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FIBREWISE INJECTIVITY

AND KOCK-ZÖBERLEIN MONADS

FRANCESCA CAGLIARI, MARIA MANUEL CLEMENTINO AND SANDRA MANTOVANI

Abstract: Using Escardó’s characterization of injectivity via Kock-Zöberlein mon-
ads, we introduce suitable monads in comma categories of topological spaces that
yield characterizations of fibrewise injectivity in topological T0-spaces, with respect
to the class of embeddings, and of dense, of flat and of completely flat embeddings.
Characterizations, in the category of topological spaces, of injective maps with re-
spect to the same classes of embeddings follow easily from the results obtained for
T0-spaces. Moreover, it is shown that, together with the corresponding embed-
dings, injective continuous maps form a weak factorization system in the category
of topological (T0-)spaces and continuous maps.
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Introduction

Filter convergence has proved to be very useful in the study of several
classes of continuous maps, such as exponentiable maps, biquotient and
triquotient maps, and effective descent maps (as outlined in [7, 8]). In this
paper we show that filter convergence can be useful also to study continuous
maps injective with respect to classes of embeddings.
While the injective topological spaces with respect to the class of embed-

dings are known to be the continuous lattices for about forty years [18], a
topological characterization of continuous maps which are injective with re-
spect to the class of embeddings was missing. Indeed, there were several
approaches to the problem in the last decade (cf. [20, 3, 4, 6]), but none
of them produced an internal characterization of injectivity for continuous
maps. In [12] Escardó and Flagg, making use of different filter monads and
their common property of being Kock-Zöberlein, produced a list of examples
of classes of embeddings and their corresponding injective T0-spaces. Ex-
ploring common features of these filter monads, recently D. Hofmann [13]
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obtained a common characterization of their algebras and therefore, using
Escardó’s results, of spaces injective with respect to embeddings, dense em-
beddings, flat embeddings and completely flat embeddings in the category
Top0 of topological T0-spaces and continuous maps. Each of these filter mon-
ads T induces the so-called T-way-below relation, which is the key ingredient
to obtain the characterizations.
In this paper we extend Hofmann’s approach to the fibrewise case. Indeed,

we carry the filter monads into the comma category Top0 ↓ Z so that they
inherit the Kock-Zöberlein property, hence Escardó’s result applies. Intro-
ducing a fibrewise T-way-below relation, we characterize in Top0 continuous
maps injective with respect to T-embeddings as fibrewise sober, fibrewise T-
core-compact and fibrewise T-stable. (In case T is the prime filter monad,
the fibrewise T-way-below relation coincides with the fibrewise way-below
relation introduced by Richter [16] in order to characterize exponentiabil-
ity for maps.) These characterizations, together with the properties of the
reflection of Top0 in the category Top of topological spaces, give correspond-
ing characterizations of injective continuous maps in Top, with respect to
embeddings, dense embeddings, flat embeddings and completely flat embed-
dings, extending results from [5]. Finally, from the description of injective
continuous maps as algebras for a monad, we deduce that T-embeddings
and injective continuous maps with respect to T-embeddings form a weak
factorization system in Top0 that can be naturally extended to Top.

1. Filters, Kock-Zöberlein monads and injectivity

Throughout this section we will be working in the category Top0 of topo-
logical T0-spaces and continuous maps. In each T0-space X we consider the
order defined by

x ≤ y if y ∈ {x},

for any x, y ∈ X, that is, ≤ is the dual of the specialization order. Continuous
maps are monotone, with respect to this order, so that Top0 becomes an
enriched category over the category PoSet of posets and monotone maps.
As in [12, 13] we consider the filter monad F = (F, η, µ) on Top0, where, for
every T0-space X, with topology OX, and any continuous map f : X → Y

between T0-spaces, FX is the set of filters on OX endowed with the topology
generated by the sets

U ♯ := {ϕ ∈ FX |U ∈ ϕ}, for U ∈ OX, and
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Ff : FX → FY, ϕ 7→ Ff(ϕ) := {V ∈ OY | f−1(V ) ∈ ϕ}.

The natural transformations η : IdTop
0
→ F and µ : FF → F are defined,

for every space X, by:

ηX : X → FX, x 7→ O(x) = {U ∈ OX |x ∈ U},

µX : FFX → FX, Φ 7→ {U ∈ OX |U ♯ ∈ Φ}.

It is easy to check that the order in the T0-space FX is given by

ϕ ≤ ψ if ψ ⊆ ϕ,

and that F is a monotone functor, so that F is a monad on the poset-enriched
category Top0. (For information on enriched categories see [14].)
Together with the filter monad we will consider some of its submonads:

(1) the monad of proper filters
(2) the monad of prime filters
(3) the monad of completely prime filters.

We recall that a filter ϕ is proper if ∅ 6∈ ϕ, it is prime if it is inaccessible
by finite joins, and it is completely prime if it is inaccessible by arbitrary
joins. Since the filter O(x) is completely prime for every x, and µX(Φ)
is proper (prime, completely prime respectively) whenever Φ is, the unit
and the multiplication of these monads are (co)restrictions of the unit and
multiplication of the filter monad. As in [13], we will denote these monads
by Fα, where α = 0, 1, ω,Ω(=all ordinals), meaning that it is the monad of
filters ϕ unreachable by α (or α-unreachable), that is, for any family (Ui)i∈I
in OX, if ♯I < α, from

⋃
i∈I Ui ∈ ϕ it follows that Uj ∈ ϕ for some j ∈ I.

Then F0 is the filter monad F, F1 is the proper filter monad, Fω is the prime
filter monad, and FΩ is the completely prime filter monad.
Next we will see that these monads are lax idempotent, or of Kock-Zöberlein

type, as shown by Escardó-Flagg [12]. First we recall that a monad T =
(T, η, µ) on a poset-enriched category C is said to be lax idempotent, or a
Kock-Zöberlein monad, or simply a KZ-monad, if it satisfies one of the fol-
lowing equivalent conditions (see [15] for details):

(i) for every object X of C, TηX ≤ ηTX;
(ii) for every object X of C, TηX ⊣ µX ;
(iii) for every object X of C, µX ⊣ ηTX;
(iv) for every object X of C, a C-morphism l : TX → X is the structure

morphism of a T-algebra if, and only if, l ⊣ ηX with l · ηX = 1X.



