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GLOBALLY CONVERGENT EVOLUTION STRATEGIES
AND CMA-ES

Y. DIOUANE, S. GRATTON AND L. N. VICENTE

Abstract: In this paper we show how to modify a large class of evolution strate-
gies (ES) to rigorously achieve a form of global convergence, meaning convergence
to stationary points independently of the starting point. The type of ES under
consideration recombine the parents by means of a weighted sum, around which the
offsprings are computed by random generation. One relevant instance of such ES is
CMA-ES.

The modifications consist essentially of the reduction of the size of the steps
whenever a sufficient decrease condition on the function values is not verified. When
such a condition is satisfied, the step size can be reset to the step size maintained
by the ES themselves, as long as this latter one is sufficiently large. We suggest a
number of ways of imposing sufficient decrease for which global convergence holds
under reasonable assumptions, and extend our theory to the constrained case.

Given a limited budget of function evaluations, our numerical experiments have
shown that the modified CMA-ES is capable of further progress in function values.
Moreover, we have observed that such an improvement in efficiency comes without
deteriorating the behavior of the underlying method in the presence of nonconvexity.

Keywords: Evolution strategy, global convergence, sufficient decrease, covariance
matrix adaptation (CMA).
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1. Introduction
Evolution strategies (ES) form a class of evolutionary algorithms for the

unconstrained optimization of a continuous function without using deriva-
tives, originally developed in [19]. ES have been widely investigated and
tested (see, e.g., [2]). However, as far as we know, there are no asymptotic
results regarding the convergence of the iterates generated by ES to station-
ary points, at least without assuming the density of the sampling procedure
in a given region or set. In this paper, we focus on a large class of ES where
new parents are selected as the best previous offsprings, and new offsprings
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are generated around a weighted mean of the previous parents. The paper fo-
cuses first on unconstrained optimization problems of the form minx∈Rn f(x),
addressing the constrained case separately.
Derivative-free optimization [4], on the other hand, is a field of nonlinear

optimization where methods that do not use derivatives have been developed
and analyzed. There are essentially two classes of algorithms, model-based
methods and direct search. However, both are rigorous in the sense that
one can prove some form of convergence to stationarity, in a way that is
independent of the initial choice for the iterates (a feature called global con-
vergence in the field of nonlinear optimization). In addition, model-based
and direct-search methods achieve global convergence based on the principle
of rejecting steps that are too large and do not provide a certain decrease in
the objective function value, retracting the search to a smaller region where
the quality of the model or of the sampling eventually allows some progress.
The technique that we use to globalize ES resembles what is done in direct

search. In particular, given the type of random sampling used in ES, our
work is inspired by direct-search methods for nonsmooth functions, where
one must use a set of directions asymptotically dense in the unit sphere [1,
20]. Since the random sampling of ES will not likely provide us any integer
lattice underlying structure for the iterates (like in MADS [1]), we will use a
sufficient decrease condition (as opposed to just a simple decrease) to accept
new iterates and ensure global convergence. By a sufficient decrease we mean
a decrease of the type f(xk+1) ≤ f(xk)− o(σk), where σk stands for the step
size parameter and o(·) obeys some properties, in particular o(σ)/σ → 0
when σ → 0.
One way of imposing sufficient decrease in ES is to apply it directly to the

sequence of weighted means. However, ES are population-based algorithms
where a sample set of offsprings is generated at every iteration. Other forms
of imposing this type of decrease also found globally convergent involve the
maximum value of the best offsprings. In fact, requiring a sufficient decrease
on the sequence of maximum best offspring values renders also a globally
convergent algorithm. Alternatively, demanding this maximum value to suf-
ficiently decrease the weighted mean one, not only leads also to global con-
vergence but seems to produce the most efficient version among the three.
The paper is organized as follows. We first describe in Section 2 the class of

evolution strategies (ES) to be considered. Then, in Section 3, we show how
to modify such algorithms to enable them for global convergence. Section 4
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is devoted to the analysis of global convergence of the modified ES versions.
The constrained case is covered in Section 5. Our numerical experiments
comparing the different modified versions of CMA-ES [11, 12] are described
in Section 6. Finally, in Section 7, we draw some conclusions and describe
future work.

