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Introduction

Over the past years, there have been several investigations devoted to the
construction of “free” categories of a specific type, a classical instance of this
being the free abelian category over a (pre)additive one [13, 2].
Abelian categories are, in particular, exact categories [3]: this naturally led

to the study of the free exact category over a category with finite limits, that
was first described in [7]. In particular, this result was useful to obtain a
conceptual construction in two steps of the free abelian category mentioned
above. It was later observed that, for the free exact completion, the assump-
tion that the original category had finite limits was never fully used, and
only the existence of finite weak limits was actually needed (recall that for a
weak limit the uniqueness requirement in the definition of a limit is simply
dropped). The exact completion over a category with weak finite limits [10],
called weakly lex in the following, is general enough to cover many further
examples, such as any algebraic category.
An interesting feature of free exact categories over weakly lex ones is that

they always possess enough regular projectives, a property which is quite
useful in homological algebra. One actually knows even more: an exact
category is the exact completion of a weakly lex category if and only if it
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has enough regular projectives and, in this case, it is the completion of its
full subcategory of regular projectives. More generally, any exact category
with enough projectives E is the exact completion of any of its projective
covers, that is of any full subcategory C of E whose objects are regular
projectives and that has, moreover, the property that for any object A in
E there is a regular epimorphism Ã // //A with Ã in C. For example, any
variety of universal algebras turns out to be the exact completion of its
full subcategory of free algebras. Similar considerations also apply to the
free regular completion over a weakly lex category (see [21] and references
therein). Many results on abelian categories can be recovered by using these
completions, and the proofs are general and simple (see [19]).
An important aspect in the study of these completions concerns the possi-

bility of characterizing those categories that appear as projective covers of a
free exact category. For instance, already in [13] it was shown that a category
is equivalent to a projective cover of an abelian category if and only if it is
preadditive with weak finite products and weak kernels. Similar characteri-
zations have been later established for the projective covers of categories that
are Mal’tsev [19], protomodular, semi-abelian [11], extensive [12], (locally)
cartesian closed categories [9, 18] and toposes [17].
The aim of this work is to extend the above list, by giving characterizations

of the projective covers of regular categories E which are unital, subtractive
[14] and strongly unital [5]. The investigation of these specific properties is
inspired from the “categorical equation”

strongly unital = unital + subtractive.

When E is a variety of universal algebras, our results isolate those properties
of the categories of free algebras that “force” E to be a unital, subtractive or
strongly unital variety, respectively. As a consequence we obtain some new
proofs of their varietal characterizations in terms of the categorical properties
of the corresponding algebraic theories (in the sense of [16]).

1. Projective covers

When C is a full subcategory of a category E one says that C is a projective
cover of E if two conditions are satisfied: 1) any object in C is regular
projective in E; 2) for any object A in E there exists a C-cover Ã of A, that
is an object Ã in C and a regular epimorphism Ã // //A.
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For example, if E is a (quasi)variety of universal algebras and C its full
subcategory of free algebras, then C is a projective cover of the (regular)
exact category E.
Recall that a finitely complete category is called regular [3] when it has a

pullback-stable (regular epimorphism, monomorphism) factorization system.

Remark 1.1. Let C be a projective cover of a category E. As a consequence
of Proposition 4 in [10], we have that C is weakly lex (i.e. it has weak
finite limits) whenever E is weakly lex. For instance, if X, Y are objects
in C, X Eoo //Y is a weak product in E and Ẽ // //E a C-cover of E, then

X Ẽoo //Y is a weak product in C. On the other hand, if E is a regular

category and X Coo //Y is a weak product in C, then the factorization
C // //X × Y is a regular epimorphism. Similar remarks apply also to all
(weak) finite limits.

Note that, if C is a pointed projective cover of a category E with kernel
pairs, then E is also pointed. Let us recall the argument: if P is the zero
object of C, then it must be the initial object of E, since, for any object
A of E, we can consider the C-cover a : Ã // //A and the unique morphism

i : P //Ã in C; this gives a morphism P //A. For the uniqueness, suppose

that there exists another morphism x : P //A. The fact that P is projective

gives a morphism j : P //Ã such that x = a ·j, and i = j since P is an initial
object in C. As for being a terminal object in E, first we notice that there
exists a unique morphism t : Ã //P in C. Next, we consider the C-cover

r : R̃ //R[a] of the kernel pair (R[a], a1, a2) of a. Then, we have the equality
t·a1 ·r = t·a2 ·r of two morphisms onto the terminal object of C. This gives a
(unique) morphism π : A //P such that π · a = t since a is the coequalizer of
its kernel pair in E. The uniqueness of the morphism A //P comes from the
fact that precomposition with the epimorphism a is the unique morphism t

in C.
In the next sections we shall give characterizations of the projective covers

of regular categories which are unital, subtractive and strongly unital.

