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HIERARCHIES AND COMPATIBILITY ON COURANT
ALGEBROIDS
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Abstract: We extend to the context of Courant algebroids several hierarchies that
can be constructed on Poisson-Nijenhuis manifolds. More precisely, we introduce
several notions (Poisson-Nijenhuis, deformation-Nijenhuis and Nijenhuis pairs) that
extend to Courant algebroids the notion of a Poisson-Nijenhuis manifold, by using
the idea that both the Poisson and the Nijenhuis structures, although they seem to
be different in nature when considered on manifolds, are just (1, 1)-tensors on the
usual Courant algebroid TM ⊕ T ∗M satisfying several constraints. For each of the
generalizations mentioned, we show that there are natural hierarchies obtained by
successive deformation by one of the (1, 1)-tensor.

Introduction
The purpose of the present article is to explain how (1, 1)-tensors with

vanishing Nijenhuis torsion on a Courant structure naturally give rise to
several type of hierarchies - and to show it using as much as possible of
supergeometric formalism. To start with, we say a few words on, respectively,
Courant structures, supergeometric formalism, Leibniz algebroids, Nijenhuis
torsion and hierarchies. Having recalled these notions, we explain the purpose
of our study. We finish this introduction by a more detailed summary of the
content of the present work.

0.1. On Courant structures, Nijenhuis torsion, supergeometry and
hierarchies.

Courant structures. It has been noticed by Courant [5] that the following
bilinear assignment on the space of sections of TM⊕T ∗M , forM a manifold:

[(X,α), (Y, β)] := ([X, Y ], LXβ − iY dα)

(with X, Y ∈ Γ(TM) = X(M), α, β ∈ Γ(T ∗M) = Ω1(M)) still satisfies the
Jacobi identity, and that its default of being skew-symmetric is given, for all
u, v ∈ Γ(TM ⊕ T ∗M), by:

[u, v]− [v, u] = d 〈u, v〉,
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where ρ is given by the projection on TM and 〈·, ·〉 stands for the canon-
ical non-degenerate bilinear form on TM ⊕ T ∗M . When made abstract,
this example yields to the definition of Courant algebroids [15], which are
pseudo-euclidian vector spaces, equipped with a bracket which satisfies the
Jacobi identity, an anchor map encoding the default of being C∞-linear,
and (together with the pseudo-euclidian product) the default of being skew-
symmetric. Relaxing the Jacobi identity yields a weaker notion of pre-
Courant algebroid (see Definition 1.1 below).
A general idea about Courant structures is that it allows one to deal with

two Lie algebroid-like brackets in the same time : one on a vector bundle,
and one on its dual, like it happens for Lie bialgebroids [16, 11].

Supergeometric formalism. To say the least, to deal with Courant bracket
can be an heavy task when it comes about computation, due to the many
structures that make it, and to the un-natural aspects of some of its oper-
ations. Fortunately, in supergeometric formalism, all these structures and
conditions are encoded in two objets and one condition. The idea goes as
follows. To every vector bundle equipped with a non-degenerate bilinear
form is associated a graded commutative algebra, equipped with a Poisson
bracket denoted by {·, ·} (which coincides with the big bracket in some par-
ticular cases) [21]. It happens that pre-Courant structures are in one-to-one
correspondence with functions of degree 3, and pre-Courant structures which
are indeed Courant are precisely those that satisfy:

{Θ,Θ} = 0.

A general idea about supergeometric language is that it enables to encode
several structures by a simple function (hence allowing to encode a Courant
structure by a simple letter Θ), and that it is a tool of remarkable efficiency
for some computations, see, for instance [1] and [23].

Leibniz algebroids. Courant structures on vector bundles can be viewed
as special cases of Leibniz algebroids [9]. These are vector bundles E → M

equipped with a R-bilinear bracket on its space of sections and a vector
bundle morphism ρ : E → TM satisfying the Leibniz rule:

[X, fY ] = f [X, Y ] + (ρ(X).f)Y
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and the Jacobi identity:

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]],

for all X, Y, Z ∈ Γ(E) and f ∈ C∞(M). Relaxing the Jacobi identity yields
the weaker notion of pre-Leibniz algebroid. When the base manifold reduces
to a point, a Leibniz algebroid is just a Leibniz (or Loday) algebra, while
a pre-Leibniz algebroid is simply an algebra. It is easy to check (see [12])
that pre-Courant algebroids are pre-Leibniz algebroids. But it is important
to stress that the supergeometric approach, referred above for pre-Courant
and Courant structures, is not valid in the pre-Leibniz and Leibniz algebroid
framework.

Nijenhuis torsion. The Nijenhuis torsion of a (1, 1)-tensor, i.e a fiberwise
linear endomorphism of TM , is the (2, 1)-tensor given by:

X, Y 7→ [NX,NY ]−N [X, Y ]N , where [X, Y ]N := [NX, Y ]+[X,NY ]−N [X, Y ].

For a (1, 1)-tensor, being Nijenhuis torsion-free is in general meaningful (we
shall just say ”Nijenhuis tensors” for torsion-free tensors). For an almost
complex structure, it means for instance that it comes from a complex one
[18]. For an operator squaring to the identity, it means that its eigenspaces
are complementary integrable distributions. The previous definition can be
extended without any change from TM to arbitrary Lie algebroids [8], then
from Lie algebroids to Courant algebroids [3] and Leibniz algebroids.
A general idea about Nijenhuis (1, 1)-tensors is that it allows to deform an

object into an object of the same type, for instance, to deform a Lie algebroid
bracket [., .] into the bracket [., .]N above, which can be shown to be a Lie
algebroid bracket again, or to deform a Poisson structure into another one.

Hierarchies There is no mathematical definition of what a hierarchy is,
but, within the context of integrable systems, the name has been commonly
given either to families (indexed by N or Z) of Hamiltonian functions that
commute for a fixed Poisson structure, or of Poisson structures/Lie algebroids
which commute between themselves - and sometimes families of both Poisson
structures and Hamiltonian functions such that two functions in that family
commute with respect to any Poisson structure, see chapter 7 in [19]. We
use that name in the same spirit: i.e., for us a hierarchy is either a family
of commuting Courant structures, either a family of Nijenhuis tensors that
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commute w.r.t. to some Courant structure - or a family of both Courant and
(pairs of) Nijenhuis tensors.
A general idea [14], [17], [6], [4] about hierarchies is that we start with

a few objects, compatible between themselves, then we give ourself a Nijen-
huis tensor with the help of which we deform the objects in question, yielding
sequences of objects of various types, which are all compatible between them-
selves.

0.2. Purpose and content of the present article. Our goal is, as we
already stated, to construct hierarchies as follows:

(1) hierarchies of Courant structures, given a Nijenhuis tensor on a Courant
algebroid,

(2) hierarchies of Poisson structures, given a Nijenhuis tensor compatible
with a given Poisson structure on a Courant algebroid. For this point,
the Courant structure does not need to satisfy the Jacobi identity : it
just needs to be what we called a pre-Courant structure.

(3) hierarchies of Courant structures and pairs of tensors that we call
deforming-Nijenhuis pairs or Nijenhuis pairs. Again, pre-Courant
structures are enough for most results presented here.

The idea behind item 1) above is simply that what holds true for manifolds
and Lie algebroids should hold true for Courant structures as well, and that,
in particular, deforming a Courant structure by a Nijenhuis tensor should
give a hierarchy of compatible Courant structures. The idea behind items 2)
and 3) is more involved. We invite the reader to have in mind the case of
Poisson-Nijenhuis structures to get some intuitive picture, but we insist that
our constructions apply to much more general contexts. The idea is that, in
terms of Courant algebroids, Poisson-Nijenhuis structures [17, 14, 3] can be
seen as follows:

• we consider the Courant algebroid Θ on TM ⊕ T ∗M already evoked,
• we see a Poisson structure π on the manifold M as a skew-symmetric
(1, 1)-tensor Jπ : TM ⊕ T ∗M → T ∗M ⊕ TM (see Example 1.6 a),

• we see a (1, 1)-tensorN on the manifoldM as a skew-symmetric (1, 1)-
tensor IN : TM ⊕ T ∗M → TM ⊕ T ∗M (see Example 1.6 c),

then we check that the conditions of compatibility required on (π,N) to
be Poisson-Nijenhuis mean that Jπ and IN anti-commute and anti-commute
w.r.t. the Courant structure, see Example 3.23. When made abstract, these
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conditions yield our Definition 3.21 of Poisson-Nijenhuis pair, where we are
given, as in the three items just above, a pre-Courant structure Θ, a Pois-
son tensor J , and a Nijenhuis tensor I, supposed to be compatible in the
sense that I and J anti-commute and anti-commute w.r.t. the pre-Courant
structure Θ. Having established this definition, we can address the purposes
of items 2 and 3 above, by generalizing the hierarchies of [17]. Indeed, it
happens that the notion of Poisson-Nijenhuis is slightly too restrictive, and
that hierarchies can be constructed in the more general context of deforming-
Nijenhuis pairs and Nijenhuis pairs.
The statements of most results in this article are written in the pre-Courant

algebroid framework and are proved using the supergeometric formalism.
However, for some of them, the proofs only use the pre-Leibniz structure
induced by the pre-Courant structure, so that these results hold not only for
pre-Courant algebroids, but also for the more general setting of pre-Leibniz
algebroids. This happens, for example, with most results in sections 2.1 and
2.2 and the whole section 4. Indeed, most results of that section remain true
for every vector space endowed with a quadratic form, provided that it admits
the property that the deformed operator by a Nijenhuis torsion-free linear
operator is again of the same type - which is true, without much trouble for
operators that satisfy only linear or quadratic relations (like skew-symmetry
and Jacobi). The lack of convincing examples prevented us from going to
such a unnecessary level of generality.

Let us give a more precise content, by giving the explicit statements of the
most important results of the present article.
Given a skew-symmetric (1, 1)-tensor I on (E,Θ), by a deformation of

a given superfunction K by I, we mean the superfunction {I,K}. When
K := Θ is a pre-Courant structure, then {I,Θ} is a pre-Courant structure
again. When K := J is a skew-symmetric (1, 1)-tensor, then {I, J} is the
skew-symmetric (1, 1)-tensor J ◦I − I ◦J , which is equal to 2 J ◦I when I

and J anti-commute. Under this last assumption, deforming n times J by I
yields to J ◦In (up to a non-zero scalar).

Definition 0.1. Let (E,Θ) be a pre-Courant algebroid.

(1) A skew-symmetric (1, 1)-tensor I on (E,Θ) is said to be Nijenhuis for
Θ if its Nijenhuis torsion vanishes, deforming for Θ if ΘJ,J = λΘ, with
λ ∈ R and Poisson if it is deforming with λ = 0.
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(2) A pair (J, I) of skew-symmetric (1, 1)-tensors is said to be a deforming-
Nijenhuis pair for Θ if

• I and J anti-commute
• I and J anti-commute w.r.t. Θ, i.e.:

{J, {I,Θ}}+ {I, {J,Θ}} = 0,

• J is deforming for Θ;
• I is Nijenhuis for Θ.