2. A class of evolution strategies
Our working class of evolution strategies (ES) is referred to as being of

the type (µ/µW , λ)–ES, in other words, it iterates using mµ parents and
mλ offsprings (with mλ ≥ mµ), recombining all the mµ parents by means
of a weighted sum. The mλ offsprings are computed by random generation
around the weighted mean of themµ chosen parents. The parents, in turn, are
selected as the best mµ offsprings in the value of the objective function f .
The weights used to compute the means belong to the simplex set S =
{(ω1, . . . , ωmµ) ∈ R

mµ :
∑mµ

i=1w
i = 1, wi ≥ 0, i = 1, . . . , mµ}. The algorithmic

description of such class of ES is given below.

Algorithm 2.1. A Class of Evolution Strategies

Initialization: Choose positive integersmλ andmµ such thatmλ ≥ mµ.
Choose an initial weighted mean x0, an initial step length σES

0 > 0,
an initial distribution C0, and initial weights (ω1

0, . . . , ω
mµ

0 ) ∈ S. Set
k = 0.

Until some stopping criterion is satisfied:
1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1,
. . . , ymλ

k+1} such that

yik+1 = xk + σES
k dik,

where dik is drawn from the distribution Ck, i = 1, . . . , mλ.
2. Parent Selection: Evaluate f(yik+1), i = 1, . . . , mλ, and reorder
the offspring points in Yk+1 = {ỹ1k+1, . . . , ỹ

mλ

k+1} by increasing order:
f(ỹ1k+1) ≤ · · · ≤ f(ỹmλ

k+1).
Select the new parents as the best mµ offspring sample points {ỹ1k+1,

. . . , ỹ
mµ

k+1}, and compute their weighted mean

xk+1 =

mµ
∑

i=1

ωi
kỹ

i
k+1.
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3. Updates: Update the step length σES
k+1, the distribution Ck+1, and

the weights (ω1
k+1, . . . , ω

mµ

k+1) ∈ S. Increment k and return to Step 1.

3. A class of ES provably global convergent
The main question we address in this paper is how to change Algorithm 2.1,

in a minimal way, to make it enjoying some form of convergence properties.
We will target at global convergence in the sense of nonlinear optimization,
in other words we would like to prove some limit form of stationarity for any
output sequence of iterates generated by the algorithm, and we would like to
do this independently of the starting point.
The modifications to the algorithm will be essentially two, and they have

been widely used in the field of nonlinear optimization, with and without
derivatives. First we need to control the size of the steps taken, and thus we
will update separately a step size parameter σk, letting it take the value of σ

ES
k

whenever possible. Controlling the step size is essential as we know that most
steps used in nonlinear optimization are too large away from stationarity.
Secondly we need to impose some form of sufficient decrease on the objective
function values to be able to declare an iteration successful and thus avoiding
a step size reduction. These two techniques, step size update and imposition
of sufficient decrease on the objective function values, are thus closely related
since an iteration is declared unsuccessful and the step size reduced when the
sufficient decrease condition is not satisfied. Moreover, this condition involves
a function ρ(σk) of the step size σk, where ρ(·) is a forcing function, i.e., a
positive, nondecreasing function defined in R

+ such that ρ(t)/t → 0 when
t ↓ 0 (one can think for instance of ρ(t) = t2).
Since Algorithm 2.1 evaluates the objective function at the offspring sample

points but then computes new points around a weighted sum of the parents
selected, it is not clear how one does impose sufficient decrease. In fact, there
are several ways of proceeding. A first possibility (denoted by mean/mean)
is to require the weighted means to sufficiently decrease the objective func-
tion, see the inequality (2) below, which obviously requires an extra function
evaluation per iteration.
A second possibility to impose sufficient decrease (referred to as max/max),

based entirely on the objective function values already computed for the par-
ent samples, is to require the maximum of these values to be sufficiently
decreased, see the inequality (3). Then, it would immediately occur to com-
bine these first two possibilities, asking the new maximum value to reduce
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sufficiently the value of the previous mean or, vice-versa, requiring the value
of the new mean to reduce sufficiently the previous maximum. The lack of
theoretical support of the latter possibility made us consider only the first
one, called max/mean, see the inequality (4).
Version mean/mean is clear in the sense that imposes the sufficient decrease

condition directly on the function values computed at the sequence of mini-
mizer candidates, the weighted sums. It is also around these weighted sums
that new points are randomly generated. Versions max/max and mean/max,
however, operate based or partially based on the function values at the par-
ents samples (on the maximum of those). Thus, in these two versions, one
needs a mechanism to balance the function values at the parents samples
and the function value at the weighted sum. Such a balance is unnecessary
when the objective function is convex. In general we need a condition of the
form (1) below.
The modified form of the ES of Algorithm 3.1 is described below. Note

that one also imposes bounds on the all directions dik used by the algorithm.
This modification is, however, very mild since the upper bound dmin can be
chosen very close to zero and the upper bound set to a very large number.
Moreover, one can think of working always with normalized directions which
entirely removes any concern.