2. Unital categories

We begin this section by recalling the main properties of unital categories
[5]. We then give a “weak” version of such categories in order to characterize
the projective covers of regular unital categories. In the presence of finite
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coproducts, we shall obtain a simple proof of the characterization of algebraic
(quasi)varieties which are unital.
In a category with pullbacks, strong and extremal epimorphisms coincide.

If, moreover, the category is regular, then the notions of regular, strong and
extremal epimorphisms coincide.
To simplify notation, we write 1 (instead of 1X) to denote the identity

morphism on any object X and just 0 to denote the null morphism from an
object X to an object Y , when the category is pointed.

Definition 2.1. ([5]) A category E is called unital when it is pointed, has
finite limits and, for every pair of objects X, Y in E, the pair of morphisms

X
〈1,0〉

//X × Y Y
〈0,1〉

oo is jointly strongly epimorphic.

Let E be a pointed category. A span X Z
f

oo
g

//Y in E is called punctual if
there exist morphisms s : X //Z and t : Y //Z such that f · s = 1, g · t =
1, f · t = 0 and g · s = 0. For example, for any pair of objects X, Y in

E, we have a punctual span X
〈1,0〉

//X × Y
π1oo

π2 //Y
〈0,1〉

oo . Unital categories can be

characterized through such spans as follows (see Theorem 1.2.12 of [4]):

Theorem 2.2. A pointed category with finite limits E is unital if and only

if for every punctual span X
s

//Z
f

oo
g

//
Y

t
oo in E, the induced factorisation 〈f, g〉 :

Z // //X × Y is a strong epimorphism.

We introduce the following definition, which is suggested by the observa-
tions made in Remark 1.1.

Definition 2.3. A category C is called w-unital when it is pointed, has weak

finite limits and for every punctual span X
s

//Z
f

oo
g

//
Y

t
oo , the span X Z

f
oo

g
//Y

is a weak product.

It is easy to see that any finitely complete w-unital category is necessarily
unital, since the factorization to the “true” product 〈f, g〉 : Z // //X × Y is
a split epimorphism, thus a strong epimorphism. Similar observations can
be made also for subtractive and strongly unital categories, which shall be
analysed in the next sections.
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Proposition 2.4. Let C be a pointed projective cover of a regular category
E. Then E is unital if and only if C is w-unital.

Proof : Suppose that E is unital. Since C is a projective cover of a regular cat-
egory E, which has finite limits, then C has weak finite limits (Remark 1.1).

Now, let X̃
s̃

//Z̃
f̃

oo
g̃

//
Ỹ

t̃

oo be a punctual span in C. Since it is also a punctual

span in E, which is unital, then 〈f̃ , g̃〉 : Z̃ // //X̃ × Ỹ is a regular epimorphism
in E. In other words, it represents a C-cover of the true product, so it is a
weak product in C (Remark 1.1).
Conversely, E is pointed, because C is pointed (see Section 1), and it has

finite limits. Let X
s

//Z
f

oo
g

//
Y

t
oo be a punctual span in E. We consider the C-

covers x : X̃ // //X and y : Ỹ // //Y , form the pullback U of x × y and 〈f, g〉

and take its C-cover α : Z̃ // //U

Z̃
α // //

〈f̃=f ′·α, g̃=g′·α〉 ""DD
DD

DD
DD

DD
U

u // //

〈f ′,g′〉

��

y

Z

〈f,g〉
��

X̃ × Ỹ
x×y

// //X × Y.

Note that, X̃
s′

//U
f ′

oo
g′

//
Ỹ

t′
oo is a punctual span in E, for s′ = (〈1, 0〉, s ·x) and t′ =

(〈0, 1〉, t · y). Since X̃ and Ỹ are projective and α is a regular epimorphism,
then there exists morphisms s̃ and t̃ such that s′ = α · s̃ and t′ = α · t̃.

