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1. Introduction

In the category of groups, there is a well known equivalence between ac-
tions and split extensions, obtained via the semidirect product construction.
It is also well known (see, for example, [4]) that internal categories in the
category of groups are equivalent to crossed modules. In the paper [9], Porter
proved the same equivalence in the case of categories of groups with opera-
tions, which includes the examples of rings, associative algebras, Lie algebras,
Jordan algebras and many others.

The equivalence between internal categories and crossed modules is not
true in weaker algebraic contexts, such as monoids. However, in the pa-
per [8], Patchkoria introduced, in the category of monoids, a particular kind
of internal categories, called Schreier internal categories, and he proved the
equivalence between them and what he called crossed semimodules.

The aim of the present paper is to generalize Patchkoria’s result to a wider
class of categories, whose objects are called monoids with operations. This
class, which includes monoids, commutative monoids, semirings, semilattices
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with a bottom element and distributive lattices with a bottom element, ac-
tually generalizes at the same time Patchkoria’s result concerning monoids
and Porter’s result concerning groups with operations.

The paper is organized as follows. In Section 2 we introduce the notion
of monoids with operations and we describe actions and the construction of
semidirect products in this context. In Section 3 we define crossed modules
in monoids with operations and we prove that they are equivalent to Schreier
internal categories. Section 4 is devoted to compare, in the case of monoids,
the notion of semidirect product described in Section 2 with the categorical
one introduced by Bourn and Janelidze in [3]. In Section 5 the case of
semirings, and of distributive lattices as a particular case, is developed with
concrete examples.

2.Monoids with operations

The following definition is inspired by the analogous one, given by Porter
in [9], of groups with operations.

Definition 2.1. Let Ω be a set of finitary operations such that the following
conditions hold: if Ωi is the set of i-ary operations in Ω, then:

(1) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(2) There is a binary operation + ∈ Ω2 (not necessarily commutative)

and a constant 0 ∈ Ω0 satisfying the usual axioms for monoids;
(3) Ω0 = {0};
(4) Let Ω′

2 = Ω2\{+}; if ∗ ∈ Ω′
2, then ∗◦ defined by x ∗◦ y = y ∗ x is also

in Ω′
2;

(5) Any ∗ ∈ Ω′
2 is left distributive w.r.t. +, i.e.:

a ∗ (b+ c) = a ∗ b+ a ∗ c;

(6) For any ∗ ∈ Ω′
2 we have b ∗ 0 = 0;

(7) Any ω ∈ Ω1 satisfies the following conditions:
- ω(x+ y) = ω(x) + ω(y);
- for any ∗ ∈ Ω′

2 ω(a ∗ b) = ω(a) ∗ b.

Let moreover E be a set of axioms including the ones above. We will denote
by C the category of (Ω, E)-algebras. We will call the objects of C monoids
with operations.
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Remark. The definition above does not include the case of groups, or more
generally, the one of groups with operations. Indeed, the unary operation
given by the group inverses, denoted by −, does not satisfy Condition 7.
However, in order to recover all these structures, it suffices to add another
condition: if the base monoid structure (given by the operations + and 0) is
a group, then the operation − should be distinguished from the other unary
operations. In other terms, Condition 7 should be satisfied only by operations
in Ω′

1 = Ω1\{−}. In this way, our definition becomes a generalization of the
concept of groups with operations.

Example 2.2. Among the known structures covered by Porter’s definition,
such as groups, rings, associative algebras, Lie algebras and many others, our
definition includes the cases of monoids, commutative monoids, semirings
(i.e. rings where the additive structure is not necessarily a group, but just
a commutative monoid), semilattices with a bottom element, distributive
lattices with a bottom element (or a top one).

Remark. Let us observe that requiring left and right distributivity of any
∗ ∈ Ω′

2 with respect to +, as in Definition 2.1 (or, in other terms, left distribu-
tivity of ∗ and ∗◦), implies a partial commutativity of +. Indeed, consider
the element (a+ b) ∗ (c+ d); on one hand we have:

(a+ b) ∗ (c+ d) = (a+ b) ∗ c+ (a+ b) ∗ d = a ∗ c+ b ∗ c+ a ∗ d+ b ∗ d,

while, on the other hand:

(a+ b) ∗ (c+ d) = a ∗ (c+ d) + b ∗ (c+ d) = a ∗ c+ a ∗ d+ b ∗ c+ b ∗ d,

and hence the two expressions on the right are equal.

From now on, let C be a category of (Ω, E)-algebras as in the definition
above.

Definition 2.3. Let X and B be two objects of C. A pre-action of B on X
is a set, indexed by the set Ω2 of binary operations, of set-theoretical maps
α∗ : B ×X → X, ∗ ∈ Ω2.

What we call pre-action is what was called set of actions in [7], in the more
restricted context of categories of interest (which are particular groups with
operations, in the sense of Porter).
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Given a pre-action of B on X, we can construct a semidirect product of X
and B with respect to this pre-action, following the analogous construction
already known for groups with operations.

Definition 2.4. Given a pre-action α = {α∗|∗ ∈ Ω2} of B on X, the semidi-
rect product X ⋊α B of X and B with respect to α is the Ω-algebra with
underlying set X ×B and operations defined by:

(x1, b1) + (x2, b2) = (x1 + α+(b1, x2), b1 + b2),

(x1, b1) ∗ (x2, b2) = (x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2), for ∗ ∈ Ω′
2,

ω(x, b) = (ω(x), ω(b)), for ω ∈ Ω1.

