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Abstract: In analogy to the situation for continuous lattices which were intro-
duced by Dana Scott as precisely the injective T0 spaces via the (nowadays called)
Scott topology, we study those metric spaces which correspond to injective T0 ap-
proach spaces and characterise them as precisely the continuous lattices equipped
with an unitary and associative [0,∞]-action. This result is achieved by a detailed
analysis of the notion of cocompleteness for approach spaces.
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Introduction

Domain theory is generally concerned with the study of ordered sets admit-
ting certain (typically up-directed) suprema and a notion of approximation,
here the latter amounts to saying that each element is a (up-directed) supre-
mum of suitably defined “finite” elements. From a different perspective,
domains can be viewed as very particular topological spaces ; in fact, in his
pioneering paper [Scott, 1972] Scott introduced the notion of continuous lat-
tice precisely as injective topological T0 space. Yet another point of view
was added in [Day, 1975; Wyler, 1985] where continuous lattices are shown
to be precisely the algebras for the filter monad. Furthermore, suitable sub-
monads of the filter monad have other types of domains as algebras (for
instance, continuous Scott domains [Gierz et al., 2003] or Nachbin’s ordered
compact Hausdorff spaces [Nachbin, 1950]), and, as for continuous lattices,
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these domains can be equally seen as objects of topology and of order the-
ory. This interplay between topology and algebra is very nicely explained in
[Escardó and Flagg, 1999] where, employing a particular property of monads
of filters, the authors obtain “new proofs and [. . . ] new characterizations of
semantic domains and topological spaces by injectivity”.
Since Lawvere’s ground-breaking paper [Lawvere, 1973] it is known that

an individual metric spaces X can be viewed as a category with objects the
points of X, and the distance

d(x, y) ∈ [0,∞]

plays the role of the “hom-set” of x and y. More modestly, one can think of
a metric d : X ×X → [0,∞] as an order relation on X with truth-values in
[0,∞] rather than in the Boolean algebra 2 = {false, true}. In fact, writing 0
instead of true, > instead of⇒ and additon + instead of and &, the reflexivity
and transitivity laws of an ordered set become

0 > d(x, x) and d(x, y) + d(y, z) > d(x, z) (x, y, z ∈ X),

and in this paper we follow Lawvere’s point of view and assume no further
properties of d. As pointed out in [Lawvere, 1973], “this connection is more
fruitful than a mere analogy, because it provides a sequence of mathemati-
cal theorems, so that enriched category theory can suggest new directions of
research in metric space theory and conversely”. A striking example of com-
monality between category (resp. order) theory and metric theory was already
given in [Lawvere, 1973] where it is shown that Cauchy sequences correspond
to adjoint (bi)modules and convergence of Cauchy sequences corresponds to
representabilty of these modules. Eventually, this amounts to saying that
a metric space is Cauchy complete if and only if it admits “suprema” of
certain “down-sets” (= morphisms of type Xop → [0,∞]), here “suprema”
has to be taken in the sense of weighted colimit of enriched category the-
ory [Eilenberg and Kelly, 1966; Kelly, 1982]. Other types of “down-sets”
Xop → [0,∞] specify other properties of metric spaces: forward Cauchy
sequences (or nets) (see [Bonsangue et al., 1998]) can be represented by so
called flat modules (see [Vickers, 2005]) and their limit points as “suprema”
of these “down-sets”, and the formal ball model of a metric space relates to its
cocompletion with respect to yet another type of “down-sets” (see [Rutten,
1998; Kostanek and Waszkiewicz, 2011]).
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The particular concern of this paper is to contribute to the development
of metric domain theory. Due to the many facets of domains, this can be
pursued by either

(1) formulating order-theoretic concepts in the logic of [0,∞],
(2) considering injective “[0,∞]-enriched topological spaces”, or
(3) studying the algebras of “metric filter monads”.

Inspired by [Lawvere, 1973], there is a rich literature employing the first
point of view, including Wagner’s Ph.D. thesis [Wagner, 1994], the work
of the Amsterdam research group at CWI [Bonsangue et al., 1998; Rutten,
1998], the work of Flagg et al. on continuity spaces [Kopperman, 1988; Flagg,
1992, 1997b; Flagg et al., 1996; Flagg and Kopperman, 1997], and the work
of Waszkiewicz with various coauthors on approximation and the formal
ball model [Waszkiewicz, 2009; Hofmann and Waszkiewicz, 2011] and
[Kostanek and Waszkiewicz, 2011]. However, in this paper we take a dif-
ferent approach and concentrate on the second and third aspect above. Our
aim is to connect the theory of metric spaces with the theory of “[0,∞]-
enriched topological spaces” in a similar fashion as domain theory is sup-
ported by topology, where by “[0,∞]-enriched topological spaces” we under-
stand Lowen’s approach spaces [Lowen, 1997]. (In a nutshell, an approach
space is to a topological space what a metric space is to an ordered set: it
can be defined in terms of ultrafilter convergence where one associates to an
ultrafilter x and a point x a value of convergence a(x, x) ∈ [0,∞] rather then
just saying that x converges to x or not.) This idea was already pursued in
[Hofmann, 2011] and [Hofmann, 2010] were among others it is shown that

• injective T0 approach spaces correspond bijectively to a class of metric
spaces, henceforth thought of as “continuous metric spaces”,

• these “continuous metric spaces” are precisely the algebras for a cer-
tain monad on Set, henceforth thought of as the “metric filter monad”,

• the category of injective approach spaces and approach maps is Carte-
sian closed.

Here we continue this path and

• recall the theory of metric and approach spaces as generalised orders
(resp. categories),

• characterise metric compact Hausdorff spaces as the (suitably defined)
stably compact approach spaces, and
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• show that injective T0 approach spaces (aka “continuous metric spaces”)
can be equivalently described as continuous lattices equipped with an
unitary and associative action of the continuous lattice [0,∞]. This re-
sult is achieved by a detailed analysis of the notion of cocompleteness
for approach spaces.

Warning. We define the underlying order of a topological space X = (X,O)
as

x ≤ y whenever
�
x→ y

which is equivalent to O(y) ⊆ O(x), hence it is the dual of the specialisation
order. As a consequence, the underlying order of an injective T0 topological
space is the dual of a continuous lattice; and our results are stated in terms
of these op-continuous lattices. We hope this does not create confusion.

1.Metric spaces

1.1. Preliminaries. According to the Introduction, in this paper we con-
sider metric spaces in a more general sense: a metric d : X ×X → [0,∞] on
a set X is only required to satisfy

0 > d(x, x) and d(x, y) + d(y, z) > d(x, z).

For convenience we often also assume d to be separated meaning that d(x, y) =
0 = d(y, x) implies x = y for all x, y ∈ X. With this nomenclature, “clas-
sical” metric spaces appear now as separated, symmetric (d(x, y) = d(y, x))
and finitary (d(x, y) < ∞) metric spaces. A map f : X → X ′ between
metric spaces X = (X, d) and X ′ = (X ′, d′) is a metric map whenever
d(x, y) > d′(f(x), f(y)) for all x, y ∈ X. The category of metric spaces
and metric maps is denoted by Met. To every metric space X = (X, d)
one associates its dual space Xop = (X, d◦) where d◦(x, y) = d(y, x), for all
x, y ∈ X. Certainly, the metric d on X is symmetric if and only if X = Xop.
Every metric map f between metric spaces X and Y is also a metric map of
type Xop → Y op, hence taking duals is actually a functor (−)op : Met → Met

which sends f : X → Y to f op : Xop → Y op.
There is a canonical forgetful functor (−)p : Met → Ord; for a metric space

(X, d), put

x ≤ y whenever 0 > d(x, y),

and every metric map preserves this order. Also note that (−)p : Met → Ord

has a left adjoint Ord → Met which interprets an order relation ≤ on X as
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the metric

d(x, y) =

{

0 if x ≤ y,

∞ else.

In particular, if X is a discrete ordered set meaning that the order relation
is just the equality relation on X, then one obtains the discrete metric on X
where d(x, x) = 0 and d(x, y) = ∞ for x 6= y.
The induced order of a metric space extends pointwise to metric maps

making Met an ordered category, which enables us to talk about adjunction.
Here metric maps f : (X, d) → (X ′, d′) and g : (X ′, d′) → (X, d) form an
adjunction, written as f ⊣ g, if 1X ≤ g · f and f · g ≤ 1X ′. Equivalently,
f ⊣ g if and only if, for all x ∈ X and x′ ∈ X ′,

d′(f(x), x′) = d(x, g(x′)).

The formula above explains why f is usually called left adjoint and g right
adjoint. We also recall that adjoint maps determine each other meaning that
f ⊣ g and f ⊣ g′ imply g ≃ g′, and f ⊣ g and f ′ ⊣ g imply f ≃ f ′.
The category Met is complete and, for instance, the product X × Y of

metric spaces X = (X, a) and (Y, b) is given by the Cartesian product of the
sets X and Y equipped with the max-metric

d((x, y), (x′, y′)) = max(a(x, x′), b(y, y′)).

More interestingly to us is the plus-metric

d′((x, y), (x′, y′)) = a(x, x′) + b(y, y′)

on the set X × Y , we write a ⊕ b for this metric and denote the result-
ing metric space as X ⊕ Y . Note that the underlying order of X ⊕ Y is
just the product order of Xp and Yp in Ord. Furthermore, for metric maps
f : X → Y and g : X ′ → Y ′, the product of f and g gives a metric map
f⊕g : X⊕X ′ → Y ⊕Y ′, and we can view⊕ as a functor⊕ : Met×Met → Met.
This operation is better behaved then the product × in the sense that, for
every metric space X, the functor X ⊕ − : Met → Met has a right adjoint
(−)X : Met → Met sending a metric space Y = (Y, b) to

Y X = {h : X → Y | h in Met} with distance [h, k] = sup
x∈X

b(h(x), k(x)),

and a metric map f : Y1 → Y2 to

fX : Y X
1 → Y X

2 , h 7→ f · h.