We obtain a punctual span X̃
s̃

//Z̃
f̃

oo
g̃

//
Ỹ

t̃

oo in C. Since C is w-unital, then

(f̃ , g̃) is a weak product and, consequently, 〈f̃ , g̃〉 : Z̃ // //X̃ × Ỹ is a regular

epimorphism (Remark 1.1). Finally, the equality 〈f, g〉 · u · α = x× y · 〈f̃ , g̃〉
allows us to conclude that 〈f, g〉 is a regular epimorphism, thus a strong
epimorphism and, therefore, E is unital. 2

When working in a context that admits binary coproducts, (w-)unital cat-
egories can be characterized through a special type of punctual span (see
Proposition 1.2.18 in [4] for unital categories):
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Proposition 2.5. A pointed weakly lex category with binary coproducts C is
w-unital if and only, for every pair of objects X, Y in C, the canonical span

X X + Y
〈 10〉oo

〈 01〉 //Y is a weak product.

Proof : When C is w-unital, the span X X + Y
〈 10 〉oo

〈 01〉 //Y is a weak product,

since the span X
i1

//X + Y
〈 10〉oo

〈 01〉 //
Y

i2

oo is punctual.

Conversely, consider a punctual span X
s

//Z
f

oo
g

//
Y

t
oo and arbitrary morphisms

x : A //X, y : A //Y . By assumption, there is a morphism w : A //X + Y

such that 〈 10 〉 · w = x and 〈 01 〉 · w = y. So, there exists a morphism 〈 st 〉 · w :
A //Z such that f · 〈 st 〉 · w = x and g · 〈 s

t 〉 · w = y, proving that (f, g) is a
weak product. 2

Recall that a variety of universal algebras is called a Jónsson-Tarski variety
when its theory contains a unique constant 0 and a binary operation + such
that x+0 = x = 0+x [15]. An (internal) unital coalgebra in any category E

with binary coproducts is defined as an object X equipped with a morphism
+ : X //X +X such that 〈 1

0 〉 ·+ = 1 = 〈 0
1 〉 ·+.

It is known that a variety is Jónsson-Tarski if and only if it is a unital cat-
egory (Theorem 1.2.15 of [4]). This result is illustrated in the next theorem,
where we give a new proof based on the structural property of the category
of free algebras (given in Proposition 2.5).
Given a pointed algebraic variety E and its full subcategory C of free al-

gebras, we are in the situation where C is a pointed projective cover with
binary coproducts of the regular category E.

Theorem 2.6. Let E be an algebraic variety and C its full subcategory of
free algebras. Then the following statements are equivalent:

1. E is a unital category;
2. C is a w-unital category;
3. the free algebra X = F (1) on one generator is a unital coalgebra;
4. E is a Jónsson-Tarski variety.

Proof : 1. ⇔ 2. is exactly given by Proposition 2.4.
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2. ⇒ 3. If C is w-unital, we can consider the free algebra X = F (1) on one
generator, and then the diagram

X X +X
〈 01〉 //

〈 10〉oo X

is a weak product in C by Proposition 2.5. It follows that there exists a
morphism + : X //X +X with the property that 〈 10 〉 · + = 1 = 〈 0

1 〉 · +,
and X is a unital coalgebra.
3. ⇒ 2. IfX = F (1) is a unital coalgebra, then every free algebra A is a unital
coalgebra (since A is a copower A =

∐

i∈I X for some set I). Consider then
two morphisms b : A //B and c : A //C in C. Then the unital coalgebra
structure on A allows one to define a morphism

A
+

// A+ A
(b+c)

// B + C

such that 〈 1
0 〉 · (b+ c) ·+ = b and 〈 0

1 〉 · (b+ c) ·+ = c. This proves that the
span

B B + C
〈 01〉 //

〈 10 〉oo C

is a weak product, and C is w-unital.
3. ⇔ 4. Let T be an algebraic theory of E (in the sense of Lawvere [16]),
namely a small category with finite products with the property that E is the
category of product preserving functors from C to the category of sets. Via
the duality between varieties of algebras and algebraic theories, the existence
of a morphism + : X //X +X making the diagram

X

IIIIIIIIIII

IIIIIIIIIII X +X
〈 10〉oo

〈 01〉 //X

uuuuuuuuuuu

uuuuuuuuuuu

X

+

OO

commute in C corresponds exactly to the existence of a morphism
+ : T × T //T making the diagram

T

HHHHHHHHHHH

HHHHHHHHHHH

〈1,0〉
//T × T

+
��

T
〈0,1〉

oo

vvvvvvvvvvv

vvvvvvvvvvv

T

commute in the algebraic theory T (here T is the “generic object” of T). 2
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The proof above of the equivalence between conditions 3. and 4. follows
the technique used in [8] in the case of Mal’tsev varieties [6].