Algorithm 3.1. A class of ES provably global convergent (versions
mean/mean, max/max, and max/mean)

Initialization: Choose positive integers mλ and mµ such that mλ ≥
mµ. Select an initial weighted mean x0, evaluate f(x0) in versions
mean/mean and max/mean, and set x

mµ

0 = x0 for max/max. Choose
initial step lengths σ0, σ

ES
0 > 0, an initial distribution C0, and initial

weights (ω1
0, . . . , ω

mµ

0 ) ∈ S. Choose constants β1, β2, dmin, dmax such
that 0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select a forcing function
ρ(·) and θ ∈ (0, 1). Set k = 0.

Until some stopping criterion is satisfied:
1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1,
. . . , ymλ

k+1} such that

yik+1 = xk + σkd
i
k,

where dik is drawn from the distribution Ck and obeys dmin ≤ ‖dik‖ ≤
dmax, i = 1, . . . , mλ.
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2. Parent Selection: Evaluate f(yik+1), i = 1, . . . , mλ, and reorder
the offspring points in Yk+1 = {ỹ1k+1, . . . , ỹ

mλ

k+1} by increasing order:
f(ỹ1k+1) ≤ · · · ≤ f(ỹmλ

k+1).
Select the new parents as the best mµ offspring sample points {ỹ1k+1,

. . . , ỹ
mµ

k+1}, and compute their weighted mean

xtrial
k+1 =

mµ
∑

i=1

ωi
kỹ

i
k+1.

Evaluate f(xtrial
k+1 ). In versions max/max and max/mean, re-update

the weights, if necessary, such that (ω1
k, . . . , ω

mµ

k ) ∈ S and

mµ
∑

i=1

ωi
k[f(x

trial
k+1 )− f(ỹik+1)] ≤ θρ(σk), θ ∈ (0, 1). (1)

3. Imposing Sufficient Decrease:
If (version mean/mean)

f(xtrial
k+1 ) ≤ f(xk)− ρ(σk), (2)

or (version max/max)

f(ỹ
mµ

k+1) ≤ f(x
mµ

k )− ρ(σk), (3)

or (version max/mean)

f(ỹ
mµ

k+1) ≤ f(xk)− ρ(σk), (4)

then consider the iteration successful, set xk+1 = xtrial
k+1 , and σk+1 ≥ σk

(for example σk+1 = max{σk, σ
ES
k }).

Set x
mµ

k+1 = ỹ
mµ

k+1 in version max/max.
Otherwise, consider the iteration unsuccessful, set xk+1 = xk (and

x
mµ

k+1 = x
mµ

k for max/max) and σk+1 = βkσk, with βk ∈ (β1, β2).

4. ES Updates: Update the ES step length σES
k+1, the distribution Ck,

and the weights (ω1
k+1, . . . , ω

mµ

k+1) ∈ S. Increment k and return to
Step 1.

One can see that the imposition of (1) may cost additional function evalu-
ations per iteration. However, this condition can always be guaranteed since
the ultimate choice ω1

k = 1, and ωi
k = 0, i = 2, . . . , mµ, trivially satisfies it.
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4. Convergence
Under appropriate assumptions we will now prove global convergence of

the modified versions of the considered class of ES (again, by global conver-
gence, we mean some form of limit first-order stationary for arbitrary starting
points).
As we have seen before, an iteration is considered successful only if it

produces a point that has sufficiently decreased some value of f . Insisting
on a sufficient decrease will guarantee that a subsequence of step sizes will
converge to zero. In fact, since ρ(σk) is a monotonically increasing function
of the step size σk, we will see that such a step size cannot be bounded away
from zero since otherwise some value of f would tend to −∞. Imposing
sufficient decrease will make it harder to have a successful step and therefore
will generate more unsuccessful poll steps. We start thus by showing that
there is a subsequence of iterations for which the step size parameter σk tends
to zero.