4 FRANCESCA CAGLIARI, MARIA MANUEL CLEMENTINO AND SANDRA MANTOVANI

Proposition 1.1. For α = 0, 1, ω,Ω, the monad Fα is of Kock-Zöberlein
type.

Proof : We will prove that condition (i) above holds. Let T = Fα, let X be
a T0-space and ϕ ∈ TX. To show that ηTX(ϕ) ⊆ TηX(ϕ), we only need to
check that, for every U ∈ OX, U ♯ ∈ TηX(ϕ) whenever U ♯ ∈ ηTX(ϕ), since
{U ♯ |U ∈ OX} is a basis for OTX: If U ♯ ∈ ηTX(ϕ) = O(ϕ), that is, if ϕ ∈ U ♯,
then U ∈ ϕ by definition of U ♯. Since η−1

X (U ♯) = U ∈ ϕ, we conclude that
U ♯ ∈ TηX(ϕ) as claimed.

Escardó [11] established an interesting link between KZ-monads and injec-
tivity, proving that injective objects with respect to a class of embeddings H
may be identified as T-algebras whenever H can be described as the class of
T -embeddings for a given KZ-monad T, as we explain in the sequel.
First we recall that, given a class of embeddings H on a category C, a

C-object Z is said to be injective with respect to H if, for every h : X → Y

in H, and every C-morphism f : X → Z, there is a C-morphism f : Y → Z

making the following diagram commutative (no unicity is assumed here):

X
h

//

f   @
@@

@@
@@

Y

f��~~
~~

~~
~

Z

Following [11, 12], given a monad T on a poset-enriched category C, a
morphism h : X → Y is said to be a T -embedding if Th : TX → TY has a
right adjoint left-inverse, that is, if there exists T ∗h : TY → TX such that
Th · T ∗h ≤ 1TY and T ∗h · Th = 1TX .

Theorem 1.2. [11] For a KZ-monad T on C, and an object X of C, the
following conditions are equivalent:

(i) X is injective with respect to T -embeddings;
(ii) X has a T-algebra structure.

What are T -embeddings when T is one of the filter monads we consider
in this paper? As shown in [12], they are well-known classes of topological
embeddings. Indeed, for any continuous map h : X → Y between T0-spaces,
consider the frame map

h−1 : OY → OX
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and its right adjoint

h∗ : OX → OY, U 7→
∨

{V ∈ OY |h−1(V ) ⊆ U}.

In case h is an embedding,

h∗(U) =
∨

{V ∈ OY |V ∩X = U} = max{V ∈ OY |V ∩X = U}.

Proposition 1.3. [12] Let h : X → Y be a continuous map between T0-
spaces, and α = 0, 1, ω or Ω. Then the following conditions are equivalent:

(i) h is an Fα-embedding;
(ii) h is an embedding and h∗ preserves α-joins (that is, joins indexed by

sets with cardinality less than α).

Proof : (i) ⇒ (ii): Let T = Fα, and assume that there exists T ∗h : TY → TX

such that Th · T ∗h ≥ 1TY and T ∗h · Th = 1TX. Then in the commutative
diagram

X
ηX

//

h
��

TX

Th
��

Y
ηY

// TY

Th, ηX and ηY are embeddings, and so h is an embedding as well. Further,
consider the map r : OX → OY defined by the composition

OX
( )♯

// OTX
(T ∗h)−1

// OTY
η−1

Y
// OY.

As frame maps, η−1
Y and (T ∗h)−1 preserve joins, and the map ( )♯ preserves

α-joins: for an index set I with ♯I < α, (Ui)i∈I a family of open subsets of
X, and ϕ ∈ TX,

ϕ ∈ (
⋃

i∈I Ui)
♯ ⇔

⋃
i∈I Ui ∈ ϕ

⇒ ∃j ∈ I : Uj ∈ ϕ (ϕ is α-unreachable)

⇔ ϕ ∈
⋃

i∈I U
♯
i .

Moreover,

h−1 · r(U) = h−1 · η−1
Y · (T ∗h)−1(U ♯)

= η−1
X · Th−1 · (T ∗h)−1(U ♯) (η is a natural transformation)

= η−1
X (U ♯) (T ∗h · Th = 1TX)

= U,
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for every U ∈ OX, and, for every V ∈ OY ,

r · h−1(V ) = η−1
Y · (T ∗h)−1(h−1(V ))♯

= η−1
Y · (T ∗h)−1 · (Th)−1(V ♯)

⊇ η−1
Y (V ♯) (Th · T ∗h ≤ 1TY )

= V,

therefore h−1 ⊣ r, and so h∗ = r preserves α-joins.
(ii) ⇒ (i): Assume that h is an embedding and h∗ : OX → OY preserves

α-joins. Define, for every ψ ∈ TY ,

T ∗h(ψ) := {U ∈ OX |h∗(U) ∈ ψ}.

First we remark that T ∗h(ψ) ∈ TX, that is, it is α-unreachable: for any set
I with ♯I < α, and any family (Ui)i∈I in OX,

⋃
i∈I Ui ∈ T ∗h(ψ) ⇔ h∗(

⋃
i∈I Ui) =

⋃
i∈I h∗(Ui) ∈ ψ

⇔ ∃j ∈ I : h∗(Uj) ∈ ψ

⇔ ∃j ∈ I : Uj ∈ T ∗h(ψ).

Now it is easy to check that Th · T ∗h ≤ 1TY and T ∗h · Th = 1TX.

