ×W

π1

��

π2 // W

��

W // 1

π1 is an isomorphism. Suppose W is N -trivial. If (a) holds, then W ×
W is also N -trivial and hence the diagonal (1W , 1W ) : W → W × W is
an isomorphism. Since π1 is its right inverse, it follows that π1 is also an
isomorphism. Conversely, if (b) holds, then π1 is an isomorphism and hence
W ×W is N -trivial. This implies that (a) holds, since N -trivial objects have
no non-proper subobjects, and hence their subobjects are trivially N -trivial.
(b)⇔(c): This follows from the fact that if in the commutative triangle

W

  @
@@

@@
@@

@
// X

����
��

��
��

1

the bottom left arrow is a monomorphism, then so is the top one.
(c)⇔(d) is straightforward (for (d)⇒(c) use the fact any morphism decom-

poses as a regular epimorphism followed by a monomorphism).

According to the following proposition, the case when N is a closed ideal
such that N -trivial objects do not have proper subobjects gives precisely the
proto-pointed context in the sense of [11].

Proposition 3.3. For any regular category C there exists at most one closed
ideal N for which C has N -kernels and such that N -trivial objects do not
have proper subobjects. Moreover, such an N exists if and only if every object
has the least subobject. Then, N consists of those morphisms f whose regular
image is the least subobject of the codomain of f .

Proof : First, suppose such an N exists. Then, consider the N -kernel kX :
KX → X of an identity morphism 1X : X → X. Then kX ∈ N and since N
is a closed ideal, it factors through an N -trivial object. The fact that kX is
a monomorphism implies that KX is a subobject of the same trivial object,
which in turn implies that KX is itself trivial. Now, we prove that kX is
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the least subobject of X. Let m : M → X be any other subobject. Pulling
back m along kX must result in an isomorphism, since, the object KX , being
N -trivial, does not have proper subobjects. But then, kX factors through
m. This shows that when N exists, every object has a least subobject. The
fact that the least subobject was obtained as the N -kernel of the identity
morphism shows the last statement of the proposition. Indeed, if a regular
image of a morphism f : W → X is the least subobject kX : KX → X of
X, then, since kX ∈ N , it follows that f ∈ N . Conversely, if f ∈ N then
it must factor through kX . This implies that the regular image of f factors
through kX , and hence is forced to coincide with kX , since kX is the least
subobject of X.
Now, suppose every object X has a least subobject kX : KX → X. Define

the class N to consist of those morphisms f : W → X whose regular image
is kX . It is easy to verify that N has all desired properties.

Obviously, both in the total and pointed contexts, there are enough trivial
objects. In the proto-pointed context in the sense of [11], which, as noted
above, is precisely the one described in Proposition 3.3, there need not be
enough trivial objects. Indeed, consider the category Rng of unitary rings,
where we take N to be the class of trivial homomorphisms (i.e. those ring
homomorphisms Q → R whose image is the least subring of R). Then, the
ring Z of integers is N -trivial, but Z×Z is not. According to Proposition 3.2,
another reason why Rng does not have enough trivial objects is because the
the map Z → {1} is not injective. In fact, in the proto-pointed context of
any variety of universal algebras, the presence of enough trivial objects splits
up in two cases: when the variety is pointed (i.e. its theory has a unique
nullary term), and when it contains the empty algebra (i.e. the algebraic
theory of the variety does not contain any nullary terms). In the second case,
star-regularity forces the identity x = y to hold true in the variety, and so
this shows that the only “interesting” example of star-regularity in a varietal
proto-pointed context with enough trivial objects is the star-regularity in the
varietal pointed context, which is exactly the context studied in [9] (which,
in modern terminology, is the context of pointed 0-regular varieties).
Propositions 3.3 and 3.2 together show that a proto-pointed context where

there are enough trivial objects is very similar to the context of so called
quasi-pointed categories introduced in [3].
Next, we give several equivalent conditions that characterize the presence

of enough trivial objects.
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Proposition 3.4. Let C be a regular multi-pointed category with kernels.
The following conditions are equivalent:

(a) If a relation ̺ : R ⇉ X is a bi-star, then R is an N -trivial object.
(b) If (s1, s2) : S ⇉ X is a relation such that s1n, s2n ∈ N , then n ∈ N .
(c) In a diagram

H
β

// //

��
α

��

E

ε

����

F //
ϕ

// X

with the usual commutativity conditions, if ε is a monic star and ϕ is
a star, then β is a star.