6 G. GUTIERRES AND D. HOFMANN

In particular, if X is a discrete space, then Y X is just the X-fold power of
Y .
In the sequel we will pay particular attention to the metric space [0,∞],

with metric µ defined by

µ(u, v) = v ⊖ u := max{v − u, 0},

for all u, v ∈ [0,∞]. Then the underlying order on [0,∞] is the “greater or
equal relation” >, and note that u + − : [0,∞] → [0,∞] is left adjoint to
µ(u,−) : [0,∞] → [0,∞] with respect to > in [0,∞]. However, in the sequel
we will usually refer to the natural order 6 on [0,∞], so that suprema “

∨

”
in ([0,∞],>) are given by “inf”, and infima “

∧

” in ([0,∞],>) are given by
“sup”.
For every set I, the maps

inf : [0,∞]I → [0,∞] and sup : [0,∞]I → [0,∞]

ϕ 7→ inf
i∈I

ϕ(i) ϕ 7→ sup
i∈I

ϕ(i)

are metric maps, and so are

+ : [0,∞]⊕ [0,∞] → [0,∞] and µ : [0,∞]op ⊕ [0,∞] → [0,∞].

(u, v) 7→ u + v (u, v) 7→ v ⊖ u

More general, for a metric space X = (X, d), the metric d is a metric map
d : Xop ⊕X → [0,∞]. Its mate is the Yoneda embedding

y
X
:= pdq : X → [0,∞]X

op

, x 7→ d(−, x),

which satisfies indeed d(x, y) = [y
X
(x), y

X
(y)] for all x, y ∈ X thanks to the

Yoneda lemma which states that

[y
X
(x), ψ] = ψ(x),

for all x ∈ X and ψ ∈ [0,∞]X
op

.

1.2. Cocomplete metric spaces. In this subsection we have a look at
metric spaces “through the eyes of category (resp. order) theory” and study
the existence of suprema of “down-sets” in a metric space. This is a par-
ticular case of the notion of weighted colimit of enriched categories (see
[Eilenberg and Kelly, 1966; Kelly, 1982; Kelly and Schmitt, 2005], for in-
stance), and in this and in the next subsection we spell out the meaning
for metric spaces of general notions and results of enriched category theory.
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For a metric space X = (X, d) and a “down-set” ψ : Xop → [0,∞] in Met,
an element x0 ∈ X is a supremum of ψ whenever, for all x ∈ X,

d(x0, x) = sup
y∈X

(d(y, x)⊖ ψ(y)). (1.i)

Suprema are unique up to equivalence≃, we write x0 ≃ SupX(ψ) and will fre-
quently say the supremum. Furthermore, a metric map f : (X, d) → (X ′, d′)
preserves the supremum of ψ ∈ [0,∞]X

op

whenever

d′(f(SupX(ψ)), x
′) = sup

x∈X
(d′(f(x), x′)⊖ ψ(x))

for all x′ ∈ X ′. As for ordered sets:

Lemma 1.1. Left adjoint metric maps preserve all suprema.

A metric space X = (X, d) is called cocomplete if every “down-set”
ψ : Xop → [0,∞] has a supremum. This is the case precisely if, for all
ψ ∈ [0,∞]X

op

and all x ∈ X,

d(SupX(ψ), x) = sup
y∈X

(d(y, x)⊖ ψ(y)) = [ψ, y
X
(x)];

hence X is cocomplete if and only if the Yoneda embedding
y
X

: X → [0,∞]X
op

has a left adjoint SupX : [0,∞]X
op

→ X in Met. More
generally, one has (see [Hofmann, 2011], for instance)

Proposition 1.2. For a metric space X, the following conditions are equiv-
alent.

(i) X is injective (with respect to isometries).
(ii) y

X
: X → [0,∞]X

op

has a left inverse.
(iii) y

X
has a left adjoint.

(iv) X is cocomplete.

Here a metric map i : (A, d) → (B, d′) is called isometry if one has d(x, y) =
d′(i(x), i(y)) for all x, y ∈ A, and X is injective if, for all isometries i : A→ B

and all f : A→ X in Met, there exists a metric map g : B → X with g ·i ≃ f .
Dually, an infimum of an “up-set” ϕ : X → [0,∞] in X = (X, d) is an

element x0 ∈ X such that, for all x ∈ X,

d(x, x0) = sup
y∈X

(d(x, y)⊖ ϕ(y)).

A metric spaceX is complete if every “up-set” has an infimum. By definition,
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an infimum of ϕ : X → [0,∞] in X is a supremum of ϕ : (Xop)op → [0,∞]
in Xop, and everything said above can be repeated now in its dual form.
In particular, with hX : X →

(

[0,∞]X
)op

, x 7→ d(x,−) denoting the con-

travariant Yoneda embedding (which is the dual of y
Xop : X

op → [0,∞]X):

Proposition 1.3. For a metric space X, the following conditions are equiv-
alent.

(i) X is injective (with respect to isometries).
(ii) hX : X →

(

[0,∞]X
)op

has a left inverse.
(iii) hX has a left adjoint.
(iv) X is complete.

Corollary 1.4. A metric space is complete if and only if it is cocomplete.

This latter fact can be also seen in a different way. To every “down-set”
ψ : Xop → [0,∞] one assigns its “up-set of upper bounds”

ψ+ : X → [0,∞], x 7→ sup
y∈X

(d(y, x)⊖ ψ(y)),

and to every “up-set” ϕ : X → [0,∞] its “down-set of lower bounds”

ϕ− : Xop → [0,∞], x 7→ sup
y∈X

(d(x, y)⊖ ϕ(y)).

This way one defines an adjunction (−)+ ⊣ (−)−

(

[0,∞]X
)op

(−)−

--
⊤ [0,∞]X

op

(−)+
mm

X

hX

eeKKKKKKKKKK
y
X

::uuuuuuuuuu

in Met where both maps commute with the Yoneda embeddings. Therefore a
left inverse of y

X
produces a left inverse of hX , and vice versa. The adjunction

(−)+ ⊣ (−)− is also know as the Isbell conjugation adjunction.
For every (co)complete metric space X = (X, d), its underlying ordered

set Xp is (co)complete as well. This follows for instance from the fact that
(−)p : Met → Ord preserves injective objects. Another argument goes as
follows. For every (down-set) A ⊆ X, one defines a metric map

ψA : Xop → [0,∞], x 7→ inf
a∈A

d(x, a),
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and a supremum x0 of ψA must satisfy, for all x ∈ X,

d(x0, x) = sup
y∈X

(d(y, x)⊖ ψA(y)) = sup
a∈A

sup
y∈X

(d(y, x)⊖ d(y, x)) = sup
a∈A

d(a, x).

Therefore x0 is not only a supremum of A in the ordered set Xp, it is also
preserved by every monotone map d(−, x) : Xp → [0,∞].

Lemma 1.5. Let X = (X, d) be a metric space and let x0 ∈ X and A ⊆ X.
Then x0 is the supremum of ψA if and only if x0 is the (order theoretic) supre-
mum of A and, for every x ∈ X, the monotone map d(−, x) : Xp → [0,∞]
preserves this supremum.

1.3. Tensored metric spaces. We are now interested in those metric spaces
X = (X, d) which admit suprema of “down-sets” of the form ψ = d(−, x)+u
where x ∈ X and u ∈ [0,∞]. In the sequel we write x+u instead of SupX(ψ).
According to (1.i), the element x+ u ∈ X is characterised up to equivalence
by

d(x+ u, y) = d(x, y)⊖ u,

for all y ∈ X. A metric map f : (X, d) → (X ′, d′) preserves the supremum
of ψ = d(−, x) + u if and only if f(x + u) ≃ f(x) + u. Dually, an infimum
of an “up-set” of the form ϕ = d(x,−) + u is denote by x ⊖ u, and it is
characterised up to equivalence by

d(y, x⊖ u) = d(y, x)⊖ u.

One calls a metric space tensored if it admits all suprema x+u, and cotensored
if X admits all infima x⊖ u.

Example 1.6. The metric space [0,∞] is tensored and cotensored where
x+ u is given by addition and x⊖ u = max{x− u, 0}.

Note that X = (X, d) is tensored if and only if every d(x,−) : X → [0,∞]
has a left adjoint x + (−) : [0,∞] → X in Met, and X is cotensored if and
only if every d(−, x) : Xop → [0,∞] has a left adjoint x⊖ (−) : [0,∞] → Xop

in Met. Furthermore, if X is tensored and cotensored, then (−)+u : X → X

is left adjoint to (−)⊖ u : X → X in Met, for every u ∈ [0,∞].

Theorem 1.7. Let X = (X, d) be a metric space. Then the following asser-
tions are equivalent.

(i) X is cocomplete.
(ii) X has all order-theoretic suprema and is tensored and cotensored.
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(iii) X has all (order theoretic) suprema, is tensored and, for every u ∈
[0,∞], the monotone map (−) + u : Xp → Xp has a right adjoint in
Ord.

(iv) X has all (order theoretic) suprema, is tensored and, for every u ∈
[0,∞], the monotone map (−) + u : Xp → Xp preserves suprema.

(v) X has all (order theoretic) suprema, is tensored and, for every x ∈ X,
the monotone map d(−, x) : Xp → [0,∞] has a right adjoint in Ord.

(vi) X is has all (order theoretic) suprema, is tensored and, for every
x ∈ X, the monotone map d(−, x) : Xp → [0,∞] preserves suprema.

Under these conditions, the supremum of a “down-set” ψ : Xop → [0,∞] can
be calculated as

Supψ = inf
x∈X

(x+ ψ(x)). (1.ii)

A metric map f : X → Y between cocomplete metric spaces preserves all
colimits if and only if f preserves tensors and (order theoretic) suprema.

Proof : By the preceding discussion, the implications (i)⇒(ii) and (ii)⇒(iii)
are obvious, and so are (iii)⇔(iv) and (v)⇔(vi). To see (iii)⇒(v), just note
that a right adjoint (−)⊖ u : Xp → Xp of (−) + u produces a right adjoint
x⊖ (−) : [0,∞] → Xp of d(−, x). Finally, (vi)⇒(i) can be shown by verifying
that (1.ii) calculates indeed a supremum of ψ.

Every metric space X = (X, d) induces metric maps

X ⊕ [0,∞]
BX−−→ [0,∞]X

op

and XI F X,I

−−−→ [0,∞]X
op

(where I is any set).

Here BX : X ⊕ [0,∞] → [0,∞]X
op

, (x, u) 7→ d(−, x) + u is the mate of the
composite

Xop ⊕X ⊕ [0,∞]
d⊕1
−−→ [0,∞]⊕ [0,∞]

+
−→ [0,∞],

and F X,I : X
I → [0,∞]X

op

is the mate of the composite

Xop ⊕XI → [0,∞]I
inf
−−→ [0,∞],

where the first component is the mate of the composite

Xop ⊕XI ⊕ I
1⊕ev
−−−→ Xop ⊕X

d
−→ [0,∞].