Lemma 4.1. Consider a sequence of iterations generated by Algorithm 3.1
without any stopping criterion. Let f be bounded below. Then lim infk→+∞ σk

= 0.

Proof : Suppose that there exists a σ > 0 such that σk > σ for all k. If there
is an infinite number of successful iterations, this leads to a contradiction to
the fact that f is bounded below.
In fact, since ρ is a nondecreasing, positive function, ρ(σk) ≥ ρ(σ) > 0.

Let us consider the three versions separately. In the version mean/mean,
we obtain f(xk+1) ≤ f(xk) − ρ(σ) for all k, which obviously contradicts
the boundedness below of f . In the version max/max, we obtain f(x

mµ

k+1) ≤
f(x

mµ

k )−ρ(σ) for all k, which also trivially contradicts the boundedness below
of f . For the max/mean version, one has

f(ỹik+1) ≤ f(x
mµ

k+1) ≤ f(xk)− ρ(σk), i = 1, . . . , mµ.

Thus, multiplying these inequalities by the weights ωi
k, i = 1, . . . , mµ, and

adding them up, lead us to

mµ
∑

i=1

ωi
kf(ỹ

i
k+1) ≤ f(xk)− ρ(σk),
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and from condition (1) imposed on the weights in Step 2 of Algorithm 3.1,
we obtain

f(xk+1) ≤ f(xk) + (θ − 1)ρ(σk), θ ∈ (0, 1),

and the contradiction is also easily reached.
The proof is thus completed if there is an infinite number of successful

iterations. However, if no more successful iterations occur after a certain
order, then this also leads to a contradiction. The conclusion is that one
must have a subsequence of iterations driving σk to zero.

From the fact that σk is only reduced in unsuccessful iterations and by a
factor not approaching zero, one can then conclude the following.

Lemma 4.2. Consider a sequence of iterations generated by Algorithm 3.1
without any stopping criterion. Let f be bounded below.
There exists a subsequence K of unsuccessful iterates for which limk∈K σk =

0.
If the sequence {xk} is bounded, then there exists an x∗ and a subsequence

K of unsuccessful iterates for which limk∈K σk = 0 and limk∈K xk = x∗.

Proof : From Lemma 4.1, there must exist an infinite subsequence K of un-
successful iterates for which σk+1 goes to zero. In a such case we have
σk = (1/βk)σk+1, βk ∈ (β1, β2), and β1 > 0, and thus σk → 0, for k ∈ K, too.
The second part of the lemma is also easily proved by extracting a con-

vergent subsequence of the subsequence K of the first part for which xk

converges to x∗.

The above lemma ensures under mild conditions the existence of conver-
gent subsequences of unsuccessful iterations for which the step size tends to
zero. Such type of subsequences have been called refining [1]. The global
convergence results are then extracted from refining subsequences. One will
assume that the function f is Lipschitz continuous near the limit point x∗ of
a refining subsequence, so that the Clarke generalized derivative [3]

f ◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

exists for all d ∈ R
n. The point x∗ is then Clarke stationary if f ◦(x∗; d) ≥ 0,

∀d ∈ R
n. Our first global convergence result concerns only the mean/mean

version.
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Theorem 4.1. Consider the version mean/mean and let ak =
∑mµ

i=1 ω
i
kd

i
k.

Let x∗ be the limit point of a subsequence of unsuccessful iterates {xk}K for
which limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗ with
constant ν > 0.
If d is a limit point of {ak/‖ak‖}K, then f ◦(x∗; d) ≥ 0.
If the set of limit points {ak/‖ak‖}K is dense in the unit sphere, then x∗ is

a Clarke stationary point.

Proof : Let d be a limit point of {ak/‖ak‖}K . Then it must exist a subse-
quence of K ′ of K such that ak/‖ak‖ → d on K ′. On the other hand, we
have for all k that

xk+1 =

mµ
∑

i=1

ωi
kỹ

i
k+1 = xk + σk

mµ
∑

i=1

ωi
kd

i
k = xk + σkak,

and, for k ∈ K,

f(xk + σkak) > f(xk)− ρ(σk).