(d) C has enough trivial objects.

Proof : The less trivial part of the proof is the implication (d)⇒(a). We begin
by considering kX : KX → X, the N -kernel of 1X . Since kX belongs to N ,
then it factors through an N -trivial object T . So KX is a subobject of T ,
hence it is also an N -trivial object. Now, if ρ is a bi-star, then both ρ1 and ρ2
factor through kX ; say ρ1 = kXλ1 and ρ2 = kXλ2. We get a monomorphism
(λ1, λ2) : R → KX ×KX and, consequently, R is an N -trivial object.

In a star-regular category, when all columns and rows in a given diagram (1)
are star-exact sequences, then certain properties concerning 1 and 2 must
hold (for the first part, we require the existence of enough trivial objects).
In the total context, 1 necessarily represents the double equivalence relation
F�E and 2 is a pushout (Proposition 2.1 in [4]) and in the pointed context
it is easy to see that 1 must be a pullback and 2 a pushout. For the general
context, these conditions translate into: 1 is a universal constellation and
2 is a pushout. We can get the condition on the pushout from the following
proposition, which is an immediate consequence of Lemma 2.3 (b):

Proposition 3.5. In any star-regular category, let (1) be a 3 × 3 diagram
with a star-exact middle row. The square 2 is a pushout if and only if d is
a coequalizer of δ.

We get the condition on the universal constellation from the following the-
orem, which will be proved throughout the rest of this section:

Theorem 3.6. In a star-regular category with enough trivial objects, consider
a commutative diagram of stars and morphisms (1), where the first column
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is a star-exact sequence, ε is a star-kernel of e, ϕ is a star-kernel of f and γ

is monic. Then the following conditions are equivalent:

(a) δ is a monic star;
(b) β is a star-kernel of b;
(c) 1 is a universal constellation.

The above theorem extends Theorem 2.2 of [4] to our star-regular context.
Moreover, our proof of the above theorem follows, step-by-step, the proof
given in [4]. The technical observations contained in this proof, as well as
the theorem itself, are used in Section 4 to establish the equivalence of the
upper and lower 3× 3 lemmas in star-regular categories with enough trivial
objects.
We begin by observing that under the presence of enough trivial objects,

we have a stability property for star-kernels with respect to products:

Lemma 3.7. Suppose C has enough trivial objects. Then, a pair ε = [ε1, ε2] :
E ⇉ X is a star if and only if so is the pair ε×ε = [ε1×ε1, ε2×ε2] : E×E ⇉

X ×X. Moreover, ε is a star-kernel of e : X → W if and only if ε× ε is a
star-kernel of e× e : X ×X → W ×W .

Proof : The non-trivial part of the proof is to show that ε×ε is a star whenever
ε is. This follows by applying Proposition 3.4(c) to the diagram

E × E
ε×ε ////

π1

��

π2

��

X ×X

π1

��

π2

��

E //
ε

// X

The following proposition characterizes universal constellations involving
a star ϕ and a monic star ε. The requirement that ε below is a monic star
can be dropped in the total context, in which case the result below becomes
precisely Remark 2.2 of [4].