Spelled out, for ϕ ∈ XI and x ∈ X, F X,I(ϕ)(x) = infi∈I d(x, ϕ(i)), and a
supremum of F X,I(ϕ) ∈ [0,∞]X

op

is also a (order-theoretic) supremum of
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the family (ϕ(i))i∈I in X. If X is cocomplete, by composing with SupX one
obtains metric maps

X ⊕ [0,∞]
+
−→ X and XI

∨

−→ X (where I is any set).

Finally, a categorical standard argument (see [Johnstone, 1982, Lemma
4.10]) shows that when Y is injective also Y X is injective, hence, Y X is
cocomplete. Furthermore, tensors and suprema in Y X can be calculated
pointwise:

h+ u = (−+ u) · h and

(

∨

i∈I

hi

)

=
∨

·〈hi〉i∈I ,

for u ∈ [0,∞], h ∈ Y X and hi ∈ Y X (i ∈ I). Here 〈hi〉i∈I : X → Y I denotes
the map induced by the family (hi)i∈I.

1.4. [0,∞]-actions on ordered sets. WhenX = (X, d) is a tensored metric
space, we might not have SupX defined on the whole space [0,∞]X

op

, but it
still is defined on its subspace of all metric maps ψ : Xop → [0,∞] of the
form ψ = d(−, x) + u. Hence, one still has a metric map

X ⊕ [0,∞] → X, (x, u) 7→ x+ u,

and one easily verifies the following properties.

(1) For all x ∈ X, x+ 0 ≃ x.
(2) For all x ∈ X and all u, v ∈ [0,∞], (x+ u) + v ≃ x+ (u+ v).
(3) + : Xp × [0,∞] → Xp is monotone in the first and anti-monotone in

the second variable.
(4) For all x ∈ X, x+∞ is a bottom element of Xp.

(5) For all x ∈ X and (ui)i∈I in [0,∞], x+ inf
i∈I

ui ≃
∨

i∈I

(x+ ui).

Of course, (4) is a special case of (5). If X is separated, then the first three
conditions just tell us that Xp is an algebra for the monad induced by the
monoid ([0,∞],>,+, 0) on Ordsep. Hence, X 7→ Xp defines a forgetful functor

Metsep,+ → Ord[0,∞]
sep ,

where Metsep,+ denotes the category of tensored and separated metric spaces

and tensor preserving metric maps, and Ord[0,∞]
sep the category of separated

ordered sets with an unitary (i.e. satisfying (1)) and associative (i.e. satisfying
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(2)) action of ([0,∞],>,+, 0), [0,∞]-algebras for short, and monotone maps
which preserve this action.
Conversely, let now X be a [0,∞]-algebra with action + : X× [0,∞] → X.

We define
d(x, y) = inf{u ∈ [0,∞] | x+ u ≤ y}. (1.iii)

Certainly, x ≤ y implies 0 > d(x, y), in particular one has 0 > d(x, x). Since,
for x, y, z ∈ X,

d(x, y) + d(y, z) = inf{u ∈ [0,∞] | x+ u ≤ y}+ inf{v ∈ [0,∞] | y + v ≤ z}

= inf{u+ v | u, v ∈ [0,∞], x + u ≤ y, y + v ≤ z}

> inf{w ∈ [0,∞] | x+ w ≤ z = d(x, z),

we have seen that (X, d) is a metric space. If the [0,∞]-algebra X comes
from a tensored separated metric space, then we get the original metric back.
If X satisfies (4), then the infimum in (1.iii) is non-empty, and therefore

d(x+ u, y) = inf{v ∈ [0,∞] | x+ u+ v ≤ y}

= inf{w ⊖ u | w ∈ [0,∞], x+ w ≤ y}

= inf{w | w ∈ [0,∞], x+ w ≤ y} ⊖ u = d(x, y)⊖ u,

hence (X, d) is tensored where + is given by the algebra operation. Finally,
if X satisfies (5), then the infimum in (1.iii) is actually a minimum, and
therefore 0 > d(x, y) implies x ≤ y. All told:

Theorem 1.8. The category Metsep,+ is equivalent to the full subcategory

of Ord[0,∞]
sep defined by those [0,∞]-algebras satisfying (5). Under this corre-

spondence, (X, d) is a cocomplete separated metric space if and only if the
[0,∞]-algebra X has all suprema and (−) + u : X → X preserves suprema,
for all u ∈ [0,∞].

Remark 1.9. The second part of the theorem above is essentially in [Pedicchio
and Tholen, 1989], which actually states that cocomplete separated metric
spaces correspond precisely to sup-lattices equipped with an unitary and
associative action + : X × [0,∞] → X which is a bimorphism, meaning that
it preserves suprema in each variable (where the order on [0,∞] is >) but
not necessarily in both. Thanks to Freyd’s Adjoint Functor Theorem (see
[MacLane, 1971, Section V.6]), the category Sup of sup-lattices and suprema
preserving maps admits a tensor product X ⊗ Y which is characterised by

Bimorph(X × Y, Z) ≃ Sup(X ⊗ Y, Z),
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naturally in Z ∈ Sup, for all sup-latticesX, Y . Hence, a cocomplete separated
metric space can be identified with a sup-lattice X equipped with an unitary
and associative action + : X ⊗ [0,∞] → X in Sup. This result is also a
special case of [Stubbe, 2006] where tensored quantaloid-enriched categories
are analised.

Proposition 1.10. Let X and Y be tensored metric spaces and f : X → Y

be a map. Then f : X → Y is a metric map if and only if f : Xp → Yp is
monotone and, for all x ∈ X and u ∈ [0,∞], f(x) + u ≤ f(x+ u).

Proof : Every metric map is also monotone with respect to the underlying
orders and satisfies f(x) + u ≤ f(x + u), for all x ∈ X and u ∈ [0,∞]. To
see the reverse implication, recall that the metric d on X satisfies

d(x, y) = inf{u ∈ [0,∞] | x+ u ≤ y},

and for the metric d′ on Y one has

d(f(x), f(y)) = inf{v ∈ [0,∞] | f(x) + v ≤ f(y)}.

If x+ u ≤ y, then f(x) + u ≤ f(x+ u) ≤ f(y), and the assertion follows.

2.Metric compact Hausdorff spaces and approach spaces

2.1. Continuous lattices. Continuous lattices were introduced by D. Scott
[Scott, 1972] as precisely those orders appearing as the specialisation order
of an injective topological T0-space. Here, for an arbitrary topological space
X with topology O, the specialisation order ≤ on X is defined as

x ≤ y whenever O(x) ⊆ O(y),

for all x, y ∈ X. This relation is always reflexive and transitive, and it is
anti-symmetric if and only if X is T0. If X is an injective T0-space, then the
ordered set (X,≤) is actually complete and, for all x ∈ X,

x =
∨

{y ∈ X | y ≪ x}

(where y ≪ x whenever x ≤
∨

D ⇒ y ∈ D for every up-directed down-set
D ⊆ X); in general, a complete separated ordered set with this property
is called continuous lattice. In this particular case the specialisation order
contains all information about the topology of X: A ⊆ X is open if and only
if A is unreachable by up-directed suprema in the sense that

∨

D ∈ A ⇒ D ∩ A 6= ∅ (2.i)
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for every up-directed down-set D ⊆ A. Quite generally, (2.i) defines a topol-
ogy on X for any ordered set X, and a monotone map f : X → Y is contin-
uous with respect to these topologies if and only if f preserves all existing
up-directed suprema. Furthermore, the specialisation order of this topol-
ogy gives the original order back, and one obtains an injective topological
T0-space if and only if X is a continuous lattice.
In the sequel we will consider topological spaces mostly via ultrafilter con-

vergence, and therefore define the underlying order ≤ of a topological space
as the “point shadow” of this convergence:

x ≤ y whenever
�
x→ y, (

�
x = {A ⊆ X | x ∈ A})

which is dual to the specialisation order. Consequently, the underlying order
of an injective topological T0 space is an op-continuous lattice meaning that
(X,≤) is complete and, for any x ∈ X,

x =
∧

{y ∈ X | y ≻ x},

where y ≻ x whenever x ≤
∧

D implies y ∈ D for every down-directed up-
set D ⊆ X. We also note that, with respect to the underlying order, the
convergence relation of an injective T0 space is given by

x → x ⇐⇒





∧

A∈x

∨

y∈A

y



 ≤ x,

for all ultrafilters x on X and all x ∈ X.

2.2. Ordered compact Hausdorff spaces. The class of stably compact
spaces, or equivalently ordered compact Hausdorff spaces, is the class of do-
mains with arguably the most direct generalisation to metric spaces. The
latter were introduced by [Nachbin, 1950] as triples (X,≤,O) where (X,≤)
is an ordered set (we do not assume anti-symmetry here) and O is a compact
Hausdorff topology on X so that {(x, y) | x ≤ y} is closed in X × X. A
morphism of ordered compact Hausdorff spaces is a map f : X → Y which is
both monotone and continuous. We denote the resulting category of ordered
compact Hausdorff space and morphisms as OrdCompHaus. If (X,≤,O) is
an ordered compact Hausdorff spaces, then the dual order ≤◦ on X together
with the topologyO defines an ordered compact Hausdorff spaces (X,≤◦,O),
and one obtains a functor (−)op : OrdCompHaus → OrdCompHaus which
commutes with the canonical forgetful functor OrdCompHaus → Set.
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Analogously to the fact that compact Hausdorff spaces and continuous
maps form an algebraic category over Set via ultrafilter convergence
UX → X [Manes, 1969], it is shown in [Flagg, 1997a] that the full subcat-
egory OrdCompHaussep of OrdCompHaus defined by those spaces with anti-
symmetric order is the category of Eilenberg-Moore algebras for the prime
filter monad of up-sets on Ordsep. The situation does not change much when
we drop anti-symmetry, in [Tholen, 2009] it is shown that ordered com-
pact Hausdorff spaces are precisely the Eilenberg-Moore algebras for the
ultrafilter monad U = (U, e,m) suitably defined on Ord. Here the functor
U : Ord → Ord sends an ordered set X = (X,≤) to the set UX of all
ultrafilters on the set X equipped with the order relation

x ≤ y whenever ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B . x ≤ y; (x, y ∈ UX)

and the maps

eX : X → UX mX : UUX → UX

x 7→
�
x := {A ⊆ X | x ∈ A} X 7→ {A ⊆ X | A# ∈ X}

(where A# := {x ∈ UX | A ∈ x}) are monotone with respect to this order
relation. Then, for α : UX → X denoting the convergence of the compact
Hausdorff topology O, (X,≤,O) is an ordered compact Hausdorff space if
and only if α : U(X,≤) → (X,≤) is monotone.