For a generic pre-action α, X ⋊αB is not a (Ω, E)-algebra. The main goal
of this section is to characterize those pre-actions for which the correspond-
ing semidirect product is a (Ω, E)-algebra.

Let B be an object of C. The category Pt(B) is the category of the points
of the comma category C over B, i.e. the cocomma category 1B over C/B.
This amounts to the category whose objects are the split epimorphisms with
codomain B. In fact a morphism from the terminal 1B : B → B to an object
α : A → B, is precisely an arrow β : B → A such that αβ = 1B. An object
of Pt(B) will be called point over B. We will consider, in the context of
monoids with operations, a particular kind of point. The definition below
is inspired by the definition of Schreier internal category given in [8] in the
category of monoids:

Definition 2.5. A point

X = Ker p
k // A

p
// B

s
oo (1)

is said to be a Schreier point if, for any a ∈ A, there exists a unique x ∈ X
such that a = k(x) + sp(a) (where, as in Definition 2.1, we use the symbol
+ for the monoid operation).

In other terms, a Schreier point is a point of the form (1) equipped with a
unique set-theoretical map q : A→ X with the property that

a = kq(a) + sp(a)

for any a ∈ A.
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It comes immediately from the definition above that, in a Schreier point,
the morphisms k and s are jointly epimorphic. Hence they have the following
interesting property:

Proposition 2.6. In a point of the form

X
k // A

p
// B,

s
oo

if k and s are jointly epimorphic, then p is the cokernel of k. In other terms
the sequence

0 // X
k // A

p
// B // 0

is exact and the point is a split extension.

Proof : Given a morphism f : A → D such that fk = 0, we have that fs
makes the triangle below commutative:

X
k // A

f   A
AA

AA
AA

A

p
// B

fs
��

s
oo

D.

Indeed:

fsps = fs and fspk = 0 = fk,

and since k and s are jointly epimorphic, we have that fsp = f . Moreover,
given any g : B → D such that gp = f , we have that

g = gps = fs.

It is known that, in a category C of monoids with operations, there are
points that are not split extensions. For example, in the category Mon of
monoids, consider the following point, where N is the monoid of natural
numbers with the usual sum:

0
0 // N× N

+
// N.

〈0,1〉
oo

Now we can introduce the concept of action, which corresponds to the one
of set of derived actions, introduced in [7] for categories of interest.
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Given a Schreier point over B with kernel X, we can define a pre-action of
B on X in the following way:

α+(b, x) = q(s(b) + k(x)),

α∗(b, x) = q(s(b) ∗ k(x)), for ∗ ∈ Ω′
2.

Definition 2.7. A pre-action defined as above, starting from a Schreier
point, will be called an action of B on X.

Now we can state the main result of this section:

Theorem 2.8. A pre-action α of B on X is an action if and only if the
semidirect product X ⋊α B is an object of C.

Proof : Let

X
k

// A
q

oo
p

// B
s

oo

be a Schreier point. First let us observe that α+(b, x) is the unique element
of X such that:

s(b) + k(x) = kα+(b, x) + s(b)

(this follows from the Schreier condition applying q to the element a = s(b)+
k(x)). Now, considering α as in Definition 2.7, we have to show that A is
isomorphic to the semidirect product X⋊αB of X and B with respect to the
action α. Consider the map ψ : A→ X⋊αB sending an element a ∈ A to the
pair (q(a), p(a)). It is a bijection, whose inverse is the map ϕ : X ⋊α B → A
sending a pair (x, b) to the element k(x) + s(b). Indeed:

ϕψ(a) = ϕ(q(a), p(a)) = kq(a) + sp(a) = a

and
ψϕ(x, b) = ψ(k(x) + s(b)) = (q(k(x) + s(b)), b),

so it remains to prove that q(k(x) + s(b)) = x. Putting a = k(x) + s(b) and
q(a) = x′, we have that x′ is the unique element of X such that

k(x) + s(b) = a = kq(a) + s(b) = k(x′) + s(b),

and hence x = x′. Finally, ϕ (and hence ψ) is a homomorphism, in fact
preservation of unary operations is obvious, and moreover:

ϕ((x1, b1) + (x2, b2)) = ϕ(x1 + α+(b1, x2), b1 + b2) =

= k(x1 + α+(b1, x2)) + s(b1 + b2) = k(x1) + kα+(b1, x2) + s(b1) + s(b2) =

= k(x1) + s(b1) + k(x2) + s(b2) = ϕ(x1, b1) + ϕ(x2, b2);
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ϕ(0, 0) = k(0) + s(0) = 0;

and, for any ∗ ∈ Ω′
2:

ϕ((x1, b1) ∗ (x2, b2)) = ϕ(x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2) =

= ϕ(x1 ∗ x2 + q(s(b1) ∗ k(x2)) + q(s(b2) ∗
◦ k(x1)), b1 ∗ b2) =

= ϕ(x1 ∗ x2 + q(s(b1) ∗ k(x2)) + q(k(x1) ∗ s(b2)), b1 ∗ b2) =

= k(x1 ∗ x2 + q(s(b1) ∗ k(x2)) + q(k(x1) ∗ s(b2))) + s(b1 ∗ b2) =

= k(x1) ∗ k(x2) + kq(s(b1) ∗ k(x2)) + kq(k(x1) ∗ s(b2)) + s(b1) ∗ s(b2).

