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Abstract: In this paper we show that Cagliari-Mantovani result stating that, in
the category of compact Hausdorff spaces, every étale map is exponentiable can
be formulated in a general category Alg(T ) of Eilenberg-Moore T -algebras, for a
monad T , and proved in case T satisfies the so-called Beck-Chevalley condition. For
that, Alg(T ) is embedded in the (topological) category RelAlg(T ) of relational T -
algebras, where a suitable notion of étale morphism can be studied, it is shown that
morphisms between T -algebras are exponentiable in RelAlg(T ), and, moreover,
these exponentials belong to Alg(T ) whenever the morphisms are étale.

Keywords: exponentiable morphism, Eilenberg-Moore algebra, relational algebra,
ultrafilter monad.
AMS Subject Classification (2000): 18C15, 18C20, 18D15, 18B30.

0. Introduction

The existence of “internal function objects” in a category C with finite
products, that is the existence of a right adjoint to the functor ( ) × X :
C → C for any C-object X – calling then C cartesian closed –, is a widely
studied problem. It is in general more interesting in topology than in alge-
bra, since for pointed categories ( ) × X : C → C has a right adjoint only
if X is the zero object. There is, however, an interesting complete charac-
terization of cartesian closed varieties by Johnstone [14], where, moreover,
the exponentiable objects in a variety C, that is, the objects X that induce
a left adjoint functor ( ) ×X : C → C, are characterized. The exponential
maps are not studied explicitly in [14], unlike the papers [20, 2, 3, 10], where
it is done in topological contexts. In particular, Cagliari-Mantovani Theo-
rem [2], stating that a continuous map in the category of compact Hausdorff
spaces is exponentiable if and only if it is a local homeomorphism, or an étale
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map, raised the question whether exponentiability in categories of Eilenberg-
Moore T -algebras, for a monad T , could be more interesting at the level of
morphisms than at the object level. This was the starting point of the work
presented here. We remark that, while Johnstone used algebraic theories to
study varieties, here we will use monads.
Consider the following table of concepts, depending on a monad T on the

category of sets:

T=identity T=ultrafilter monad
monad

Eilenberg-Moore T -algebras Sets=discrete Compact Hausdorff spaces
preorders

Relational T -algebras [1]
= reflexive & transitive Preorders Topological spaces
lax algebras [5]
Pseudo-relational T -algebras Reflexive Pseudo-topological spaces
= reflexive lax algebras [5] relations in the sense of Herrlich

and recall:
A morphism f : A → B, in a category C with finite products, is said to

be exponentiable if the functor ( )× (A, f) : (C ↓ B) → (C ↓ B) has a right
adjoint (other well-known equivalent definitions are given in Theorem 3.1
below). The exponentiability problem, which is to describe the exponentiable
morphisms in a given category, is highly non-trivial even where it is solved
in many cases, and in particular for topological spaces (see S. Niefield [20]
and references there). However, it turns out to be easier in other categories
of our table above, and in particular:

(a) Every morphism of pseudo-topological spaces is exponentiable, and, more
generally, this is true for reflexive lax T -algebras [9] whenever T satisfies
the so-called Beck-Chevalley Condition.

(b) The same is true in the case of reflexive relations, as follows from the
result of [9] of course, but a direct proof is also easy.

(c) The description known for preorders is a simplified version of the topo-
logical one, and at the time is a simplified version of the one, well-known,
for categories (in the category of all categories).
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(d) The case of compact Hausdorff spaces is again easier than the case of
general topological spaces, while the case of sets, where again every mor-
phism is exponentiable, should be considered as trivial.

In the present paper we begin to study the exponentiability problem for
the ordinary T -algebras for an arbitrary monad T on the category of sets,
assuming, as in [9], that T satisfies the Beck-Chevalley Condition. After
recalling all necessary definitions and the exponentiability result mentioned
in (a) above, we show that:

• When f is a perfect map of relational T -algebras, its pseudo-relational
exponents are relational, making it exponentiable in the category of
relational T -algebras (Theorem 4.2). The notion of perfect used there,
as well as the notion of étale used later, and related notions of open and
proper, is suggested by the topological one as expected (see Section
2).

• Every homomorphism of T -algebras is perfect, and therefore exponen-
tiable in the category of relational T -algebras (Corollary 4.3).

• When a homomorphism of T -algebras is étale, its (pseudo-)relational
exponents are T -algebras, making it exponentiable in the category of
T -algebras (Theorem 5.5).

In the last section we consider several examples of categories of alge-
bras, namely, of compact Hausdorff spaces, sup-lattices, continuous lattices,
monoids, semigroups, and monoid actions. In particular, we point out that,
for a monoid M , although every morphism of M -sets is (well-known to be)
exponentiable, not every morphism is étale – unless M is a group.
In summary, we show that Cagliari-Mantovani result that étale maps are

exponentiable inCompHaus = Alg(U), with exponentials built as inTop =
RelAlg(U), for U the ultrafilter monad, can be generalized for Alg(T ) in
case T satisfies the Beck-Chevalley condition. It remains to be shown whether
the converse is true. The example of M -Set shows that there may be non-
étale exponentiable morphisms in Alg(T ), but in this example the exponen-
tials, that exist both in Alg(T ) and in RelAlg(T ), are built differently.
The general problems of describing:

(I) exponentiable morphisms of relational T-algebras;
(II) exponentiable morphisms of T-algebras;
(III) exponentiable morphisms of T-algebras with exponents inherited from

the category of relational T-algebras
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remain open, but it seems that Proposition 4.1 should be helpful in solving
of Problem (II) (see also [10]), while étale maps should provide, in many
cases, an answer to Problem (III). Our results on Problem (II) that do not
use relational algebras, which is a work in progress now, will be published
elsewhere. In particular, we will give an easy proof of the fact that a group
homomorphism is exponentiable if and only if it is an isomorphism, and that
the same is true in any semi-abelian category.