2.3. Metric compact Hausdorff spaces. The presentation in [Tholen,
2009] is even more general and gives also an extension of the ultrafilter monadU to Met. For a metric space X = (X, d) and ultrafilters x, y ∈ UX, one
defines a distance

Ud(x, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

d(x, y)

and turns this way UX into a metric space. Then eX : X → UX and
mX : UUX → UX are metric maps and Uf : UX → UY is a metric
map if f : X → Y is so. Not surprisingly, we call an Eilenberg–Moore
algebra for this monad metric compact Hausdorff space. Such a space can
be described as a triple (X, d, α) where (X, d) is a metric space and α is
(the convergence relation of) a compact Hausdorff topology on X so that
α : U(X, d) → (X, d) is a metric map. We denote the category of metric
compact Hausdorff spaces and morphisms (i.e. maps which are both metric
maps and continuous) as MetCompHaus. The operation “taking the dual
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metric space” lifts to an endofunctor (−)op : MetCompHaus → MetCompHaus

where Xop := (X, d◦, α), for every metric compact Hausdorff space X =
(X, d, α).

Example 2.1. The metric space [0,∞] with metric µ(u, v) = v⊖ u becomes
a metric compact Hausdorff space with the Euclidean compact Hausdorff
topology whose convergence is given by

ξ(v) = sup
A∈v

inf
v∈A

v,

for v ∈ U [0,∞]. Consequently, [0,∞]op denotes the metric compact Haus-
dorff space ([0,∞], µ◦, ξ) with the same compact Hausdorff topology on [0,∞]
and with the metric µ◦(u, v) = u⊖ v.

Lemma 2.2. If (X, d) is a tensored metric space, then (UX,Ud) is tensored
too.

Proof : For u ∈ [0,∞] and x ∈ UX, put x + u = U(tu)(x) where tu : X → X

sends x ∈ X to (a choice of) x+ u. Then

Ud(x+ u, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

d(x+ u, y)

=

(

sup
A∈x,B∈y

inf
x∈A,y∈B

d(x, y)

)

⊖ u

= Ud(x, y)⊖ u,

for all y ∈ UX. Here we use the fact that −⊖ u : [0,∞] → [0,∞] preserves
all suprema and non-empty infima.

Clearly, if f : X → Y is a tensor preserving map between tensored metric
spaces, then Uf(x + u) ≃ Uf(x) + u, hence U : Met → Met restricts to
an endofunctor on the category Met+ of tensored metric spaces and tensor
preserving maps.

2.4. Stably compact topological spaces. As we have already indicated at
the beginning of Subsection 2.2, (anti-symmetric) ordered compact Hausdorff
spaces can be equivalently seen as special topological spaces. In fact, both
structures of an ordered compact Hausdorff space X = (X,≤,O) can be
combined to form a topology on X whose opens are precisely those elements
of O which are down-sets in (X,≤), and this procedure defines indeed a
functor K : OrdCompHaus → Top. An ultrafilter x ∈ UX converges to a
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point x ∈ X with respect to this new topology if and only if α(x) ≤ x,
where α : UX → X denotes the convergence of (X,O). Hence, ≤ is just the
underlying order ofO and α(x) is a smallest convergence point of x ∈ UX with
respect to this order. From that it follows at once that we can recover both
≤ and α from O. To be rigorous, this is true when (X,≤) is anti-symmetric,
in the general case α is determined only up to equivalence. In any case,
we define the dual of a topological space Y of the form Y = K(X,≤, α) as
Y op = K(X,≤◦, α), and note that equivalent maps α lead to the same space
Y op.
A T0 space X = (X,O) comes from a anti-symmetric ordered compact

Hausdorff space precisely if X is stably compact, that is, X is sober, locally
compact and stable. The latter property can be defined in different manners,
we use here the one given in [Simmons, 1982] as stability of the way-below
relation ≪ on the lattice of opens under finite intersections. Since stability
under empty intersection translates to compactness, X is stable if it is com-
pact and, for open subsets U1, U2, V1, V2 ofX such that U1 ≪ V1 and U2 ≪ V2,
also U1 ∩ U2 ≪ U2 ∩ U2. Also note that a T0 space is locally compact if and
only it is exponentiable in Top. It is also shown in [Simmons, 1982, Lemma
3.7] that, for X exponentiable, X is stable if and only if, for every ultrafilter
x ∈ UX, the set of all limit points of x is irreducible∗. We refer to [Jung,
2004] for a nice introduction to these kinds of spaces.
If we start with a metric compact Hausdorff space X = (X, d, α) instead,

the construction above produces, for every x ∈ UX and x ∈ X, the value of
convergence

a(x, x) = d(α(x), x) ∈ [0,∞], (2.ii)

which brings us into the realm of

2.5. Approach spaces. We will here give a quick overview of approach
spaces which were introduced in [Lowen, 1989] and are extensively described
in [Lowen, 1997]. An approach space is typically defined as a pair (X, δ)
consisting of a set X and an approach distance δ on X, that is, a function
δ : X × 2X → [0,∞] satisfying

(1) δ(x, {x}) = 0,
(2) δ(x,∅) = ∞,
(3) δ(x, A ∪B) = min{δ(x, A), δ(x,B)},

∗Actually, Lemma 3.7 of [Simmons, 1982] states only one implication, but the other is obvious
and even true without assuming exponentiability.
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(4) δ(x, A) 6 δ
(

x, A(ε)
)

+ ε, where A(ε) = {x ∈ X | δ(x, A) 6 ε},

for all A,B ⊆ X, x ∈ X and ε ∈ [0,∞]. For δ : X × 2X → [0,∞]
and δ′ : Y × 2Y → [0,∞], a map f : X → Y is called approach map
f : (X, δ) → (Y, δ′) if δ(x, A) > δ′(f(x), f(A)), for every A ⊆ X and x ∈ X.
Approach spaces and approach maps are the objects and morphisms of the
category App. The canonical forgetful functor

App → Set

is topological, hence App is complete and cocomplete and App → Set pre-
serves both limits and colimits. Furthermore, the functor App → Set factors
through Top → Set where (−)p : App → Top sends an approach space (X, δ)
to the topological space with the same underlying set X and with

x ∈ A whenever δ(x, A) = 0.

This functor has a left adjoint Top → App which one obtains by interpreting
the closure operator of a topological space X as

δ(x, A) =

{

0 if x ∈ A,

∞ else.

In fact, the image of this functor can be described as precisely those approach
spaces where δ(x, A) ∈ {0,∞}, for all x ∈ X and A ⊆ X. Being left adjoint,
Top → App preserves all colimits, and it is not hard to see that this functor
preserves also all limits (and hence has a left adjoint).
As in the case of topological spaces, approach spaces can be described in

terms of many other concepts such as “closed sets” or convergence. For
instance, every approach distance δ : X × 2X → [0,∞] defines a map

a : UX ×X → [0,∞], a(x, x) = sup
A∈x

δ(x, A),

and vice versa, every a : UX ×X → [0,∞] defines a function

δ : X × 2X → [0,∞], δ(x, A) = inf
A∈x

a(x, x).

Furthermore, a mapping f : X → Y between approach spaces X = (X, a)
and Y = (Y, b) is an approach map if and only if a(x, x) > b(Uf(x), f(x)), for
all x ∈ UX and x ∈ X. Therefore one might take as well convergence as prim-
itive notion, and axioms characterising those functions a : UX ×X → [0,∞]
coming from a approach distance can be already found in [Lowen, 1989]. In
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this paper we will use the characterisation given in [Clementino and Hofmann,
2003]. The convergence map are precisely the functions a : UX×X → [0,∞]
satisfying

0 > a(
�
x, x) and Ua(X, x) + a(x, x) > a(mX(X), x), (2.iii)

where X ∈ UUX, x ∈ UX, x ∈ X and

Ua(X, x) = sup
A∈X,A∈x

inf
a∈A,x∈A

a(a, x).

In the language of convergence, the underlying topological space Xp of an
approach space X = (X, a) is defined by x → x ⇐⇒ a(x, x) = 0, and
a topological space X can be interpreted as an approach space by putting
a(x, x) = 0 whenever x → x and a(x, x) = ∞ otherwise.
We can restrict a : UX ×X → [0,∞] to principal ultrafilters and obtain a

metric
a0 : X ×X → [0,∞], (x, y) 7→ a(

�
x, y) = δ(y, {x})

on X. Certainly, an approach map is also a metric map, therefore this
construction defines a functor

(−)0 : App → Met.

which, combined with (−)p : Met → Ord, yields a functor

App → Ord

where x ≤ y whenever 0 > a(
�
x, y). This order relation extends pointwise to

approach maps, and we can consider App as an ordered category. As before,
this additional structure allows us to speak about adjunction in App: for
approach maps f : (X, a) → (X ′, a′) and g : (X ′, a′) → (X, a), f ⊣ g if
1X ≤ g · f and f · g ≤ 1X ′; equivalently, f ⊣ g if and only if, for all x ∈ UX

and x′ ∈ X ′,
a′(Uf(x), x′) = a(x, g(x′)).

One calls an approach space X = (X, a) separated, or T0, if the underlying
topology of X is T0, or, equivalently, if the underlying metric of X is sepa-

rated. Note that this is the case precisely if, for all x, y ∈ X, a(
�
x, y) = 0 =

a(
�
y, x) implies x = y.
Similarly to the situation for metric spaces, besides the categorical product

there is a further approach structure on the set

X × Y
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for approach spaces X = (X, a) and Y = (Y, b), namely

c(w, (x, y)) = a(x, x) + b(y, y)

where w ∈ U(X × Y ), (x, y) ∈ X × Y and x = Uπ1(w) and y = Uπ2(w). For
the resulting approach space (X×Y, c), we write X⊕Y , in fact, one obtains
a functor ⊕ : App×App → App. We also note that 1⊕X ≃ X ≃ X ⊕ 1, for
every approach space X.
Unfortunately, the above described monoidal structure on App is not closed,

the functor X ⊕− : App → App does not have in general a right adjoint (see
[Hofmann, 2007]). If it does, we say that the approach space X = (X, a) is
+-exponentiable and denote this right adjoint as (−)X : App → App. Then,
for any approach space Y = (Y, b), the space Y X can be chosen as the set of
all approach maps of type X → Y , equipped with the convergence

Jp, hK = sup
{

b(Uev(w), h(x))⊖ a(Uπ2(w), x) | x ∈ X,w ∈ U(Y X ⊕X)
with p = Uπ1(w)} , (2.iv)

for all p ∈ U(Y X) and h ∈ Y X . If p =
�

k for some k ∈ Y X , then

J
�

k, hK = sup
x∈X

b0(k(x), h(x)),

which tells us that (Y X)0 is a subspace of Y X0. If X = (X, a) happens to be
topological, i.e. a only takes values in {0,∞}, then (2.iv) simplifies to

Jp, hK = sup{b(Uev(w), h(x)) | x ∈ X,w ∈ U(Y X ⊕X)
with p = Uπ1(w), a(Uπ2(w), x) = 0}.