It is said to be a compatible pair w.r.t. Θ when it only satisfies the
two first items above.

In section 2.1, we assume that Θ is indeed a Courant structure, and show
that the Courant structure can be deformed n times by a Nijenhuis tensor
I, and that the henceforth obtained objects (Θn)n∈N are compatible.

Theorem 1. (see Theorem 2.7). If I is a Nijenhuis tensor for a Courant
algebroid (E,Θ), then Θm and Θn are compatible Courant structures, for all
m, n ∈ N.

Then, we show that the property of being compatible is, for a given com-
patible pair (I, J) also preserved when deforming n times J by I, provided
that I is Nijenhuis (or at least satisfies the weaker condition indicated below),
and that this result still holds true with respect to pre-Courant structures
obtained when deforming Θ by I.

Theorem 2. (see Theorems 2.18 and 2.21). Let (E,Θ) be a pre-Courant
algebroid. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-Courant
algebroid (E,Θ) that are compatible w.r.t. Θ.

a) If TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y on E,
then (I, In ◦J) is a compatible pair w.r.t. Θm, for all m, n ∈ N.

b) If I is a Nijenhuis tensor, then (I2s+1, I t ◦J) is a compatible pair w.r.t.
Θn, for all n, s, t ∈ N.

c) If I and J are Nijenhuis tensors, then (I2s+1, I t ◦J2k+1) is a compatible
pair w.r.t. Θn, for all n, s, t, k ∈ N.

We then turn our attention to deforming-Nijenhuis pairs, and prove several
results culminating to the following one.

Theorem 3. (see Theorem 3.8). Let I and J be two skew-symmetric (1, 1)-
tensors on a pre-Courant algebroid (E,Θ). If (J, I) is a deforming-Nijenhuis
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pair for Θ, then (J, I2n+1) is a deforming-Nijenhuis pair for Θm, for all
m, n ∈ N.

For Poisson-Nijenhuis pairs (J, I), (i.e deforming-Nijenhuis pairs where the
deforming tensor J is supposed to be Poisson for Θ), the result goes as
follows.

Theorem 4. (see Theorems 3.18 and 3.24). Let (J, I) be a Poisson-Nijenhuis
pair on a pre-Courant algebroid (E,Θ) such that Θ{J,{I,J}} = 0. Then, for
all m, n, k ∈ N,

a) In ◦J and Im ◦J are compatible Poisson tensors for Θk;
b) (In ◦J, I2m+1) is a Poisson-Nijenhuis pair for Θk.

Last, we conclude with the case of Nijenhuis pairs, i.e. pairs (I, J) of
Nijenhuis tensors compatible w.r.t. to Θ, to wit the following general result.

Theorem 5. (see Theorem 4.12). Let I and J be two skew-symmetric (1, 1)-
tensors on a pre-Courant algebroid (E,Θ). If (I, J) is a Nijenhuis pair for
Θ, then for all m, n, t ∈ N, (I2m+1

◦Jn, J2t+1) is a Nijenhuis pair for Θ,
and, more generally, for all the Courant structures obtained by deforming Θ
several times, either by I or by J .

1. Skew-symmetric tensors on Courant algebroids
1.1. Courant algebroids in supergeometric terms. We begin this sec-
tion by introducing the supergeometric setting, following the same approach
as in [23, 21, 20]. Given a vector bundle A → M , we denote by A[n] the
graded manifold obtained by shifting the fibre degree by n. The graded
manifold T ∗[2]A[1] is equipped with a canonical symplectic structure which
induces a Poisson bracket on its algebra of functions F := C∞(T ∗[2]A[1]).
This Poisson bracket is sometimes called the big bracket (see [12]).
Let us describe locally this Poisson algebra. Fix local coordinates xi, p

i, ξa, θ
a,

i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1], where xi, ξa are local coordinates
on A[1] and pi, θa are their associated moment coordinates. In these local
coordinates, the Poisson bracket is given by

{pi, xi} = {θa, ξa} = 1, i = 1, . . . , n, a = 1, . . . , d,

while all the remaining brackets vanish.
The Poisson algebra of functions F is endowed with a (N×N)-valued bide-

gree. We define this bidegree locally but it is well defined globally (see [23, 21]
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for more details). The bidegrees are locally set as follows: the coordinates
on the base manifold M , xi, i ∈ {1, . . . , n}, have bidegree (0, 0), while the
coordinates on the fibres, ξa, a ∈ {1, . . . , d}, have bidegree (0, 1) and their
associated moment coordinates, pi and θa, have bidegrees (1, 1) and (1, 0),
respectively. The algebra of functions F inherits this bidegree and we set

F =
⊕

k,l∈N×N

Fk,l

We can verify that the big bracket has bidegree (−1,−1), i.e.,

{Fk1,l1,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1.

This construction is a particular case of a more general one in which we con-
sider a vector bundle E equipped with a fibrewise non-degenerate symmetric
bilinear form 〈., .〉. In this more general setting, we consider the graded sym-
plectic manifold E := p∗(T ∗[2]E[1]), which is the pull-back of T ∗[2]E[1] by the
application p : E[1] → E[1]⊕E∗[1] defined by X 7→ (X, 1

2
〈X, .〉). We denote

by FE the graded algebra of functions on E , i.e., FE := C∞(E). The algebra
of functions FE is equipped with the canonical Poisson bracket, denoted by
{., .}, which has degree −2. Notice that F0

E = C∞(M) and F1
E = Γ(E).

Under these identifications, the Poisson bracket is given, in degrees 0 and 1,
by

{f, g} = 0;

{f,X} = 0;

{X, Y } = 〈X, Y 〉,

for all X, Y ∈ Γ(E) and f, g ∈ C∞(M).
The construction above corresponds to the case where E := A ⊕ A∗ and

〈., .〉 is the usual symmetric bilinear form. Notice that, with the notation
introduced so far, the algebra of functions F = C∞(T ∗[2]A[1]) should be
denoted by FA⊕A∗.

Let us define the notion of (pre-)Courant structure on a vector bundle E
equipped with a fibrewise non-degenerate symmetric bilinear form 〈., .〉.

Definition 1.1. A pre-Courant structure on (E, 〈., .〉) is a pair (ρ, [., .]),
where the anchor ρ is a bundle map from E to TM and the Dorfman bracket
[., .] is a R-bilinear (non necessarily skew-symmetric) assignment on Γ(E)
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satisfying the relations

ρ(X) · 〈Y, Z〉 = 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 (1)

and
ρ(X) · 〈Y, Z〉 = 〈X, [Y, Z] + [Z, Y ]〉, (2)

for all X, Y, Z ∈ Γ(E). ∗

Moreover, if the Jacobi identity,

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]],

is satisfied for all X, Y, Z ∈ Γ(E), then the Dorfman bracket [., .] is a Leibniz
bracket and the pair (ρ, [., .]) is called a Courant structure on (E, 〈., .〉).

There is a one-to-one correspondence between pre-Courant structures on
(E, 〈., .〉) and functions of F3

E. The anchor and Dorfman bracket associated
to a given Θ ∈ F3

E are defined, for all X, Y ∈ Γ(E) and f ∈ C∞(M), by

ρ(X) · f = {{X,Θ}, f} and [X, Y ] = {{X,Θ}, Y }.

The following theorem addresses how the Jacobi identity is expressed in
this supergeometric setting.

Theorem 1.2. There is a one-to-one correspondence between Courant struc-
tures on (E, 〈., .〉) and functions Θ ∈ F3

E such that {Θ,Θ} = 0.

If Θ is a (pre-)Courant structure on (E, 〈., .〉), then the triple (E, 〈., .〉,Θ)
is called a (pre-)Courant algebroid. For the sake of simplicity, we will often
denote a (pre-)Courant algebroid by the pair (E,Θ) instead of the triple
(E, 〈., .〉,Θ).
When E = A ⊕ A∗ and 〈., .〉 is the usual symmetric bilinear form, a pre-

Courant structure Θ ∈ F3
E can be decomposed according to its bidegrees:

Θ = µ+ γ + φ+ ψ,

with µ ∈ F1,2
A⊕A∗, γ ∈ F2,1

A⊕A∗, φ ∈ F0,3
A⊕A∗ = Γ(∧3A∗) and ψ ∈ F3,0

A⊕A∗ =
Γ(∧3A).
We recall from [23] that, when γ = φ = ψ = 0, Θ is a Courant structure

on (A⊕ A∗, 〈., .〉) if and only if (A, µ) is a Lie algebroid.
∗ From (1) and (2), we get [12]

[X, fY ] = f [X,Y ] + (ρ(X).f)Y,

for all X,Y ∈ Γ(E) and f ∈ C∞(M). Thus, as we already mentioned in the Introduction, a
pre-Courant algebroid is always a pre-Leibniz algebroid.
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Also, when φ = ψ = 0, Θ is a Courant structure on (A ⊕ A∗, 〈., .〉) if and
only if ((A, µ), (A∗, γ)) is a Lie bialgebroid.

1.2. Deformation of Courant structures. Let (E, 〈., .〉,Θ) be a Courant
algebroid and J a vector bundle endomorphism of E, J : E → E. If,

〈Ju, v〉+ 〈u, Jv〉 = 0,

for all u, v ∈ E, J is said to be skew-symmetric. If we consider the en-
domorphism J∗ defined by 〈u, J∗v〉 = 〈Ju, v〉, then J is skew-symmetric if
and only if J + J∗ = 0. Vector bundle endomorphisms of E will be seen as
(1, 1)-tensors on E.

Let A be a vector bundle. When E = A ⊕ A∗ and 〈., .〉 is the usual
symmetric bilinear form, a skew-symmetric (1, 1)-tensor J : E → E is of the
type

J =

(
N π♯

ω♭ −N∗

)

, (3)

with N : A→ A, π ∈ Γ(
∧2

A) and ω ∈ Γ(
∧2

A∗).
The deformation of the Dorfman bracket [., .] by a (1, 1)-tensor J : E → E

is defined, for all X, Y ∈ Γ(E), by

[X, Y ]
J
= [JX, Y ] + [X, JY ]− J [X, Y ].

If J + J∗ = λidE, for some λ ∈ R, then [., .]J satisfies (1) and (2) [3], so that
(ρ ◦J, [., .]J) is a pre-Courant structure on (E, 〈., .〉).
When the (1, 1)-tensor J : E → E is skew-symmetric, the deformed pre-

Courant structure (ρ ◦J, [., .]J) is given, in supergeometric terms, by Θ
J
:=

{J,Θ} ∈ F3
E. In the case where E = A ⊕ A∗ and J is skew-symmetric

so that it is of type (3), and we consider the supergeometric framework, J
corresponds to the function N+π+ω, which we also denote by J . Therefore,
we have Θ

J
= {N+π+ω,Θ}. The deformation of ΘJ by the skew-symmetric

(1, 1)-tensor I is denoted by ΘJ,I , i.e. ΘJ,I = {I, {J,Θ}}, while the deformed
Dorfman bracket ([., .]

J
)
I
is denoted by [., .]

J,I
.