1. Relational algebras

Given a monad T = (T, η, µ) on Set, we consider the category Alg(T ) of
Eilenberg-Moore T -algebras; recall that an object of Alg(T ) is a pair (X,α),
where X is a set and α : TX → X is a map making the diagram

X
ηX //

1X !!D
DD

DD
DD

D
TX

α
��

T 2X
Tαoo

µX

��

X TX
αoo

commute, and a morphism f : (X,α) → (Y, β) is a map f : X → Y with
f · α = β · Tf :

TX

α
��

Tf
// TY

β
��

X
f

// Y

The monad T can be extended to the category Rel of relations (see [1, 6])
as follows: for a relation r : X−→7 Y , with r = r2 · r

◦
1,

R
r1

~~~~
~~

~~
~~ r2

��@
@@

@@
@@

X
�r // Y

where r1, r2 are the projections and r◦1 is the opposite relation of r1, let
Tr = Tr2 · (Tr1)

◦. Then T : Rel → Rel is an op-lax functor, and η :

IdRel → T and µ : T
2
→ T become op-lax natural transformations. The

functor T : Rel → Rel is a lax – hence a strict – functor if and only if
T : Set → Set has the Beck-Chevalley property (BC) (in the sense of [5]), as
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shown in [6]. We recall that a (BC)-square is a commutative diagram

W
k //

h
��

X

f
��

Z
g

// Y

such that f ◦ ·g = k ·h◦, where f ◦ and h◦ are the opposite relations of f and h,
respectively, and that T has (BC) property if it preserves (BC)-squares. This
implies, in particular, that T preserves pullbacks along monomorphisms, that
is, T is taut (see [19]).
Throughout we assume that T : Set → Set has (BC) property and that

the natural transformation µ : TT → T has (BC) property, meaning that,
for every map f : X → Y , the naturality diagram

T 2X
µX //

T 2f
��

TX

Tf
��

T 2Y
µY // TY

is a (BC)-square. We recall that these assumptions mean precisely that

T : Rel → Rel is a strict functor and that µ : T
2
→ T is a strict natural

transformation. We also assume that T is non-trivial, or, equivalently, T is
faithful, or, equivalently, the natural transformation η : Id → T is pointwise
monic (see [15] for details).
As already studied by Barr [1] and studied later by Clementino, Hofmann

and Tholen [5, 11, 9, 6, 7] and others, one can relax the conditions above,
defining a relational T -algebra, or a lax T -algebra, or a (T, 2)-category, as
a pair (X, a), where a : TX−→7 X is a relation such that 1X ≤ a · ηX and
a · Ta ≤ a · µX , that is

X
ηX //

1X !!D
DD

DD
DD

D
TX

≤
_a
��

T 2X

≤

�Taoo

µX

��

X TX
�aoo
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Morphisms f : (X, a) → (Y, b) between relational T -algebras are maps f :
X → Y with f · a ≤ b · Tf :

TX
_a
��

Tf
// TY

≤ _ b
��

X
f

// Y

(A)

We will denote the category of relational T -algebras by RelAlg(T ). Given
a relational T -algebra a : TX−→7 X, for x ∈ TX and x ∈ X, we will write
x → x whenever x a x. Using this notation, a relation a : TX−→7 X is a
relational T -algebra if

(a) (∀x ∈ X) ηX(x) → x,
(b) (∀X ∈ T 2X) (∀x ∈ TX) (∀x ∈ X) X → x and x → x ⇒ µX(X) → x

(here X → x means X (Ta) x); a map f : X → Y is a morphism between the
relational T -algebras (X, a) and (Y, b) if

(c) (∀x ∈ TX) (∀x ∈ X) x → x ⇒ Tf(x) → f(x).

We remark that Alg(T ) is (fully) embedded in RelAlg(T ), since the in-
equality of diagram (A) becomes an equality whenever a and b are maps.
Morphisms in RelAlg(T ) will be called simply homomorphisms, unless we
want to identify those between T -algebras, calling them then algebraic ho-
momorphisms.
We will make use also of a category containing RelAlg(T ) as a full sub-

category. A relation a : TX−→7 X is said to be a pseudo-relational T -algebra,
or a lax reflexive T -algebra, or a (T, 2)-graph, if ηX(x) a x, that is:

X
ηX //

1X ""D
DD

DD
DD

D
TX

≤
_ a
��

X

A morphism f : (X, a) → (Y, b) between pseudo-relational T -algebras is a
map f : X → Y such that

TX
_a
��

Tf
// TY

≤ _ b
��

X
f

// Y
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Pseudo-relational T -algebras and relational homomorphisms form the cate-
gory PsRelAlg(T ). The full embeddings

Alg(T ) →֒ RelAlg(T ) →֒ PsRelAlg(T ).

have left adjoints; moreover, while Alg(T ) is monadic over Set, RelAlg(T )
and PsRelAlg(T ) are topological categories over Set (see [5] for details).
In particular, the forgetful functor Alg(T ) → Set creates limits, while
RelAlg(T ) → Set and PsRelAlg(T ) → Set preserve limits and colimits.

2. Étale homomorphisms

In case T is the ultrafilter monad, that is the monad induced by the ad-
junction

Set

Set(−,2)
//

⊥ Boolop

Bool(−,2)
oo

that assigns to each set X its set of ultrafilters, T -algebras are compact Haus-
dorff spaces (as shown by Manes [17]), relational T -algebras are topological
spaces, homomorphisms between relational T -algebras are continuous maps
(as shown by Barr [1]), and pseudo-relational algebras are pseudotopologi-
cal spaces. This is the example that guides our approach to étale algebraic
homomorphisms. Indeed, in order to introduce the notion of étale homomor-