But kq(s(b1) ∗ k(x2)) = s(b1) ∗ k(x2); indeed:

s(b1) ∗ k(x2) = kq(s(b1) ∗ k(x2)) + sp(s(b1) ∗ k(x2)),

but sp(s(b1)∗k(x2)) = 0, because s(b1)∗k(x2) ∈ Ker p; analogously, kq(k(x1)∗
s(b2)) = k(x1) ∗ s(b2). Hence:

ϕ((x1, b1)∗(x2, b2)) = k(x1)∗k(x2)+s(b1)∗k(x2)+k(x1)∗s(b2)+s(b1)∗s(b2) =

= (k(x1) + s(b1)) ∗ (k(x2) + s(b2)) = ϕ(x1, b1) ∗ ϕ(x2, b2).

Being X ⋊α B isomorphic to A, it is an object of C.

Conversely, let α be a pre-action of B on X such that X ⋊αB is an object
of C. Then we have the following point in C:

X
〈1,0〉

// X ⋊α B
πB // B.
〈0,1〉
oo

This is a Schreier point, where q = πX ; the uniqueness of q comes from the
fact that 〈1, 0〉 and 〈0, 1〉 are jointly epimorphic. Moreover, it is immediate
to see that the action defined by this Schreier point is exactly the pre-action
α with which we started. This completes the proof.

We conclude this section with a remark that will be useful in the following:

Lemma 2.9. Let α be an action of B on X in C. For any b, b1, b2 ∈ B,
x, x1, x2 ∈ X and ∗ ∈ Ω′

2 we have:

(1) α+(b, x1 + x2) = α+(b, x1) + α+(b, x2);
(2) α+(b1 + b2, x) = α+(b1, α+(b2, x));
(3) α+(0, x) = x;
(4) α+(b, 0) = 0;
(5) α∗(b, x1 + x2) = α∗(b, x1) + α∗(b, x2);
(6) α∗(b1 + b2, x) = α∗(b1, x) + α∗(b2, x).
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Proof : The equalities above follow immediately from the fact that X⋊αB is
an object of C, and hence + is a monoid operation on it, with identity given
by (0, 0), and any ∗ ∈ Ω′

2 is distributive with respect to +.

3. Crossed modules and Schreier internal categories

Theorem 2.8 allows us to obtain, in the context of monoids with operations,
an equivalence between crossed modules and particular internal categories,
that will be called Schreier internal categories (following [8]). This fact is a
generalization of the known equivalence for groups with operations, described
in [9], and for monoids, as in [8].

We start describing what is a crossed module in a category of monoids
with operations. Throughout all the section, C will be a category of (Ω, E)-
algebras as in Definition 2.1.

Definition 3.1. Given two objects X and B of C, an action α of B on X
and a morphism f : X → B, we say that the pair (α, f) is a crossed module
if, for any x, x1, x2 ∈ X, b ∈ B and ∗ ∈ Ω′

2, the following conditions hold:

(i) f(α+(b, x)) + b = b+ f(x);
(ii) α+(f(x1), x2) + x1 = x1 + x2;
(iii) f(α∗(b, x)) = b ∗ f(x);
(iv) α∗(f(x1), x2) = α∗◦(f(x2), x1) = x1 ∗ x2.

Given two crossed modules (X,B, α, f) and (X ′, B′, α′, f ′), a morphism be-
tween them is a pair (β, γ) of morphisms in C, where β : X → X ′ and
γ : B → B′, such that the following conditions hold:

(a) β(α+(b, x)) = α′
+(γ(b), β(x)) for any b ∈ B, x ∈ X;

(b) β(α∗(b, x)) = α′
∗(γ(b), β(x)) for any b ∈ B, x ∈ X and ∗ ∈ Ω′

2;
(c) γf = f ′β.

Crossed modules in C and morphisms between them form a category, which
will be denoted by XMod(C). We will show that this category is equivalent
to a category whose objects are particular internal categories. Recall that an
internal category in C is a reflexive graph:

A
d //

c
// Beoo
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(i.e. de = ce = 1B) with a morphism (giving the composition of arrows)
m : A ×B A → A (A ×B A is the pullback of d along c) satisfying asso-
ciativity and identity axioms. A morphism between two internal categories
(A,B, d, c, e,m) and (A′, B′, d′, c′, e′, m′), also called internal functor, is a pair
(g1, g0), where g1 : A → A′ and g0 : B → B′, preserving domain, codomain,
composition and identities.

Definition 3.2. An internal category (A,B, d, c, e,m) in C is a Schreier
internal category if the point

X = Ker d
k // A

d // B
e

oo

is Schreier.

We will denote by SCat(C) the category whose objects are Schreier internal
categories in C and whose morphisms are internal functors between them.

Lemma 3.3. Let (A,B, d, c, e,m) be a Schreier internal category in C, and
let a, a′ ∈ A be composable arrows (i.e. d(a′) = c(a)). Then

m(a′, a) = kq(a′) + kq(a) + ed(a).

Proof : We know that

a = kq(a) + ed(a);

moreover:

d(a′) = c(a) = c(kq(a) + ed(a)) = ckq(a) + d(a),

and hence

a′ = kq(a′) + ed(a′) = kq(a′) + e(ckq(a) + d(a)).

Since m is a morphism in C and it preserves identities, we have:

m(a′, a) = m(kq(a′) + e(ckq(a) + d(a)), kq(a) + ed(a)) =

= m(kq(a′), 0) +m(e(ckq(a) + d(a)), kq(a) + ed(a)) =

= m(kq(a′), edkq(a′)) +m(ec(kq(a) + ed(a)), kq(a) + ed(a)) =

= kq(a′) + kq(a) + ed(a).