Also, since the directions dik and the weights are bounded above for all k
and i, ak is bounded above for all k, and so σk‖ak‖ tends to zero when σk

does.
Thus, from the definition of the Clarke generalized derivative,

f ◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

≥ lim sup
k∈K ′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− rk,

where, from the Lipschitz continuity of f near x∗,

rk =
f(xk + σkak)− f(xk + σk‖ak‖d)

σk‖ak‖
≤ ν

∥

∥

∥

∥

ak
‖ak‖

− d

∥

∥

∥

∥

tends to zero on K ′. Finally,

f ◦(x∗; d) ≥ lim sup
k∈K ′

f(xk + σkak)− f(xk) + ρ(σk)

σk‖ak‖
− ρ(σk)

σk‖ak‖
− rk

= lim sup
k∈K ′

f(xk + σkak)− f(xk) + ρ(σk)

σk‖ak‖
≥ 0.
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Since the Clarke generalized derivative f ◦(x∗; ·) is continuous in its second
argument [3], it is then evident that if the set of limit points {ak/‖ak‖}K is
dense in the unit sphere, f ◦(x∗; d) ≥ 0 for all d ∈ R

n.

When f is strict differentiable at x∗ (in the sense of Clarke [3], meaning
that there exists ∇f(x∗) such that f ◦(x∗; d) = 〈∇f(x∗), d〉 for all d) we
immediately conclude that ∇f(x∗) = 0.
A question that arises from Theorem 4.1 concerns the density of the ak’s

in the unit sphere. First, we should point out that what we assume regards
any refining subsequence K and not the whole sequence of iterates, but such
a strengthening of the assumptions on the density of the directions seems
necessary for these type of directional methods (see [1, 20]). Regarding the
issue of the sum being dense in the unit sphere, notice that if, for instance,
all the dik are independently normally distributed, then a linear combination
of them will also be normally distributed.
Now we prove global convergence for the two other versions (max/max and

max/mean).

Theorem 4.2. Consider the versions max/max and max/mean. Let x∗ be
the limit point of a subsequence of unsuccessful iterates {xk}K for which
limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗ with constant
ν > 0.
If d is a limit point of {dikk /‖dikk ‖}K, where ik ∈ argmax1≤i≤mµ

f(ỹik+1), then

f ◦(x∗; d) ≥ 0.
If, for each i ∈ {1, . . . , mµ}, the set of limit points {dik/‖dik‖}K is dense in

the unit sphere, then x∗ is a Clarke stationary point.

Proof : The proof follows the same lines of the proof of the mean/mean ver-
sion. In the max/max case, one departs from the inequality that is true when
k ∈ K,

f(x
mµ

k+1) > f(x
mµ

k )− ρ(σk),

which implies for a certain ik

f(ỹikk+1) = f(x
mµ

k+1) > f(x
mµ

k )− ρ(σk) ≥ f(ỹik)− ρ(σk), i = 1, . . . , mµ.

Multiplying these inequalities by the weights ωi
k−1, i = 1, . . . , mµ, and adding

them up implies

f(ỹikk+1) >

mµ
∑

i=1

ωi
k−1f(ỹ

i
k)− ρ(σk),
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By using ỹikk+1 = xk + σkd
ik
k and condition (1) imposed on the weights in

Step 2 of Algorithm 3.1, one obtains

f(xk + σkd
ik
k ) > f(xk)− θρ(σk)− ρ(σk). (5)

Note that in the max/mean version we arrive directly at f(xk + σkd
ik
k ) >

f(xk)− ρ(σk).
From this point, and for both cases (max/max and max/mean), the proof

is nearly identical to the proof of Theorem 4.1.

Again, when f is strict differentiable at x∗, we conclude that ∇f(x∗) = 0.
In Theorem 4.2 one also has the same issue regarding the density of the
directions on the unit sphere being assumed for all refining subsequences K
rather then for the whole sequence of iterates.

Remark 4.1. It is important to point out that the condition imposed on the
weights on Step 2 of Algorithm 3.1 is not necessary to derive Theorem 4.2 for
convex functions f . In fact, under the convexity of f , condition (1) imposed
on the weights would no longer be needed to prove something like (5) for
the max/max version, which would result directly from

∑mµ

i=1 ω
i
k−1f(ỹ

i
k) ≥

f(
∑mµ

i=1 ω
i
k−1ỹ

i
k) = f(xk) without the term −θρ(σk).