phism, we recall first the characterization of étale continuous maps obtained
in [8].
A continuous map f : X → Y is étale, or a local homeomorphism, if it is

locally a homeomorphism, that is each x ∈ X has an open neighbourhood U

such that f(U) is open and the map f|U : U → f(U) is a homeomorphism.
It was shown in [4] that if f : X → Y is étale, then, for each x ∈ X and each
ultrafilter y with y → f(x), there exists a unique ultrafilter x ∈ X such that
x → x and Tf(x) = y:

X

f
��

x
_

��

//____ x
_

��

Y y // f(x);

a continuous map with this property is called a discrete fibration. As shown
in [8], there are discrete fibrations that are not étale.
We point out that, if X and Y are compact Hausdorff spaces, with T -

algebra structures α and β respectively, a continuous map f : X → Y is a
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discrete fibration if and only if the diagram

TX
Tf

//

α
��

TY

β
��

X
f

// Y

is a pullback.

Theorem 2.1. [8] For a continuous map f : X → Y , consider the commu-
tative diagram:

X 1X

$$

δf

$$J
JJJJJJJJJ

1X

$$

X ×Y X

π1

��

π2 // X

f
��

X
f

// Y.

(B)

The following conditions are equivalent:

(i) f is étale;
(ii) f is a pullback-stable discrete fibration;
(iii) both f and π1 : X ×Y X → X are discrete fibrations;
(iv) both f and δf are discrete fibrations.

Based on this example, in our general setting, a relational T -homomorphism
f : (X, a) → (Y, b) will be said to be a discrete fibration if for every x ∈ X and
y ∈ TY with y → f(x) in Y , there exists a unique x ∈ TX with x → x and
Tf(x) = y. It will be called étale if it is a pullback-stable discrete fibration.

Proposition 2.2. If f : (X,α) → (Y, β) is an algebraic homomorphism,
then f is a discrete fibration if and only if the diagram

TX

α
��

Tf
// TY

β
��

X
f

// Y

is a pullback.

Theorem 2.3. If f : (X,α) → (Y, β) is an algebraic discrete fibration, then
the following assertions are equivalent:

(i) f is étale;
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(ii) for any algebraic homomorphism g : (Z, γ) → (Y, β), the pullback of g
along f

X ×Y Z
π2 //

π1

��

Z

g
��

X
f

// Y

(C)

is preserved by T .

Proof. In the commutative diagram

T (X ×Y Z)
Tπ2 //

Tπ1

��

δ
uukkkkkkk

TZ

Tg

��

γ

uukkkkkkkkkkkkkk

X ×Y Z
π2 //

π1

��

Z
g

��

TX
Tf

//
α

uukkkkkkkkkkkkkk TY
β

uukkkkkkkkkkkkkk

X
f

// Y

(D)

assume that the front face is a pullback. Closedness under limits of Alg(T )
guarantees that both π1 and π2 are algebraic homomorphisms. Since f is
a discrete fibration, the bottom square is also a pullback. Hence the top
square is a pullback – that is, π2 is a discrete fibration – if and only if the
back square is a pullback, that is T preserves the pullback of g along f . �

Corollary 2.4. If T is non-trivial, then the following conditions are equiva-
lent, for an algebraic discrete fibration f : X → Y :

(i) f is étale;
(ii) for any map g : Z → Y , the pullback (C) of g along f is preserved by

T .

Proof. We have to show that (i) ⇒ (ii): Any map g : Z → Y factors through
ηZ : Z → TZ via an algebraic homomorphism g : (TZ, µZ) → (Y, β). Hence
preservation of pullback (C) by T reduces to preservation of the pullback of
g along f , which follows from Theorem 2.3, and the preservation, by T , of
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the pullback of ηZ and π′
2:

X ×Y Z

wwooooooooooo

π2 //

��

Z

ηZ~~||
||

||
||

g

��

X ×Y TZ

''OOOOOOOOOOOOO

π′

2 // TZ
g

!!B
BB

BB
BB

B

X
f

// Y

Since ηZ is monic, because T is non-trivial, this follows from (BC) property
of T . �

Corollary 2.5. (1) Every injective algebraic discrete fibration is étale.
(2) If the functor T preserves pullbacks, then every algebraic discrete fibration

is étale.

Following the characterization of proper, perfect and open continuous maps
stated in [4, Theorem 2.2], in [7, 16] the following notions were studied in
the context of relational T -algebras. A morphism f : (X, a) → (Y, b) is:

(a) open if for each x ∈ X and y ∈ TY such that y → f(x) in Y , there
exists x ∈ TX such that x → x in X and Tf(x) = y.

(b) proper (perfect) if for each x ∈ TX and y ∈ Y such that Tf(x) → y in
Y , there exists (a unique) x ∈ X such that x → x and f(x) = y.

We remark that f : (X, a) → (Y, b) is open if and only if the diagram

TX
Tf

// TY

X

_a◦

OO

f
// Y

_ b◦

OO

is commutative, while f is proper if and only if the diagram

TX
_a
��

Tf
// TY

_ b
��

X
f

// Y

is commutative. Therefore, every algebraic homomorphism is proper. It is
in fact perfect because unicity of x in (b) follows from the fact that a is a
map, so that x = a(x).
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Finally we introduce some categories that will be used in the sequel. It is
well known that, for a topological space X,

X is Hausdorff ⇐⇒ every ultrafilter on X converges to at most one point
