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1. Introduction

Cosymplectic manifolds were introduced in the frame of quasi-Sasakian
manifolds by Blair in [2] as the closest odd-dimensional counterpart of Kéhler
manifolds. Since then cosymplectic geometry has attracted the interest of
many researchers also due to its role in mechanics and physics. Recently, a
great deal of work on the topological properties of cosymplectic manifolds
was done (see [6, 7, 9] among others). In particular, in [6] Chinea, de Ledén
and Marrero proved several important results for the Betti numbers of a
compact cosymplectic manifold.

The notion of 3-cosymplectic manifold is the transposition of the notion of
cosymplectic manifold to the setting of 3-structures. Namely, a 3-cosymplectic
manifold is a smooth manifold endowed with three distinct cosymplectic
structures related to each other by means of some relations formally sim-
ilar to the quaternionic identities (see Section 2 for more details). This note
contains a concise review of the main properties of 3-cosymplectic mani-
folds, recently obtained by the authors in [4, 5]. Especially, we emphasize
our results concerning Betti numbers of compact 3-cosymplectic manifolds.
Finally, we present a method for constructing non-trivial examples of such
compact manifolds.
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2. 3-cosymplectic geometry

An almost contact manifold is an odd-dimensional smooth manifold M
endowed with a tensor field ¢ of endomorphisms on the tangent spaces, a
vector field € and a 1-form 7 satisfying ¢? = —I + 1 ® &, where I denotes
the identity mapping of T'M. It is known that there exists a Riemannian
metric g which is compatible with the structure, in the sense that

96X, 9Y) = g(X,Y) = n(X)n(Y) (2.1)

for any X, Y € I'(T'M). When one fixes one compatible metric, the resulting
geometric structure (¢,&,n,g) is called an almost contact metric structure
on M. From (2.1) it follows that the bilinear form ® := g(-, ¢-) is in fact
a 2-form, called the fundamental 2-form of the almost contact metric mani-
fold. An almost cosymplectic manifold is an almost contact metric manifold
(M, ¢, &,m, g) such that both the 1-form 7 and the fundamental 2-form ® are
closed. If in addition the structure is normal, that is, if the Nijenhuis ten-
sor field of ¢ vanishes identically, (M, ¢,&,n, g) is said to be a cosymplectic
manifold. In terms of the covariant derivative of the structure tensor field
¢, this condition is equivalent to V¢ = 0. Now, we come to the main topic
of the paper. A triple of almost contact structures (¢1,&1,m), (P2, &2, m2),
(¢3,&3,m3) on a manifold M, related by the identities

¢7 - ¢a¢ﬁ — N3 ® fa - _¢ﬁ¢a + Mo @ gﬁa
& = 0alp = —0p€as Ty = Na © Pg = —13 © Pa,

for any even permutation («, 3, ) of the set {1, 2,3}, is called an almost con-
tact 3-structure on M. Then, the dimension of the manifold is necessarily of
the form 4n + 3. This notion was introduced independently by Kuo ([8]) and
Udriste ([12]). In particular, Kuo proved that one can always find a Riemann-
ian metric g which is compatible with each almost contact structure. If we
fix a compatible metric, we speak of almost contact metric 3-structure. Any
smooth manifold endowed with an almost contact metric 3-structure carries
two orthogonal distributions: the Reeb distribution V := span{{i, &, &3} and
the horizontal distribution H = ker(n;) Nker(n) Nker(ns).

A remarkable case is when each structure is cosymplectic. In this case we
say that M is a 3-cosymplectic manifold. In any 3-cosymplectic manifold
the forms 7, and ®, are harmonic. Moreover, the tensors &, Ma, ¢a, Pa
are all V-parallel. In particular, since the Reeb vector fields commute with
each other, it follows that the Reeb distribution is integrable and defines a

(2.2)
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3-dimensional foliation F3 of M. As it was proven in [4], F3 is a Riemannian
and transversely hyper-Kéhler foliation with totally geodesic leaves. More-
over, since dn, = 0, also the horizontal distribution H is integrable and hence
defines a Riemannian, totally geodesic foliation complementary to Fj.

Another important property of 3-cosymplectic manifolds that should be
mentioned is that they are Ricci-flat ([4]).