Remark 2.7. The arguments used in Theorem 2.6 can be adapted also to
the context of quasivarieties [1] (we never used the fact that E is an exact
category, but only the fact that E is regular). An interesting example of a
unital quasivariety is provided by the category of torsion-free monoids, which
are the monoids M satisfying the implications

an = bn ⇒ a = b, ∀a, b ∈ M, ∀n ∈ N
∗.

3. Subtractive categories

In this section we shall characterize the projective covers of regular sub-
tractive categories [14]. In the presence of finite coproducts, this will lead
to a simple proof of the characterization of algebraic pointed subtractive
(quasi)varieties, in the sense of Ursini [20].

Given a pointed category E, a span X Z
f

oo
g

//Y in E is called right (resp.
left) punctual if there exists a morphism t : Y //Z (resp. s : X //Z ) such
that g · t = 1 and f · t = 0 (resp. f · s = 1 and g · s = 0). Recall that a

reflexive graph is a span X
e

//G
doo c //

X
e

oo such that d · e = c · e = 1; a reflexive

relation is a reflexive graph such that d and c are jointly monomorphic. In
the text, we shall omit representing the reflexivity morphism e for reflexive
graphs and relations.

Definition 3.1. ([14]) A category E is called subtractive when it is pointed,
has finite limits and every right punctual reflexive relation is also left punc-
tual.

Equivalently, a subtractive category could be defined by demanding that
every left punctual reflexive relation is also right punctual. We now introduce
a “weak version” of this definition.

Definition 3.2. A category C is called w-subtractive when it is pointed,
has weak finite limits and every right punctual reflexive graph is also left
punctual.

Proposition 3.3. Let C be a pointed projective cover of a regular category
E. Then E is subtractive if and only if C is w-subtractive.
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Proof : Suppose that E is subtractive. Since C is a projective cover of a
regular category E, then C has weak finite limits (Remark 1.1). Now, let

X̃ G̃
d̃oo c̃ //

X̃
t̃

oo be a right punctual reflexive graph in C. Then, the (regular

epimorphism, monomorphism)-factorization (d̃, c̃) = (r1, r2) · p in E, gives
a right punctual reflexive relation 〈r1, r2〉 : R // //X̃ × X̃ in E. So, it is left

punctual, i.e. there exists a morphism s : X̃ //R such that r1 · s = 1 and

r2 · s = 0. By the projectivity of X̃ , there exists a morphism s̃ : X̃ //G̃ such
that p · s̃ = s. This morphism s̃ makes the original reflexive graph also left
punctual.

Conversely, E is pointed, since C is (see Section 1). Let X R
r1oo

r2 //X
t

oo be

a right punctual reflexive relation in E. Given C-covers x : X̃ // //X and

α : R̃ // //x−1(R),

R̃
α // //

〈r̃1,r̃2〉 ""EE
EE

EE
EE

EE
x−1(R)

u // //

〈r′
1
,r′

2
〉

��

y

R

〈r1,r2〉
��

X̃ × X̃
x×x

// //X ×X

the inverse image X̃ x−1(R)
r′
1oo

r′
2 //
X̃

t′
oo is necessarily a reflexive relation in E

which is also right punctual for t′ = (〈0, 1〉, t · x). Using the projectivity of
X̃ and the fact that α is a regular epimorphism, there exists a morphism

t̃ : X̃ //R̃ such that X̃ R̃
r̃1oo

r̃2 //
X̃

t̃

oo is a right punctual reflexive graph in C.