Theorem 3.4. The categories XMod(C) and SCat(C) are equivalent.
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Proof : Let

X = Ker d
k // A

d //

c
// Beoo

be a Schreier internal category in C, and q : A→ X the unique map satisfying
the Schreier condition. In the previous Section we proved that q defines an
action α of B on X in the following way:

α+(b, x) = q(e(b) + k(x)),

α∗(b, x) = q(e(b) ∗ k(x)), for ∗ ∈ Ω′
2.

Consider then the morphism f = ck. We have to show that (X,B, α, f) is a
crossed module:

(i) For any b ∈ B and x ∈ X we have that:

e(b) + k(x) = kα+(b, x) + e(b);

applying the morphism c on both sides of the equality we get:

ce(b) + ck(x) = ckα+(b, x) + ce(b),

and since ce = 1B we have:

b+ f(x) = fα+(b, x) + b.

(ii) Applying Schreier condition to the element eck(x1) + k(x2), we have,
for any x1, x2 ∈ X:

eck(x1)+k(x2) = kα+(f(x1), x2)+ed(eck(x1)+k(x2)) = kα+(f(x1), x2)+eck(x1).

It is easy to see that the elements kα+(f(x1), x2) + eck(x1) and k(x1)
in A are composable; hence, applying Lemma 3.3:

k(α+(f(x1), x2) + x1) = kα+(f(x1), x2) + k(x1) =

= m(kα+(f(x1), x2) + eck(x1), k(x1)) =

= m(eck(x1) + k(x2), k(x1)) = m(eck(x1), k(x1)) +m(k(x2), 0) =

= m(eck(x1), k(x1)) +m(k(x2), edk(x2)) = k(x1) + k(x2) = k(x1 + x2),

and since k is injective, we have that α+(f(x1), x2) + x1 = x1 + x2.
(iii) We already observed, in the proof of Theorem 2.8, that

kq(e(b) ∗ k(x)) = e(b) ∗ k(x) for any b ∈ B, x ∈ X and ∗ ∈ Ω′
2;

hence:

f(α∗(b, x)) = ckq(e(b) ∗ k(x)) = c(e(b) ∗ k(x)) = ce(b) ∗ ck(x) = b ∗ f(x).
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(iv) We have:

kα∗(f(x1), x2) = kα∗(ck(x1), x2) = kq(eck(x1) ∗ k(x2)) = eck(x1) ∗ k(x2),

and hence, using Lemma 3.3 and the fact that m preserves the binary
operation ∗:

kα∗(f(x1), x2) = m(kα∗(f(x1), x2), 0) = m(eck(x1) ∗ k(x2), 0) =

= m(eck(x1) ∗ k(x2), k(x1) ∗ 0) = m(eck(x1), k(x1)) ∗m(k(x2), 0) =

= k(x1) ∗ k(x2) = k(x1 ∗ x2),

and, since k is a monomorphism, we have that:

α∗(f(x1), x2) = x1 ∗ x2;

the proof that α∗◦(f(x2), x1) = x1 ∗ x2 is similar.

Consider now the following commutative diagram:

X

δ
��

k // A

g1
��

d //

c
// B

g0
��

eoo

X ′ k′ // A′
d′ //

c′
// B′,e′oo

(2)

such that (g1, g0) is a morphism of internal categories; we can define a mor-
phism of crossed modules

(β, γ) : (X,B, α, f) → (X ′, B′, α′, f ′)

by putting β = δ and γ = g0. Indeed:

(a) using Schreier condition we have

g1kα+(b, x) + e′g0(b) = g1kα+(b, x) + g1e(b) =

= g1(kα+(b, x) + e(b)) = g1(e(b) + k(x)) = g1e(b) + g1k(x) =

= e′g0(b) + k′δ(x) = k′α′
+(g0(b), δ(x)) + e′g0(b);

by uniqueness in Schreier condition we obtain that:

k′δα+(b, x) = g1kα+(b, x) = k′α′
+(g0(b), δ(x)),

and since k′ is injective we get

δα+(b, x) = α′
+(g0(b), δ(x)),

i.e.
βα+(b, x) = α′

+(γ(b), β(x)).



12 N. MARTINS-FERREIRA, A. MONTOLI AND M. SOBRAL

(b) using the fact that kq(e(b) ∗ k(x)) = e(b) ∗ k(x) for any b ∈ B, x ∈ X,
we have:

k′δq(e(b) ∗ k(x)) = g1kq(e(b) ∗ k(x)) = g1(e(b) ∗ k(x)) =

= g1e(b) ∗ g1k(x) = e′g0(b) ∗ k
′δ(x) = k′q′(e′g0(b) ∗ k

′δ(x)),

and since k′ is injective, we obtain:

βα∗(b, x) = δq(e(b) ∗ k(x)) = q′(e′g0(b) ∗ k
′δ(x)) = α′

∗(γ(b), β(x)).

(c) The fact that γf = f ′β comes immediately from the commutativity
of diagram (2).

This defines a functor

F : SCat(C) → XMod(C).

In order to show that this functor is an equivalence, we will define another
functor

G : XMod(C) → SCat(C).