3. The cohomology of a 3-cosymplectic manifold

Let M be a compact 3-cosymplectic manifold of dimension 4n + 3. We will
denote by Hj,(M) the usual de Rham cohomology of M. By the Hodge-de
Rham theory each vector space H,(M) can be identified with the vector
space QF (M) of harmonic k-forms on M. Recall also that the space of basic
k-forms (with respect to F3) is defined by

Qp(M) = {w e Q" (M) | ic,w =0, ig,dw =0, for each a =1,2,3}.

Since the differential d preserves basic forms, it induces a cohomology H; (M)
which is called basic cohomology.

For each o € {1,2,3} we define two linear operators I, : Q¥(M) —
QFFY(M), w = o Aw, and A, : QM) — QF(M), w +— i¢,w. Moreover,
we define e, := [, 0 \,. By [6, Proposition 1] the operators [,, A,, and hence
€q, preserve harmonic forms. Then one can prove the following decomposition

QM) = D Yo, ), (3.1)

€1,€2,e3€{0,1}
where we have put, for each triple €1, €9, €3 € {0, 1},

Qk

Hei€e2€e3

(M) :={w € Qj(M) | eqw = €aw, a =1,2,3}.
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Moreover, one can prove that the operators [y, [, l3 induce isomorphisms
between the vector spaces (0 . . according to the following diagram

it (M) : it (M)
T, s
Q];{,ooo (M) & Qlf?ollo (M) I3
s Uiy (M) & Qi (M)
7 -
Qoo (M) - Qi (M)

for each 0 < k < 4n. Therefore, the whole information about cohomol-
ogy groups of M is contained in the vector spaces QIE,OOO(M ), 0 < k < dn.
It is worth to mention that Q%’OOO(M ) can be identified with the space of
basic harmonic k-forms on M (with respect to F3). In particular, b :=
dim(Qf; go(M)) is the k-th basic Betti number. Now, taking the decomposi-
tion (3.1) into account and using the above isomorphisms between the vector
spaces (2 (M), one gets the following formula for the k-th Betti number
of M

bp = bj + 30}, + 30} 5+ b} . (3.2)
On the other hand, one can prove (see [5] for more details) that, for each odd
integer k, Q’}LOOO(M ) is a H-module and thus b} is divisible by 4. Then by
(3.2) it follows that, for any odd integer k, by_1+ by, is divisible by 4. Another
restriction on the Betti numbers of a compact 3-cosymplectic manifold is the

following inequality
k+ 2
by > ( ) ) (3.3)

for 0 < k < 2n + 1, which is stronger than the analogous inequality for
hyper-Kéhler manifolds, due to Wakakuwa ([13]), namely by > (k;rQ) We
conclude the section by describing an action of the Lie algebra so(4,1) on

Q7 g0o(M). For every even permutation (a, 3,7) of {1,2,3} let us consider
the 2-form =, := %(@a + 2ng A ny). Then we define the operators L, :
QF (M) — QFF2(M) and A, : Q¥2(M) — QF(M) by Loyw == 24 Aw
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and A, := xLy*. Since L, and A, preserve harmonicity, one can consider
them as endomorphisms of Q3 ,0o(M). Then, by [5, Proposition 4.3] one has
that, on Q3 o0, [La: Aa] = —H, where H : Qj; 100 (M) — Qf; 40o(M) is the
operator defined by Hw = (2n — k)w. Moreover, for each a € {1,2,3} we
define another operator K, on Qj; goo(M) by Ko := [Lg, A,], where (o, 3, 7)
is an even permutation of {1,2,3}. Then we have the following result.

Theorem 3.1 ([5]). The linear span g of the operators H, L., A, K,
a € {1,2,3}, is a Lie algebra isomorphic to so(4,1). Consequently Q%7 000(M)
is an so(4,1)-module.

4. Examples of compact 3-cosymplectic manifolds

The standard example of 3-cosymplectic manifold is R***3 with the almost
contact metric 3-structure described in [4] in terms of Darboux coordinates.
Since this structure is invariant by translations, we get a 3-cosymplectic
structure on the flat torus T***3 (see also [10]). Both these examples are
global products of a hyper-Kéahler manifold with an abelian Lie group. In
fact, locally this is always true: every 3-cosymplectic manifold is locally
a Riemannian product of a hyper-Kahler factor with a 3-dimensional flat
abelian Lie group. Thus it makes sense to ask whether there are examples
of 3-cosymplectic manifolds which are not global products of a hyper-Kahler
manifold with a 3-dimensional Lie group. The answer to this question is
affirmative and now we describe a procedure for constructing such examples.
Let (M*",.J,,G) be a compact hyper-Kihler manifold and f a hyper-Kéhler
isometry on it. We define an action ¢ of Z3 on M*" x R? by

o((ky, ko, k3), (z,t1, to, t3)) = (fP 2R3 (2) 8y + Ky, by + ko, t3 + k3).