Note that preservation of 0-joins is trivially satisfied, while preservation of
1-joins means preservation of the empty set, so that h : X → Y is a F1-
embedding if, and only if, it is a dense embedding. Embeddings h : X →
Y with h∗ preserving ω-joins (i.e. finite joins) are flat embeddings, while
embeddings h with h∗ preserving Ω-joins (i.e. arbitrary joins) are completely
flat embeddings [12]. From now on we will denote by Hα the class of Fα-
embeddings, for α = 0, 1, ω,Ω.
Using the known characterizations of Fα-algebras – Day [10] and Wyler

[22] for F0, Wyler [23] for F1-algebras, Simmons [19] and Wyler [22] for Fω-
algebras (see [12] for details) – one gets:

Corollary 1.4. [12] Let X be a T0-space. Then:

(1) X is injective with respect to embeddings if, and only if, it is a con-
tinuous lattice;

(2) X is injective with respect to dense embeddings if, and only if, it is a
continuous Scott domain;

(3) X is injective with respect to flat embeddings if, and only if, it is a
stably compact space;

(4) X is injective with respect to completely flat embeddings if, and only
if, it is a sober space.
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In [13] D. Hofmann unified these characterizations, making use of a way-
below relation on Top0 relative to a filter monad T: for a T0-space X, and
U, V ∈ OX,

V ≪T U :⇔ (∀ϕ ∈ TX) (V ∈ ϕ ⇒ limϕ ∩ U 6= ∅),

where limϕ is the set of limit points of the filter ϕ. (When T is the monad
Fω of prime filters, ≪T is the well-known way-below relation.) A T0-space
X is said to be T-core-compact if

(∀x ∈ X) (∀U ∈ O(x)) (∃V ∈ O(x)) : V ≪T U.

And X is T-stable if, for any finite set J and J-indexed families (Ui)i and
(Vi)i on OX, with Vi ≪

T Ui for every i ∈ J , one has ∩i∈JVi ≪
T ∩i∈JUi. We

remark that X is Fω-core-compact if, and only if, it is core-compact, while
X is Fω-stable if it is compact and stable in the sense of [19].

Theorem 1.5. [13] For α = 0, 1, ω,Ω, and a T0-space X, the following
conditions are equivalent:

(i) X is injective with respect to Hα-embeddings;
(ii) Every ϕ ∈ TX has a least limit point in X and X is Fα-core-compact.
(iii) X is sober, Fα-core-compact and Fα-stable.

2. Fibrewise filter monads

Throughout this section T denotes one of the four filter monads we de-
scribed previously. In order to study injectivity for continuous maps instead
of spaces, that is fibrewise injectivity, we will define fibrewise filter monads
in the sliced category Top0 ↓ Z, for any T0-space Z. First we remark that
this category is again poset-enriched, when equipped with the order inherited
from the order of Top0.
For each object f : X → Z of Top0 ↓ Z, let T̂ f : T̂X → Z, where T̂X is

the subspace of Z × TX defined by

T̂X = {(z, ϕ) |Tf(ϕ) ≤ ηZ(z)} = {(z, ϕ) | (∀W ∈ O(z)) f−1(W ) ∈ ϕ}

and T̂ f(z, ϕ) = z. The map T̂ f is continuous, as a restriction of a product
projection into Z, as well as the map

η̂f : X → T̂X, x 7→ (f(x),O(x))
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since its compositions with each of the product projections T̂ f : T̂X → Z

and πf : T̂X → TX are continuous:

X
ηX

//

f

��

η̂f
��?

??
?

TX

Tf

��

T̂X
πf

77oooooooo

T̂ f

����
�
�
�
�
�
�
�
�

≥

Z
ηZ

// TZ

For any morphism h : f → g in Top0 ↓ Z, that is, for any continuous map
h : X → Y between T0-spaces such that the triangle

X
h

//

f   @
@@

@@
@@

Y

g��~~
~~

~~
~

Z

commutes, we define T̂ h : T̂X → T̂ Y by

T̂ h(z, ϕ) := (z, Th(ϕ)),

for every (z, ϕ) ∈ T̂X, which is a continuous map. Moreover, T̂ h : T̂ f → T̂ g

since T̂ g · T̂ h(z, ϕ) = z = T̂ f(z, ϕ). This way we have defined an endofunctor

T̂ : Top0 ↓ Z → Top0 ↓ Z.

It is straightforward to check that η̂f : f → T̂ f is a morphism in Top0 ↓ Z,
and that

η̂ = (η̂f)f∈ObTop
0
↓Z

defines a natural transformation η̂ : IdTop
0
↓Z → T̂ : for any h : f → g in

Top0 ↓ Z, in the diagram

X
η̂f

//

h
��

T̂X

T̂ h
��

Y
η̂g

//
T̂ Y

(T̂ h · η̂f)(x) = T̂ h(f(x),O(x)) = (f(x), Th(O(x)))
= (g(h(x)),O(h(x))) = η̂g(h(x)) = (η̂g · h)(x),
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for every x ∈ X. Moreover, the multiplication µ of the monad T defines a
multiplication µ̂ = (µ̂f)f for T̂:

T̂ T̂X
µ̂f

//

T̂ T̂ f ""E
EE

EE
EE

EE
T̂X

T̂ f}}||
||

||
||

Y

, (z,Φ) 7→ (z, µX · Tπf(Φ)).

Again, µ̂f is continuous because it is continuous componentwise, and both

T̂ T̂X and T̂X have product topologies. For each h : f → g, the diagram

T̂ T̂X
µ̂f

//

T̂ T̂ h
��

T̂X

T̂ h
��

T̂ T̂ Y
µ̂g

//
T̂ Y

commutes: for every (z,Φ) ∈ T̂ T̂X, to show that the following equality holds

(T̂ h · µ̂f)(z,Φ) = (µ̂g · T̂ T̂ h)(z,Φ),

that is, (z, Th · µX · Tπf(Φ)) = (z, µY · Tπg · T T̂h(Φ)), we proceed as follows:

Th · µX · Tπf = µY · TTh · Tπf (µ is a natural transformation)
= µY · T (Th · πf)

= µY · T (πg · T̂ h) (Th · πf = πg · T̂ h)

= µY · Tπg · T T̂h.

Theorem 2.1. For T = F0, F1, Fω or FΩ, and for each T0-space Z, the
triple T̂ = (T̂ , η̂, µ̂) is a Kock-Zöberlein monad on Top0 ↓ Z.