Therefore, it is also left punctual, i.e. there exists a morphism s̃ : X̃ //R̃
such that r̃1 · s̃ = 1 and r̃2 · s̃ = 0. Finally, the fact that x is a strong
(=regular) epimorphism, gives a unique factorization s in

X̃
x // //

u·α·s̃
��

X

〈1,0〉
��

s

zz
R //

〈r1,r2〉
//X ×X

which makes the original reflexive relation R in E also left punctual. 2

In the presence of binary coproducts, w-subtractive categories can be char-
acterized through a special kind of right punctual reflexive graph as follows:
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Proposition 3.4. A pointed weakly lex category with binary coproducts C is
w-subtractive if and only, for any object X in C, the right punctual reflexive

graph X X +X
〈 10〉oo

〈 11〉//X
i2

oo is left punctual.

Proof : The statement is obvious when C is w-subtractive. Conversely, con-

sider a right punctual reflexive graph X G
doo c //

X
t

oo . By assumption, there

exists a morphism s : X //X +X such that 〈 10 〉 · s = 1 and 〈 11 〉 · s = 0. Con-
sequently, there exists a morphism 〈 et 〉 · s : X //G, such that d · 〈 e

t 〉 · s = 1
and c · 〈 et 〉 · s = 0, proving that the reflexive graph is also left punctual. 2

Recall that a subtractive variety E, in the sense of Ursini [20], is such that
its theory contains a constant 0 and a binary operation s, called subtraction,
such that s(x, 0) = x and s(x, x) = 0. When in the theory of a variety there
is a unique constant, then E is a pointed variety. In this case it is known that
E is a subtractive variety if and only if E is a subtractive category (Theorem
2 of [14]).
The morphism s : X //X +X arising in the proof of Proposition 3.4 then

equips X with a subtractive coalgebra structure, i.e. such that the equalities
〈 10 〉 · s = 1 and 〈 11 〉 · s = 0 hold.

Corollary 3.5. A pointed weakly lex category with binary coproducts C is
w-subtractive if and only every object X in C is a subtractive coalgebra.

We are then ready to prove the main result in this section (see the proof
of Theorem 2.6 for the omitted details which we avoid repeating):

Theorem 3.6. Let E be an algebraic variety and C its full subcategory of
free algebras. Then following statements are equivalent:

1. E is a subtractive category;
2. C is a w-subtractive category;
3. the free algebra X = F (1) on one generator is a subtractive coalgebra;
4. E is a pointed subtractive variety.

Proof : The conditions 1. and 2. are equivalent by Proposition 3.3.
The conditions 2. and 3. are equivalent by Corollary 3.5.
3. ⇔ 4. By duality, the span

X
s

//X +X
〈 10 〉oo

〈 11〉//
X

i2

oo
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is punctual in C if and only if the corresponding span

T
〈1,0〉

//T × T
soo

π2 //
T

〈1,1〉
oo

is punctual in the algebraic theory T of E. 2

4. Strongly unital categories

In this last section, we are going to examine the characterization for pro-
jective covers of regular strongly unital categories. The link with unital and
subtractive categories is given by the categorical equation (see Proposition 3
of [14]):

unital + subtractive = strongly unital.

Definition 4.1. ([5]) A category E is called strongly unital when it is pointed,
has finite limits and for every object X in E, the pair of morphisms

X
〈1,1〉

//X ×X X
〈0,1〉

oo is jointly strongly epimorphic.

Let E be a pointed category. A span X Z
f

oo
g

//Y in E is called split right
punctual if there exist morphisms s : X //Z and t : Y //Z such that f · s =
1, g · t = 1 and f · t = 0, i.e. it is right punctual and f is split by s.
For example, for any object X in E, we have a split right punctual span

X
〈1,1〉

//X ×X
π1oo

π2 //
X

〈0,1〉
oo . It is actually possible to characterize strongly unital

categories through such spans (see Proposition 1.8.14 [4]). This fact led us
to introduce the following definition:

Definition 4.2. A category C is called w-strongly unital when it is pointed,

has weak finite limits and, for every split right punctual span X
s

//Z
f

oo
g

//Y
t

oo ,

the span X Z
f

oo
g

//Y is a weak product.

The “equation” relating the notions of (strongly) unital and of subtractive
categories still holds in the weakened context:

Proposition 4.3. A pointed weakly lex category C is w-strongly unital if and
only if it is w-unital and w-subtractive.
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Proof : Let C be a w-strongly unital category. Since any punctual span is
a split right punctual span, it then determines a weak product, and the
category C is w-unital. To prove that C is w-subtractive, consider a right

punctual reflexive graph X G
doo c //

X
t

oo . It is a split right punctual span, thus

a weak product. Then, there exists a morphism s : X //G such that d ·s = 1
and c · s = 0, which makes the reflexive graph also left punctual.