We define a 3-cosymplectic structure on the orbit space M;}”Jr?’ = (M x

R?) /73 in the following way. Let us consider the vector fields &, := % and

the 1-forms 7, := dt, on M*" x R3. Next we define, for each o € {1,2,3}, a
tensor field ¢, on M x R3 by putting ¢, X := J,X for any X € I'(TM*")
and @&, = 0, 9a&p := €4p,Ey, Where €,3, denotes the sign of the permutation
(cr, B,7) of {1,2,3}. Then (¢q, &n, Ma, g), Wwhere g denotes the product metric,
is a 3-cosymplectic structure on M*" xR3. Being invariant under the action ¢,
the structure (¢q, €4, 70, g) descends to a 3-cosymplectic structure on M?"*g.
By using this general procedure we can construct non-trivial examples of com-
pact 3-cosymplectic manifolds. In fact, let us consider the hyper-Kéahler man-
ifold T* = H/Z" and the hyper-Kéhler isometry f given by the multiplication
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by the quaternionic unit i on the right. Then M} = (T* x R?)/Z?, endowed
with the geometric structure described above, is a compact 3-cosymplectic
manifold which is not the global product of a compact 4-dimensional hyper-
Kéhler manifold K* with the flat torus. Indeed, we have only two possibilities
for a compact 4-dimensional hyper-Kihler manifold: either K* = T or it
is a complex K3-surface. In the first case by(K* x T?) = 21, in the second
by(K* x T?) = 25. However, in [5] it was proven that by(M]) < 21.

Other examples can be obtained from the previous ones by applying a
D,-homothetic deformation, that is a change of the structure tensors of the
following type

- ~ 1

0:=0, == 7= an, g:=ag+ala—1)n®mn, (4.1)

where a > 0. This notion was introduced by Tanno ([11]) in the contact
metric case, but it can be easily extended to the more general context of
almost contact metric structures. In particular, it can be proved that the class
of cosymplectic structures is preserved by D-homothetic deformations. Now,
let (M, ¢a,&a,Ma,9), @ € {1,2,3}, be a 3-cosymplectic manifold. Then by
applying the same D,-homothetic deformation to each cosymplectic structure
(Ga» €as Moy g), One obtains three new cosymplectic structures (¢é1, 1,71, ),
(2, 9,12, G), (03, E3, T3, G), which are still related to each other by means of
the quaternionic-like relations (2.2). Thus (¢a,&a, 7, G), @ € {1,2,3}, is a
new 3-cosymplectic structure on M. In particular, this procedure allows to
define other 3-cosymplectic structures on M;‘”JFS from the structure described
before.

We conclude with the following remark concerning the existence of 3-
cosymplectic structures on almost cosymplectic Einstein manifolds. In the
context of Sasakian manifolds, Apostolov, Draghici and Moroianu proved the
following theorem:

Theorem 4.1 ([1]). Let (M, ¢,&,n, g) be a Sasakian Einstein manifold. Then
any contact metric structure (¢',&'.n',g) on M, with the same metric g is
Sasakian. Moreover, if £ # +£, then either (M, qg) admits a 3-Sasakian
structure or (M, g) is covered by a round sphere.

It could be interesting to investigate on the cosymplectic counterpart, if
any, of Theorem 4.1. In fact, this would permit to construct new examples
of 3-cosymplectic manifolds. In this context we mention the following result
on compact Einstein cosymplectic manifolds.
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Theorem 4.2 ([3]). Every compact Finstein almost cosymplectic manifold
(M, 0,&,m,9), such that £ is Killing, is cosymplectic and Ricci-flat. Further-
more, any other almost cosymplectic structure (¢', &', 1, g) on M is necessar-
ily cosymplectic and Ricci-flat.

Notice that the proof of Theorem 4.1 does not work in the case of cosym-
plectic manifolds. In fact, it uses a property of the cone metric which holds
only for Sasakian manifolds.
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