Proof : We start by proving that T̂ is a monad. For each object f : X → Z

in Top0 ↓ Z, the proof of the commutativity of the diagram

T̂X
η̂T̂ f

//

1T̂X ##G
GGGGGGG
T̂ T̂X

µ̂f

��

T̂X
T η̂f
oo

1T̂X{{wwwwwwww

T̂X
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needs some calculations:

µ̂f · η̂T̂ f(z, ϕ) = µ̂f(z, ηT̂X(z, ϕ)) (because T̂ f(z,Φ) = z)

= (z, µX · Tπf · ηT̂X(z, ϕ)) (by definition of µ̂)
= (z, µX · ηTX · πf(z, ϕ)) (η is a natural transformation)
= (z, πf(z, ϕ)) = (z, ϕ), and

µ̂f · T̂ η̂f(z, ϕ) = µ̂f(z, T η̂f(ϕ)) (by definition of T̂ )
= (z, µX · Tπf · T η̂f(ϕ))
= (z, µX · TηX(ϕ)) = (z, ϕ).

Next, we need to show that the following diagram

T̂ T̂ T̂X
µ̂T̂ f

//

T̂ µ̂f
��

T̂ T̂X

µ̂f

��

T̂ T̂X
µ̂f

//
T̂X

is also commutative, that is,

µ̂f · µ̂T̂ f(z,Θ) = µ̂f(z, µT̂X · TπT̂ f(Θ))

= (z, µX · Tπf · µT̂X · TπT̂ f(Θ))

= (z, µX · Tπf · T µ̂f(Θ)) = µ̂f · T̂ µ̂f(z,Θ),

for every (z,Θ) ∈ T̂ T̂ T̂X, which follows from the commutativity of the
following diagram

T T̂ T̂X
T µ̂f

//

TπT̂ f
��

T T̂X

Tπf

��

TT T̂X
TTπf

//

µeTX

��

TTTX
TµX

//

µTX

��

TTX

µX

��

T T̂X
Tπf

// TTX
µX

// TX;

the bottom squares are naturality diagrams for µ, while commutativity of the
upper rectangle follows from an easy calculation showing that µX ·Tπf ·πT̂ f =
πf · µ̂f .
It remains to be shown that T is a KZ-monad, that is, for each f : X → Z,

T̂ η̂f ≤ η̂T̂ f .

Recall that

η̂T̂ f : T̂X → T̂ T̂X, (z, ϕ) 7→ (z, ηT̂X(z, ϕ)) = (z, {U ∈ OT̂X | (z, ϕ) ∈ U})
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and

T̂ η̂f : T̂X → T̂ T̂X, (z, ϕ) 7→ (z, T η̂f(ϕ)) = (z, {U ∈ OT̂X | η̂−1
f (U) ∈ ϕ},

and we want to show that

ηT̂X(z, ϕ) ⊆ T η̂f(ϕ).

Let U ∈ ηT̂X(z, ϕ). Since T̂X is a subspace of the product Z × TX, OT̂X is
generated by

W × V ♯ := {(w, ψ) ∈ T̂X |w ∈ W and V ∈ ψ},

for W ∈ OZ and V ∈ OX. Therefore there exist W ∈ OZ and V ∈ OX such
that (z, ϕ) ∈ W × V ♯ ⊆ U. Now

η̂−1
f (W × V ♯) = {x ∈ X | f(x) ∈ W and x ∈ V } = f−1(W ) ∩ V.

The proof is finished once we show that f−1(W ) ∩ V ∈ ϕ, since then also
U ∈ ϕ. That V ∈ ϕ follows from (z, ϕ) ∈W × V ♯, while f−1(W ) ∈ ϕ follows

from (z, ϕ) ∈ T̂X ⇔ O(z) ⊆ Tf(ϕ).

3. Fibrewise injectivity

In this section we will use Escardó’s result and the fibrewise filter monads in
Top0 to characterize injective continuous maps with respect to some classes
of embeddings. We recall that a continuous map f : X → Z is injective with
respect to a class H of embeddings, or H-injective, if, for every h : A → B,
u : A → X and v : B → Y such that f · u = v · h, there exists a lifting
d : B → X making the following diagram commutative:

A
u

//

h
��

X

f
��

B v
//

d
>>}}}}}}}

Z

(∗)

The first step in our study of fibrewise injectivity concerns T̂ -embeddings.

Theorem 3.1. Let α = 0, 1, ω,Ω. For a continuous map h : f → g in
Top0 ↓ Z, the following conditions are equivalent:

(i) h is a Fα-embedding;

(ii) h is a F̂α-embedding;
(iii) h is an embedding and h∗ preserves α-joins.
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Proof : In Proposition 1.3 we have showed that (i) ⇔ (iii).
Let T = Fα. To prove that (ii) ⇒ (iii) we use the same arguments as in

the proof of (i) ⇒ (ii) of Proposition 1.3, replacing η by η̂. Indeed, observing
that in the commutative diagram

X
η̂X

//

h
��

T̂X

T̂ h
��

Y
η̂Y

// T̂ Y,

η̂X , T̂ h, η̂T are embeddings, we conclude that h is an embedding as well; and
we define the map r : OX → OY as the composition

OX
Z×( )♯

//
OT̂X

(T̂ ∗h)−1

//
OT̂ Y

η̂−1

Y
// OY,

which preserves α-joins because each of the composites does. An easy calcu-
lation shows that h−1 ⊣ r, and so h∗ = r preserves α-joins.
To prove that (iii) ⇒ (ii) we just observe that the continuous map T ∗h :

TY → TX defined in the proof of (ii) ⇒ (i) in Proposition 1.3 induces a
continuous map

T̂ ∗h : T̂ Y → T̂X, (z, ψ) 7→ (z, T ∗h(ψ)),

which clearly satisfies T̂ h · T̂ ∗h ≤ 1T̂Y and T̂ ∗h · T̂ h = 1T̂X .

Now we recall, from the equivalent conditions characterizing KZ-monads,
that a continuous map f : X → Z has a T̂ -algebra structure if, and only if,
there exists a continuous map l : T̂X → X such that f · l = T̂ f , l · η̂f = 1X
and η̂f · l ≥ 1T̂X . We introduce the fibrewise way-below relation with respect
to a monad T, where T is one of the four filter monads we defined: for each
U, V ∈ OX and W ∈ OZ,

V ≪T

W U :⇔ (∀(z, ϕ) ∈ W × V ♯ ⊆ T̂X) limϕ ∩ f−1(z) ∩ U 6= ∅.

In case T is the prime filter monad, this relation coincides with Richter’s
fibrewise way-below relation, stated in terms of tied filters (see [16]).