Recall that a vector bundle endomorphism I : E → E is a Nijenhuis tensor
on the Courant algebroid (E,Θ) if its torsion vanishes. The torsion TΘI is
given, for all X, Y ∈ Γ(E), by
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TΘI(X, Y ) = [IX, IY ]− I([X, Y ]
I
)

or, equivalently, by

TΘI(X, Y ) =
1

2
([X, Y ]

I,I
− [X, Y ]

I2
), (4)

where I2 = I ◦I. When I2 = λ idE, for some λ ∈ R, (4) is given [7], in
supergeometric terms, by

TΘI =
1

2
(ΘI,I − λΘ). (5)

When (E,Θ) is a pre-Courant algebroid, the definition of Nijenhuis tensor
is the same as in the case of a Courant algebroid.

Example 1.3. For every Lie algebra G, any linear operator I valued in the
center and such that the kernel of I2 contains the commutator [G,G] is a
Nijenhuis operator.

The notion of deforming tensor for a Courant structure Θ on E was intro-
duced in [13]. The definition holds in the case of a pre-Courant algebroid
and it will play an important role in this article.

Definition 1.4. The skew-symmetric (1, 1)-tensor J on (E,Θ) is said to be
deforming for Θ if ΘJ,J = λΘ, for some λ ∈ R.

Remark 1.5. If I is Nijenhuis for Θ and satisfies I2 = λidE, for some λ ∈ R,
then, from (5), we have TΘI = 0 ⇒ ΘI,I = λΘ, i.e. I is deforming for Θ.
This was also noticed in [13].

Now, we present several examples of skew-symmetric tensors which are
deforming or/and Nijenhuis, in the case where (E = A⊕A∗,Θ) is a Courant
algebroid with Θ = µ and µ a Lie algebroid on A (see the end of section
1.1). As we have already remarked, a skew-symmetric (1, 1)-tensors on E is
of type (3).

Example 1.6.

a) Let π be a bivector on A. Then, Jπ =

(
0 π

0 0

)

is deforming for Θ = µ

if and only if π is a Poisson bivector on (A, µ).
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We have µJπ ,Jπ = {π, {π, µ}}. Since µ and µJπ ,Jπ do not have the same
bidegree, we get

µJπ,Jπ = λµ⇔ λ = 0 and {π, {π, µ}} = 0,

which in turn is equivalent to

[π, π]µ = 0,

where [., .]µ is the Gerstenhaber bracket on Γ(∧•A) associated to the Lie
algebroid (A, µ).
Now, we remark that Jπ ◦Jπ = 0 so that, using (5) with λ = 0, we deduce

that the torsion of Jπ is given by TµJπ = 1
2{π, {π, µ}}. Therefore,

TµJπ = 0 ⇔ [π, π]µ = 0

which means that Jπ is Nijenhuis for Θ = µ if and only if π is a Poisson
bivector on (A, µ).

b) Let ω be a 2-form on A. Then, Jω =

(
0 0
ω 0

)

is a deforming and a

Nijenhuis tensor for the Courant algebroid (A⊕A∗, µ). This is an immediate
consequence of Jω ◦Jω = 0 and {ω, {ω, µ}} = 0.

c) Let N : A → A be a (1, 1)-tensor on A, such that N2 = λ idA, for

some λ ∈ R. Then, IN =

(
N 0
0 −N∗

)

is a Nijenhuis tensor for the Courant

algebroid (A⊕A∗, µ) if and only if N is Nijenhuis tensor for the Lie algebroid
(A, µ) [13]. Just noticed that TµN = TµIN .

d) Let π be a bivector on A and N : A → A a (1, 1)-tensor on A. Then,

J =

(
N π

0 −N∗

)

is deforming for µ if and only if







N is deforming forµ
µN,π + µπ,N = 0
π is Poisson forµ.

We have,

µ
J,J

= {N + π, {N + π, µ}}

= {N, {N, µ}}+ {π, {N, µ}}+ {N, {π, µ}}+ {π, {π, µ}}

= µN,N + µN,π + µπ,N + µπ,π
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and, by counting the bidegrees, we deduce that µJ,J = λµ if and only if

µN,N = λµ, µN,π + µπ,N = 0, [π, π]µ = 0.
♦

Let us consider the Courant algebroid (A⊕A∗, µ+ γ), which is the double
of a Lie bialgebroid ((A, µ), (A∗, γ)) and the skew-symmetric (1, 1)-tensor
J : A⊕A∗ → A⊕A∗, given by

J =

(
1
2 idA π

0 −1
2 idA∗

)

. (6)

Proposition 1.7. Let ((A, µ), (A∗, γ)) be a Lie bialgebroid. Then, the (1, 1)-
tensor J given by (6) is a deforming tensor for the Courant structure µ + γ

if and only if π is a solution of the Maurer-Cartan equation

dγπ =
1

2
[π, π]µ.

Proof : The (1, 1)-tensor J = 1
2 idA+π is a deforming tensor for µ+γ if there

exists λ ∈ R such that

{
1

2
idA + π, {

1

2
idA + π, µ+ γ}} = λ(µ+ γ).

We have,

{
1

2
idA + π, {

1

2
idA + π, µ+ γ}} =

1

4
{ idA, { idA, µ}+ { idA, γ}}

+
1

2
{ idA, {π, µ}+ {π, γ}}+

1

2
{π, { idA, µ+ γ}+ {π, {π, µ}+ {π, γ}}

=
1

4
(µ+ γ)− 2{π, γ} − {{π, µ}, π}

=
1

4
(µ+ γ) + 2dγπ − [π, π]µ,

where we used {idA, u} = (q − p)u, for all u of bidegree (p, q). So,

1

4
(µ+ γ) + 2dγπ − [π, π]µ = λ(µ+ γ)

if and only if

λ =
1

4
and dγπ =

1

2
[π, π]µ.
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1.3. Anti-commuting skew-symmetric tensors. Let E be a vector bun-
dle. In general, the composition of two skew-symmetric endomorphisms of
E is not a skew-symmetric endomorphism.

Lemma 1.8. Let I and J be two skew-symmetric (1, 1)-tensors on E that
anti-commute, i.e, I ◦J = −J ◦I. Then,

I ◦J =
1

2
{J, I} (7)

and, for any n ∈ N,

• In ◦J = (−1)nJ ◦In;
• In ◦J is skew-symmetric;
• In ◦J anti-commutes with I,

where In = I ◦ . . . ◦I︸ ︷︷ ︸
n

, for n ≥ 1, and I0 = IdE.

Proof : It is a straightforward computation.

The notion of concomitant of two (1, 1)-tensors on a manifold was intro-
duced in [17] and then extended to Lie algebroids in [14]. For pre-Courant
algebroids it can be defined as follows:

Definition 1.9. The concomitant of two skew-symmetric (1, 1)-tensors I and
J on a pre-Courant algebroid (E,Θ) is given by

CΘ(I, J) = {J, {I,Θ}}+ {I, {J,Θ}} = ΘI,J +ΘJ,I . (8)

If (ρ, [., .]) is the pre-Courant structure on E corresponding to Θ, (8) reads
as follows:

{{X,CΘ(I, J)}, Y } = [X, Y ]I,J + [X, Y ]J,I (9)

and

{{X,CΘ(I, J)}, f} = (ρ ◦(I ◦J + J ◦I))(X).f, (10)

for all X, Y ∈ Γ(E) and f ∈ C∞(M).

In the sequel, we denote the left hand side of (9) by CΘ(I, J)(X, Y ), i.e., we
write CΘ(I, J)(X, Y ) = [X, Y ]I,J + [X, Y ]J,I . When I and J anti-commute,
we have

{{X,CΘ(I, J)}, f} = 0,

for all X ∈ Γ(E) and f ∈ C∞(M). Therefore, in this case,

CΘ(I, J) = 0 ⇔ CΘ(I, J)(X, Y ) = 0, ∀X, Y ∈ Γ(E). (11)
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Using the Jacobi identity, we easily check that (8) is equivalent to

CΘ(I, J) = Θ{J,I} + 2ΘJ,I. (12)

Lemma 1.10. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) that anti-commute. Then,

CΘ(I, J) = 2(ΘI,J −ΘI ◦J).

Proof : Since I and J anti-commute, we know from (7) in Lemma 1.8, that
{I, J} = −2 I ◦J . Using the Jacobi identity, we have

ΘJ,I = −2ΘI ◦J +ΘI,J .

Therefore,

CΘ(I, J) = ΘI,J +ΘJ,I = 2(ΘI,J −ΘI ◦J).

2. Hierarchies of compatible tensors and structures
Let (E,Θ) be a pre-Courant algebroid. We introduce the following nota-

tion, where I, J, . . . , K are skew-symmetric (1, 1)-tensors on (E,Θ):

• ΘI,J,...,K = (((ΘI)J)...)K ;
• Θn = (((ΘI)I)...)I

︸ ︷︷ ︸
n

= ΘI, . . . , I
︸ ︷︷ ︸

n

, n ∈ N; Θ0 = Θ.

2.1. Hierarchy of compatible Courant structures. We construct a hi-
erarchy of compatible Courant structures on (E, 〈., .〉).
The next proposition generalizes a result in [14].

Proposition 2.1. Let I be a skew-symmetric (1, 1)-tensor on a pre-Courant
algebroid (E,Θ) and let X, Y be any sections of E. Then,

TΘn
I(X, Y ) = TΘn−1

I(IX, Y ) + TΘn−1
I(X, IY )− I(TΘn−1

I(X, Y )), n ∈ N.

(13)

Proof : Let us denote by [−,−]n the Dorfman bracket associated to Θn. It is
obvious that

[X, Y ]n = [IX, Y ]n−1 + [X, IY ]n−1 − I[X, Y ]n−1,
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and therefore we have,

TΘn
I(X, Y ) = [IX, IY ]n − I[IX, Y ]n − I[X, IY ]n + I2[X, Y ]n

= [I2X, IY ]n−1 − I[I2X, Y ]n−1 − I[IX, IY ]n−1 + I2[IX, Y ]n−1

+ [IX, I2Y ]n−1 − I[IX, IY ]n−1 − I[X, I2Y ]n−1 + I2[X, IY ]n−1

− I([IX, IY ]n−1 − I[IX, Y ]n−1 − I[X, IY ]n−1 + I2[X, Y ]n−1)

= TΘn−1
I(IX, Y ) + TΘn−1

I(X, IY )− I(TΘn−1
I(X, Y )).

Corollary 2.2. If I is Nijenhuis for Θ, then I is Nijenhuis for Θn, ∀n ∈ N.

When (E,Θ) is a Courant algebroid, it is well known [2] that if I is a
skew-symmetric Nijenhuis tensor for Θ, then (E,ΘI) is a Courant algebroid.

Proposition 2.3. Let (E,Θ) be a Courant algebroid and I a skew-symmetric
Nijenhuis tensor for Θ. Then, (E,Θn) is a Courant algebroid, for all n ∈ N.

Proof : Let (E,Θ) be a Courant algebroid and I a skew-symmetric Nijenhuis
tensor for Θ. As we already noticed, (E,ΘI) is a Courant algebroid [2].
From (13), we know that if I is Nijenhuis for Θ, then I is Nijenhuis for ΘI .
Therefore, (E,ΘI,I) is a Courant algebroid.
By recursion, we get that (E,Θn) is a Courant algebroid for all n ∈ N.