Given a crossed module (X,B, α, f), we can define A = X ⋊α B and we
obtain a Schreier point:

X
〈1,0〉

// X ⋊α B
πB // B.
〈0,1〉
oo

Putting d = πB, e = 〈0, 1〉, k = 〈1, 0〉 and defining c by c(x, b) = f(x) + b we
obtain a reflexive graph:

X
k // A

d //

c
// B;eoo

c is a morphism, indeed preservation of unary operations is obvious, and
moreover:

c((x1, b1) + (x2, b2)) = c(x1 + α+(b1, x2), b1 + b2) =

= f(x1)+fα+(b1, x2)+ b1+ b2 = f(x1)+ b1+f(x2)+ b2 = c(x1, b1)+c(x2, b2),

and, for any ∗ ∈ Ω′
2

c((x1, b1) ∗ (x2, b2)) = c(x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2) =

= f(x1 ∗ x2) + fα∗(b1, x2) + fα∗◦(b2, x1) + b1 ∗ b2 =

= f(x1) ∗ f(x2) + b1 ∗ f(x2) + f(x1) ∗ b2 + b1 ∗ b2 =

= (f(x1) + b1) ∗ (f(x2) + b2) = c(x1, b1) ∗ c(x2, b2).
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Now we have to define the compositionm. First observe that two pairs (x, b)
and (x′, b′) are composable if and only if b′ = f(x) + b. Hence we can define
m in the following way:

m((x′, f(x) + b), (x, b)) = (x′ + x, b).

m is a morphism, indeed preservation of unary operations is obvious, and
moreover:

m[((x′1, f(x1) + b1), (x1, b1)) + ((x′2, f(x2) + b2), (x2, b2))] =

= m[(x′1, f(x1) + b1) + (x′2, f(x2) + b2), (x1, b1) + (x2, b2)] =

m[(x′1+α+(f(x1)+b1, x
′
2), f(x1)+b1+f(x2)+b2), (x1+α+(b1, x2), b1+b2)] =

= (x′1 + α+(f(x1) + b1, x
′
2) + x1 + α+(b1, x2), b1 + b2),

while

m((x′1, f(x1) + b1), (x1, b1)) +m((x′2, f(x2) + b2), (x2, b2)) =

= (x′1 + x1, b1) + (x′2 + x2, b2) = (x′1 + x1 + α+(b1, x
′
2 + x2), b1 + b2),

and the two pairs are the same, because, thanks to Lemma 2.9, we have:

x′1 + α+(f(x1) + b1, x
′
2) + x1 + α+(b1, x2) =

= x′1 + α+(f(x1), α+(b1, x
′
2)) + x1 + α+(b1, x2) =

= x′1 + x1 + α+(b1, x
′
2) + α+(b1, x2) = x′1 + x1 + α+(b1, x

′
2 + x2).

Analogously it can be proved that m preserves any ∗ ∈ Ω′
2:

m[((x′1, f(x1) + b1), (x1, b1)) ∗ ((x
′
2, f(x2) + b2), (x2, b2))] =

= m[(x′1, f(x1) + b1) ∗ (x
′
2, f(x2) + b2), (x1, b1)) ∗ (x2, b2)] =

= m[(x′1∗x
′
2+α∗(f(x1)+b1, x

′
2)+α∗◦(f(x2)+b2, x

′
1), (f(x1)+b1)∗(f(x2)+b2)),

(x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2)] =

= (x′1 ∗ x
′
2 + α∗(f(x1) + b1, x

′
2) + α∗◦(f(x2) + b2, x

′
1) + x1 ∗ x2+

+α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2) =

= (x′1 ∗ x
′
2+α∗(f(x1), x

′
2) +α∗(b1, x

′
2) +α∗◦(f(x2), x

′
1) +α∗◦(b2, x

′
1) + x1 ∗ x2+

+α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2) =

= (x′1∗x
′
2+x1∗x

′
2+α∗(b1, x

′
2)+x

′
1∗x2+α∗◦(b2, x

′
1)+x1∗x2+α∗(b1, x2)+α∗◦(b2, x1), b1∗b2),

while

m((x′1, f(x1) + b1), (x1, b1)) ∗m((x′2, f(x2) + b2), (x2, b2)) =

= (x′1 + x1, b1) ∗ (x
′
2 + x2, b2) =
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= ((x′1 + x1) ∗ (x
′
2 + x2) + α∗(b1, x

′
2 + x2) + α∗◦(b2, x

′
1 + x1), b1 ∗ b2) =

= ((x′1+x1)∗(x
′
2+x2)+α∗(b1, x

′
2)+α∗(b1, x2)+α∗◦(b2, x

′
1)+α∗◦(b2, x1), b1∗b2) =

= (x′1∗x
′
2+x1∗x

′
2+x

′
1∗x2+x1∗x2+α∗(b1, x

′
2)+α∗(b1, x2)+α∗◦(b2, x

′
1)+α∗◦(b2, x1), b1∗b2);

in order to see that the two pairs are equal, it suffices to apply the bijection
ϕ(x, b) = k(x) + s(b) used in the proof of Theorem 2.8, in fact, thanks to
Schreier condition, kα∗(b, x) = s(b) ∗ k(x) for any b ∈ B, x ∈ X and the
partial commutativity of + in A gives the result.

It is straightforward to check that m is associative and preserves identities.
Hence we have a Schreier internal category. Moreover, given a morphism

(β, γ) : (X,B, α, f) → (X ′, B′, α′, f ′)

of crossed modules, we can define a morphism (g1, g0) between the corre-
sponding Schreier internal categories by putting

g0 = γ, g1(x, b) = (β(x), γ(b)).

g1 is a morphism, indeed preservation of unary operations is obvious, and
moreover:

g1((x1, b1) + (x2, b2)) = g1(x1 + α+(b1, x2), b1 + b2) =

= (β(x1)+βα+(b1, x2), γ(b1+b2)) = (β(x1)+α
′
+(γ(b1), β(x2)), γ(b1)+γ(b2)) =

= (β(x1), γ(b1)) + (β(x2), γ(b2)) = g1(x1, b1) + g1(x2, b2),

and, for any ∗ ∈ Ω′
2:

g1((x1, b1) ∗ (x2, b2)) = g1(x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2) =

= (β(x1 ∗ x2) + βα∗(b1, x2) + βα∗◦(b2, x1), γ(b1 ∗ b2)) =

= (β(x1) ∗ β(x2) + α′
∗(γ(b1), β(x2)) + α′

∗◦(γ(b2), β(x1)), γ(b1) ∗ γ(b2)) =

= (β(x1), γ(b1)) ∗ (β(x2), γ(b2)) = g1(x1, b1) ∗ g1(x2, b2).