Furthermore, a topological approach space is +-exponentiable if and only
if it is exponentiable in Top, that is, core-compact. This follows for in-
stance from the characterisation of exponentiable topological spaces given
in [Pisani, 1999], together with the characterisation of +-exponentiable ap-
proach spaces [Hofmann, 2007] as precisely the ones where the convergence
structure a : UX ×X → [0,∞] satisfies

a(mX(X), x) = inf
x∈X

(Ua(X, x) + a(x, x)),

for all X ∈ UUX and x ∈ X. Note that the left hand side is always smaller
or equal to the right hand side.
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Via the embedding Top → App described earlier in this subsection, which
is left adjoint to (−)p : App → Top, we can interpret every topological space
X as an approach space, also denoted as X, where the convergence structure
takes only values in {0,∞}. Then, for any approach space Y , X⊕Y = X×Y ,
which in particular tells us that the diagram

App
X⊕−// App

Top

OO

X×−
// Top

OO

commutes. Therefore, if X is core-compact, then also the diagram of the
corresponding right adjoints commutes, hence

Lemma 2.3. For every core-compact topological space X and every approach
space Y , (Y X)p = (Yp)

X.

Remark 2.4. To be rigorous, the argument presented above only allows us to
conclude (Y X)p ≃ (Yp)

X . However, since we can choose the right adjoints
(−)X and (−)p exactly as described earlier, one has indeed equality.

The lack of good function spaces can be overcome by moving into a larger
category where these constructions can be carried out. In the particular case
of approach spaces, a good environment for doing so is the category PsApp of
pseudo-approach spaces and approach maps [Lowen and Lowen, 1989]. Here
a pseudo-approach space is pair X = (X, a) consisting of a set X and a
convergence structure a : UX × X → [0,∞] which only needs to satisfy

the first inequality of (2.iii): 0 > a(
�
x, x), for all x ∈ X. If X = (X, a) and

Y = (Y, b) are pseudo-approach spaces, then one defines X⊕Y exactly as for
approach spaces, and the formula (??) defines a pseudo-approach structure
on the set Y X of all approach maps from X to Y , without any further
assumptions on X or Y . In fact, this construction leads now to an adjunction
X ⊕ − ⊣ (−)X : PsApp → PsApp, for every pseudo-approach space X =
(X, a).

2.6. Stably compact approach spaces. Returning to metric compact
Hausdorff spaces, one easily verifies that (2.ii) defines an approach structure
on X (see [Tholen, 2009], for instance). Since a homomorphism between
metric compact Hausdorff spaces becomes an approach map with respect to
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the corresponding approach structures, one obtains a functor

K : MetCompHaus → App.

The underlying metric of KX is just the metric d of the metric compact
Hausdorff space X = (X, d, α), and x = α(x) is a generic convergence point
of x in KX in the sense that

a(x, y) = d(x, y),

for all y ∈ X. The point x is unique up to equivalence since, if one has
x′ ∈ X with the same property, then

d(x, x′) = a(x, x′) = d(x′, x′) = 0

and, similarly, d(x′, x) = 0. In analogy to the topological case, we introduce
the dual Y op of an approach space Y = K(X, d, α) as Y op = K(X, d◦, α),
and we call an T0 approach space stably compact if it is of the form KX, for
some metric compact Hausdorff space X.

Lemma 2.5. Let (X, d, α), (Y, d′, β) be metric compact Hausdorff spaces
with corresponding approach spaces (X, a) and (Y, b), and let f : X → Y

be a map. Then f is an approach map f : (X, a) → (Y, b) if and only if
f : (X, d) → (Y, d′) is a metric map and β ·Uf(x) ≤ f ·α(x), for all x ∈ UX.

Proof : Assume first that f : (X, d) → (Y, d′) is in Met and that β · Uf(x) ≤
f · α(x), for all x ∈ UX. Then

a(x, x) = d(α(x), x) > d′(f ·α(x), f(x)) > d′(β ·Uf(x), f(x)) = b(Uf(x), f(x)).

Suppose now that f : (X, a) → (Y, b) is in App and let x ∈ UX. Then

0 > d(α(x), α(x)) = a(x, α(x)) > b(Uf(x), f · α(x)) = d′(β · Uf(x), f · α(x)).

Clearly, f : (X, a) → (Y, b) in App implies f : (X, d) → (Y, d′) in Met, and
the assertion follows.

It is an important fact that K has a left adjoint

M : App → MetCompHaus

which can be described as follows ([Hofmann, 2010]). For an approach space
X = (X, a), MX is the metric compact Hausdorff space with underlying set
UX equipped with the compact Hausdorff convergence mX : UUX → UX

and the metric

d : UX × UX → [0,∞], (x, y) 7→ inf{ε ∈ [0,∞] | ∀A ∈ x . A(ε) ∈ y}, (2.iv)
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and Mf := Uf : UX → UY is a homomorphism between metric compact
Hausdorff spaces provided that f : X → Y is an approach map between
approach spaces. The unit and the counit of this adjunction are given by

eX : (X, a) → (UX, d(mX(−),−)) and α : (UX, d,mX) → (X, d, α)

respectively, for (X, a) in App and (X, d, α) in MetCompHaus.

Remark 2.6. All what was said here about metric compact Hausdorff spaces
and approach space can be repeated, mutatis mutandis, for ordered com-
pact Hausdorff spaces and topological spaces. For instance, the funtcor
K : OrdCompHaus → Top (see Subsection 2.4) has a left adjoint
M : Top → OrdCompHaus which sends a topological space X to
(UX,≤, mX), where

x ≤ y whenever (∀A ∈ x) A ∈ y,

for all x, y ∈ UX. Furthermore, Lemma 2.5 reads now as follows: Let
(X,≤, α), (Y,≤, β) be ordered compact Hausdorff spaces with corresponding
topological spaces (X, a) and (Y, b), and let f : X → Y be a map. Then f is
a continuous map f : (X, a) → (Y, b) in Top if and only if f : (X,≤) → (Y,≤)
is in Ord and β · Uf(x) ≤ f · α(x), for all x ∈ UX.

Example 2.7. The ordered set 2 = {0, 1} with the discrete (compact Haus-
dorff) topology becomes an ordered compact Hausdorff space which induces
the Sierpiński space 2 where {1} is closed and {0} is open. Then the maps

(1)
∧

: 2I → 2

(2) v ⇒ − : 2 → 2,
(3) v ∧ − : 2 → 2

are continuous, for every set I and v ∈ 2. Furthermore (see [Nachbin, 1992;
Escardó, 2004]),

(4)
∨

: 2I → 2 is continuous if and only if I is a compact topological
space.

Here the function space 2I is possibly calculated in the category PsTop of
pseudotopological spaces (see [Herrlich et al., 1991]). In particular, if I is a
compact Hausdorff space, then I is exponentiable in Top and

∨

: 2I → 2

belongs to Top.

Example 2.8. The metric space [0,∞] with distance µ(x, y) = y⊖x equipped
with the Euclidean compact Hausdorff topology where x converges to
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ξ(x) := supA∈x inf A is a metric compact Hausdorff space (see Example 2.1)
which gives the “Sierpiński approach space” [0,∞] with approach conver-
gence structure λ(x, x) = x ⊖ ξ(x). Then, with the help of the results of
subsection 1.1, one sees that

(1) sup : [0,∞]I → [0,∞],
(2) −⊖ v : [0,∞] → [0,∞],
(3) −+ v : [0,∞] → [0,∞]

are approach maps, for every set I and v ∈ [0,∞]. If I carries the structure a :
UI × I → [0,∞] of an approach space, one defines the degree of compactness
[Lowen, 1997] of I as

comp(I) = sup
x∈UI

inf
x∈X

a(x, x).

Then (see [Hofmann, 2007]),

(4) inf : [0,∞]I → [0,∞] is an approach map if and only if comp(I) = 0.

As above, the function space [0,∞]I is possibly calculated in PsApp, in fact,
(−)I : PsApp → PsApp is the right adjoint of I ⊕− : PsApp → PsApp.

As any adjunction, M ⊣ K induces a monad on App (respectively on
Top). Here, for any approach space X, the space KM(X) is the set UX of
all ultrafilters on the set X equipped with an apporach structure, and the
unit and the multiplication are essentially the ones of the ultrafilter monad.
Therefore we denote this monad also as U = (U, e,m). In particular, one
obtains a functor U := KM : App → App (respectively U := KM : Top →
Top). Surprisingly or not, the categories of algebras are equivalent to the
Eilenberg–Moore categories on Ord and Met:

OrdU ≃ TopU and MetU ≃ AppU.
More in detail (see [Hofmann, 2010]), for any metric compact Hausdorff space
(X, d, α) with corresponding approach space (X, a), α : U(X, a) → (X, a) is
an approach contraction; and for an approach space (X, a) with Eilenberg–
Moore algebra structure α : U(X, a) → (X, a), (X, d, α) is a metric compact
Hausdorff space where d is the underlying metric of a and, moreover, a is the
approach structure induced by d and α.
It is worthwhile to note that the monad U on Top as well as on App

satisfies a pleasant technical property: it is of Kock-Zöberlein type [Kock,
1995; Zöberlein, 1976]. In what follows we will not explore this further and
refer instead for the definition and other information to [Escardó and Flagg,
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1999]. We just remark here that one important consequence of this property
is that an Eilenberg–Moore algebra structure α : UX → X on an {approach,
topological} space X is necessarily left adjoint to eX : X → UX. If X is T0,
then one even has that an approach map α : UX → X is an Eilenberg–Moore
algebra structure on X if and only if α · eX = 1X . Hence, a T0 approach
space X = (X, a) is a U-algebra if and only if

(1) every ultrafilter x ∈ UX has a generic convergence point α(x) meaning
that a(x, x) = a0(α(x), x), for all x ∈ X, and

(2) the map α : UX → X is an approach map.