Theorem 3.2. For α = 0, 1, ω,Ω, the following conditions are equivalent,
for a continuous map f : X → Z:

(i) f : X → Z is Hα-injective,

(ii) f : X → Z has an F̂α-algebra structure,
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(iii) (a) for every (z, ϕ) ∈ F̂αX, there is a least limit point of ϕ in f−1(z),
(b) (∀x ∈ X) (∀U ∈ O(x)) (∃W ∈ O(f(x))) (∃V ∈ O(x)) : V ≪Fα

W U .

Proof : Let T = Fα. (i) ⇔ (ii) follows from Escardó’s Theorem (see Theorem

1.2) since T -embeddings and T̂ -embeddings coincide, and T̂ is a KZ-monad.

(ii) ⇒ (iii): Assume the existence of the continuous map l : T̂X → X as
above. By adjointness,

(∀x ∈ X) (∀(z, ϕ) ∈ T̂X) l(z, ϕ) ≤ x ⇔ (z, ϕ) ≤ (f(x),O(x)).

Hence l(z, ϕ) is the least limit point of ϕ in f−1(z), and so condition (a)
holds. To prove (b) we use continuity of l: let x ∈ X and U ∈ O(x). Since
(f(x),O(x)) ∈ l−1(U), which is open, (f(x),O(x)) belongs to a basic open

subset W × V ♯ of T̂X contained in l−1(U). But this means exactly that
V ≪T

W U and (b) follows.
(iii) ⇒ (ii): Conversely, assume that (a) and (b) hold. Define, for each

(z, ϕ) ∈ T̂X, l(z, ϕ) as the least limit point of ϕ in f−1(z), whose existence

is guaranteed by (a). To check continuity of l : T̂X → X, let (z, ϕ) ∈ T̂X,
x = l(z, ϕ) and U ∈ O(x). Let W and V be as in (b). Then (z, ϕ) ∈ W ×V ♯,
and, for any (w, ψ) ∈ W × V ♯, by (b) there exists x′ ∈ f−1(w) ∩ U such
that ψ converges to x′. Then l(w, ψ) = x′′ ≤ x′ since both are limit points
of ψ contained in f−1(w), and so x′′ ∈ f−1(w) ∩ U since open subsets are
down-sets. Therefore l(W × V ♯) ⊆ U and so the map l is continuous.

As pointed out in the proof above, condition (a) guarantees the existence of
a monotone map l : TX → X left adjoint to ηX . Its continuity is guaranteed
by condition (b), which is both a generalization of T-core-compactness in the
sense of Hofmann [13] and fibrewise core-compactness in the sense of Richter
[16]. Therefore we call a continuous map f : X → Z satisfying the condition

(∀x ∈ X) (∀U ∈ O(x)) (∃W ∈ O(f(x))) (∃V ∈ O(x)) : V ≪T

W U

fibrewise T-core-compact. We observe that, for the prime filter monad, our
notion of fibrewise Fω-core-compactness coincides with Richter’s notion of
fibrewise core-compactness [16], and so this notion captures exponentiability
exactly as in the object case.

Lemma 3.3. For a continuous map f : X → Z, the following conditions are
equivalent:

(i) f is fibrewise T-core-compact;
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(ii) for each open subset U of X,

U =
⋃

{V ∩ f−1(W ) |V ∈ OX, W ∈ OZ, V ∩ f−1(W ) ≪T

W U ∩ f−1(W )}.

Proof : (i) ⇒ (ii): Let U ∈ OX and x ∈ U . By (i) there is V ∈ O(x) and
W ∈ O(f(x)) such that V ≪T

W U . If (z, ϕ) ∈ W × (V ∩ f−1(W ))♯ ⊆W ×V ♯,
then

limϕ ∩ f−1(z) ∩ (U ∩ f−1(W )) = limϕ ∩ f−1(z) ∩ U 6= ∅,

and therefore V ∩ f−1(W ) ≪T

W U ∩ f−1(W ).
(ii) ⇒ (i): Let x ∈ X and U ∈ O(x). By (ii) there exist V ∈ OX and

W ∈ OZ such that x ∈ V ∩f−1(W ) and V ∩f−1(W ) ≪T

W U∩f−1(W ). Then,

for Ṽ = V ∩f−1(W ), one has x ∈ Ṽ , f(x) ∈W and Ṽ ≪T

W U ∩f−1(W ) ⊆ U ,

hence Ṽ ≪T

W U .

In case T is the filter monad F0, one can conclude in addition that:

Proposition 3.4. Every fibrewise F0-core compact continuous map f : X →
Z is open.

Proof : Let U ∈ OX; F0-core compactness of f gives that:

(∀x ∈ U) (∃Wx ∈ O(f(x))) (∃Vx ∈ O(x)) : Vx ≪
F0

Wx
U.

In order to conclude that f(U) is open, now we will show that, for each
x ∈ U , Wx ⊆ f(U). Let z ∈ Wx. Consider the filter ϕ on OX generated by

{f−1(A) ∩ Vx : A ∈ O(z)}.

Then Vx ∈ ϕ and, for each A ∈ O(z), f−1(A) ∈ ϕ, that is F0f(ϕ) → z.

Hence (z, ϕ) ∈ Wx × V ♯ ⊆ F̂X and so, by definition of the fibrewise way-
below relation, we have

limϕ ∩ f−1(z) ∩ U 6= ∅;

this implies that z ∈ f(U) and the conclusion follows.

Now, in order to characterize fibrewise injectivity, we need to consider a
fibrewise version of T-stability. We say that f : X → Z is fibrewise T-stable
if, for every finite index set J and families (Ui)i∈J , (Vi)i∈J of open subsets of
X, and (Wi)i∈J of open subsets of Z, with W :=

⋂
i∈J Wi,

(∀i ∈ J) Vi ≪
T

Wi
Ui ⇒

⋂

i∈J

Vi ≪
T

W

⋂

i∈J

Ui. (†)
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We remark that, for f : X → Z, in case the finite set J is empty, condition
(†) reads as X ≪T

Z X, which means that f is fibrewise compact, that is f is
proper à la Bourbaki [2]. The condition of fibrewise T-stability for non-empty
families reduces to:

(∀U1, U2, V1, V2 ∈ OX) (∀W ∈ OZ)
V1 ≪

T

W U1 & V2 ≪
T

W U2 ⇒ V1 ∩ V2 ≪
T

W U1 ∩ U2.