Let us compute the torsion TΘI
n, for all n ∈ N.

Proposition 2.4. Let I be a (1, 1)-tensor on a pre-Courant algebroid (E,Θ).
Then, for all sections X and Y on E,

TΘI
n(X, Y ) =TΘI(I

n−1X, In−1Y ) + I(TΘI
n−1(IX, Y ) + TΘI

n−1(X, IY ))

− I2(TΘI
n−2(IX, IY )) + I2n−2(TΘI(X, Y )), n ≥ 2.

Proof : It is enough to use the definition of Nijenhuis torsion. In fact, we
have, for all sections X and Y of E,

TΘI(I
n−1X, In−1Y ) =[InX, InY ]− I([InX, In−1Y ] + [In−1X, InY ])

+ I2[In−1X, In−1Y ]; (14)
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I(TΘI
n−1(IX, Y )+TΘI

n−1(X, IY )) = I([InX, In−1Y ] + [In−1X, InY ])

− In([InX, Y ] + [IX, In−1Y ] + [In−1X, IY ] + [X, InY ])

+ I2n−1([IX, Y ] + [X, IY ]); (15)

−I2(TΘI
n−2(IX, IY )) =− I2[In−1X, In−1Y ] + In([In−1X, IY ] + [IX, In−1Y ])

− I2n−2[IX, IY ]; (16)

and

I2n−2(TΘI(X, Y )) =I
2n−2[IX, IY ]− I2n−1([IX, Y ] + [X, IY ])

+ I2n[X, Y ]. (17)

The sum of the right hand sides of equations (14), (15), (16) and (17) gives

[InX, InY ]− In([InX, Y ] + [X, InY ]) + I2n[X, Y ] = TΘI
n(X, Y ).

As an immediate consequence of the previous proposition, we have the
following:

Corollary 2.5. If I is a Nijenhuis tensor for Θ, then In is a Nijenhuis tensor
for Θ, for all n ∈ N.

Proposition 2.6. Let I be a skew-symmetric (1, 1)-tensor on a pre-Courant
algebroid (E,Θ). If I is Nijenhuis for Θ, then In is Nijenhuis for Θm, for
all m, n ∈ N.

Proof : Let I be a Nijenhuis tensor for Θ. Then, according to Corollary 2.2,
I is Nijenhuis for Θm, for all m ∈ N. Applying Corollary 2.5, the result
follows.

Recall that two Courant structures Θ1 and Θ2 on the vector bundle (E, 〈 , 〉)
are said to be compatible if their sum Θ1 + Θ2 is a Courant structure on
(E, 〈 , 〉). As an immediate consequence, we have that Θ1 and Θ2 are com-
patible if and only if

{Θ1,Θ2} = 0.

Two arbitrary pre-Courant structures Θ1 and Θ2 on (E, 〈 , 〉) are compatible,
in the sense that the sum Θ1 +Θ2 is always a pre-Courant structure.
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Theorem 2.7. Let I be a skew-symmetric (1, 1)-tensor on a Courant alge-
broid (E,Θ). If I is Nijenhuis for Θ, then the Courant structures Θm and
Θn on (E, 〈 , 〉) are compatible, for all m, n ∈ N.
In particular, Θ is compatible with Θn, for all n ∈ N.

Proof : We start by remarking that if m = n, then we have {Θm,Θm} = 0 by
Proposition 2.3. Also, for any Courant structure Θ and any skew-symmetric
(1, 1)-tensor I, the relation {Θ,ΘI} = 0 follows from the Jacobi identity and
the graded symmetry of the Poisson bracket. We use induction on m+ n to
finish the proof.
Case m+ n = 2:

• i) m = n = 1,
{ΘI ,ΘI} = 0;

• ii) m = 2, n = 0,

{ΘI,I ,Θ} = {I, {Θ,ΘI}} − {ΘI ,ΘI} = 0.

Now, suppose that {Θm,Θn} = 0 holds with m + n = k − 1 and take m
and n such that m+ n = k.

• i) if m = n, we already noticed that {Θm,Θm} = 0;
• ii) if m 6= n, suppose that m > n. Then,

{Θm,Θn} = {{I,Θm−1},Θn} = {I, {Θn,Θm−1}} − {Θn+1,Θm−1}

= −{Θm−1,Θn+1}

= −{I, {Θm−2,Θn+1}}+ {Θm−2,Θn+2}

= {Θm−2,Θn+2}

= . . .

=

{
(−1)m−l{Θl,Θl}, if m+ n = 2l
(−1)m−(l+1){Θl+1,Θl}, if m+ n = 2l + 1,

=

{
0, if m+ n = 2l
(−1)m−(l+1)1

2
{I, {Θl,Θl}} = 0, if m+ n = 2l + 1.

Remark 2.8. If I is a deforming tensor for Θ, i.e., ΘI,I = λΘ, for some λ ∈ R,
then, a straightforward computation provides

Θ2k = λkΘ, Θ2k+1 = λkΘI , for all k ∈ N.
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In this case, Theorem 2.7 is trivially satisfied.

We investigated so far the Courant structure Θn obtained by deforming n
times Θ by a skew-symmetric tensor I. It is logical to ask what happens
when one deforms Θ by In, and the answer is that we get precisely the same
pre-Courant structure Θn. But this result can not be written as Θn = ΘIn

for even n, since In is then not a skew-symmetric (1, 1)-tensor anymore. We
bypass this difficulty by considering directly the Dorfman brackets, rather
than the functions of degree 3 associated with.

Proposition 2.9. Let I be a skew-symmetric (1, 1)-tensor on a pre-Courant
algebroid (E,Θ). Then, for all sections X and Y of E,

a) [X, Y ]I2n+1 = [X, Y ]I2n,I −
∑

0≤i,j≤2n−1

i+j=2n−1

Ij(TΘI(I
iX, Y ) + TΘI(X, I

iY ));

b) If I is Nijenhuis for Θ then, for any n ∈ N,
[X, Y ]In = [X, Y ]I, . . . , I

︸ ︷︷ ︸

n

;

c) If I is Nijenhuis for Θ then, for any m, n ∈ N,
[X, Y ]Im,In = [X, Y ]Im+n.

Proof : a) It is an easy but cumbersome computation that uses the defi-
nition of TΘI.

b) First, we observe that, if two skew-symmetric (1, 1)-tensors I and J
commute, then [X, Y ]I,J = [X, Y ]J,I, for all sections X and Y of E.
In particular we have, for all m, n ∈ N,

[X, Y ]Im,In = [X, Y ]In,Im. (18)

i) If n is odd, n = 2k + 1, we use a):

[X, Y ]In = [X, Y ]I2k+1 = [X, Y ]I2k,I ,

and it is case ii).
ii) If n is even, n = 2l, since I l is Nijenhuis for Θ, using (4) we may

write

[X, Y ]In = [X, Y ]I l ◦ I l = [X, Y ]I l,I l.

If l is even, we repeat the procedure. If l is odd, we are back to
case i).
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Repeating the procedure, and taking into account (18), we end
up with

[X, Y ]In = [X, Y ]I, . . . , I
︸ ︷︷ ︸

n

, ∀n ∈ N.

c) We use b) and (18):

[X, Y ]In,Im = [X, Y ]I, . . . , I
︸ ︷︷ ︸

n

,Im = [X, Y ]Im,I, . . . , I
︸ ︷︷ ︸

n

= [X, Y ]I, . . . , I
︸ ︷︷ ︸

m+n

= [X, Y ]Im+n.

Given a Courant structure (ρ, [., .]) on (E, 〈 , 〉), we denote by (ρ, [., .])I the
pre-Courant structure on (E, 〈 , 〉) defined by

(ρ, [., .])I = (ρ ◦I, [., .]I),

where I is a skew-symmetric (1, 1)-tensor on E. If I is Nijenhuis for (ρ, [., .]),
then

(ρ, [., .])Ik1,··· ,Ikn = (ρ, [., .]) I, · · · , I
︸ ︷︷ ︸

k1+···+kn

= (ρ, [., .])Ik1+···+kn (19)

is a Courant structure on (E, 〈 , 〉), for all k1, · · · , kn ∈ N. This result
follows directly from Proposition 2.9 b) and c). In supergeometric terms,
(19) means that the deformation of Θ, either by Ik1+···+kn or successively by
Ik1, Ik2, · · · , Ikn, is the pre-Courant structure Θ I, · · · , I

︸ ︷︷ ︸

k1+···+kn

= Θk1+···+kn.

2.2. Hierarchy of compatible tensors w.r.t. Θ. In this section, we
introduce the notion of compatible pair of (1, 1)-tensors with respect to a
pre-Courant structure Θ on E and construct a hierarchy of pairs of tensors
satisfying this type of compatibility.

Definition 2.10. We say that two skew-symmetric (1, 1)-tensors I and J on a
pre-Courant algebroid (E,Θ) anti-commute with respect toΘ, if ΘI,J = −ΘJ,I

or, equivalently, if CΘ(I, J) = 0.

In terms of the pre-Courant structure (ρ, [., .]) on (E, 〈., .〉), the condition
CΘ(I, J) = 0 is equivalent to

{
ρ ◦I ◦J + ρ ◦J ◦I = 0
[X, Y ]I,J + [X, Y ]J,I = 0,

for all sections X and Y of E.
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Proposition 2.11. If I and J are skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) that anti-commute with respect to Θ, then Θ{I,J} =
−2ΘI,J = 2ΘJ,I.

Proof : We have, by the Jacobi identity,

Θ{I,J} = {{I, J},Θ} = {I, {J,Θ}}+ {{I,Θ}, J} = ΘJ,I −ΘI,J .

Since I and J anti-commute with respect to Θ,

Θ{I,J} = 2ΘJ,I = −2ΘI,J .

Proposition 2.12. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ) that anti-commute. Then, for any sections X
and Y of E,

CΘ(I, I ◦J)(X, Y ) = I(CΘ(I, J)(X, Y )) + 2 TΘI(JX, Y ) + 2 TΘI(X, JY ).
(20)

Proof : Using the equality CΘ(I, J)(X, Y ) = [X, Y ]I,J + [X, Y ]J,I and the
definition of TΘI, and taking into account that I and J anti-commute as well
as I and I ◦J , we have

I(CΘ(I, J)(X, Y )) = 2I([JX, IY ]− I[JX, Y ]− J [X, IY ] + [IX, JY ]

−I[X, JY ]− J [IX, Y ]),

2 TΘI(JX, Y ) = 2([IJX, IY ]− I[IJX, Y ]− I[JX, IY ] + I2[JX, Y ]),

and

2 TΘI(X, JY ) = 2([IX, IJY ]− I[IX, JY ]− I[X, IJY ] + I2[X, JY ]).

The sum of the right-hand sides of the three last equations gives:

2([IX, IJY ]− IJ [IX, Y ] + [IJX, IY ]− IJ [X, IY ]− I[IJX, Y ]− I[X, IJY ])

= CΘ(I, I ◦J)(X, Y ).