It is observed already in [Hofmann, 2010] that the latter condition can be
substituted by

(2’) X is +-exponentiable.

For the reader familiar with the notion of sober approach space [Banaschewski
et al., 2006] we remark that the former condition can be splitted into the
following two conditions:

(1a) for every ultrafilter x ∈ UX, a(x,−) is an approach prime element,
and

(1b) X is sober.

Certainly, the two conditions above imply (1). For the reverse implication,
just note that every approach prime element ϕ : X → [0,∞] is the limit
function of some ultrafilter x ∈ UX (see [Banaschewski et al., 2006, Propo-
sition 5.7]). Hence, every stably compact approach space is sober. We call
a +-exponentiable approach space X stable if X satisfies the condition (1a)
above (compare with Subsection 2.4), and with this nomenclature one has

Proposition 2.9. A T0 approach space X is stably compact if and only if X
is sober, +-exponentiable and stable.

3. Injective approach spaces

3.1. Yoneda embeddings. Let X = (X, a) be an approach space with
convergence a : UX × X → [0,∞]. Then a is actually an approach map
a : (UX)op ⊕ X → [0,∞], and we refer to its +-exponential mate
y
X

:= paq : X → [0,∞](UX)op as the (covariant) Yoneda embedding of X
(see [Clementino and Hofmann, 2009a] and [Hofmann, 2010]). We denote
the approach space [0,∞](UX)op as PX, and its approach convergence struc-
ture as J−,−K. One has a(x, x) = JU y

X
(x), y

X
(x)K for all x ∈ UX and x ∈ X
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(hence y
X

is indeed an embedding when X is T0) thanks to the Yoneda
Lemma which states here that, for all x ∈ UX and ψ ∈ PX,

JU y
X
(x), ψK = ψ(x).

The metric d : UX × UX → [0,∞] (see (2.iv)) is actually an approach
map d : (UX)op ⊕ UX → [0,∞], whose mate can be seen as a “second”
(covariant) Yoneda embedding Y X : UX → PX, and the “second” Yoneda
Lemma reads as (see [Hofmann, 2010])

JUY X(X), ψK = ψ(mX(X)),

for all X ∈ UUX and ψ ∈ PX.

Remark 3.1. Similarly, the convergence relation →: (UX)op × X → 2 of
a topological space X is continuous, and by taking its exponential trans-
pose we obtain the Yoneda embedding y

X
: X → 2(UX)op. A continuous

map ψ : Xop → 2 can be identified with a closed subset A ⊆ UX. In
[Hofmann and Tholen, 2010] it is shown that A corresponds to a filter on
the lattice of opens of X, moreover, the space 2(UX)op is homeomorphic to
the space F0X of all such filters, where the topology on F0X has

{f ∈ F0X | A ∈ f} (A ⊆ X open)

as basic open sets (see [Escardó, 1997]). Under this identification, the Yoneda
embedding y

X
: X → 2(UX)op corresponds to the map X → F0X sending

every x ∈ X to its neighbourhood filter, and Y X : UX → F0X restricts an
ultrafilter x ∈ UX to its open elements.

Since an approach space X is in general not +-exponentiable, the set
[0,∞]X of all approach maps of type X → [0,∞] does not admit a canon-
ical approach structure. However, it still becomes a metric space when
equipped with the sup-metric, that is, the metric space [0,∞]X is a sub-
space of the +-exponential [0,∞]X0 in Met of underlying metric space X0

of X. Recall from Subsection 1.2 that the contravariant Yoneda embedding
hX0

: X0 →
(

[0,∞]X0

)op
of the metric space X0 sends an element x ∈ X0

to the metric map X0 → [0,∞], x′ 7→ a0(x, x
′) = a(

�
x, x′). But the map

hX0
(x) can be also seen as an approach map of type X → [0,∞], hence this

construction defines also a metric map hX : X0 →
(

[0,∞]X
)op

, for every
approach space X.
The inclusion map [0,∞]X →֒ [0,∞]X0 has a left adjoint [0,∞]X0 → [0,∞]X

which sends a metric map ϕ : X0 → [0,∞] to the approach map X → [0,∞]
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which sends x to inf
x∈UX

a(x, x) + ξ(Uϕ(x)) where ξ(u) = sup
A∈u

inf
u∈A

u. In partic-

ular, if ϕ = a(eX(x),−), then ξ(Uϕ(x)) = Ua(eUX · eX(x), x) and therefore
inf

x∈UX
a(x, x) + ξ(Uϕ(x)) = a(eX(x),−). Hence, both the left and the right

adjoint commute with the contravariant Yoneda embeddings.

(

[0,∞]X0

)op -- (
[0,∞]X

)op
mm

X0

hX0

eeLLLLLLLLLLL hX

99ssssssssss

Finally, one also have the Isbell conjugation adjunction in this context:

(

[0,∞]X
)op

(−)−
--

⊤
(

[0,∞]X
op)

0

(−)+
mm

X0

hX

eeKKKKKKKKKK
y
X

99sssssssssss

where

ϕ−(x) = sup
x∈X

(a(x, x)⊖ ϕ(x)) and ψ+(x) = sup
x∈UX

(a(x, x)⊖ ψ(x)).

Remark 3.2. In our considerations above we were very sparse on details
and proofs. This is because (in our opinion) this material is best pre-
sented in the language of modules (also called distributors or profunctors),
but we decided not to include this concept here and refer for details to
[Clementino and Hofmann, 2009a] and [Hofmann, 2011] (for the particular
context of this paper) and to [Bénabou, 2000] and [Lawvere, 1973] for the gen-
eral concept. To give an idea, we note that ψ : (UX)op → [0,∞] is the same
thing as a module ψ : X −⇀◦ 1 from X to 1 and ϕ : X → [0,∞] is the same
thing as a module ϕ : 1−⇀◦ X. Then ψ+ is the extension of ψ along the iden-
tity module on X (see [Hofmann, 2011, 1.3 and Remark 1.5]), and ϕ− is the
lifting of ϕ along the identity module on X (see [Hofmann and Waszkiewicz,
2011, Lemma 5.11]); and this process defines quite generally an adjunction.

3.2. Cocomplete approach spaces. In this and the next subsection we
study the notion of cocompleteness for approach spaces, as initiated in [Cle-
mentino and Hofmann, 2009a,b; Hofmann, 2011]. By analogy with ordered
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sets and metric spaces, we think of an approach map ψ : (UX)op → [0,∞]
as a “down-set” of X. A point x0 ∈ X is a supremum of ψ if

a(
�
x0, x) = sup

x∈UX

a(x, x)⊖ ψ(x),

for all x ∈ X. As before, suprema are unique up to equivalence, and therefore
we will often talk about the supremum. An approach map f : (X, a) → (Y, b)
preserves the supremum of ψ if

b(
�

f(x0), y) = sup
y∈UY

b(Uf(x), y)⊖ ψ(x).

Not surprisingly (see [Hofmann, 2011]),

Lemma 3.3. Left adjoint approach maps f : X → Y between approach
spaces preserve all suprema which exist in X.

We call an approach space X cocomplete if every “down-set” ψ : (UX)op →
[0,∞] has a supremum inX. If this is the case, then “taking suprema” defines
a map SupX : PX → X, indeed, one has

Proposition 3.4. An approach space X is cocomplete if and only if y
X

:
X0 → (PX)0 has a left adjoint SupX : (PX)0 → X0 in Met.

Remark 3.5. We deviate here from the notation used in previous work where
a space X was called cocomplete whenever y

X
: X → PX has a left adjoint

in App. Approach spaces satisfying this (stronger) condition will be called
totally cocomplete (see Subsection 3.4 below) here.

Using Subsection 3.1, one sees immediately that SupX : (PX)0 → X0 pro-
duces a left inverse of hX0

: X0 →
(

[0,∞]X0

)op
in Met, hence the underlying

metric space X0 is complete. Certainly, a left inverse of X0 →
(

[0,∞]X0

)op

in Met gives a left inverse of y
X
: X0 → (PX)0 in Met, however, such a left

inverse does not need to be a left adjoint (see Example 3.9). In the following
subsection we will see what is missing.

3.3. Special types of colimits. Similarly to what was done for metric
spaces, we will be interested in approach spaces which admit certain types
of suprema.
Our first example are tensored approach spaces which are defined ex-

actly as their metric counterparts. Explicitly, to every point x of an ap-
proach space X = (X, a) and every u ∈ [0,∞] one associates a “down-set”
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ψ : (UX)op → [0,∞], x 7→ a(x, x)+u, and a supremum of ψ (which, we recall,
is unique up to equivalence) is denote by x+ u. Then X is called tensored if
every such ψ has a supremum in X. By definition, x+u ∈ X is characterised
by the equation

a(eX(x+ u), y) = sup
x∈UX

(a(x, y)⊖ (a(x, x) + u)) = a(
�
x, y)⊖ u,

for all y ∈ X. Therefore:

Proposition 3.6. An approach space X is tensored if and only if its under-
lying metric space X0 is tensored.

We call an approach space X = (X, a) U-cocomplete if every “down-set”
ψ : (UX)op → [0,∞] of the form ψ = Y X(x) with x ∈ UX has a supremum
in X. Such a supremum, denoted as α(x), is characterised by

a(
�

α(x), x) = sup
y∈UX

(a(y, x)⊖ d(y, x)) = a(x, x),

for all x ∈ X. The equality above translates to a0(α(x), x) = a(x, x). Since

a(x, x) = d(x,
�
x) where d is the metric on (UX)0, we conclude that

Proposition 3.7. An approach space X is U-cocomplete if and only if eX :
X0 → (UX)0 has a left adjoint α : (UX)0 → X0 in Met.

Note that every metric compact Hausdorff space is U-cocomplete. We are
now in position to characterise cocomplete approach spaces.

Theorem 3.8. Let X be an approach space. Then the following assertions
are equivalent.

(i) X is cocomplete.
(ii) The metric space X0 is complete and and the approach space X isU-cocomplete.
(iii) The metric space X0 is complete and eX : X0 → (UX)0 has a left

adjoint α : (UX)0 → X0 in Met.

Furthermore, in this situation the supremum of a “down-set”
ψ : (UX)op → [0,∞] is given by

∨

x∈UX

α(x) + ψ(x). (3.i)
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Proof : To see the implication (iii)⇒(i), we only need to show that the formula
(3.i) gives indeed a supremum of ψ. In fact,

a0(
∨

x∈UX

α(x) + ψ(x), x) = sup
x∈UX

a0(α(x) + ψ(x), x)

= sup
x∈UX

(a0(α(x), x)⊖ ψ(x)) = sup
x∈UX

(a(x, x)⊖ ψ(x)),

for all x ∈ X.