Lemma 3.5. For α = 0, 1, ω,Ω, if f : X → Z is fibrewise Fα-core-compact,
then the following conditions are equivalent:

(i) f is fibrewise Fα-stable;

(ii) (∀(z, ϕ) ∈ F̂αX) limϕ ∩ f−1(z) is an irreducible set;

(iii) (∀(z, ϕ) ∈ F̂αX) limϕ ∩ f−1(z) is an irreducible set.

Proof : (ii) ⇔ (iii) follows from the fact that A ⊆ X is irreducible if, and only
if, A is irreducible.
(i) ⇒ (ii): Let T = Fα and (z, ϕ) ∈ T̂X. Then, from X ≪T

Z X we conclude
that A := limϕ ∩ f−1(z) 6= ∅. Let U1, U2 be open subsets of X such that
U1 ∩ A 6= ∅ 6= U2 ∩A. Let x1 ∈ U1 ∩A and x2 ∈ U2 ∩A. Since f is fibrewise
T-core-compact, there exist W1 ∈ O(f(x1)) = O(z), V1 ∈ O(x1), W2 ∈ O(z)
and V2 ∈ O(x2) such that

V1 ≪
T

W1
U1 and V2 ≪

T

W2
U2.

By (i) it follows that V1∩V2 ≪T

W1∩W2
U1∩U2. Since (z, ϕ) ∈ (W1∩W2)×(V1×

V2)
♯, there is a limit point of ϕ in f−1(z)∩ (U1∩U2), that is U1∩U2∩A 6= ∅.

Hence A is irreducible as claimed.
(ii) ⇒ (i): If (z, ϕ) ∈ T̂X, irreducibility of limϕ ∩ f−1(z) implies that it

is non-empty, hence X ≪T

Z X. Now let V1 ≪T

W U1 and V2 ≪T

W U2, with
U1, U2, V1, V2 ∈ OX and W ∈ OZ. Whenever (z, ϕ) ∈ W × (V1 × V2)

♯,

(z, ϕ) ∈ W × V
♯
1 and (z, ϕ) ∈ W × V

♯
2 , and therefore limϕ ∩ f−1(z) ∩ U1 6=

∅ 6= limϕ ∩ f−1(z) ∩ U2. Irreducibility of limϕ ∩ f−1(z) gives then limϕ ∩
f−1(z) ∩ (U1 ∩ U2) 6= ∅, i.e. V1 ∩ V2 ≪T

W U1 ∩ U2.

As in [17], we say that a continuous map f : X → Z is fibrewise sober if,
for every irreducible closed subset A of X and z ∈ Z,

f(A) = {z} ⇒ (∃! x ∈ f−1(z)) : A = {x}.

We point out that in [17] Richter and Vauth proved that this notion inherits
fibrewisely several properties of sober spaces. Here we add another interest-
ing property of fibrewise sober continuous maps, namely they are the algebras
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for the fibrewise completely prime filter monad, or, equivalently, the injective
continuous maps with respect to completely flat embeddings. This result fol-
lows from the characterization theorem below and the fact that, as for spaces,
for the completely prime filter monad FΩ, fibrewise FΩ-core-compactness and
fibrewise FΩ-stability trivialize.
We are now able to prove our characterization theorem:

Theorem 3.6. For α = 0, 1, ω,Ω, and for a continuous map f : X → Z, the
following conditions are equivalent:

(i) f is Hα-injective;
(ii) f is fibrewise sober, fibrewise Fα-core-compact and fibrewise Fα-stable.

Proof : Let T = Fα. (ii) ⇒ (i): First we want to define l : T̂X → X. Let

(z, ϕ) ∈ T̂X. Since A := limϕ ∩ f−1(z) is irreducible, and f(A) = {z}, by
fibrewise sobriety of f we obtain a unique x ∈ f−1(z) such that A = {x}.
Therefore x ∈ limϕ ∩ f−1(z) ⊆ limϕ = limϕ. Define l(z, ϕ) := x. By
construction, it is the least limit point of ϕ in f−1(z), and it is straightforward
to check that such l satisfies the (in)equalities needed. As shown in Theorem
3.2, continuity of l follows from fibrewise T-core-compactness of f .
(i) ⇒ (ii): Existence of l guarantees that X ≪T

Z X, while continuity of l
implies that f is fibrewise T-core-compact, as it was shown in 3.2. To show
that, for (z, ϕ) ∈ T̂X, A := limϕ ∩ f−1(z) is irreducible, let U1, U2 be open
subsets of X such that U1∩A 6= ∅ 6= U2∩A. Then l(z, ϕ) ≤ x1 ∈ U1∩A and
l(z, ϕ) ≤ x2 ∈ U2∩A. Hence l(z, ϕ) ∈ U1∩U2∩A and so A is irreducible. To
show that f is fibrewise sober, let B be an irreducible closed subset of X such
that f(B) = {z}. Let ϕ := {U ∈ OX |U ∩ B 6= ∅}. Then ϕ is a completely
prime filter on OX, hence it belongs to TX, and, moreover, f(ϕ) converges

to z, that is (z, ϕ) ∈ T̂X. Then l(z, ϕ) ∈ limϕ∩ f−1(z) ⊆ limϕ = B, and so

{l(z, ϕ)} ⊆ B. Let us check that every x′ ∈ B belongs to {l(z, ϕ)}, so that

we may conclude that B = {l(z, ϕ)}. If x′ ∈ B, then (f(x′), ϕ) ∈ T̂X and

f(x′) ∈ f(B) ⊆ {z}, that is z ≤ f(x′). Therefore l(z, ϕ) ≤ l(f(x′), ϕ) ≤ x′

and the conclusion follows, since this argument also shows unicity of l(z, ϕ),
as the least point in B.

For T = F0, this Theorem, together with Proposition 3.4, gives:

Theorem 3.7. For a continuous map f : X → Z, the following conditions
are equivalent:
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(i) f is injective with respect to embeddings;
(ii) (a) f is open;

(b) f is fibrewise sober;
(c) (∀x ∈ X) (∀U ∈ O(x)) (∃V ∈ O(x)) : V ≪F0

f(V ) U ;

(d) (∀ϕ ∈ FX) (∀z ∈ Z) limϕ∩f−1(z) is either empty or irreducible.