⇐⇒ the diagonal map δX : X → X ×X is proper,

X is compact ⇐⇒ every ultrafilter converges to at least one point
⇐⇒ the unique map X → 1 is proper.

In our general setting we will say that a pseudo-relational T -algebra (X, a)
is Hausdorff if a : TX−→7 X is a partial map, that is in its relation span

R
a1

}}zz
zz

zz
zz a2

  @
@@

@@
@@

@

TX X

a1 is injective. If a1 is surjective, (X, a) is said to be compact. It is easy to
check that:

Proposition 2.6. If (X, a) is a pseudo-relational T -algebra, then:

(1) (X, a) is Hausdorff if and only if δX is proper;
(2) (X, a) is compact if and only if !X : X → 1 is proper.

We denote byHaus(T ) andComp(T ) the (full) subcategories ofRelAlg(T )
of Hausdorff and compact relational T -algebras, respectively. We point out
that Alg(T ) is exactly the category of compact and Hausdorff relational T -
algebras. It is a reflective subcategory of RelAlg(T ), with the reflection
constructed via the appropriate Stone-Čech compactification (see [18, 5] for
details).

3. Pseudo-relational algebras form a quasitopos

We recall that a category C is said to be:

(1) cartesian closed if it has finite products and every object C in C is
exponentiable, that is the functor (−)×C : C → C has a right adjoint;

(2) locally cartesian closed if, for every object B of C, the comma category
(C ↓ B) is cartesian closed, andC has a terminal object (and therefore
all finite limits);

(3) a quasitopos if it is locally cartesian closed and it has a strong subob-
ject classifier and all finite colimits.
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When C is locally cartesian closed, and f : A → B is a morphism in C, the
right adjoint of the functor (−)× (A, f) : (C ↓ B) → (C ↓ B) will be written
as (−)(A,f). In particular, for every object C in C, we have

(B × C, pr1)
(A,f) = the partial product of f and C.

The original definition of (categorical) partial product, due to R. Dyckhoff
and W. Tholen [13], is formulated as follows: the partial product of a mor-
phism f : A → B and an object C in a finitely complete category C is a
pair (p : P → B, e : P ×B A → C) such that, given any pair of the form
(p′ : P ′ → B, e′ : P ′ ×B A → C), there exists a unique h : P ′ → P over B
with e′ = e · (h×B 1A) in the diagram

P ′ ×B A

��

//
e′

yysss
ss

s
h×B1A

((

A

f

��

C P ×B A
e

oo

66nnnnnnnn

��

P ′
p′

//

h ((

B

P
p

66mmmmmmmmmm

In fact (P, p) = (B × C, pr1)
(A,f), and e determines the universal arrow

(−)× (A, f) → (C × B, pr2)

as the pair ((P, p), 〈e, p · π1〉 : (P, p) × (A, f) → (C × B, pr2)), where π1 :
P ×B A → C is the pullback projection and of course (P, p) × (A, f) =
(P ×BA, p ·π1). Note that, conversely, the existence of such universal arrows
for all C in C implies the existence of the right adjoint for (−)× (A, f), since
every object in (C ↓ B) can be presented as the equalizer of two parallel
morphisms of the form (C × B, pr2) → (C ′ ×B, pr2). Moreover, we have:

Theorem 3.1. [13, 20] For a morphism f : A → B in a finitely complete
category C, the following conditions are equivalent:

(i) f is exponentiable, i.e. (−)× (A, f) : (C ↓ B) → (C ↓ B) has a right
adjoint;

(ii) the ‘change-of-base’ functor f ∗ : (C ↓ B) → (C ↓ A) has a right
adjoint;

(iii) the composite (C ↓ B) → C of f ∗ and the forgetful functor (C ↓ A) →
C has a right adjoint;

(iv) C has partial products of each of its objects with f .
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In PsRelAlg(T ) the pullback of f : (X, a) → (Y, b) and g : (Z, c) → (Y, b)

(Z, c)×(Y,b) (X, a)
π2 //

π1

��

(X, a)

f
��

(Z, c)
g

// (Y, b)

is built as in Set, that is, Z ×Y X = {(z, x) | g(z) = f(x)}, with w → (z, x),
for w ∈ T (Z×Y X) and (z, x) ∈ Z×Y X, if Tπ1(w) → z and Tπ2(w) → x (see
[9] for details). In [9] it was shown that, for a morphism f : (X, a) → (Y, b)
between pseudo-relational T -algebras and any pseudo-relational T -algebra
(Z, c), the partial product

(Z, c) (P, d)×(Y,b) (X, a)

π1

��

evoo
π2 // (X, a)

f
��

(P, d)
p

// (Y, b)

(E)

of f and Z can be constructed as P = Z(X,f) = {(s, y) | y ∈ Y, s : (Xy, ay) →
(Z, c)}, where (Xy, ay) is defined as the pullback

(Xy, ay)

��

// (X, a)

f
��

(1, η◦1)
y

// (Y, b)

and in particularXy can be identified with f−1(y); the structure d on P , that
is the relation d : TP−→7 P , is defined, for p ∈ TP and (s, y) ∈ P , by:

p → (s, y) if















Tp(p) → y and
T ev(w) → ev((s, y), x) = s(x),
whenever w ∈ T (P ×Y X) and x ∈ X

are such that Tπ1(w) = p, f(x) = y and Tπ2(w) → x

Moreover, it was shown that:

Theorem 3.2. [9] The category PsRelAlg(T ) of pseudo-relational T -algebras
is a quasitopos.
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4. Algebraic homomorphisms are exponentiable, topo-

logically

In this section we will prove that the partial product of an algebraic ho-