Example 3.9. Every metric compact Hausdorff space whose underlying met-
ric is cocomplete gives rise to a cocomplete approach space. In particular,
both [0,∞] and [0,∞]op are cocomplete (see Example 2.1).
To each metric d on a set X one associates the approach convergence

structure

ad(x, y) = sup
A∈x

inf
y∈A

d(x, y),

and this construction defines a left adjoint to the forgetful functor

(−)0 : App → Met. Furthermore, note that ad(
�
x, y) = d(x, y). In partic-

ular, for the metric space [0,∞] = ([0,∞], µ) one obtains

aµ(x, y) = sup
A∈x

inf
x∈A

(y ⊖ x),

and the approach space ([0,∞], aµ) is notU-cocomplete. To see this, consider
any ultrafilter x ∈ U [0,∞] which contains the filter-base

{[u,∞] | 0 ≤ u <∞}.

Then aµ(x,∞) = ∞ and aµ(x, y) = 0 for all y < ∞, hence aµ cannot be
of the form µ(α(−),−) for a map α : U [0,∞] → [0,∞]. However, for the
metric space [0,∞]op = ([0,∞], µ◦), the approach convergence structure aµ◦

is actually the structure induced by the metric compact Hausdorff space
([0,∞], µ◦, ξ) and therefore ([0,∞], aµ◦) is cocomplete.U-cocomplete approach spaces are closely related to metric compact Haus-
dorff spaces respectively stably compact approach space, in both cases the
approach structure a on X can be decomposed into a metric a0 and a map
α : UX → U , and one recovers a as a(x, x) = a0(α(x), x). In fact, every met-
ric compact Hausdorff space is U-cocomplete, but the reverse implication is
in general false since, for instance, the map α : UX → X does not need
to be an Eilenberg–Moore algebra structure on X (i.e. a compact Hausdorff
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topology). Fortunately, this property of α was not needed in the proof of
Lemma 2.5, and we conclude

Lemma 3.10. Let (X, a) and (Y, b) be U-cocomplete approach spaces and
f : X → Y be a map. Then f : (X, a) → (Y, b) is an approach map if
and only if f : (X, a0) → (Y, b0) is a metric map and, for all x ∈ UX,
β · Uf(x) ≤ f · α(x).

Remark 3.11. Once again, everything told here has its topological counter-
part. For instance, we call a topological space X U-cocomplete whenever
the monotone map eX : X0 → (UX)0 has a left adjoint α : (UX)0 → X0 in
Ord. Then, with ≤ denoting the underlying order of X, an ultrafilter x ∈ UX

converges to x ∈ X if and only if α(x) ≤ x. Moreover, one also has an analog
version of the lemma above.

Recall from Subsection 2.5 that (−)p : App → Top denotes the canonical
forgetful functor from App to Top, where x → x inXp if and only if 0 = a(x, x)
in the approach space X = (X, a). If X = (X, a) is also U-cocomplete with
left adjoint α : (UX)0 → X0, then, for any x ∈ UX and x ∈ X,

α(x) ≤ x ⇐⇒ 0 = a0(α(x), x) ⇐⇒ 0 = a(x, x) ⇐⇒ x → x.

Here ≤ denotes the underlying order of the underlying topology of X, which
is the same as the underlying order of the underlying metric of X. Hence,
α provides also a left adjoint to eX : Xp0 → U(Xp)0, and therefore the
topological space Xp is U-cocomplete as well. An important consequence of
this fact is

Proposition 3.12. Let X = (X, a) and Y = (Y, b) be U-cocomplete approach
spaces and f : X → Y be a map. Then f : (X, a) → (Y, b) is an approach
map if and only if f : (X, a0) → (Y, b0) is a metric map and f : Xp → Yp is
continuous.

Finally, we also observe that U-cocomplete approach spaces are stable un-
der standard constructions: both X ⊕ Y and X × Y are U-cocomplete,
provided that X = (X, a) and Y = (Y, b) are so.

3.4. Op-continuous lattices with a [0,∞]-action. We call an approach
space X totally cocomplete if the Yoneda embedding y

X
: X → PX has a left

adjoint in App. This is to say, X is cocomplete and the metric left adjoint
SupX of y

X
is actually an approach map SupX : PX → X. It is shown in

[Hofmann, 2011] that
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• the totally cocomplete approach spaces are precisely the injective ones,
and that

• the category

InjAppsup

of totally cocomplete approach T0 spaces and supremum preserving
(= left adjoint) approach maps is monadic over App, Met and Set.
The construction X 7→ PX is the object part of the left adjoint
P : App → InjAppsup of the inclusion functor InjAppsup → App, and
the maps y

X
: X → PX define the unit y of the induced monadP = (P, y , m ) on App. Composing this monad with the adjunction

(−)d ⊣ (−) : App ⇆ Set gives the corresponding monad on Set.

This resembles very much well-known properties of injective topological T0

spaces, which are known to be the algebras for the filter monad on Top, Ord
and Set, hence, by Remark 3.1, are precisely the (accordingly defined) to-
tally cocomplete topological T0 spaces. Furthermore, all information about
the topology of an injective T0 space is contain in its underlying order, and
the ordered sets occurring this way are the op-continuous lattices, i.e. the
duals of continuous lattices†, as shown in Scott [1972] (see Subsection 2.1).
In the sequel we will write ContLat∗ to denote the category of op-continuous
lattices and maps preserving all suprema and down-directed infima. Note
that ContLat∗ is equivalent to the category of totally cocomplete topologi-
cal T0 spaces and left adjoints in Top, and of course also to the category
ContLat of continuous lattices and maps preserving up-directed suprema and
all infima.
These analogies make us confident that totally cocomplete approach T0

spaces provide an interesting metric counterpart to (op-)continuous lattices.
In fact, in [Hofmann, 2010] it is shown that the approach structure of such
a space is determined by its underlying metric, hence we are talking essen-
tially about metric spaces here. Moreover, every totally cocomplete approach
space is exponentiable in App and the full subcategory of App defined by
these spaces is Cartesian closed. Theorem 3.20 below exposes now a tight
connection with op-continuous lattices: the totally cocomplete approach T0

spaces are precisely the op-continuous lattices equipped with an unitary and
associative action of [0,∞] in the monoidal category ContLat∗.

†Recall that our underlying order is dual to the specialisation order.
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Every approach space X = (X, a) induces approach maps

X ⊕ [0,∞]
BX−−→ PX, UX

Y X−−→ PX, XI F X,I

−−−→ PX

(where I is compact Hausdorff).

Exactly as in Subsection 1.3, B X : X ⊕ [0,∞] → PX is the mate of the
composite

(UX)op ⊕X ⊕ [0,∞]
a⊕1
−−→ [0,∞]⊕ [0,∞]

+
−→ [0,∞],

and F X,I : X
I → PX is the mate of the composite

(UX)op ⊕XI → [0,∞]I
inf
−−→ [0,∞],

where the first component is the mate of the composite

(UX)op ⊕XI ⊕ I
1⊕ev
−−−→ (UX)op ⊕X

a
−→ [0,∞].

Explicitely, for ϕ ∈ XI and x ∈ UX, F X,I(ϕ)(x) = infi∈I a(x, ϕ(i)). A supre-
mum of the “down-set” F X,I(ϕ) ∈ PX is necessarily a supremum of the
family (ϕ(i))i∈I in the underlying order of X. If X is cocomplete, one can
compose the maps above with SupX and obtains metric maps

X0 ⊕ [0,∞]
+
−→ X0, (UX)0

α
−→ X0, (XI)0

∨

−→ X0 (I compact Hausdorff),
(3.ii)

which are even morphisms in App provided that X is totally cocomplete. In
fact, one has

Proposition 3.13. Let X be an approach space. Then X is totally cocom-
plete if and only if X is cocomplete and the three maps (3.ii) are approach
maps.

Proof : The obtain the reverse implication, we have to show that the mapping

SupX : PX → X, ψ 7→
∨

x∈UX

(α(x) + ψ(x))

is an approach map. We write Xd for the discrete approach space with
underlying set X, then U(Xd) is just a compact Hausdorff space, namely the
Čech-Stone compactification of the set X. By assumption,

∨

: XU(Xd) → X

is an approach map, therefore it is enough to show that

U(Xd)⊕ PX → X, (x, ψ) 7→ α(x) + ψ(x)
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belonges to App. Since the diagonal ∆ : U(Xd) → U(Xd)⊕U(Xd) as well as
the identity maps U(Xd) → UX and U(Xd) → (UX)op are in App, we can
express the map above as the composite

U(Xd)⊕ PX
∆⊕1
−−−→ UX ⊕ (UX)op ⊕ PX

α⊕ev
−−−→ X ⊕ [0,∞]

+
−→ X

of approach maps.

Example 3.14. The approach space [0,∞] is injective and hence totally
cocomplete, but [0,∞]op is not injective. To see this, either observe that the
map

f : {0,∞} → [0,∞]op, 0 7→ ∞,∞ 7→ 0

cannot be extended along the subspace inclusion {0,∞} →֒ [0,∞], or that
the mapping (u, v) 7→ u⊖v (which is the tensor of the metric space [0,∞]op) is
not an approach map of type [0,∞]op⊕ [0,∞] → [0,∞]op. Therefore [0,∞]op

is not totally cocomplete, however, recall from Example 3.9 that [0,∞]op is
cocomplete.

Remark 3.15. Similarly, a topological space X is totally cocomplete if and
only ifX is cocomplete and the latter two maps of (3.ii) (accordingly defined)
are continuous.

Lemma 3.16. Let X be an approach space and I be a compact Hausdorff
space. If X is cocomplete and Xp is totally cocomplete, then XI is U-
cocomplete.

Proof : We write a : UX ×X → [0,∞] for the convergence structure of the
approach space X, and b : UI × I → 2 for the convergence structure of the
compact Hausdorff space I. In the both cases there are maps α : UX → X

and β : UI → I respectively so that a(x, x) = a0(α(x), x) and b(u, i) = true

if and only if β(u) = i, for all x ∈ UX, x ∈ X, u ∈ UI and i ∈ I. For every
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p ∈ U(XI) and h ∈ XI ,

Jp, hK = sup{a0(α(U ev(w)), h(β(u)) | w ∈ U(XI × I), p = Uπ1(w), u := Uπ2(w)}

= sup
i∈I

sup
w∈U(XI×I)
Uπ1(w)=p
β·Uπ2(w)=i

a0(α(U ev(w)), h(i))

= sup
i∈I

a0(
∨

w∈U(XI×I)
Uπ1(w)=p
β·Uπ2(w)=i

α(U ev(w)), h(i))

= sup
i∈I

a0(γ(p)(i), h(i)),

where we define

γ(p)(i) =
∨

w∈U(XI×I)
Uπ1(w)=p
β·Uπ2(w)=i

α(U ev(w)).