Conversely, suppose that C is w-unital and w-subtractive. Let X
s

//Z
f

oo
g

//
Y

t
oo

be a split right punctual span and consider arbitrary morphisms x : A //X

and y : A //Y . Any weak pullback of 〈f, g〉 along f × g

G
h //

〈d,c〉
��

Z

〈f,g〉
��

Z × Z
f×g

//X × Y

produces a right punctual reflexive graph Z G
doo c //

Z
τ

oo , where the reflexive

morphism is e = (〈1, 1〉, 1) and τ = (〈0, t〉, t). Then, it must also be left
punctual and, consequently, it is a weak product. This gives a morphism
w : A //G such that d · w = s · x and c · w = t · y. Then, there exists a
morphism h ·w : A //Z such that f ·h ·w = x and g ·h ·w = y, proving that
(f, g) is a weak product. 2

Corollary 4.4. Let C be a pointed projective cover of a regular category E.
Then E is strongly unital if and only if C is w-strongly unital.

Proof : The proof follows from Proposition 4.3 and Proposition 3 in [14]. 2

In a context that admits binary coproducts, (w-)strongly unital categories
can also be characterized through a special kind of punctual span. For
strongly unital categories, the characterization is similar to that of Proposi-
tion 1.2.18 in [4]. We omit the proof of the following result, which is similar
to the one of Proposition 2.5.

Proposition 4.5. A pointed weakly lex category with binary coproducts C

is w-strongly unital if and only the span X X +X
〈 10〉oo

〈 11〉 //X is a weak
product, for every object X in C.
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Recall that a pointed variety is strongly unital if and only if its corre-
sponding theory contains a unique constant 0 and a ternary operation p such
that p(x, 0, 0) = x and p(x, x, y) = y (Theorem 1.8.16 of [4]). This result
is illustrated in the next theorem, that uses the w-strongly unital property.
An object X equipped with a morphism p : X //X +X +X such that
〈

1
0
0

〉

· p = 1 and (〈 11 〉+ 1) · p = i2 is called a strongly unital coalgebra.

Theorem 4.6. Let E be an algebraic variety and C its full subcategory of
free algebras. Then following statements are equivalent:

1. E is a strongly unital category;
2. C is a strongly w-unital category;
3. the free algebra X = F (1) on one generator is a strongly unital coal-

gebra;
4. E is a pointed strongly unital variety.

Proof : 1. ⇔ 2. is given by Corollary 4.4.
2. ⇒ 3. If C is w-strongly unital, then for the free algebra X = F (1),

the split right punctual span X
i1

//X +X +X

〈

1
0
0

〉

oo
〈 11〉+1

//X +X
i2,3

oo gives a weak

product. Therefore, there exists a morphism p : X //X +X +X such that
〈

1
0
0

〉

· p = 1 and (〈 11 〉+ 1) · p = i2; X is a strongly unital coalgebra.

3. ⇒ 2. By using the same argument as in the implication 3. ⇒ 2. of Theorem
2.6 we know that any free algebra A has a strongly unital coalgebra structure
since the free algebra X = F (1) has such a structure. Consider then free
algebra morphisms b, c : A //Y . There exists a morphism

A
p

// A+A+A
b+〈 bc 〉 // Y + Y

such that 〈 10 〉 · (b+ 〈 bc 〉) · p = b and 〈 1
1 〉 · (b+ 〈 bc 〉) · p = c. This proves that

the span Y Y + Y
〈 10 〉oo

〈 11 〉 //Y is a weak product for any Y ∈ C, and C is
w-strongly unital by Proposition 4.5.
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3. ⇔ 4. Via the duality between varieties of algebras and algebraic theories,
the existence of a morphism p : X //X +X +X making the diagram

X

OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO X +X +X

〈

1
0
0

〉

oo
〈 11〉+1

//X +X

X

p

OO

i2

66mmmmmmmmmmmmmmm

commutative in C (where X = F (1)) corresponds to the existence of a mor-
phism p : T × T × T //T making the diagram

T

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

〈1,0,0〉
//T × T × T

p
��

T
〈1,1〉×1

oo

π2

wwoooooooooooooooo

T

commutative in the algebraic theory T of E. 2
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