Moreover, we have:

g0d(x, b) = g0(b) = γ(b) = d′(β(x), γ(b)) = d′g1(x, b);

g0c(x, b) = g0(f(x)+b) = γf(x)+γ(b) = f ′β(x)+γ(b) = c′(β(x), γ(b)) = c′g1(x, b);

e′g0(b) = e′γ(b) = (0, γ(b)) = g1(0, b) = g1e(b);

m′(g1 × g1)((x
′, b′), (x, b)) = m′((β(x′), γ(b′)), (β(x), γ(b))) =

= (β(x′) + β(x), γ(b)) = g1(x
′ + x, b) = g1m((x′, b′), (x, b)).
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So we have a functor

G : XMod(C) → SCat(C).

It is immediate to see that FG = 1XMod(C); let us prove thatGF ≃ 1SCat(C).
In order to do that consider, for any Schreier internal category

X
k // A

d //

c
// B,eoo

the following diagram

X
k // A

ψ
��

d //

c
// Beoo

X
〈1,0〉

// X ⋊α B

ϕ

OO

πB //

c′
// B,〈0,1〉oo

where the lower line is the image of the upper one under the functor GF and
the morphisms ψ and ϕ are defined as in the proof of Theorem 2.8:

ψ(a) = (q(a), d(a)), ϕ(x, b) = k(x) + e(b).

We already know that ψ and ϕ are isomorphisms in C; it remains to prove
that they give rise to internal functors. ϕ (and hence ψ) is a morphism of
internal reflexive graphs, indeed:

dϕ(x, b) = d(k(x) + e(b)) = b = πB(x, b);

cϕ(x, b) = c(k(x) + e(b)) = ck(x) + ce(b) = ck(x) + b = c′(x, b);

ϕ〈0, 1〉(b) = ϕ(0, b) = e(b).

Moreover, ψ preserves composition, i.e. ψm = m′(ψ × ψ). Indeed:

ψm(a′, a) = ψ(kq(a′) + kq(a) + ed(a)) = (q(kq(a′) + kq(a) + ed(a)), d(a)),

while

m′(ψ × ψ)(a′, a) = m′((q(a′), d(a′)), (q(a), d(a))) = (q(a′) + q(a), d(a)),

and they are equal, because, applying Schreier condition to the element
k(q(a′) + q(a)) + ed(a) ∈ A we have:

k(q(a′) + q(a)) + ed(a) = kq(k(q(a′) + q(a)) + ed(a)) + ed(a)

and the thesis follows by the uniqueness in Schreier condition. This concludes
the proof.
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Definition 3.5. A Schreier groupoid is an internal category

X
k // A

d //

c
// Beoo (3)

in C endowed with a set-theoretical map i : A → A giving inverses for the
composition m, i.e.:

di = c, ci = d, m(i(a), a) = ed(a), m(a, i(a)) = ec(a) for any a ∈ A.

In the case of monoids, the notion above was already considered in [8],
where the author called these groupoids internal. However, we prefer to use
a different name, because, with the classical terminology used in category
theory, an internal groupoid in C is an internal category such that the inverse
map i is a morphism in C, and not only a set-theoretical map.

Corollary 3.6. A Schreier internal category in C is a Schreier groupoid if
and only if, in the corresponding crossed modules (X,B, α, f) in C, X is a
group.

Proof : Given a Schreier groupoid of the form (3), for every y ∈ X we have
that

m(ik(y), k(y)) = edk(y) = 0, m(k(y), ik(y)) = eck(y).

By Schreier condition, there exists a unique x ∈ X such that

ik(y) = k(x) + edik(y) = k(x) + eck(y),

hence

m(k(x) + eck(y), k(y)) = 0, m(k(y), k(x) + eck(y)) = eck(y).

Using Lemma 3.3, we obtain

kq(k(x)+eck(y))+k(y) = 0, k(y)+kq(k(x)+eck(y))+ed(k(x)+eck(y)) = eck(y),

hence

kq(k(x) + eck(y)) + k(y) = 0, k(y) + kq(k(x) + eck(y)) + eck(y) = eck(y).

By Schreier condition we have that kq(k(x) + eck(y)) = k(x) and so:

k(x) + k(y) = 0, k(y) + k(x) + eck(y) = eck(y).

Again by Schreier condition, the second equality gives k(y) + k(x) = 0; since
k is a monomorphism, we have that

x+ y = y + x = 0,
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and X is a group.

Conversely, let (X,B, α, f) a crossed module such that X is a group. Con-
sider the corresponding Schreier internal category

X
〈1,0〉

// X ⋊α B
πB //

c
// B,〈0,1〉oo

where c(x, b) = f(x) + b and m((x′, f(x) + b), (x, b)) = (x′ + x, b). We can
define i by:

i(x, b) = (−x, f(x) + b).

It is immediate to see that i gives inverses for m.

4. The case of monoids

The aim of this section is to compare, in the case of monoids, the semidi-
rect product defined in Section 2 with the categorical one, defined by D.
Bourn and G. Janelidze in [3]. We start recalling the categorical definition
of semidirect products introduced in [3].