momorphism and a relational T -algebra is a relational T -algebra, showing
that algebraic homomorphisms are exponentiable in RelAlg(T ). First we
show that perfect homomorphisms, hence in particular algebraic homomor-
phisms, have an interpolation property which is sufficient for exponentiability
(similarly to the proof for the ultrafilter monad done in [10]).

Proposition 4.1. Let f : (X, a) → (Y, b) be a perfect morphism in RelAlg(T ),
and let the diagram

(Z ×Y X, d)
π2 //

π1

��

(X, a)

f
��

(Z, c)
g

// (Y, b)

be a pullback in PsRelAlg(T ). Then:

(1) π1 is a proper map.
(2) If W ∈ T 2(Z ×Y X), (z, x) ∈ Z ×Y X and Z ∈ TZ are such that

(a) µX(T
2π2(W)) → x,

(b) T 2π1(W) → Z → z,
then there exists w ∈ T (Z ×Y X) such that Tπ1(w) = Z and

W → w → (z, x).

Proof. It was proved in [9] that proper maps are pullback-stable in
PsRelAlg(T ), hence π1 is proper, that is π1 · d = c · Tπ1. Therefore, also
Tπ1 · Td = Tc · T 2π1. Hence, if T

2π1(W) → Z, there exists w ∈ T (Z ×Y X)
such that Tπ1(w) = Z and W → w. Using now the fact that π1 is proper and
Tπ1(w) = Z → z, there exists (z, x′) ∈ Z ×Y X such that w → (z, x′). The
chain W → w → (z, x′) gives rise to a chain in X, T 2π2(W) → Tπ2(w) → x′,
which implies that µX(T

2π2(W)) → x′. Since f(x) = f(x′), perfectness of f
gives x = x′. �

Theorem 4.2. Perfect maps are exponentiable in RelAlg(T ).

Proof. For f : (X, a) → (Y, b) perfect inRelAlg(T ) and (Z, c) ∈ RelAlg(T ),
form the partial product (p : (P, d) → (Y, b), e : (P, d)×(Y,b) (X, a) → (Z, c))
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of f and (Z, c) inPsRelAlg(T ) as in (E). To check that (P, d) ∈ RelAlg(T ),
we need to check that, for

P → p → (s, y) in P

we have µP (P) → (s, y) in P . The first of the two conditions defining
µ(P) → (s, y) easily follows from the fact that (Y, b) belongs to RelAlg(T ),
and we will check only the second one. Suppose there exist w̃ ∈ T (P ×Y X)
and x ∈ X such that Tπ1(w̃) = µP (P), f(x) = y and Tπ2(w̃) → x. By (BC)
property of the diagram

T 2(P ×Y X)

T 2π1

��

µP×Y X
// T (P ×Y X)

Tπ1

��

T 2P
µP // TP

there exists W ∈ T 2(P ×Y X) such that

µP×Y X(W) = w̃ and T 2π1(W) = P.

The lemma above guarantees the existence of w ∈ T (P ×Y X) such that
Tπ1(w) = p and

W → w → ((s, y), x).

Therefore T 2ev(W) → T ev(w) → s(x), hence

T ev(w̃) = T ev(µP×Y X(W)) = µZ(T
2ev(W)) → s(x),

and so we can conclude that µP (P) → (s, y) in P by the definition of the
structure on P . �

Corollary 4.3. Algebraic homomorphisms are exponentiable in RelAlg(T ).

5. Étale algebraic homomorphisms are exponentiable,

algebraically

In this section we will show that étale algebraic homomorphisms are ex-
ponentiable in Alg(T ), generalizing the corresponding result for topological
spaces obtained by Cagliari and Mantovani [2].

Proposition 5.1. If (X, a), (Y, b) and (Z, c) are pseudo-relational T -algebras,
f : (X, a) → (Y, b) is open, and (Y, b) and (Z, c) are Hausdorff, then the par-
tial product of f and (Z, c) in PsRelAlg(T ) is Hausdorff too.
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Proof. Consider the partial product (E) and assume that p ∈ TP is such that
p → (s, y) and p → (s′, y′) in P . Hausdorffness of Y guarantees that y = y′.
If Xy = f−1(y) is empty, then necessarily s = s′. Otherwise, let x ∈ f−1(y).
Since Tp(p) → f(x), openness of f gives x ∈ Tf−1(Tp(p)) with x → x. By
(BC) property of T there exists w ∈ T (P ×Y X) such that Tπ1(w) = p
and Tπ2(w) = x. So, in the pullback structure, w is in relation with both
((s, y), x) and ((s′, y), x), and, consequently, T ev(w) is related to both s(x)
and s′(x), which implies s(x) = s′(x) because Z is Hausdorff. �

Corollary 5.2. If f : (X, a) → (Y, b) is open and exponentiable in RelAlg(T ),
then it is exponentiable in Haus(T ).

We remark that this result implies the corresponding result for topological
spaces, due to Cagliari and Mantovani [3]. We do not know whether, as in
Top, openness of f is essential for its exponentiability in Haus(T ).

Proposition 5.3. Let the diagram

Z ×Y X

π1

��

π2 // X

f
��

Z
g

// Y

be a pullback in PsRelAlg(T ), with π1 a discrete fibration, X and Z compact,
and Y Hausdorff. Then the functor T preserves the underlying pullback of
sets.

Proof. Applying T to the diagram and forming the pullback

T (Z ×Y X)
Tπ2 //

Tπ1

��

can
**UUUU

TX

Tf

��

TZ ×TY TX π′

2

11ddddddddddddddddddddddddd

π′

1yyrrrrrrrrrrrrrr

TZ
Tg

// TY

we have to show that the comparison map can : T (Z ×Y X) → TZ ×TY TX

is injective. Suppose w,w′ ∈ T (Z ×Y X) have can(w) = can(w′). Denote
Tπ1(w) = Tπ1(w

′) by Z, and Tπ2(w) = Tπ2(w
′) by x. By compactness of

Z and X, we can write Z → z and x → x. Then Hausdorffness of Y gives
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g(z) = f(x). Hence bothw and w′ are in relation with (z, x) and are mapped,
by Tπ1, to Z. Since π1 is a discrete fibration, w = w′. �

This result assures that, if f is an étale algebraic homomorphism and
Z ∈ Alg(T ), preservation of the pullback of the partial product (E) in
PsRelAlg(T ) is a necessary condition for f to be exponentiable in Alg(T )
with its exponentials built as in RelAlg(T ). The next result shows that this
pullback-preservation property is also sufficient.

Proposition 5.4. Let f : (X,α) → (Y, β) be an étale algebraic homomor-
phism and (Z, γ) a T -algebra. The domain (P, d) of the partial product of f
and (Z, c) in RelAlg(T ) (or in PsRelAlg(T )) is compact if and only if T
preserves the pullback

P ×Y X
π2 //

π1

��

X

f
��

P
p

// Y

Proof. Consider again the partial product (E), assume that T preserves its
underlying pullback of sets, and let p ∈ TP . We need to find (s, y) ∈ P such
that p → (s, y), with y ∈ Y and s : Xy → Z, where Xy = f−1(y) is to be
seen as

Xy

iy
//

!
��

X

f
��

1
y

// Y

Since Y is a T -algebra, there is a unique y ∈ Y such that Tp(p) → y. Hence,
we are left with the construction of s : Xy → Z.
Since f is étale, the diagram

TX

α
��

Tf
// TY

β
��

X
f

// Y

is a pullback in Set, and so it determines a pullback in Alg(T ) (where TX

and TY have the free algebra structures) and therefore in RelAlg(T ). Hence
we can consider the following commutative diagram, where both squares 1
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and 2 are pullbacks.

Xy

!

��

iy

((
T (P ×Y X)

Tπ2 //

Tπ1

��

TX

1

α //

Tf
��

X

2 f
��

TP
Tp

// TY
β

// Y

1

p
88qqqqqqqqqqqqq
Tp·p

33hhhhhhhhhhhhhhhhhhhhhhhhhhhh y

66

Since the diagram 1 2 is a pullback, there exists a (unique) map κ : Xy →
T (P ×Y X) with Tπ1(κ(x)) = p and α(Tπ2(κ(x))) = x, for each x ∈ Xy.
Using this map, we define s as the composite

Xy
κ // T (P ×Y X)

T ev // TZ
γ

// Z.

To prove that p → (s, y), we need to show that T ev(w) → s(x) whenever
w ∈ T (P ×Y X) and x ∈ X have Tπ1(w) = p, f(x) = y, and Tπ2(w) → x.
Since (X,α) is a T -algebra, Tπ2(w) → x means α(Tπ2(w)) = x, and since
1 2 is a pullback, this equality, together with Tπ1(w) = p, imply w = κ(x).
This gives s(x) = γ(T ev(κ(x))) = γ(T ev(w)), and so T ev(w) → s(x) in the
T -algebra (Z, γ), as desired. �

Theorem 5.5. Every étale algebraic homomorphism is exponentiable in
Alg(T ), with the exponentials built as in RelAlg(T ).

Proof. It follows directly from Theorem 2.3, and Propositions 5.1 and 5.4. �

6. Examples

6.1 Compact Hausdorff spaces. In case T = (T, η, µ) is the ultrafilter
monad, both T and µ satisfy (BC) property. Hence Theorem 5.5 says that
an étale continuous map between compact Hausdorff spaces is exponentiable.
Cagliari and Mantovani [2] showed that also the reverse implication holds,
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that is, an exponentiable continuous map in CompHaus is étale. Moreover,
the exponentials coincide with the exponentials built in Top.

6.2 Sup-lattices. When T = (P, η, µ) is the powerset monad, again both
P and µ satisfy (BC) property. Alg(P ) is the category Sup of complete lat-
tices and sup-preserving maps. Theorem 5.5 says that étale homomorphisms
are exponentiable in Sup. In fact étale and exponentiable homomorphisms
coincide, as shown next.

Proposition. For a morphism f : X → Y in Sup, the following conditions
are equivalent:

(i) f is exponentiable;
(ii) the diagram

X +X
f+f

//

∇X

��

Y + Y

∇Y

��

X
f

// Y

is a pullback;
(iii) for all x ∈ X and y′ ∈ Y with y′ ≤ y = f(x), there is a unique x′ ∈ X

with x′ ≤ x and f(x′) = y′;
(iv) f is a down-closed embedding;
(v) f is étale.

Proof. We know that (v) ⇒ (i), by Theorem 5.5, and that (i) ⇒ (ii) since
pulling back along an exponentiable morphism preserves colimits.
(ii) ⇒ (iii): Since Sup admits an enrichment in the category of com-

mutative monoids via the ∨ operation, its finite coproducts are canonically
isomorphic to products, and the codiagonal ∇X : X + X → X is given by
∇X(x, x

′) = x∨ x′. Let x ∈ X and y′ ∈ Y be such that y′ ≤ y = f(x). Then
y = y′ ∨ y, hence there is a (unique) pair (x′, x′′) with f(x′) = y′, f(x′′) = y

and x′ ∨ x′′ = x, hence x′ ≤ x. By uniqueness, x′′ = x and x′ is indeed
unique.
To conclude that (iii) ⇒ (iv) we only have to check that f is injective,

which follows easily from the uniqueness of x′ above.
(iv) ⇒ (v): Since down-closed embeddings are pullback-stable, we only

have to show that every down-closed embedding is a discrete fibration. A
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morphism f : X → Y in Sup is a discrete fibration if and only if

PX
Pf

//

supX
��

PY

supY
��

X
f

// Y

is a pullback. If f is a down-closed embedding, and x = supS, for x ∈ X

and S ⊆ Y , then S ⊆ X and the diagram is a pullback. �

The category Inf of complete lattices and inf-preserving maps is isomorphic
to Sup, via

f : X → Y 7→ f op : Xop → Y op.