In order to conclude that γ is a map of type U(XI) → XI , we have to show
that γ(p) is a continuous map γ(p) : I → Xp, for every p ∈ U(XI). To this
end, we note first that the supremum above can be rewritten as

γ(p)(i) =
∨

w∈U(XI×I)
Uπ1(w)=p

α(U ev(w)) & b(Uπ2(w), i).

We put Y = {w ∈ U(XI × I) | Uπ1(w) = p} and consider Y as a subspace
of U((XI × I)d), that is, the Čech-Stone compactification of the set XI × I.
Note that Y is compact, and one has continuous maps

Y
Uev
−−→ U(Xd), Y

Uπ2−−→ U(Id), U(Xd)
α
−→ Xp, U(Id)× I

b
−→ 2.

Therefore we can express the map γ(p) as the composite

I −→ XI
p

∨

−→ Xp

of continuous maps, where the first component is the mate of the composite

Y × I
∆×1
−−−→ Y × Y × I

Uev×Uπ2×1
−−−−−−−→ U(Xd)× U(Id)× I

α×b
−−→ Xp × 2

&
−→ Xp

of continuous maps.
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Proposition 3.17. Let X = (X, d) be a cocomplete metric space whose un-
derlying ordered set Xp is a op-continuous lattice. Then (X, d, α) is a metric

compact Hausdorff space where α : UX → X is defined by x 7→
∧

A∈x

∨

x∈X

x.

Proof : Since Xp is op-continuous, Xp is even an ordered compact Hausdorff
space with convergence α. We have to show that α : U(X, d) → (X, d)
is a metric map. Recall from Lemma 2.2 that with (X, d) also U(X, d) is
tensored, hence we can apply Proposition 1.10. Firstly, for x ∈ UX and
u ∈ [0,∞],

α(x) + u =





∧

A∈x

∨

x∈X

x



+ u ≤
∧

A∈x

∨

x∈X

(x+ u) = α(x+ u)

since −+u : X → X preserves suprema. Secondly, let x, y ∈ UX and assume

0 = Ud(x, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

d(x, y) = sup
B∈y

inf
A∈x

sup
x∈A

inf
y∈B

d(x, y).

For the last equality see [Seal, 2005, Lemma 6.2], for instance. We wish to
show that α(x) ≤ α(y), that is,

∧

A∈x

∨

x∈A

x ≤
∧

B∈y

∨

y∈B

y,

which is equivalent to
∧

A∈x

∨

x∈A

x ≤
∨

y∈B

y, for all B ∈ y. Let B ∈ y and ε > 0.

By hypothesis, there exist some A ∈ x with supx∈A infy∈B d(x, y) < ε, hence,
for all x ∈ A, there exist some y ∈ B with d(x, y) < ε and therefore x+ε ≤ y.
Consequently, for all ε > 0,





∧

A∈x

∨

x∈A

x



+ ε ≤
∧

A∈x

∨

x∈A

(x+ ε) ≤
∨

y∈B

y;

and therefore also
∧

A∈x

∨

x∈A

x ≤
∨

y∈B

y.

Theorem 3.18. Let X be a T0 approach space. Then the following assertions
are equivalent.

(i) X is totally cocomplete.
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(ii) X is cocomplete, Xp is totally cocomplete and + : X ⊕ [0,∞] → X is
an approach map.

(iii) X is cocomplete, Xp is totally cocomplete and + : Xp × [0,∞]p → Xp

is continuous.
(iv) X is U-cocomplete, X0 is cocomplete, Xp is totally cocomplete, and,

for all x ∈ X and u ∈ [0,∞], the map − + u : X → X preserves
down-directed infima and the map x + − : [0,∞] → X sends up-
directed suprema to down-directed infima.

Proof : Clearly, (i)⇒(ii)⇒(iii)⇒(iv). Assume now (iv). According to Propo-
sition 3.13, we have to show that the three maps (3.ii) are approach maps.
We write a : UX×X → [0,∞] for the convergence structure of the approach
space X, by hypothesis, a(x, x) = d(α(x), x) where d is the underlying metric

and α(x) =
∧

A∈x

∨

x∈X

x. By Proposition 3.17, (X, d, α) is a metric compact

Hausdorff space and therefore α : UX → X is an approach map. Since the
metric spaceX0 is cocomplete, + : X0⊕[0,∞] → X0 and

∨

: XI
0 → X0 (I any

set) are metric maps. If I is a compact Hausdorff space, (XI)0 is a subspace
of XId

0 , therefore also
∨

: (XI)0 → X0 is a metric map. Furthermore, since
Xp is totally cocomplete,

∨

: (XI)p = (Xp)
I → Xp is continuous (see Lemma

2.3). Since XI is U-cocomplete by Lemma 3.16,
∨

: XI → X is actually
an approach map by Proposition 3.12. Similarly, + : (X ⊕ [0,∞])0 → X0

is a metric map since (X ⊕ [0,∞])0 = X0 ⊕ [0,∞]. Our hypothesis states
that + : (X ⊕ [0,∞])p = Xp × [0,∞]p → Xp is continuous in each variable,
and [Scott, 1972, Proposition 2.6] tells us that it is indeed continuous. By
applying Proposition 3.12 again we conclude that + : X ⊕ [0,∞] → X is an
approach map.

Note that the approach structure of an totally cocomplete T0 approach
space can be recovered from its underlying metric since the convergence
α : UX → X is defined by the underlying lattice structure. In fact, the The-
orem above shows that an totally cocomplete T0 approach space is essentially
the same thing as a separated cocomplete metric space X = (X, d) whose
underlying ordered set is an op-continuous lattice (see Proposition 3.17) and
where the action + : X × [0,∞] → X preserves down-directed infima (in
both variables). In the final part of this paper we combine this with Theorem
1.8 where separated cocomplete metric spaces are described as sup-lattices
X equipped with an unitary and associative action + : X × [0,∞] → X
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on the set X which preserves suprema in each variable, or, equivalently,
+ : X ⊗ [0,∞] → X is in Sup.
For X, Y, Z in ContLat∗, a map h : X × Y → Z is a bimorphism if it is a

morphism of ContLat∗ in each variable.

Proposition 3.19. The category ContLat∗ admits a tensor product which
represents bimorphisms. That is, for all X, Y in ContLat∗, the functor

Bimorph(X × Y,−) : ContLat∗ → Set

is representable by some object X ⊗ Y in ContLat∗.

Proof : One easily verifies that Bimorph(X×Y,−) preserves limits. We check
the solution set condition of Freyd’s Adjoint Functor Theorem (in the form
of [MacLane, 1971, Section V.3, Theorem 3]). Take S as any representing set
of {L ∈ ContLat∗ | |L| ≤ |F (X×Y )|}, where F (X×Y ) denotes the set of all
filters on the setX×Y . Let Z be an op-continuous lattice and ϕ : X×Y → Z

be a bimorphism. We have to find some L ∈ S, a bimorphism ϕ′ : X×Y → L

and a morphism m : L → Z in ContLat∗ with m · ϕ′ = ϕ. Since the map
e : X × Y → F (X × Y ) sending (x, y) to its principal filter gives actually
the reflection of X × Y to ContLat∗, there exists some f : F (X × Y ) → Z in
ContLat∗ with f · e = ϕ.

F (X × Y )
q

%% %%J
J

J
J

J
J

f

��

Lyy

m
yys

s
s

s
s

s

X × Y

e

??
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

ϕ
//

ϕ′=q·e
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Z

Let f = m · q a (regular epi,mono)-factorisation of f in ContLat∗. Then
ϕ′ := q · e is a bimorphism as it is the corestriction of ϕ to L, m : L→ Z lies
in ContLat∗ and L can be chosen in S.

By unicity of the representing object, 1 ⊗ X ≃ X ≃ X ⊗ 1 and (X ⊗
Y )⊗ Z ≃ X ⊗ (Y ⊗ Z). Furthermore, with the order >, [0,∞] is actually a
monoid in ContLat∗ since + : [0,∞]× [0,∞] → [0,∞] is a bimorphism and
therefore it is a morphism + : [0,∞]⊗ [0,∞] → [0,∞] in ContLat∗, and so is
1 → [0,∞], ⋆ 7→ 0. We write

ContLat∗
[0,∞]
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for the category whose objects are op-continuous lattices X equipped with
a unitary and associative action + : X ⊗ [0,∞] → X in ContLat∗, and
whose morphisms are those ContLat∗-morphisms f : X → Y which satisfy
f(x+ u) = f(x) + u, for all x ∈ X and u ∈ [0,∞].
Summing up,

Theorem 3.20. InjAppsup is equivalent to ContLat∗
[0,∞].

Here an totally cocomplete T0 approach space X = (X, a) is sent to its

underlying ordered set where x ≤ y ⇐⇒ a(
�
x, y) = 0 (x, y ∈ X) equipped

with the tensor product of X, and an op-continuous lattice X with action +
is sent to the approach space induced by the metric compact Hausdorff space

(X, d, α) where d(x, y) = inf{u ∈ [0,∞] | x+u ≤ y} and α(x) =
∧

A∈x

∨

x∈A

x, for

all x, y ∈ X and x ∈ UX. Finally, we note that a map f : X → Y between
injective approach spaces is an approach map if and only if f preserves down-
directed infima and, for all x ∈ X and u ∈ [0,∞], f(x) + u ≤ f(x + u) (see
Propositions 1.10 and 3.12).

Remark 3.21. By the theorem above, the diagram

InjAppsup ≃ ContLat∗
[0,∞]

⊣

��

⊥ // ContLat∗

⋌

wwnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

−⊗[0,∞]

uu

Set

P

BB

F

BB

of right adjoints commutes, and therefore the diagram of the (dotted) left
adjoints does so too. Here FX is the set of all filters on the set X, ordered
by ⊇, and PX = [0,∞]UX where UX is equipped with the Zariski topology.
In other words, PX ≃ FX ⊗ [0,∞], for every set X.
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