For the various classes of pairs of skew-symmetric (1, 1)-tensors that will
be introduced in the sequel, we shall require that the skew-symmetric (1, 1)-
tensors are compatible in the following sense:
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Definition 2.13. A pair (I, J) of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) is said to be a compatible pair w.r.t. Θ, if I and J
anti-commute and anti-commute w.r.t. Θ.

Let I and J be two (1, 1)-tensors on a pre-Courant algebroid (E,Θ). Recall
that the Nijenhuis concomitant of I and J is defined, for all sections X and
Y of E, as follows [10]:

NΘ(I, J)(X, Y ) = [IX, JY ]− I[X, JY ]− J [IX, Y ] + IJ [X, Y ]

+ [JX, IY ]− J [X, IY ]− I[JX, Y ] + JI[X, Y ]. (21)

Notice that, if I = J , then NΘ(I, I) = 2TΘI and, if I and J anti-commute,
then NΘ(I, J) =

1
2CΘ(I, J).

Lemma 2.14. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ). Then, TΘ(I + J) = TΘI + TΘJ +NΘ(I, J).

Proof : Let I and J be two skew-symmetric (1, 1)-tensors on (E,Θ) and X, Y
any sections of E. Then, using the definition of Nijenhuis torsion, we get:

TΘ(I + J)(X, Y ) =TΘI(X, Y ) + TΘJ(X, Y ) + [IX, JY ] + [JX, IY ]− I[X, JY ]

− J [X, IY ]− I[JX, Y ]− J [IX, Y ] + IJ [X, Y ] + JI[X, Y ]

=TΘI(X, Y ) + TΘJ(X, Y ) +NΘ(I, J)(X, Y ).

The next proposition gives a characterization of compatible pairs.

Proposition 2.15. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ) that anti-commute. Then, (I, J) is a compatible
pair w.r.t. Θ if and only if TΘ(I + J) = TΘI + TΘJ .

Proof : Let I and J be two skew-symmetric (1, 1)-tensors on (E,Θ) that anti-
commute and X, Y any sections of E. From Lemma 2.14, and taking into
account that I and J anti-commute, we get

TΘ(I + J)(X, Y ) = TΘI(X, Y ) + TΘJ(X, Y ) +
1

2
CΘ(I, J)(X, Y )

and, according to Definition 2.13, the proof is complete.

Theorem 2.16. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) such that TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all
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sections X and Y of E. If (I, J) is a compatible pair w.r.t. Θ, then (I, In ◦J)
is a compatible pair w.r.t. Θ, for all n ∈ N, in particular,

CΘ(I, I
n
◦J) = 0, ∀n ∈ N. (22)

Proof : For n = 0, (22) reduces to CΘ(I, J) = 0, which is one of the assump-
tions, since (I, J) is a compatible pair w.r.t. Θ. Using (20) and (11), we
get

CΘ(I, I ◦J) = 0,

and (22) holds with n = 1.
From Lemma 1.8, we know that In ◦J is skew-symmetric and anti-commutes

with I. Therefore, we may apply Proposition 2.12 to I and In ◦J , to yield

CΘ(I, I
n
◦J)(X, Y ) =I(CΘ(I, I

n−1
◦J)(X, Y ))

+ 2 TΘI((I
n−1

◦J)X, Y ) + 2 TΘI(X, (I
n−1

◦J)Y )

=I(CΘ(I, I
n−1

◦J)(X, Y )),

where we have used Lemma 1.8 to obtain

TΘI((I
n−1

◦J)X, Y ) = (−1)n−1TΘI(J(I
n−1X), Y ) = 0

and
TΘI(X, (I

n−1
◦J)Y ) = 0.

Now, it is obvious that if CΘ(I, I
n−1

◦J) = 0, then CΘ(I, I
n
◦J) = 0 and the

result follows by recursion.

2.3. Compatible tensors w.r.t. Θn, n ∈ N. In this section, we address
the general case of hierarchies of tensors which are compatible w.r.t. each
term of the family (Θn)n∈N of pre-Courant structures on E.

Proposition 2.17. Let I and J be two skew-symmetric (1, 1)-tensors on
(E,Θ). Then,

CΘI
(I, J) = CΘ(I, {J, I}) + {I, CΘ(I, J)}. (23)

In particular, if I and J anti-commute, then,

CΘI
(I, J) = 2CΘ(I, I ◦J) + {I, CΘ(I, J)}. (24)

Proof : Applying twice the Jacobi identity, we get

ΘI,I,J = ΘI,{J,I} +ΘI,J,I

= ΘI,{J,I} +Θ{J,I},I +ΘJ,I,I ,
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which can be written as

CΘ(I, {J, I}) = ΘI,I,J −ΘJ,I,I .

From the definition of CΘ(I, J), we have ΘJ,I,I = {I, CΘ(I, J)} − ΘI,J,I .
Substituting this result in the last equality, we get

CΘ(I, {J, I}) = ΘI,I,J − {I, CΘ(I, J)}+ΘI,J,I

= CΘI
(I, J)− {I, CΘ(I, J)},

proving the first statement. If I and J anti-commute, using (7) in Lemma 1.8,
we can replace {J, I} by 2 I ◦J and the second statement follows.

The next theorem extends the result of Theorem 2.16.

Theorem 2.18. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) such that TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all
sections X and Y of E. If (I, J) is a compatible pair w.r.t. Θ, then (I, I t ◦J)
is a compatible pair w.r.t. Θn, for all n, t ∈ N, in particular,

CΘn
(I, I t ◦J) = 0, ∀n, t ∈ N.

Proof : Let I and J be two skew-symmetric (1, 1)-tensors which are compat-
ible w.r.t Θ. Suppose that TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections
X and Y on E. We will prove, by induction on n, that

CΘn
(I, I t ◦J) = 0, ∀n, t ∈ N.

For n = 0, this is the content of Theorem 2.16.
Suppose now that, for some n ∈ N, CΘn

(I, I t ◦J) = 0, for all t ∈ N. Then,
by Proposition 2.17 we have, for all t ∈ N,

CΘn+1
(I, I t ◦J) = 2CΘn

(I, I t+1
◦J) + {I, CΘn

(I, I t ◦J)}

= 0,

where we used the induction hypothesis in the last equality. Since the skew-
symmetric tensor I t ◦J anti-commutes with I, for all t ∈ N, the proof is
complete.

In order to establish the main results of this section, we need the following
lemma.
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Lemma 2.19. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) such that I is Nijenhuis for Θ. If (I, J) is a com-
patible pair w.r.t. Θ, then, for all sections X and Y of E,

[X, Y ]I, . . . , I
︸ ︷︷ ︸

n

,J = [X, Y ]In ◦J .

Proof : Theorem 2.18 ensures that, for all n ∈ N, CΘn
(I, J) = 0 and, applying

Lemma 1.10 to the pre-Courant structure Θn−1, we get

[X, Y ]I, . . . , I
︸ ︷︷ ︸

n

,J = [X, Y ]I, . . . , I
︸ ︷︷ ︸

n−1

,I,J = {{X, (Θn−1)I,J}, Y }

= {{X, (Θn−1)I ◦J}, Y } = [X, Y ]I, . . . , I
︸ ︷︷ ︸

n−1

,I ◦J .

Since, for every k ∈ N, I anti-commutes with Ik ◦J , we may repeat n − 1
times this procedure, and we end up with

[X, Y ]I, . . . , I
︸ ︷︷ ︸

n

,J = [X, Y ]In ◦J .

Remark 2.20. In Lemma 2.19, we may replace the assumption that I is Ni-
jenhuis for Θ by TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y

on E.

Theorem 2.21. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ), such that I is Nijenhuis and (I, J) is a compatible
pair w.r.t. Θ. Then, (I2s+1, I t ◦J) is a compatible pair w.r.t. Θn, for all
n, s, t ∈ N, in particular,

CΘn
(I2s+1, I t ◦J) = 0, ∀n, s, t ∈ N. (25)

Moreover, if J is Nijenhuis tensor, then (I2s+1, I t ◦J2k+1) is a compatible pair
w.r.t. Θn, for all n, s, t, k ∈ N, in particular,

CΘn
(I2s+1, I t ◦J2k+1) = 0, ∀n, s, t, k ∈ N. (26)

Proof : Let I and J be two skew-symmetric (1, 1)-tensors which are compat-
ible w.r.t Θ and such that such that TΘI = 0. Let us first prove that

CΘ(I
2s+1, I t ◦J) = 0, ∀s, t ∈ N.
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Since I2s+1 anti-commutes with I t ◦J , we may apply Lemma 1.10:

CΘ(I
2s+1, I t ◦J)(X, Y ) = 2([X, Y ]I2s+1,It ◦J − [X, Y ]I2s+1

◦ (It ◦J)).

Lemma 2.19 gives

CΘ(I
2s+1, I t ◦J)(X, Y ) = 2([X, Y ]I2s+1,It ◦J − [X, Y ]I, . . . , I

︸ ︷︷ ︸

2s+1

,It ◦J)

= 2([X, Y ]I2s+1 − [X, Y ]I2s+1)It ◦J = 0,

where we have used Lemma 2.9 b) in the second equality. From (11), we get
CΘ(I

2s+1, I t ◦J) = 0.
In order to prove the result for a general Θn, notice that, due to Corol-

lary 2.2 and Theorem 2.18, the hypothesis originally satisfied for Θ, are also
satisfied for any of the pre-Courant structures Θn, n ∈ N. Therefore, we can
replace in the above arguments Θ by any Θn, n ∈ N.
Now, suppose that I and J are both Nijenhuis for Θ. Since they play

symmetric roles, we may intertwine them in (25). Specializing (25) to the
case n = 0, t = 0 and s = k, we obtain CΘ(I, J

2k+1) = 0 and, because I
and J2k+1 anti-commute, we conclude that (I, J2k+1) is a compatible pair
w.r.t. Θ. Thus, we may apply again (25), taking J2k+1 instead of J , to get
CΘn

(I2s+1, I t ◦J2k+1) = 0.

Summarizing, we have started with two skew-symmetric (1, 1)-tensors I
and J on a pre-Courant algebroid (E,Θ) which form a compatible pair w.r.t.
Θ and we have considered two families of (1, 1)-tensors on E:

(I2s+1)s∈N and (I t ◦J2k+1)t,k∈N.

We showed that, if I and J are Nijenhuis for Θ, then any element of the first
hierarchy together with any element of the second hierarchy form a pair of
tensors which is a compatible pair with respect to any pre-Courant structure
Θn on (E, 〈., .〉), for all n ∈ N.
The case where both I and J are Nijenhuis for Θ will be discussed in more

detail in the last section.

3. Hierarchies of deforming-Nijenhuis pairs
We introduce the notion of deforming-Nijenhuis pair as well as the def-

inition of Poisson tensor on a pre-Courant algebroid and construct several
hierarchies of deforming-Nijenhuis and Poisson-Nijenhuis pairs.