Let C be a category. A diagram

D
q

//

γ
��

A

α
��

E

δ

OO

p
// B

β

OO
(4)

is called a split commutative square if αβ = 1B, γδ = 1E and it commutes
both upwards and downwards, i.e. αq = pγ and qδ = βp.

A split pullback is a universal such square. More precisely, the diagram (4)
is a split pullback of (α, β) along p if, for any other split commutative square

D′
q′

//

γ′

��

A

α
��

E

δ′

OO

p
// B,

β

OO

there exists a unique morphism d : D′ → D such that

γd = γ ′, dδ′ = δ, qd = q′.
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Dually, the same diagram defines a split pushout of (γ, δ) along p when,
for any other split commutative square

D
q′

//

γ

��

A′

α′

��

E

δ

OO

p
// B,

β′

OO

there exists a unique morphism a : A→ A′ such that

α′a = α, aβ = β ′, aq = q′.

We say that the category C has split pullbacks (resp. split pushouts) if it
admits split pullbacks (resp. split pushouts) along any morphism p : E → B.

The existence of split pullbacks defines a contravariant pseudofunctor

Pt : Cop → Cat

(the pseudofunctor of points) that assigns to a morphism p : E → B, the
pullback functor

p∗ : Pt(B) → Pt(E),

where the category Pt(B) is the category of points over B, as in Section 2.

Hence the following is a purely categorical definition:

Definition 4.1. ([3], Definition 3.2) A category C with split pullbacks is said
to be a category with semidirect products if, for any arrow p : E → B in C,
the pullback functor p∗ (has a left adjoint and) is monadic.

In this case, denoting by T p the monad defined by this adjunction, given a
T p-algebra (D, ξ) the semidirect product (D, ξ)⋊(B, p) is an object in Pt(B)
corresponding to (D, ξ) via the canonical equivalence K:

[Pt(E)]T
p

��

⊢

Pt(B)

K

;;w
w

w
w

w
w

w

p∗
//⊥ Pt(E)

p!oo

OO
(5)

Let us observe that, if C is finitely complete, the pullback functors p∗

have left adjoints p! (for any p in C) if and only if C has split pushouts.
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Moreover, in the paper [6] the authors proved that, if C is finitely complete,
it has pushouts of split monomorphisms and an initial object, then it is not
necessary to consider all morphisms p in C, but it is sufficient to consider
only the morphisms iB : 0 → B with the initial object as domain. Indeed:

Proposition 4.2. ([6], Corollary 3) Let C be a category with finite lim-
its, pushouts of split monomorphisms and initial object. Then the following
statements are equivalent:

(i) all pullback functors i∗B defined by the initial arrows are monadic;
(ii) for any morphism p in C, the pullback functor p∗ is monadic, i.e. C

admits semidirect products.

The algebras for the monad T iB are called internal actions in [1]. The
monad T iB is usually denoted by B♭(−); for any object X, B♭X is the kernel
of the morphism [0, 1] : X + B → B. Algebras for this monad are hence
morphisms ξ : B♭X → X satisfying the usual conditions for an algebra. Our
aim is to compare internal actions with the actions defined by a Schreier split
extension, as in Section 2, that will be called external actions from now on.

Let now C be the category Mon of monoids. It is known that this cate-
gory doesn’t have semidirect products in the categorical sense, or, in other
terms, that the points are not equivalent to the internal actions. Indeed,
the category Mon is not protomodular [2], and it is known that protomod-
ularity is a necessary condition in order to have semidirect products (see,
for example, [6], or [5], where the authors give a characterization of pointed
categories that admit semidirect products). On the other hand, Theorem
2.8 gives an equivalence between Schreier points and external actions (i.e.
pre-actions such that the corresponding semidirect product is an object of
C). Hence it is worth comparing internal and external actions in this context.

In general, internal and external actions are not equivalent. To see that,
we can consider the monoid N of natural numbers (with the usual sum as
operation) as acting monoid B. In this case, N♭X = X for any monoid X.
Indeed, it is easy to see that the kernel of the morphism [0, 1] : X + N → N

is just X. Hence an internal action is a morphism ξ : X → X satisfying the
usual conditions; in particular, ξ should be a split epimorphism, with section
given by the inclusion η : X → B♭X. But in this case η = 1X , and this forces
ξ to be the identity. In other terms, the set IntAct(N, X) of internal actions
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of N over X is just a singleton.

However, the set ExtAct(N, X) of external actions of N over X is not a
singleton in general. To see that, we can choose also X to be the monoid N

of natural numbers. Consider then, for any natural number n, different from
0, the following pre-action of N on itself:

αn(b, x) = nbx.

It is straightforward to verify that the semidirect product defined using any
of these pre-actions, as in Definition 2.4, is a monoid. Hence αn is an exter-
nal action for any n. It is easy to see that these actions do not give rise to
semidirect products that are all isomorphic: it suffices to observe that the
semidirect product N⋊α1

N is just the direct product of N with itself, hence
it is a commutative monoid, while the semidirect products N ⋊αn

N are not
commutative if n 6= 1. Hence IntAct(N,N) 6= ExtAct(N,N).

There are particular cases, however, where internal and external actions
coincide. One of them is described in the following

Proposition 4.3. If B is a group (and X is a generic monoid), then there
is a bijection between IntAct(B,X) and ExtAct(B,X).