Proposition 3.8. Consider a constellation

H
β

////

��
α

��

E

ε

����

F //
ϕ

// X

(2)
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in C, where ε is a monic star. If C has enough trivial objects, then the
following conditions are equivalent:

(a) The constellation (2) is universal.
(b) The commutative diagram

H
(β1,β2)

//

��

α

��

E × E

ε×ε

����

F
(ϕ1,ϕ2)

// X ×X

(3)

is a star-pullback.

Proof : First, note that diagram (2) commutes if and only if diagram (3)
commutes. Lemma 3.7 guarantees that ε× ε is also a star. It is easy to see
that the universal property of the constellation is the same as the universal
property of the star-pullback.

The following propositions characterize universal constellations which are
part of diagrams involving stars and morphisms.

Proposition 3.9. In a star-regular category with enough trivial objects, con-
sider a commutative diagram of stars and morphisms

H
β

// //

��
α

��
1

E

ε

����

F //
ϕ

//

a

��

X

e

��

D //

δ
// W

where the left column is a star-exact sequence and ε is the star-kernel of e.
Then 1 is a universal constellation if and only if δ is monic.
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Proof : Use Proposition 3.8, Lemma 3.7 and apply Lemma 2.6 to the following
diagram:

H
(β1,β2)

//

��

α

��

E × E

ε×ε

����

F
(ϕ1,ϕ2)

//

a

��

X ×X

e×e

��

D
(δ1,δ2)

// W ×W

Using a similar argument as in the proof of the above proposition, we have:

Proposition 3.10. In a category with enough trivial objects, consider a com-
mutative diagram of stars and morphisms

H
β

// //

��
α

��
1

E
b //

ε

����

G

γ

����

F //
ϕ

// X
f

// Y

where ϕ is a star-kernel of f and γ is monic. Then 1 is a universal cons-
tellation if and only if β is a star-kernel of b.

Proof : Use Proposition 3.8, Lemma 3.7 and apply Lemma 2.3(a) to the fol-
lowing diagram:

H

(α1,α2)

��

β
//// E

(ε1,ε2)

��

b // G

(γ1,γ2)

��

F × F //

ϕ×ϕ
// X ×X

f×f
// Y × Y

Altogether, this proves Theorem 3.6.
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4. The equivalence of the upper and lower 3× 3 lemmas

Thanks to Theorem 3.6, the upper 3× 3 lemma can be equivalently refor-
mulated as follows: in a 3× 3 diagram (1), if the second and third rows are
star-exact sequences, then b is a regular epimorphism. Similarly, the lower
3 × 3 lemma becomes: in a 3 × 3 diagram (1), if the first and second rows
are star-exact sequences, then δ (which becomes a relation) is a star-kernel
of d. In this section we shall investigate each of these lemmas separately.
We begin by recalling some terminology from [10]. By a diamond we mean

a commutative diagram

X
e

����
��

� f

��?
??

??

Y

g����
��

�
W

d ��?
??

??

Z

(4)

(Note that this use of the term “diamond” is different from the one in [14].)
We say that the diamond (4) is

• left saturated if the direct image e〈κ∗
f〉 along e of the star-kernel κ∗

f of
f is the star-kernel of d:

e〈κ∗
f 〉 = κ∗

d;

• right saturated if, symmetrically, f〈κ∗
e〉 = κ∗

g;
• saturated if it is both left and right saturated;
• a regular diamond if all morphisms in the diamond are regular epi-
morphisms.

Definition 4.1. [10] C is said to have symmetric saturation property if the
following equivalent conditions hold:

(a) Any left saturated regular diamond is right saturated.
(b) Any right saturated regular diamond is left saturated.
(c) Left/right saturated regular diamonds are the same as the saturated

ones.