HIERARCHIES AND COMPATIBILITY ON COURANT ALGEBROIDS 27

3.1. Hierarchy of deforming-Nijenhuis pairs for Θm, m ∈ N. Starting
with a deforming-Nijenhuis pair (J, I) for Θ, we prove, in a first step, that it
is also a deforming-Nijenhuis pair for Θn, for all n ∈ N. Then, we construct
a hierarchy (J, I2n+1)n∈N of deforming-Nijenhuis pairs for Θm, for all m ∈ N.

Definition 3.1. Let I and J be two skew-symmetric (1, 1)-tensors on the pre-
Courant algebroid (E,Θ). The pair (J, I) is said to be a deforming-Nijenhuis
pair for Θ if

• (I, J) is a compatible pair w.r.t. Θ;
• J is deforming for Θ;
• I is Nijenhuis for Θ.

We need the following lemmas.

Lemma 3.2. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) that anti-commute. We have

(Θn){J,{I,J}} = (Θ{J,{I,J}})I, . . . , I
︸ ︷︷ ︸

n

, ∀n ∈ N. (27)

In particular,

i) if Θ{J,{I,J}} = λ0ΘJ,J,I, for some λ0 ∈ R, then

(Θn){J,{I,J}} = λ0(ΘJ,J)I, . . . , I
︸ ︷︷ ︸

n+1

, ∀n ∈ N;

ii) if {J, {I, J}} is a Θ-cocycle, then it is a Θn-cocycle, for all n ∈ N.

Proof : Let I and J be two skew-symmetric (1, 1)-tensors on (E,Θ) that anti-
commute. Then, we have

I ◦(I ◦J2) = (I ◦J2) ◦I ⇔ {I, I ◦J2} = 0 ⇔ {I, {J, {J, I}}} = 0. (28)

Using the Jacobi identity, (28) implies

ΘI,{J,{J,I}} = Θ{J,{J,I}},I. (29)

Since (29) holds for any pre-Courant structure on E, we may write

(ΘI, . . . , I
︸ ︷︷ ︸

n

){J,{I,J}} =(ΘI, . . . , I
︸ ︷︷ ︸

n−1

){J,{I,J}},I = (ΘI, . . . , I
︸ ︷︷ ︸

n−2

){J,{I,J}},I,I

= · · · = (Θ{J,{I,J}})I, . . . , I
︸ ︷︷ ︸

n

,

and (27) is proved. The particular cases follow immediately.
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Lemma 3.3. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ). Then,

ΘJ,I,J =
1

3

(
ΘJ,J,I +Θ{J,{I,J}} + {J, CΘ(I, J)}

)
; (30)

ΘI,J,J = −
1

3

(
ΘJ,J,I +Θ{J,{I,J}} − 2{J, CΘ(I, J)}

)
. (31)

Proof : By application of the Jacobi identity, we have

ΘJ,I,J = ΘJ,{J,I} +ΘJ,J,I

= Θ{{J,I},J} +Θ{J,I},J +ΘJ,J,I

= Θ{{J,I},J} + {J, CΘ(I, J)− 2ΘJ,I}+ΘJ,J,I ,

where we used (12) in the last equality. The last equation reads:

3ΘJ,I,J = Θ{J,{I,J}} + {J, CΘ(I, J)}+ΘJ,J,I ,

proving (30).
The equality (31) is a consequence of (30), taking into account the relation

ΘI,J,J = −ΘJ,I,J + {J, CΘ(I, J)}.

As a particular case of the previous lemma, we have the following:

Corollary 3.4. If I and J anti-commute w.r.t. Θ, and if Θ{J,{I,J}} =
λ0ΘJ,J,I, λ0 ∈ R, then

ΘI,J,J = αΘJ,J,I , (32)

with α = −λ0+1
3 . Moreover, if J is deforming for Θ, i.e., ΘJ,J = kΘ, with

k ∈ R, then J is deforming for ΘI. More precisely,

ΘI,J,J = βΘI ,

with β = kα.

Lemma 3.5. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) such that (I, J) is a compatible pair w.r.t. Θ and
TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y of E. If Θ{J,{I,J}} =

λ0ΘJ,J,I, for some λ0 ∈ R, such that λ0 6=
4

(−3)m−1 for all m ∈ N, then, for all

n ∈ N,
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(a) (Θn){J,{I,J}} = λn(Θn)J,J,I, where λn is defined recurrently† by λn =
−3λn−1

1+λn−1
, n ≥ 1,

(b) λn(Θn)J,J,I = λ0ΘJ,J,I, . . . , I
︸ ︷︷ ︸

n+1

.

(c) If, in particular, λ0 = 0, then (Θn)J,J = (−1
3)

nΘJ,J,I, . . . , I
︸ ︷︷ ︸

n

, for all n ∈

N.

Proof : (a) We will prove this statement by induction. Suppose that, for
some n ≥ 1, (Θn−1){J,{I,J}} = λn−1(Θn−1)J,J,I. Using Lemma 3.2 and
the induction hypothesis, we have

(Θn){J,{I,J}} = (Θn−1){J,{I,J}},I

= λn−1(Θn−1)J,J,I,I .

Applying formula (32) for Θn−1, we obtain

(Θn){J,{I,J}} =
−3λn−1

1 + λn−1
(Θn−1)I,J,J,I = (Θn){J,{I,J}} = λn(Θn)J,J,I,

with λn = −3λn−1

1+λn−1
.

(b) Starting from the previous statement, then using the Lemma 3.2 and
the hypothesis, we have,

λn(Θn)J,J,I = (Θn){J,{I,J}} = Θ{J,{I,J}},I, . . . , I
︸ ︷︷ ︸

n

= λ0ΘJ,J,I, . . . , I
︸ ︷︷ ︸

n+1

.

(c) From Lemma 3.2 i), we get

(Θn){J,{I,J}} = 0, ∀n ∈ N,

while Theorem 2.18 gives

CΘn
(I, J) = 0, ∀n ∈ N.

Thus, applying successively the formula (31), yields

(Θn)J,J = −
1

3
(Θn−1)J,J,I = · · · = (−

1

3
)nΘJ,J,I, . . . , I

︸ ︷︷ ︸

n

.

†Explicitly, λn = (−3)nλ0

1+
1−(−3)n

4
λ0

, for all n ∈ N.
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Proposition 3.6. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ) such that (I, J) is a compatible pair w.r.t. Θ,
Θ{J,{I,J}} = λ0ΘJ,J,I, for some λ0 ∈ R, such that λ0 6=

4
(−3)m−1 for all m ∈ N,

and TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y of E. If J is
a deforming tensor for Θ, then J is also a deforming tensor for Θn, for all
n ∈ N.

Proof : We consider two cases, depending on the value of λ0.

i) Case λ0 6= 0.
From Theorem 2.18, we have that CΘn

(I, J) = 0, for all n ∈ N. We
compute‡, using Lemma 3.3 and both statements of Lemma 3.5:

(Θn)J,J = (Θn−1)I,J,J = −
1

3
((Θn−1)J,J,I + (Θn−1){J,{I,J}})

= −
1

3
((Θn−1)J,J,I + λn−1(Θn−1)J,J,I)

= −
1 + λn−1

3
(Θn−1)J,J,I

= −
(1 + λn−1)λ0

3λn−1
ΘJ,J,I, . . . , I

︸ ︷︷ ︸

n

=
λ0

λn
ΘJ,J,I, . . . , I

︸ ︷︷ ︸

n

.

The tensor J being deforming for Θ, we have ΘJ,J = kΘ, for some
k ∈ R, and the last equality becomes

(Θn)J,J =
λ0

λn
kΘn,

which means that J is a deforming tensor for Θn.
(ii) Case λ0 = 0.

If J is deforming for Θ, i.e., ΘJ,J = kΘ, with k ∈ R, then, from
Lemma 3.5 c) we immediately get

(Θn)J,J = (−
1

3
)nkΘn, ∀n ∈ N,

which means that J is deforming for Θn.

‡Notice that if λ0 6= 0 then λn 6= 0,∀n ∈ N.
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Combining Corollary 2.2, Theorem 2.18 and Proposition 3.6, we deduce
the following:

Theorem 3.7. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant (respectively, Courant) algebroid (E,Θ). If (J, I) is a deforming-
Nijenhuis pair for Θ, then (J, I) is a deforming-Nijenhuis pair for the pre-
Courant (respectively, Courant) structures Θn, for all n ∈ N.

Now, we establish the main result of this section.

Theorem 3.8. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant (respectively, Courant) algebroid (E,Θ). If (J, I) is a deforming-
Nijenhuis pair for Θ, then (J, I2n+1) is a deforming-Nijenhuis pair for the
pre-Courant (respectively, Courant) structures Θm, for all m, n ∈ N.

Proof : Let (J, I) be a deforming-Nijenhuis pair for Θ. Applying Theorem
3.7, we have that (J, I) is a deforming-Nijenhuis pair for Θm, for all m ∈ N.
From Proposition 2.6, we get that I2n+1 is Nijenhuis for Θm, for all m, n ∈ N.
According to Lemma 1.8, I2n+1 and J anti-commute and, from Theorem
2.21, we have that CΘm

(I2n+1, J) = 0, for all m, n ∈ N. Thus, (J, I2n+1) is a
deforming-Nijenhuis pair for Θm, for all m, n ∈ N.

3.2. Hierarchy of Poisson tensors for Θk, k ∈ N. We introduce the
notions of Poisson tensor and of compatible Poisson tensors for a pre-Courant
algebroid (E,Θ). We construct a hierarchy (In ◦J)n∈N of Poisson tensors
which are pairwise compatible for each element of the hierarchy (Θk)k∈N of
pre-Courant structures.

We start by introducing the main notion of this section.

Definition 3.9. A skew-symmetric (1, 1)-tensor J on a pre-Courant alge-
broid (E,Θ) satisfying ΘJ,J = 0 is said to be a Poisson tensor for Θ.

In the next example, we show that the previous definition extends the usual
definition of a Poisson bivector on a Lie algebroid.

Example 3.10. Let (A, µ) be a Lie algebroid. Consider the Courant alge-
broid (E = A ⊕ A∗,Θ = µ) and the (1, 1)-tensor and Jπ of Example 1.6 a).
Then, Jπ is a Poisson tensor for Θ = µ if and only if π is a Poisson tensor on
(A, µ):

ΘJπ ,Jπ = 0 ⇔ {π, {π, µ}} = 0 ⇔ [π, π]µ = 0.
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♦

Example 3.11. The operators introduced in example 1.3 are Poisson oper-
ators on Lie algebras.

The next theorem follows directly from Lemma 3.5 c).

Theorem 3.12. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ) such that (I, J) is a compatible pair w.r.t. Θ,
Θ{J,{I,J}} = 0 and TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y
of E. If J is Poisson for Θ, then J is Poisson for Θn, for all n ∈ N.

Now, we introduce the notion of compatible Poisson tensors.

Definition 3.13. Let J and J ′ be two Poisson tensors for the pre-Courant
structure Θ on the vector bundle (E, 〈., .〉). The tensors J and J ′ are said to
be compatible Poisson tensors for Θ if J + J ′ is a Poisson tensor for Θ, i.e,
ΘJ+J ′,J+J ′ = 0.