Final Remarks.

(1) The fibrewise construction of the monad T̂ based on a KZ-monad
T can be realized in a more general PoSet-enriched category C.
The proof that, in our setting, the KZ property and the class of
T -embeddings are preserved is quite particular, and does not fore-
see a general treatment of the problem. The setting described in [9]
seems to be suitable for this study, since it encompasses quite natu-
ral KZ-monads that can be lifted fibrewisely, preserving the class of
embeddings. We do not know however under which conditions the
KZ-property is preserved.

(2) Theorem 3.6 presents possible candidates for fibrewise notions of con-
tinuous lattice and Scott continuous domain, that seem to deserve
further study.

4. Fibrewise injectivity in Top

In this section we show that the results on fibrewise injectivity obtained in
Top0 can be extended to the category of topological spaces. First we recall
that Top0 is an epireflective subcategory of Top, and we list the properties

of the unit r = (rX : X → RX)X∈Top of the adjunction (Top
R

−→ Top0) ⊣
(Top0 −→ Top):

Lemma 4.1. For a topological space X, let rX : X → RX be its T0-
reflection. Then:

(1) for x, x′ ∈ X, rX(x) = rX(x
′) if and only if {x} = {x′};

(2) rX is an open surjection;
(3) rX is an initial map, that is, for U ⊆ X, U ∈ OX if and only if

U = r−1
X (V ) for some V ∈ O(RX);

(4) rX is injective with respect to embeddings;
(5) for each U ∈ OX, V ∈ O(RX), r−1

X (rX(U)) = U and rX(r
−1
X (V )) = V ;

(6) (rX)∗ = rX : OX → O(RX), U 7→ rX(U).

Proof : (1), (2) and (3) are well-known properties of the T0-reflection.
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(4) Given a commutative diagram in Top

A
u

//

h
��

X

rX
��

B
v

// RX

if h is an embedding then there is a map d : B → X such that rX · d = v

and d · h = u, since in Set every surjection is injective with respect to any
injective map. Due to the initiality of rX and the fact that rX · d = v is a
continuous map, we can conclude that d is continuous.
(5) Since rX is surjective, rX(r

−1
X (V )) = V for every open subset V of

RX. If U ∈ OX, then U = r−1
X (V ) for some V ∈ O(RX), and therefore

r−1
X (rX(U)) = r−1

X (V ) = U .
(6) From (5) it follows easily that rX : OX → O(RX), U 7→ rX(U), is the

right adjoint to r−1
X , that is (rX)∗ = rX .

Remark 4.2. The argument used in the proof of (4) shows that, in Top,
every initial surjective continuous map is injective with respect to embed-
dings; in particular every surjective continuous map with indiscrete domain
is injective with respect to embeddings.

Now it is easy to prove that:

Proposition 4.3. For a continuous map h : A → B in Top, and for α =
0, 1, ω,Ω, the following conditions are equivalent:

(i) h is an embedding and h∗ preserves α-joins;
(ii) Rh is an Fα-embedding.

Proof : The proof that h is an embedding if and only if Rh is an embedding
can be found in [21]. Moreover, since the diagram

A
rA

//

h
��

RA

Rh
��

B
rB

// RB

is commutative, (rB)∗ · h∗ = (rB · h)∗ = (Rh · rA)∗ = (Rh)∗ · (rA)∗, and so

h∗ = r−1
B · (rB)∗ · h∗ = r−1

B · (Rh)∗ · (rA)∗ = r−1
B · (Rh)∗ · rA, and

(Rh)∗ = (Rh)∗ · (rA)∗ · r
−1
A = (rB)∗ · h∗ · r

−1
A = rB · h∗ · r

−1
A .
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Since, for every topological space X, r−1
X : O(RX) → X and rX : OX →

O(RX) preserve joins, we conclude that h∗ preserves α-joins if and only if
(Rh)∗ preserves α-joins.

From now on H̃α is the class of embeddings h in Top such that h∗ preserves

α-joins, for α = 0, 1, ω,Ω, and Hα = H̃α ∩Top0 the class of Fα-embeddings.

Corollary 4.4. If f : X → Z is a continuous map between T0-spaces, then
the following conditions are equivalent:

(i) f is injective with respect to H̃α in Top,
(ii) f is injective with respect to Hα in Top0.

Proof : (i) ⇒ (ii) is immediate. (ii) ⇒ (i): If the diagram

A
u

//

h
��

X

f
��

B
v

// Z

is commutative with h ∈ H̃α, then in the following diagram Rh belongs to
Hα

A
u

//

h

��

rA

""D
DDD

DD X

f

��

RA

Rh

��

u′ <<yyyyyy

B
v

//

rB ""D
DD

DD
D Z

RB
v′

<<yyyyyy

and so there is d′ : RB → X such that f · d′ = v′ and d′ · Rh = u′. The
continuous map d = d′ · rB is the required lifting.

In [5] Cagliari and Mantovani showed that:

Theorem 4.5. For a continuous map f : X → Z in Top, the following
assertions are equivalent:

(i) f is injective with respect to embeddings;
(ii) Rf is injective with respect to embeddings in Top0 and, for every

indiscrete component C in X, f(C) is an indiscrete component in Z.

(Here by indiscrete component it is meant a maximal indiscrete subspace.)

The techniques of [5] can be used to characterize H̃α-injective maps, in
Top, using our characterizations of Hα-injective maps, in Top0. For that we
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need the following well-known properties of H-injective maps, for a class H
of embeddings.

Lemma 4.6. For f : X → Z and g : Z → Y ,

(1) If f, g ∈ Inj(H), then g · f ∈ Inj(H).
(2) If g · f ∈ Inj(H), then g ∈ Inj(H).

Theorem 4.7. Let α = 0, 1, ω,Ω. For a continuous map f : X → Z in Top,
the following conditions are equivalent:

(i) f is H̃α-injective;
(ii) Rf is Hα-injective and, for every indiscrete component C in X, f(C)

is an indiscrete component in Z.