Theorem 4.2. In a star-regular category C with enough trivial objects, the
following conditions are equivalent:

(a) The upper 3× 3 lemma holds in C.
(b) The lower 3× 3 lemma holds in C.
(c) C has symmetric saturation property.
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Proof : (a)⇔(c): Suppose first the upper 3 × 3 lemma holds true. From
a left saturated regular diamond (4) build a diagram (1) by attaching to
the diamond star-kernels of its edges, and the induced factorizations, and
completing the top left square in (1) with a universal constellation. By
Proposition 3.10 and by the left saturation of the diamond, the first column
in (1) is a star-exact sequence. Then (1) is a 3 × 3 diagram. Applying the
upper 3× 3 lemma we get that the diamond is right saturated.
The converse is trivial: to get the upper 3× 3 lemma, apply the saturation

assumption to the diamond that appears as the bottom right square in a
3× 3 diagram.
(b)⇔(c): Suppose first the lower 3 × 3 lemma holds true. From a right

saturated regular diamond (4) build a diagram (1) by attaching to the dia-
mond star-kernels of its edges e, f, g, and the induced factorization from the
star-kernel of e to the star-kernel of g, which is a regular epimorphism since
the diamond is right saturated. Then, take the top left square of (1) to be
the universal constellation. Complete the bottom left square of (1) via the
regular image of the star-kernel of f along e. By Proposition 3.10, the first
column is a star-exact sequence. Now, by Proposition 3.10 again the first row
is a star-exact sequence. Applying the lower 3 × 3 lemma we get precisely
the left saturation of the diamond.
Conversely, consider a 3×3 diagram (1) where the first two rows are exact.

By Theorem 3.6, δ is monic, and since a is a regular epimorphism, we get that
δ is the image of ϕ under e. Now, the bottom right square is right saturated,
and therefore left saturated, which gives the exactness of the bottom row.

As shown in [10], in the total context the symmetric saturation property
is equivalent to the Goursat property, while in the pointed context, it is
equivalent to subtractivity. So the above result unifies Proposition 1 of [12]
(which is then exactly Theorem 4.2 in the total context) with Theorem 5.4
of [16] (which is the same as Theorem 4.2 in the pointed context).
The following corollary of the above theorem partially refines the theorem:

Corollary 4.3. In each of the pointed, proto-pointed and total contexts, for
a star-regular category C the following conditions are equivalent:

(a) The upper 3× 3 lemma holds in C.
(b) The lower 3× 3 lemma holds in C.
(c) C has enough trivial objects and has symmetric saturation property.
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Proof : In the pointed and total contexts this becomes precisely Theorem 4.2,
since in these contexts there always are enough trivial objects. Also, after
Theorem 4.2, to prove the equivalence of the above conditions in the proto-
pointed context, it suffices to prove that the upper and the lower 3 × 3
lemmas each imply the presence of enough trivial objects. According to
Proposition 3.2, showing the presence of enough trivial objects is equivalent
to showing that trivial objects do not have proper quotients. For this, the
following fact, which follows directly from Proposition 3.3, will be needed:
for any object X, a morphism W → X ×X from the class N always factors
through the diagonalX → X×X. Let Z be a trivial object and let q : Z → Q

be a regular epimorphism. Then the object Q, being a regular quotient of
a trivial object is itself trivial. Now, using the fact mentioned above, the
following 3× 3 diagram can be constructed, with the middle and the bottom
rows being star-exact:

Z
[1Z ,1Z ]

////

����

Z
q

//

��

[1Z ,1Z ]

��

Q

[1Q,1Q]

����

Z ×Q Z
κq

////

1Z×QZ

��

Z

1Z

��

q
// Q

1Q

��

Z ×Q Z //
κq

// Z q
// Q

(5)

The upper 3 × 3 lemma implies that the top row is star-exact, and hence,
by star-regularity, q is a coequalizer of the pair 1Z, 1Z : Z ⇉ Z, which shows
that q is an isomorphism. To deduce that q is an isomorphism from the lower
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3× 3 lemma, we should construct the following 3× 3 diagram:

Z ////

��

[1Z ,1Z ]

��

Z ×Q Z
1Z×QZ

//

��

κq

��

Z ×Q Z

κq

����

Z
[1Z ,1Z ]

// //

1Z

��

Z

q

��

1Z // Z

q

��

Z //

[q,q]
// Q

1Q
// Q

(6)

Since the top and the middle rows are star-exact, the lower 3 × 3 lemma
implies that the lower row is star-exact. In particular, this gives that the
star [q, q] : Z ⇉ Q is monic, and hence q is a monomorphism. Since q is at
the same time a regular epimorphism, it follows that q is an isomorphism.