Proof : Let us first observe that every point

X
k // A

p
// B

soo (6)

such that B is a group is actually a Schreier point. Indeed, we can define a
pre-action of B on X in the following way:

α(b, x) = s(b) + k(x)− s(b),

and it is immediate to show that the corresponding semidirect productX⋊αB
is a monoid, hence this pre-action is an external action and the point (6) is
a Schreier one: in fact we have that, in this case, q(a) = a− sp(a).

Moreover, when B is a group, B♭X is the submonoid of the free product
X+B generated by chains of the form (b, x,−b) for b ∈ B and x ∈ X. Hence,
given an internal action ξ : B♭X → X, we can define a pre-action (which is
actually an external action) by:

α(b, x) = ξ(b, x,−b),
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in the same way as it happens in the category of groups (see [3] for a more
detailed description of this bijection in the category of groups). Conversely,
given an external action α of B on X, we can consider the following commu-
tative diagram:

B♭X

ξ
��

k0 // X + B

[〈1,0〉,〈0,1〉]
��

[0,1]
// B

ιBoo

X
〈1,0〉

// X ⋊α B πB
// B.

〈0,1〉
oo

Then we can define an internal action ξ just by restriction of the morphism
[〈1, 0〉, 〈0, 1〉] to B♭X. It is straightforward to prove that in this way we
obtain a bijection between IntAct(B,X) and ExtAct(B,X).

5. The case of semirings

In this section we explore in more details the example of semirings.

A semiring (A,+, 0, ·) is an algebraic structure with one constant and two
binary operations, in which (A,+, 0) is a commutative monoid, (A, ·) is a
semigroup, and the following conditions are satisfied for every x, y, z ∈ A:

x · (y + z) = (x · y) + (x · z),

(x+ y) · z = (x · z) + (y · z),

x · 0 = 0 = 0 · x.

If X = (X,+, 0, ·) and B = (B,+, 0, ·) are two semirings, a pre-action of
B on X consists of three maps

α+, α(·), α(·)◦ : B ×X → X.

Proposition 5.1. A pre-action α = {α+, α(·), α(·)◦} is an action if and only
if, for all b ∈ B and all x ∈ X,

α+(b, x) = x, (7)
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and, if for simplicity we write α(·)(b, x) = b⊙x and α(·)◦(b, x) = x⊙b, the
following conditions are satisfied for every b, b′ ∈ B and x, x′ ∈ X:

(b+ b′)⊙(x+ x′) = b⊙x+ b⊙x′ + b′⊙x+ b′⊙x′, (8)

(x+ x′)⊙(b+ b′) = x⊙b+ x⊙b
′ + x′⊙b+ x′⊙b

′, (9)

(b⊙x) · x′ = b⊙(x · x′) , x · (x′⊙b) = (x · x′)⊙b, (10)

(b · b′)⊙x = b⊙(b′⊙x) , x⊙(b · b
′) = (x⊙b)⊙b

′, (11)

x · (b⊙x′) = (x⊙b) · x
′ , (b⊙x)⊙b

′ = b⊙(x⊙b
′), (12)

0⊙x = 0⊙b = b⊙0 = x⊙0 = 0. (13)

Proof : Condition (7) is due to the fact that + is commutative, together with
the specifications α+(0, x) = x and α+(b, 0) = 0, as it follows from Lemma
2.9. Conditions (8) to (13) are equivalent to the distributivity of · and ·◦

with respect to +, the fact that 0 is absorvent with respect to ·, and the
associativity of ·. Indeed, for any element (x, b) in the semidirect product
X ⋊α B with the operations as specified in Definition 2.4, we have

(x, b) · (0, 0) = (0, 0) = (0, 0) · (x, b)

and hence

b⊙0 + x⊙0 = 0 = 0⊙x+ 0⊙b,

now using the distributivity, as specified in Lemma 2.9, we also have

0 = 0⊙x+ 0⊙b = (0 + 0)⊙x+ 0⊙b

= 0⊙x+ (0⊙x+ 0⊙b)

= 0⊙x+ 0 = 0⊙x.

The other identities in (13) are obtained in a similar way. It is now a routine
calculation to check that equations (8) and (9) follow from the distributivity
of ·, while the equations in (10), (11) and (12) follow from the associativity
of · in X ⋊α B.

The example (N,+, 0,×) of natural numbers with zero, addition and multi-
plication is perhaps the paradigmatic example of a semiring. Other examples
are hom(B,B), the set of all endomorphisms on a commutative monoid B,
with the zero map, the componentwise addition and the composition of mor-
phisms as multiplication. Moreover, given a set A, the set of languages over
the alphabet A (i.e. the set of subsets of the free monoid A∗ over A) is a
semiring, where the monoid operation is the set-theoretical union, while the
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other operation is given by the concatenation of words: given two languages
L and L′, a word τ belongs to the product LL′ if and only if there exist σ ∈ L
and σ′ ∈ L′ such that τ = σσ′. It is immediate to see that this concatenation
is associative and distributive with respect to the union.

An important particular instance of a semiring is a distributive lattice: a
distributive lattice is a semi-ring (A,+, 0,×) where, in particular, (A,+, 0)
is an idempotent commutative monoid and (A,×) is an idempotent commu-
tative semigroup.

In the particular case when the operation × is commutative, α× = α×◦. As
a concrete example, we can study actions of N on itself, where N denotes the
semiring of natural numbers. There are exactly two actions of N on itself:
α×(n,m) = nm and α×(n,m) = 0. Indeed, from (8), α× must be of the form
α×(n,m) = knm, with k = α×(1, 1), but in order to satisfy (11), k must be
idempotent: k = k2. The only two natural numbers with this property are
k = 0 and k = 1.
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