The same happens also in Lemma 4.1 for the max/mean version.
In summary, versions max/max and max/mean of Algorithm 3.1 without

the imposition of condition (1) are globally convergent for convex objective
functions.

5. Extension to constraints
Let us consider now a constrained optimization problem of the form

min f(x)

s.t. x ∈ Ω ⊂ R
n.

The extreme barrier function associated with this problem is defined by

fΩ(x) =

{

f(x) if x ∈ Ω,
+∞ otherwise.

The modifications to Algorithm 3.1 to handle a constrained set Ω are the
following:

(1) One will start feasible: x0 ∈ Ω.
(2) One will use the extreme barrier function fΩ instead of f in the suffi-

cient decrease conditions (2), (3), and (4).
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(3) Condition (1) is only applied when f(ỹ
mµ

k+1) < +∞.
(4) If more information is known about Ω, the generation of the poll

directions can be confined to a subset of the unit sphere (see Subsec-
tion 5.3).

In fact, nothing else is needed, except to note that in Step 2 one may be
considering function values that are equal to +∞. In the ordering of the
offspring samples this does not pose any problem, and we consider ties of
+∞ being broken arbitrarily. Also, the fact that condition (1) is not applied
when there are +∞ values is not a concern at all, since, due to (3) and (4),
those iterations would be unsuccessful anyway.
By more information in the above Point 4 we mean constraints defined

algebraically for which the derivatives of the functions involved are known,
such as bounds on the variables or linear constraints.
Before stating the global convergence results of Algorithm 3.1 under the

above modifications, we need a number of concepts specifically related to the
constrained setting.

5.1. Cones and derivatives in the constrained case. A vector is said
tangent to Ω at x if it satisfies the following definition.

Definition 5.1. A vector d ∈ R
n is said to be a Clarke tangent vector to

the set Ω ⊆ R
n at the point x in the closure of Ω if for every sequence

{yk} of elements of Ω that converges to x and for every sequence of positive
real numbers {tk} converging to zero, there exists a sequence of vectors {wk}
converging to d such that yk + tkwk ∈ Ω.

The Clarke tangent cone to Ω at x, denoted by TCl
Ω (x), is then defined as

the set of all Clarke tangent vectors to Ω at x. The Clarke tangent cone
generalizes the tangent cone in Nonlinear Programming [18], but one can
think about the latter one for gaining the necessary geometric motivation.
Given x∗ ∈ Ω and d ∈ TCl

Ω (x), one is not sure that x + td ∈ Ω for x ∈
Ω arbitrarily close to x∗. Thus, for this purpose, one needs to consider
directions in the interior of the Clarke tangent cone. The hypertangent cone
appears then as the interior of the Clarke tangent cone (when such interior
is nonempty).

Definition 5.2. A vector d ∈ R
n is said to be a hypertangent vector to the

set Ω ⊆ R
n at the point x in Ω if there exists a scalar ǫ > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩ B(x; ǫ), w ∈ B(d; ǫ), and 0 < t < ǫ.
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The hypertangent cone to Ω at x, denoted by TH
Ω (x), is then the set of all

hypertangent vectors to Ω at x. The closure of the hypertangent cone is the
Clarke tangent one (when the former is nonempty).
If we assume that f is Lipschitz continuous near x∗, we can define the

Clarke-Jahn generalized derivative along directions d in the hypertangent
cone to Ω at x∗,

f ◦(x∗; d) = lim sup
x → x∗, x ∈ Ω
t ↓ 0, x+ td ∈ Ω

f(x+ td)− f(x)

t
.

These derivatives are essentially the Clarke generalized directional deriva-
tives [3], generalized by Jahn [13] to the constrained setting. Given a di-
rection v in the tangent cone, one can consider the Clarke-Jahn generalized
derivative to Ω at x∗ as the limit f ◦(x∗; v) = limd∈TH

Ω
(x∗),d→v f

◦(x∗; d) (see [1]).

The point x∗ is considered Clarke stationary if f ◦(x∗; d) ≥ 0, ∀d ∈ TCl
Ω (x∗).