Remark 4.4. The above corollary can be used to deduce that our upper and
lower 3× 3 lemmas fail in the proto-pointed context of the category Rng of
unitary rings. This can be also seen directly, by choosing Z in diagrams (5)
and (6) to be the ring Z of integers, and Q its any proper quotient. Since
Rng has a good theory of ideals (see [18]), this shows that in general, in a
category with a good theory of ideals, both the upper and the lower 3 × 3
lemmas may fail.

5. The middle 3× 3 lemma

In the context of star-regular categories, the short five lemma states that,
given a commutative diagram of horizontal star-exact sequences

F
ϕ

// //

a
��

X
f

//

e
��

Y

g
��

D //

δ
// W

d
// Z,

(7)

if a and g are isomorphisms then e is an isomorphism.
In the pointed context, this becomes the classical short five lemma, while

in the total context this lemma (which can be called the “denormalized short
five lemma”) always holds true. Indeed, the fact that ϕ and δ are both
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reflexive relations, together with a being an isomorphism, imply that e is
both a monomorphism and a split epimorphism, thus an isomorphism.

Lemma 5.1. In a star-regular category where the short five lemma holds,
given a commutative diagram (7) of horizontal star-exact sequences, e is a
regular epimorphism whenever a and g are regular epimorphisms (we say in
this case that the short five lemma for regular epimorphisms holds).

Proof : Suppose the short five lemma holds. We would like to show that in
the diagram

Kf

κ∗

f
// //

a
����

X
f

// //

e
��

Y

g
����

Kd
//

κ∗

d

// W
d

// // Z

with a and g regular epimorphisms, e is also a regular epimorphism. This
diagram can be decomposed as follows, where ip = e is the factorization of e
as a regular epimorphism p followed by a monomorphism i:

Kf

κ∗

f
////

a
����

X
f

// //

p
����

Y

g
����

Kd

σ ////

1Kd ����

I
di // //

i
��

Z

1Z����
Kd

//

κ∗

d

// W
d

// // Z

In the above diagram we get the induced star σ : Kd ⇉ I due to the fact
that a is a regular epimorphism. Since the left hand side of the bottom part
of the above diagram is a star-pullback, applying Lemma 2.3 we get that
σ is the star-kernel of di. Now, the short five lemma implies that i is an
isomorphism, and hence e is a regular epimorphism, as desired.

Theorem 5.2. In a star-regular category with enough trivial objects, the
short five lemma holds if and only if the short five lemma for regular epimor-
phisms holds.

Proof : The “only if” part is given by Lemma 5.1. To prove the “if” part,
consider a commutative diagram of horizontal star-exact sequences (7), with
a and g being isomorphisms. Then, e is a regular epimorphism. Since the
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category is star-regular, to prove that e is an isomorphism it suffices to show
that the star-kernel κ∗

e of e factors through the star-kernel ∆∗
X = [kX , kX ] of

1X , which is the same as to show that κ∗
e has a diagonal form κ∗

e = [e′, e′].
First, observe that κ∗

e factors through ϕ:

Ke

κ∗

e
����

b

��

F
ϕ

////

a
��

X
f

//

e
��

Y

g
��

D //

δ
// W

d
// Z,

Since the composite eκ∗
e = δab is a bi-star, from Proposition 3.4(b) we get b ∈

N . This implies that κ∗
e is a bi-star. Then, κ

∗
e is of the from κ∗

e = [kXc1, kXc2],
where kX denotes the N -kernel of 1X : X → X. We want to show that
c1 = c2. Notice that ∆

∗
X factors through ϕ via some monomorphismm. Using

the fact that a is an isomorphism and δ is monic we easily getmc1 = b = mc2.
This implies that c1 = c2.