Hence we can conclude that, in Inf , a morphism f : X → Y is exponentiable
if and only if it is an up-closed embedding.

6.3 Continuous lattices. For the filter monad F = (F, η, µ), Alg(F ) is
the category ContLat of continuous lattices and monotone maps preserving
infima and directed suprema (see [12]). Since F and µ satisfy (BC) property,
Theorem 5.5 applies, that is every étale homomorphism is exponentiable in
ContLat.

Lemma. For a continuous lattice Y and y ∈ Y , the following conditions are
equivalent:

(i) the embedding ↑ y → Y is étale;
(ii) y is compact.

Proof. (i) ⇒ (ii): Let f = 〈{↑ x |x ≪ y}〉. Then y = supB∈f inf B. Hence,
↑ y ∈ f, that is, ↑ y ⊇↑ x for some x ≪ x. But this implies x ≥ y, hence
x = y and y ≪ y.
(ii) ⇒ (i): Let g be a filter on Y with y = supB∈g inf B. Since y ≪ y, y ≤

inf B for some B ∈ g, hence B ⊆↑ y and therefore ↑ y ∈ g, which, together
with the preservation of infima and directed suprema by the inclusion ↑ y →
Y , gives that this morphism is étale. �

The arguments used in the proof of Proposition 6 can be used here, since
ContLat is also enriched in the category of commutative monids via the ∧
operation. Hence:
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(1) every exponentiable morphism in ContLat is an up-closed embedding,
that is, it is (up to isomorphism) an inclusion ↑ y → Y , for some
y ∈ Y ;

(2) a morphism is étale if and only if it is, up to isomorphism, an inclusion
↑ y → Y with y compact.

Therefore one has:

Proposition. For a morphism f : X → Y in ContLat, each of the condi-
tions below implies the following one:

(i) there is a compact element y of Y such that f is, up to isomorphism,
the inclusion ↑ y → Y ;

(ii) f is exponentiable;
(iii) there is an element y of Y such that f is, up to isomorphism, the

inclusion ↑ y → Y .

We do not know whether exponentiability of ↑ y → Y implies compactness
of y.

6.4 Monoids. Let M = (M, η, µ) be the free-monoid monad on Set, with
MX the set of words in the alphabet X (of length ≥ 0), ηX the insertion of
X into MX as one-letter words, and concatenation µX . It is well known that
Alg(M) is the category Mon of monoids and monoid homomorphisms. This
monad is cartesian, hence in particular both M and µ satisfy (BC) property.
We will show next that in Mon étale homomorphisms are exactly the ex-

ponentiable ones.
It follows from Theorem 5.5 that étale homomorphisms are exponentiable

since the free-monoid monad satisfies (BC) property.
To prove the converse, let f : (X,α) → (Y, β) be a homomorphism inMon,

and consider the commutative diagram

MX
Mf

//
k
**UUUUUU

α

��

MY

β

��

X ×Y MY

yysssssssssssss

22ddddddddddddddddddddd

X
f

// Y

We will show that the canonical map k is injective and surjective.
Injectivity. First we observe that exponentiability of f implies preservation

of the initial object by the functor f ∗, which means that the kernel Ker(f)
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of f is a trivial monoid. Now, suppose k(x1, · · · , xn) = k(x′
1, · · · , x

′
n′). This

means

x1 · · ·xn = x′
1 · · · x

′
n′ in X, and (f(x1), · · · , f(xn)) = (f(x′

1), · · · , f(x
′
n′)) in MY,

which implies n = n′, and is equivalent to

x1 · · · xn = x′
1 · · ·x

′
n in X, and f(xi) = f(x′

i) in Y for each i = 1, · · · , n.
(F)

If f(xi) = f(x′
i) = 1 for some i, then xi = x′

i = 1 since Ker(f) = {1}, and
simultaneously removing xi from the sequence (x1, · · · , xn) and x′

i from the
sequence (x′

1, · · · , x
′
n) will not change anything in (F) except decreasing n.

Therefore, without loss of generality, we can assume that f(xi) 6= 1 6= f(x′
i),

and so xi 6= 1 6= x′
i for each i. Let ι1, ι2 : X → X+X and κ1, κ2 : Y → Y +Y

be the coproduct injections. Consider the elements

t = ιε1(x1) · · · ιεn(xn) and t′ = ιε1(x
′
1) · · · ιεn(x

′
n) ∈ X +X,

where εi = 1 for even i and εi = 2 for odd i; their images in Y + Y under
f + f are

(f+f)(t) = κε1(f(x1)) · · ·κεn(f(xn)) and (f+f)(t′) = κε1(f(x
′
1)) · · ·κεn(f(x

′
n)),

(G)
respectively. Next, consider the diagram

X +X
f+f

//

∇X

��

Y + Y

∇Y

��

X
f

// Y

(H)

as in Proposition 6.2, which is a pullback again since f is exponentiable. In
this diagram, as follows from (F) and (G), the elements t and t′ have the
same images in X and in Y + Y . Therefore t = t′, and since xi 6= 1 6= x′

i for
each i, this implies (x1, · · · , xn) = (x′

1, · · · , x
′
n′). That is, k is injective.

Surjectivity. We have to prove that, for every x ∈ X and every (y1, · · · , yn) ∈
MY with f(x) = y1 · · · yn, there exist (x1, · · · , xn) ∈ MX with x1 · · ·xn = x

in X and f(xi) = yi for each i. Again, if yi = 1 for some i, removing it will
not change the equality f(x) = y1 · · · yn, and so we can assume that yi 6= 1
for each i. Next, in the diagram (H) we have f(x) = ∇Y (κε1(y1) · · ·κεn(yn))
in the notation above. Since (H) is a pullback diagram, and having in mind