Proof : (i) ⇒ (ii): To conclude that Rf is H̃α-injective, hence Hα-injective
by Corollary 4.4, we observe that from Rf · rX = rZ ·f it follows that Rf · rX
is H̃α-injective, as a composition of the H̃α-injective maps rZ and f , and

then also Rf is H̃α-injective, by Lemma 4.6. To check the condition on
images of indiscrete components we note that, for any indiscrete subspace C
of X, denoting by D the largest indiscrete subspace of Z containing f(C),

the embedding C → f−1(D) belongs to H̃α, and the existence of a lifting for
the diagram

C //

��

X

f
��

f−1(D)
f |

// Z

implies that C = f−1(D), and therefore D = f(C) because f is surjective.
(ii) ⇒ (i): Given a commutative diagram

A
u

//

h
��

X

f
��

B
v

// Z

with h ∈ H̃α, there is a lifting d : B → RX for the diagram

A
u

//

h
��

X
rX

// RX

Rf
��

B
v

// Z
rZ

// RZ
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If we build now the required lifting t : B → X in each fibre of rX so that
rX · t = d we know immediately that t is continuous, by initiality of rX . In
order to do that we first observe that, for each x ∈ RX, Cx = r−1

X (x) is a
maximal indiscrete subspace of X, hence f(Cx) is also a maximal indiscrete
subspace of Z, and so f(Cx) = r−1

Z (Rf(x)). The (co)restriction f | : Cx →
f(Cx) of f is surjective with indiscrete domain, hence it is injective with
respect to embeddings. Therefore the commutative diagram

u−1(Cx)
u|

//

h|
��

Cx

f |
��

d−1(x)
v|

// f(Cx)

has a lifting tx : d
−1(x) → Cx. The map

t : B =
.⋃
d−1(x) → X =

.⋃
Cx

z 7→ td(z)(z)

satisfies the equalities f ·t = v and t·h = u. It is continuous because rX ·t = d

and rX is initial.

Since a topological (T0-)space X is H̃α-injective in Top (Top0) if and

only if the continuous map f : X → {∗} is H̃α-injective in Top (Top0), and
f : X → {∗} sends trivially indiscrete components to indiscrete components,
from the Theorem it follows that:

Corollary 4.8. Let α = 0, 1, ω,Ω. For a topological space X, the following
conditions are equivalent:

(i) X is H̃α-injective;
(ii) RX is Hα-injective.

5. Fibrewise injectivity and weak factorization systems

In this final section we show that these classes of embeddings and respective
injective continuous maps form weak factorization systems. First we remark
that Diagram (∗) in the definition of H-injective morphism states that every
morphism in H has the left lifting property with respect to every H-injective
morphism (see [1] for details). We recall that a weak factorization system in
a category is a pair (L,R) of morphism classes such that:

(1) every morphism has a factorization as an L-morphism followed by an
R-morphism, and
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(2) every morphism in L has the left lifting property with respect to every
morphism in R.

When L = H is a class of embeddings, and R = Inj(H) is the class of
H-injective morphisms, property (2) follows directly from the definition of
injectivity. Moreover, in case H = Hα, for every continuous map f : X → Z

in Top0, condition (1) follows from the factorization:

X
f

//

η̂f !!D
DD

DD
DD

D Z

F̂αX
F̂αf

=={{{{{{{{

• η̂f is a F̂α-embedding (=Fα-embedding), with F̂ ∗
α(η̂f) = µ̂f ;

• F̂αf is injective with respect to Fα-embeddings, since it has a (free)

F̂α-algebra structure.

Therefore we can conclude that:

Theorem 5.1. For α = 0, 1, ω,Ω, the pair (Hα, Inj(Hα)) is a weak factor-
ization system in Top0.

Finally we remark that an analogous argument shows that from Escardó’s
Theorem (cf. Theorem 1.2) it follows that:

Theorem 5.2. Top0 has enough Hα-injective objects, for α = 0, 1, ω,Ω.

To prove that (H̃α, Inj(H̃α)), α = 0, 1, ω,Ω, is a weak factorization system
in Top, we first recall from [1] that:

Proposition 5.3. Let C be a category with finite products and H a left can-
cellable class of morphisms, containing all isomorphisms. Then the following
conditions are equivalent:

(i) (H, Inj(H)) is a weak factorization system;
(ii) C has enough H-injective objects.

It is well-known that, in Top, the class H̃0 of embeddings is left cancellable,

that is, if g · f ∈ H̃0, then f ∈ H̃0. It remains to be shown that:

Lemma 5.4. For α = 1, ω,Ω, the class H̃α is left cancellable.
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Proof : We have to show that, given embeddings f : X → Z and g : Z → Y ,
if (g ·f)∗ preserves α-joins, then also f∗ preserves α-joins. Assume that (g ·f)∗
preserves α-joins. Since, for every W ∈ OZ,

g−1(g∗(W )) = g−1(
∨

{V ∈ OY ; g−1(V ) = W}) =W,

one has, for every family (Ui)i∈I of open subsets of X indexed by a set I with
cardinality less than α,

f∗(
⋃

iUi) = g−1(g∗(f∗(
⋃

i Ui))) = g−1(
⋃

i g∗(f∗(Ui)))
=

⋃
i g

−1(g∗(f∗(Ui))) =
⋃

i f∗(Ui),

that is, f∗ preserves α-joins.

Proposition 5.5. For α = 0, 1, ω,Ω, Top has enough H̃α-injective objects.

Proof : Given a topological space X and its T0-reflection rX : X → RX, any
section of rX is continuous, due to its initiality. Let s : RX → X be such a
section. Since Top0 has enough Hα-injective objects, let h : RX → B be an
Hα-embedding in an Hα-injective object B in Top0. The image, under the
functor R : Top → Top0, of the pushout in Top of h along s

RX
h

//

s
��

B

s′

��

X
k

// Y

is a pushout in Top0:

RX
h

//

Rs
��

B

Rs′

��

RX
Rk

// RY

From Rs = 1RX we can conclude that Rs′ is an isomorphism, hence Y is

H̃α-injective; moreover, Rk ∼= h belongs to Hα, and so k belongs to H̃α.

Theorem 5.6. For α = 0, 1, ω,Ω, the pair (H̃α, Inj(H̃α)) is a weak factor-
ization system in Top.
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