Proposition 5.3. In a star-regular category with enough trivial objects, if
the short five lemma holds then the middle 3× 3 lemma holds.

Proof : Let (1) be a 3×3 diagram such that first and third rows are star-exact
sequences and fϕ1 = fϕ2. Then f is a regular epimorphism by Lemma 5.1.
We can form the following commutative diagram: let κ∗

f : Kf ⇉ X be the
star-kernel of f and e : Kf → D and w : F → Kf the induced morphisms
such that δe = eκ∗

f and κ∗
fw = ϕ. Then, by taking the star-kernel κ∗

e : Ke ⇉

Kf of the regular epimorphism e we can generate a commutative diagram

H

��

α

��

w // Ke

��
κ∗

e

��

κ // // E

ε

����

b // G

γ

����

F w
//

a

��

Kf
//

κ∗

f

//

e

��

X

e

��

f
// Y

g

��

D
1D

// D //

δ
// W

d
// Z.

where κw = β. By Proposition 3.4(c), κ is a star. Since δ is monic, applying
Theorem 3.6 to the right hand side 3 × 3 diagram above, we can conclude
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that κ is the star-kernel of b. Consequently, w is an isomorphism. To finish,
we just apply the short five lemma to the left part of the above diagram
to conclude that w is an isomorphism. This proves that the middle row in
diagram (1) is a star-exact sequence.

Definition 5.4. [10] A morphism f : X → Y is said to be saturating if the
diamond

X
1X

����
��

� f

��?
??

??

Y

1Y����
��

�
X

f ��?
??

??

Y

is right saturated.

Theorem 5.5. Let C be a star-regular category with enough trivial objects
and saturating regular epimorphisms. Then the following conditions are equi-
valent:

(a) The middle 3× 3 lemma holds in C.
(b) The short five lemma holds in C.
(c) The short five lemma for regular epimorphisms holds in C.

Proof : (a)⇒(b): Consider a commutative diagram of horizontal star-exact
sequences

F
ϕ

////

1F
��

X
f

//

e
��

Y

1Y
��

F //

δ
// W

d
// Y

From the top row of the above diagram, construct a commutative diagram

KF

β
// //

��
∆∗

F

��

KX
b //

∆∗

X

����

KY

∆∗

Y

����

F
ϕ

////

1F
��

X
f

//

1X
��

Y

1Y
��

F //
ϕ

// X
f

// Y
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where, by Proposition 3.4(c), β is a star. Then, by Theorem 3.6, β is a star-
kernel of b and since f is saturating, b is a regular epimorphism. Therefore,
the top row is star-exact. Now, in the above diagram, replace the bottom
part with the diagram we had in the beginning:

KF

β
// //

��
∆∗

F

��

KX
b //

∆∗

X

����

KY

∆∗

Y

����

F
ϕ

////

1F
��

X
f

//

e

��

Y

1Y
��

F //

δ
// W

d
// Y

By the middle 3×3 lemma (with the role of rows and columns switched), the
middle column is a star-exact sequence. Consequently, e is the coequalizer
of ∆∗

X = [kX , kX ] and thus it is an isomorphism.
(b)⇒(a) by Proposition 5.3, and (b)⇔(c) by Theorem 5.2.

Combining the above result with Theorem 4.2, we obtain:

Corollary 5.6. Let C be a star-regular category with enough trivial objects
and saturating regular epimorphisms. Then the following conditions are equi-
valent:

(a) The complete 3×3 lemma holds in C (i.e. the lower, upper and middle
3× 3 lemmas hold in C).

(b) Any left saturated diamond (4) with regular epimorphic edges f, g, d,
is both regular and saturated.
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