An immediate consequence of this definition is the following:

Lemma 3.14. Let J and J ′ be two Poisson tensors for Θ. Then, J and J ′

are compatible Poisson tensors for Θ if and only if ΘJ,J ′+ΘJ ′,J = 0. In other
words, J and J ′ are compatible Poisson tensors for Θ if and only if J and J ′

anti-commute w.r.t. Θ.

Example 3.15. Let (A, µ) be a Lie algebroid, consider the Courant algebroid
(E = A⊕A∗,Θ = µ) and take two Poisson tensors for Θ = µ, Jπ and Jπ′, of
the type considered in Example 1.6 a). Then,

ΘJπ,Jπ′ +ΘJπ′ ,Jπ = 0 ⇔ {π′, {π, µ}}+ {π, {π′, µ}} = 0

⇔ 2{π′, {π, µ}} = 0

⇔ [π, π′]µ = 0,

and we recover the notion of compatible Poisson tensors on a Lie algebroid.

In order to construct a hierarchy of pairwise compatible Poisson tensors,
we need the next proposition.

Proposition 3.16. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ), that anti-commute. Then, for all sections X
and Y of E,

TΘI
J(X, Y ) = −J(CΘ(I, J)(X, Y ))−TΘJ(IX, Y )−TΘJ(X, IY )−I(TΘJ(X, Y )).

(33)
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Proof : We compute TΘI
J and CΘ(I, J). For any sections X, Y of E, we have

TΘI
J(X, Y ) = [JX, JY ]I − J [JX, Y ]I − J [X, JY ]I + J2[X, Y ]I

= [IJX, JY ] + [JX, IJY ]− I[JX, JY ]

− J [IJX, Y ]− J [JX, IY ] + JI[JX, Y ]

− J [IX, JY ]− J [X, IJY ] + JI[X, JY ]

+ J2[IX, Y ] + J2[X, IY ]− J2I[X, Y ]

and

CΘ(I, J)(X, Y ) = 2([JX, IY ] + [IX, JY ]− I([JX, Y ] + [X, JY ])

−J([IX, Y ] + [X, IY ])).

Thus,

TΘI
J(X, Y ) + J(CΘ(I, J)(X, Y )) = −[JIX, JY ]− [JX, JIY ]− I[JX, JY ]

+J [JIX, Y ] + J [JX, IY ] + IJ [JX, Y ] + J [IX, JY ] + J [X, JIY ]

+IJ [X, JY ]− J2[IX, Y ]− J2[X, IY ]− IJ2[X, Y ]

= −TΘJ(IX, Y )− TΘJ(X, IY )− I(TΘJ(X, Y )).

Remark 3.17. The roles of I and J can be reversed in the previous proposi-
tion, so that the following result also holds:

TΘJ
I(X, Y ) = −I(CΘ(I, J)(X, Y ))−TΘI(JX, Y )−TΘI(X, JY )−J(TΘI(X, Y )).

(34)

Theorem 3.18. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ), such that (I, J) is a compatible pair w.r.t. Θ, I
is Nijenhuis for Θ, J is Poisson for Θ and Θ{J,{I,J}} = 0. Then, for all
m, n, k ∈ N,

(Θk)Im ◦J,In ◦J = 0.

In particular,

(1) In ◦J is a Poisson tensor for Θk, for all n, k ∈ N;
(2) (In ◦J)n∈N is a hierarchy of pairwise compatible Poisson tensors for

Θk, for all k ∈ N.

Requiring Θ{J,{I,J}} = 0 might seem a bit arbitrary, but it is not. Indeed, for
many Poisson 1(1, 1) tensors, J2 = 0, so that the condition is automatically
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satisfied. Indeed, this condition may be interpreted as meaning that the
strong condition J2 = 0 can be weakened and turned into the condition I ◦J2

is a Θ-cocycle.
The proof of the above theorem needs two auxiliary lemmas.

Lemma 3.19. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ), such that (I, J) is a compatible pair w.r.t. Θ. If I
is Nijenhuis for Θ, then I is Nijenhuis for (Θm)J , for all m ∈ N.

Proof : Fix m ∈ N. From Corollary 2.2, I is Nijenhuis for Θm. Also, applying
Theorem 2.18, we get CΘm

(I, J) = 0. Finally, using (34) for the pre-Courant
structure Θm, we conclude that I is Nijenhuis for (Θm)J .

Lemma 3.20. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ) such that J is Poisson for Θ, Θ{J,{I,J}} = 0 and
TΘI(JX, Y ) = TΘI(X, JY ) = 0, for all sections X and Y of E. If (I, J) is
a compatible pair w.r.t. Θ, then (I, J) is a compatible pair w.r.t. (Θm)J , for
all m ∈ N.

Proof : Fix m ∈ N. By definition, C(Θm)J (I, J) = (Θm)J,I,J + (Θm)J,J,I . In
order to compute (Θm)J,I,J , remember formula (30) for the pre-Courant struc-
ture Θm:

(Θm)J,I,J =
1

3

(
(Θm)J,J,I + (Θm){J,{I,J}} + {J, CΘm

(I, J)}
)
.

Since (I, J) is a compatible pair w.r.t. Θ, applying Theorem 2.18, we get
CΘm

(I, J) = 0. Furthermore, from Lemma 3.2(ii), we have (Θm){J,{I,J}} = 0.
Then, the formula above turns into

(Θm)J,I,J =
1

3
(Θm)J,J,I ,

so that

C(Θm)J (I, J) =
4

3
(Θm)J,J,I.

Using Theorem 3.12, we get (Θm)J,J,I = 0 and, therefore, (I, J) is a com-
patible pair w.r.t. (Θm)J .

We address now the proof of the above theorem.

Proof of Theorem 3.18: Let (I, J) be a compatible pair w.r.t. Θ such that I
is Nijenhuis for Θ, J is Poisson for Θ and Θ{J,{I,J}} = 0. From the above
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auxiliary lemmas, (I, J) is a compatible pair w.r.t. (Θk+m)J and I is Nijen-
huis for (Θk+m)J . Then, using Lemma 2.19 for the pre-Courant structure
(Θk+m)J , we obtain

(Θk)Im ◦J,In ◦J = ((Θk+m)J)In ◦J = ((Θk+m)J)I, . . . , I
︸ ︷︷ ︸

n

,J = ΘI, . . . , I
︸ ︷︷ ︸

k+m

,J,I, . . . , I
︸ ︷︷ ︸

n

,J

and, applying successively Theorem 2.18, we get

(Θk)Im ◦J,In ◦J = (−1)nΘI, . . . , I
︸ ︷︷ ︸

k+m+n

,J,J . (35)

Using Theorem 3.12, we deduce that

(Θk)Im ◦J,In ◦J = 0.

3.3. Hierarchy of Poisson-Nijenhuis pairs for Θk, k ∈ N. We introduce
the notion of Poisson-Nijenhuis pair for a pre-Courant algebroid (E,Θ) and
construct a hierarchy of Poisson-Nijenhuis pairs.

Definition 3.21. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ). The pair (J, I) is said to be a Poisson-Nijenhuis
pair for Θ if

(1) (J, I) is a compatible pair w.r.t. Θ;
(2) J is Poisson for Θ;
(3) I is Nijenhuis for Θ.

Remark 3.22. If (J, I) is a Poisson-Nijenhuis pair for Θ, then it is a deforming-
Nijenhuis pair for Θ.

Recall that a Poisson-Nijenhuis structure on a Lie algebroid (A, µ) is a pair
(π,N), where π is a Poisson tensor and N : A → A is a Nijenhuis tensor
such that Nπ# = π#N∗ and Cµ(π,N) = 0.
The next example shows the relation between Definition 3.21 and the notion

of Poisson-Nijenhuis structure on a Lie algebroid.

Example 3.23. Let (π,N) be a Poisson-Nijenhuis structure on a Lie al-
gebroid (A, µ), with N2 = λidA, λ ∈ R. Consider the Courant algebroid
(E,Θ), with E = A ⊕ A∗ and Θ = µ, Jπ and IN as in Example 1.6 a) and
c), respectively. Then, (Jπ, IN) is a Poisson-Nijenhuis pair for Θ. In fact,
Nπ# = π#N∗ ⇔ IN ◦Jπ = −Jπ ◦IN and Cµ(π,N) = Cµ(Jπ, IN) = 0, so that
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(Jπ, IN) is a compatible pair w.r.t. µ. Moreover, π is a Poisson bivector on
(A, µ) if and only if Jπ is Poisson for Θ = µ (see Example 3.10) and IN is
Nijenhuis for Θ = µ (see Example 1.6 c)). Conversely, if (Jπ, IN) is a Poisson-
Nijenhuis pair for Θ = µ with N2 = λidA, then (π,N) is a Poisson-Nijenhuis
structure on (A, µ).

♦

The next theorem defines a hierarchy of Poisson-Nijenhuis pairs.

Theorem 3.24. Let I and J be two skew-symmetric (1, 1)-tensors on the
pre-Courant algebroid (E,Θ), such that (J, I) is a Poisson-Nijenhuis pair for
Θ and Θ{J,J1} = 0. Then, (In ◦J, I2m+1) is a Poisson-Nijenhuis pair for Θk,
for all m, n, k ∈ N.

Proof : Let (J, I) be a Poisson-Nijenhuis pair for Θ such that Θ{J,J1} = 0. We
have to prove that:

(1) (In ◦J, I2m+1) is a compatible pair w.r.t. Θk,
(2) In ◦J is Poisson for Θk,
(3) I2m+1 is Nijenhuis for Θk,

for all m, n, k ∈ N.
Applying Theorem 2.21, statement (1) follows. From Theorem 3.18, we get

statement (2), while statement (3) is a particular case of Proposition 2.6.

Using the Poisson-Nijenhuis pair arising from a Poisson-Nijenhuis structure
as in Example 3.23, we recover most of the hierarchy already studied by [14],
up to a minor difference. In this general setting it is not possible to consider
I2n since it is not a skew-symmetric (1, 1)-tensor.

To conclude this section, we come back to the deforming-Nijenhuis pairs
to discuss a particular case.

Proposition 3.25. Let I and J be two skew-symmetric (1, 1)-tensors on the
pre-Courant algebroid (E,Θ), such that I is Nijenhuis, I2 = α idE, α ∈ R,
and (I, J) is a compatible pair w.r.t Θ. If J is deforming for Θ, then In ◦J

is also deforming for Θ.

Proof : First, we recall from (5), that if I is Nijenhuis and satisfies I2 = α idE,
then ΘI,I = αΘ and, by recursion, we get ΘI, . . . , I

︸ ︷︷ ︸

2n

= αnΘ. From the equality
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(35), with k = 0 and m = n, we get

ΘIn ◦J,In ◦J = (−1)nΘI, . . . , I
︸ ︷︷ ︸

2n

,J,J

= (−α)nΘJ,J

= (−α)nλΘ,

where, in the last equality, we use the fact that J is deforming for Θ, ie,
ΘJ,J = λΘ, for some λ ∈ R.