the construction of coproducts of monoids and the fact that yi 6= 1 for each
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i, we conclude that there a sequence (x1, · · · , xn) of elements in X with the
desired properties.
That is, f is exponentiable if and only if it is étale.
Let us make some further remarks about monoids. As mentioned above,

whenever f is exponentiable, we have Ker(f) = {1}. More generally, the
same is true whenever f is open. This immediately follows from the fact
that Ker(Mf) = {1} for any f . However, even if f étale, it does not have to
be injective. Note that, for every map f from a set X to a set Y , since M is
a cartesian monad, the diagram

M2X
M2f

//

µX

��

M2Y

µY

��

MX
Mf

// MY

is a pullback, and so Mf : (MX,µX) → (MY, µY ) is étale. On the other
hand, injectivity of an algebraic homomorphism is not sufficient for being
étale, and not even for being open. For example, for an additive monoid N

of natural numbers, the inclusion homomorphism N \ {1} → N is not open
simply because 1 + 1 = 2 ∈ N \ {1}, while 1 6∈ N \ {1}.

6.5 Semigroups. If we take instead the monad M ′ of non-empty words,
Alg(M ′) is the category SGrp of semigroups and semigroup homomor-
phisms. An argument analogous to the previous one, used for monoids,
shows that exponentiable homomorphisms in SGrp are exactly the étale ho-
momorphisms.

6.6 M-Sets. For a monoid M = (M, ·, e), consider the free M -set monad
T = (M×−, η, µ), where ηX = 〈e, 1X〉 : X → M×X, and µX : M×M×X →
M×X is given by µX(m, n, x) = (m ·n, x). Then Alg(T ) is the category M -
Set of M -sets, that is, sets X equipped with an M -action, and equivariant
maps. Again, since the monad is cartesian,M×− and µ have (BC) property.
The extension T : Rel → Rel is defined, for a relation r : X−→7 Y , by

(m, x) Tr (n, y) ⇔ m = n & x r y.

To describe a relational T -algebra a : M × X−→7 X, we write x
n
→ y if

(n, x) a y. Then a : M ×X−→7 X is a relational algebra if and only if, for all
x, y, z ∈ X:

(a) x
e
→ x, and
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(b) x
n
→ y & y

m
→ z ⇒ x

m·n
−→ z.

A relational homomorphism f : (X, a) → (Y, b) is a map f : X → Y such
that, for all x, x′ ∈ X,

(c) x
n
→ x′ ⇒ f(x)

n
→ f(x′).

Therefore relational T -algebras can be seen as M-labeled ordered sets and
relational homomorphisms as monotone maps.
The category M -Set is a topos, hence it is locally cartesian closed, so that

every homomorphism is exponentiable in M-Set. However, in general there
are homomorphisms in M-Set which are not étale. Consider for instance
M = (N,×, 1) and the action of N on Z and Q via multiplication. The
inclusion

N× Z
1×f

//

α
��

N×Q

β
��

Z
f

// Q

is not open, since f(1) = 1 = β(2, 12) and there is no element of N×Z mapped

by 1× f into (2, 1
2
).

The case of M -sets is worth to study in detail. Theorem 5.5 states that
étale maps are exponentiable in M -Set, with exponentials built as in the
category of M -labeled sets and monotone maps. In fact, although any map
is exponentiable inM -Set, the exponentials are built as inM -labeled ordered
sets if and only if the map is étale, as we show next. Note that f : (X,α) →
(Y, β) in M-Set is étale if and only if

(∀x ∈ X) (∀m ∈ M) (∀y ∈ Y ) f(x) = my ⇒ (∃!x′ ∈ X)mx′ = x and f(x′) = y.

Now, we are going to check that the partial product of f : (X,α) → (Y, β) ∈
M -Set and (Z, γ) ∈ M -Set calculated inRelAlg(T ) (as described in Section
3) is an M -set only if f is étale. First we remark that, for each y ∈ Y ,
the relational structure αy on Xy, obtained by pulling back y : (1, η◦1) →
(Y, β) along f , is discrete, that is (m, x) → x′, if and only if m = 1 and
x = x′. Hence any map s : Xy → Z becomes a relational homomorphism
s : (Xy, αy) → (Z, γ); that is,

P = Z(X,f) = {(s, y) | y ∈ Y, s : Xy → Z a map}.
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The relational T -algebra structure on P has

(m, (s, y)) → (s′, y′) ⇔

{

my = y′, and

m(s(x)) = s′(x′), whenever f(x′) = y′ and mx = x′,

which is the direct translation of its general description in Section 3 to the
present case. It shows that, whenever Z has more than one element, the
uniqueness of (s′, y′) satisfying (m, (s, y)) → (s′, y′) is equivalent to the ex-
istence and uniqueness of x ∈ X satisfying f(x) = y and mx = x′ for each
y ∈ Y and x′ ∈ X with f(x′) = my. That is, the partial product of every
T -algebra with f is a T -algebra if and only if f is étale.

6.7 G-Sets. In the previous example, if M is a group G, then every mor-
phism in G-Set is étale. Indeed, for every homomorphism f : (X,α) →
(Y, β), given x ∈ X and (g, y) ∈ G × Y such that f(x) = gy, put x′ =
g−1x. Then (g, x′) is the unique element of G × X such that gx′ = x and
(1G×f)(g, x′) = (g, g−1f(x)) = (g, y). Hence, exponentiable and étale homo-
morphisms coincide.
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