From the previous proposition, we conclude that if (J, I) is a deforming-
Nijenhuis pair for Θ such that I2 = αIdE , then, for all n ∈ N, (In ◦J, I)
is still a deforming-Nijenhuis pair for Θ. But (In ◦J, I)n∈N is a very poor
hierarchy of deforming-Nijenhuis pairs since all the pairs are proportional
either to (J, I) or to (I ◦J, I). In fact we have, for all n ∈ N,

I2n ◦J = αnJ, I2n+1
◦J = αnI ◦J.

4. Hierarchies of Nijenhuis pairs
The last part of this article is devoted to the study of pairs of Nijenhuis

tensors on pre-Courant algebroids.

4.1. Nijenhuis pair for a hierarchy of pre-Courant structures. We
start by introducing the notion of Nijenhuis pair for a pre-Courant algebroid.

Definition 4.1. Let I and J be two skew-symmetric tensors on a pre-
Courant algebroid (E,Θ). The pair (I, J) is called a Nijenhuis pair for
Θ, if it is a compatible pair w.r.t. Θ and I and J are both Nijenhuis for Θ.

Example 4.2. Let J be a deforming tensor on (E,Θ), i.e. ΘJ,J = λΘ, with
λ ∈ R. If (J, I) is a deforming-Nijenhuis pair, with J2 = λidE , then (J, I) is
a Nijenhuis pair. In particular, if (J, I) is Poisson-Nijenhuis pair, and J2 = 0,
then (J, I) is a Nijenhuis pair.

♦

In the next proposition we compute the torsion of the composition I ◦J .

Proposition 4.3. Let I and J be two skew-symmetric tensors on a pre-
Courant algebroid (E,Θ) that anti-commute. Then, for all sections X and
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Y of E,

2TΘ(I ◦J)(X, Y ) =

(

TΘI(JX, JY )− J (TΘI(JX, Y ) + TΘI(X, JY ))−

− J2(TΘI(X, Y ))

)

+ 	
I,J
, (36)

where 	
I,J

stands for permutation of I and J .

Proof : Let us compute the first four terms of the right hand side of equation
(36):

TΘI(JX, JY ) = [IJX, IJY ] −I[IJX, JY ] −I[JX, IJY ] +I2[JX, JY ]

− J (TΘI(JX, Y )) =− J [IJX, IY ] +JI[IJX, Y ] +JI[JX, IY ] −JI2[JX, Y ]

− J (TΘI(X, JY )) =− J [IX, IJY ] +JI[IX, JY ] +JI[X, IJY ] −JI2[X, JY ]

− J2 (TΘI(JX, Y )) =− J2[IX, IY ] +J2I[IX, Y ] +J2I[JX, IY ] −J2I2[X, Y ].

The terms appearing on the right hand sides of the above equalities can be
addressed in a matrix form:

M(I, J)(X, Y ) =







[IJX, IJY ] −I[IJX, JY ] −I[JX, IJY ] I2[JX, JY ]
−J [IJX, IY ] JI[IJX, Y ] JI[JX, IY ] −JI2[JX, Y ]
−J [IX, IJY ] JI[IX, JY ] JI[X, IJY ] −JI2[X, JY ]
−J2[IX, IY ] J2I[IX, Y ] J2I[JX, IY ] −J2I2[X, Y ]






.

Because I and J anti-commute, intertwining the tensors I and J , we obtain
the matrix M(J, I) with entries given by

M(J, I)m,n =

{
−M(I, J)n,m, if m 6= n

M(I, J)m,n, if m = n

for all m, n = 1, . . . , 4.
Note that the right hand side of equation (36) is the sum of all the entries

of both matrices M(I, J)(X, Y ) and M(J, I)(X, Y ). Thus,

TΘI(JX, JY )− J (TΘI(JX, Y ) + TΘI(X, JY ))− J2(TΘI(X, Y ))+ 	
I,J

=

= 2
(
[IJX, IJY ] + JI[IJX, Y ] + JI[X, IJY ]− J2I2[X, Y ]

)

= 2
(
[IJX, IJY ]− IJ [IJX, Y ]− IJ [X, IJY ] + (IJ)2[X, Y ]

)

= 2TΘ(I ◦J)(X, Y ),
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and the proof is complete.

Proposition 4.4. Let I and J be two skew-symmetric tensors on a pre-
Courant algebroid (E,Θ). If (I, J) is a Nijenhuis pair for Θ, then (I, I ◦J)
and (J, I ◦J) are also Nijenhuis pairs for Θ.

Proof : It is obvious that I and I ◦J anti-commute, as well as J and I ◦J .
From (36) we conclude that I ◦J is a Nijenhuis tensor and from (20) we get
CΘ(I, I ◦J) = CΘ(J, I ◦J) = 0.

Proposition 4.4 allows us to establish a relationship between Nijenhuis pairs
and hypercomplex triples, which will be defined in the sequel.

The triple (I, J,K) of skew-symmetric (1, 1)-tensors on a pre-Courant al-
gebroid (E,Θ) is called a hypercomplex triple if I2 = J2 = K2 = I ◦J ◦K =
−idE and all the six Nijenhuis concomitants NΘ(I, I), NΘ(J, J), NΘ(K,K),
NΘ(I, J), NΘ(J,K) and NΘ(I,K) vanish [22]. (See (21) for the definition of
NΘ).

Example 4.5. Given a Nijenhuis pair (I, J) such that I2 = J2 = −idE, the
triple (I, J, I ◦J) is a hypercomplex structure. Conversely, for every hyper-
complex structure (I, J,K), the pairs (I, J), (J,K) and (K, I) are Nijenhuis
pairs.

♦

The main result of this section is the following.

Theorem 4.6. Let I and J be two (1, 1)-tensors on a pre-Courant algebroid
(E,Θ). If (I, J) is a Nijenhuis pair for Θ, then (I, J) is a Nijenhuis pair
for Θk1,k2,...,kn, for all n ∈ N, where ki stands either for I or for J , for every
i = 1, . . . , n.

Proof : Let (I, J) be a Nijenhuis pair for Θ. Combining formulae (20) and
(24), we get

CΘI
(I, J)(X, Y ) = I(CΘ(I, J)(X, Y )) + CΘ(I, J)(IX, Y ) + CΘ(I, J)(X, IY )

+4 TΘI(X, Y ) + 4 TΘI(X, Y ). (37)

Now, from (33), (13) applied with n = 1 and (37), we conclude that (I, J)
is a Nijenhuis pair for ΘI . Since we may exchange the roles of I and J , we
also conclude that (I, J) is a Nijenhuis pair for ΘJ .
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Since the formulae (33), (13) and (37) hold for any anti-commuting tensors
I and J , and for any pre-Courant structure Θ on E, we can repeat the
previous argument iteratively to conclude that (I, J) is a Nijenhuis pair for
Θk1,k2,...,kn, for all n ∈ N, where ki stands either for I or for J , for every
i = 1, . . . , n.

4.2. First hierarchy of Nijenhuis pairs. We start with the construction
of a hierarchy (I2m+1, J)m∈N of Nijenhuis pairs where one of the Nijenhuis
tensors keeps unchanged.

Proposition 4.7. Let I and J be two (1, 1)-tensors on a pre-Courant al-
gebroid (E,Θ). If (I, J) is a Nijenhuis pair for Θ, then, for all m ∈ N,
(I2m+1, J) is a Nijenhuis pair for Θ.

Proof : The proof follows from Corollary 2.5 and Theorem 2.21.

Combining Theorem 4.6 and Proposition 4.7, we deduce:

Proposition 4.8. Let I and J be two (1, 1)-tensors on a pre-Courant al-
gebroid (E,Θ). If (I, J) is a Nijenhuis pair for Θ then, for all m ∈ N,
(I2m+1, J) is a Nijenhuis pair for Θk1,k2,...,ks, for all s ∈ N, where ki stands
either for I or for J , for every i = 1, . . . , s.

Now we consider the hierarchy (I2m+1, J2n+1), m, n ∈ N. This case follows
from the previous one: for everym ∈ N, (I2m+1, J) is a Nijenhuis pair. Apply-
ing Proposition 4.7 to each one of these pairs, we get that (I2m+1, J2n+1)m,n∈N

is a hierarchy of Nijenhuis pairs. If, moreover, we take into account Theorem
4.6, we end up with the following.

Theorem 4.9. Let I and J be two (1, 1)-tensors on a pre-Courant alge-
broid (E,Θ). If (I, J) is a Nijenhuis pair for Θ then, for all m, n ∈ N,
(I2m+1, J2n+1) is a Nijenhuis pair for Θk1,k2,...,ks, for all s ∈ N, where ki
stands either for I or for J , for every i = 1, . . . , s.

4.3. General hierarchy of Nijenhuis pairs. Before considering the gen-
eral case, we will construct a hierarchy (I2m+1

◦Jn, J)m,n∈N of Nijenhuis pairs.

Let I and J be two skew-symmetric (1, 1)-tensors on a pre-Courant alge-
broid (E,Θ). If I and J are Nijenhuis tensors, we know (see Corollary 2.5)
that, for any m, n ∈ N, Im and Jn are also Nijenhuis tensors for Θ. The next
lemma gives a condition granting that Im ◦Jn is also Nijenhuis.
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Lemma 4.10. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ). If I and J are anti-commuting Nijenhuis tensors,
then Im ◦Jn is a Nijenhuis tensor provided that one at least of the integers
m, n is odd.

Proof : As the roles of the tensors I and J are symmetric, we can suppose
that m is odd (and n is even or odd). If n is also odd then Im and Jn anti-
commute because Im ◦Jn = (−1)mnJn

◦Im = −Jn
◦Im and the result follows

from Proposition 4.3. Suppose now that m is odd and n is even. By the
previous case, Im ◦Jn−1 is Nijenhuis and anti-commutes with J :

(Im ◦Jn−1) ◦J = Im ◦Jn = −J ◦(Im ◦Jn−1).

Then, using again Proposition 4.3, we conclude that Im ◦Jn is a Nijenhuis
tensor.

The next proposition generalizes Propositions 4.4 and 4.7.

Proposition 4.11. Let I and J be two skew-symmetric (1, 1)-tensors on a
pre-Courant algebroid (E,Θ). If (I, J) is a Nijenhuis pair for Θ, then the
pair
(I2m+1

◦Jn, J2t+1) (and analogously (Im ◦J2n+1, I2t+1)) is a Nijenhuis pair for
Θ, for all m, n, t ∈ N.

Proof : We already know that I2m+1
◦Jn is Nijenhuis (see Lemma 4.10) and

that J2t+1 is Nijenhuis (see Corollary 2.5). Moreover, I2m+1
◦Jn anti-commutes

with J2t+1 and, applying (26), we get CΘ(I
2m+1

◦Jn, J2t+1) = 0.

Using Theorem 4.6, the result of Proposition 4.11 can be extended to all
pre-Courant structures Θk1,k2,...,ks, where ki stands either for I or for J , for
every i = 1, . . . , s.

Theorem 4.12. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,Θ). If (I, J) is a Nijenhuis pair for Θ, then for all
m, n, t ∈ N, (I2m+1

◦Jn, J2t+1) is a Nijenhuis pair for Θk1,k2,...,ks, for all s ∈ N,
where ki stands either for I or for J , for every i = 1, . . . , s.
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