5.2. Asymptotic results when derivatives are unknown. In this sec-
tion we treat constraints as a pure black box in the sense that no information
is assumed known about the constrained set Ω, rather than a yes/no answer to
the question whether a given point is feasible. The changes to Algorithm 3.1
are those reported in Points 1–3 at the beginning of this section.
Now, for the analysis we start by noting that nothing changes in Lem-

mas 4.1 and 4.2. However, similarly to [1, 20], some background material is
necessary to extend Theorems 4.1 and 4.2 to the constrained case.
The extension of Theorem 4.1 requires only the provision that d must

lie in the hypertangent cone to Ω at x∗ to first derive f ◦(x∗; d) ≥ 0 for
appropriate directions called refining (see [1]). In fact, as we said before,
the lim sup definition of f ◦(x∗; d) makes only sense in the constrained case
when d is hypertangent to Ω at x∗. In the case of Theorem 5.1 below, such
refining directions are associated with a convergent refining subsequence K,
as the limit points of {ak/‖ak‖} for all k ∈ K sufficiently large such that
xk + σkak ∈ Ω.

Theorem 5.1. Consider the version mean/mean applied to the constrained
setting and let ak =

∑mµ

i=1 ω
i
kd

i
k. Let x∗ be the limit point of an unsuccessful

subsequence of iterates {xk}K for which limk∈K σk = 0. Assume that f is
Lipschitz continuous near x∗ with constant ν > 0.
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If d ∈ TH
Ω (x∗) is a refining direction associated with {ak/‖ak‖}K, then

f ◦(x∗; d) ≥ 0.
If the set of refining directions associated with {ak/‖ak‖}K is dense in the

unit sphere, then x∗ is a Clarke stationary point.

Proof : The proof of the first assertion is just a repetition of the proof of
Theorem 4.1. To prove the second part, we first conclude from the density
of the refining directions on the unit sphere and the continuity of f ◦(x∗; ·)
in TH

Ω (x∗), that f ◦(x∗; d) ≥ 0 for all d ∈ TH
Ω (x∗). Finally, we conclude that

f ◦(x∗; v) = limd∈TH
Ω
(x∗),d→v f

◦(x∗; d) ≥ 0 for all v ∈ TΩ(x∗).

The extension of Theorem 4.2 requires similar precautions. In the case
of Theorem 5.2 below, the refining directions are associated with a conver-
gent refining subsequence K, as the limit points of {dik/‖dik‖} for all k ∈ K
sufficiently large such that xk + σkd

i
k ∈ Ω.

Theorem 5.2. Consider the versions max/max and max/mean applied to
the constrained setting. Let x∗ be the limit point of an unsuccessful subse-
quence of iterates {xk}K for which limk∈K σk = 0. Assume that f is Lipschitz
continuous near x∗ with constant ν > 0.
If d ∈ TH

Ω (x∗) is a refining direction associated with {dikk /‖dikk ‖}K, where
ik ∈ argmax1≤i≤mµ

f(ỹik+1), then f ◦(x∗; d) ≥ 0.
If, for each i ∈ {1, . . . , mµ}, the set of refining directions associated with

{dik/‖dik‖}K is dense in the unit sphere, then x∗ is a Clarke stationary point.

5.3. Asymptotic results when derivatives are known. Although the
approach analyzed in Subsection 5.2 (resulting only from the modifications
in Points 1–3 at the beginning of this section) can in principle be applied to
any type of constraints, it is obviously more appropriate to the case where
one cannot compute the derivatives of the functions algebraically defining
the constraints.
Now we consider the case where we can compute tangent cones at points on

the boundary of the feasible set Ω (in what can be considered as the additional
information alluded to in the Point 4 of the beginning of this section). This
is the case whenever Ω is defined by {x ∈ R

n : ci(x) ≤ 0, i ∈ I} and the
derivatives of the functions ci are known. Two particular cases that appear
frequently in practice are bound and linear constraints.
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For theoretical purposes, let ǫ be a positive scalar and k0 a positive integer.
Let us also denote by TΩ,ǫ,k0 the union of all Clarke tangent cones TΩ(y) for
all points y at the boundary of Ω such that ‖y − xk‖ ≤ ǫ for all k ≥ k0.
One is now ready to consider the extension of Theorems 4.1 and 4.2 to the

constrained case under the presence of constrained derivative information.
Such extensions can be considered as corollaries of Theorems 5.1 and 5.2.
Nothing else is needed to add regarding the proofs since the Clarke tangent
cone TΩ(x∗) is contained in TΩ,ǫ,k0 for any limit point x∗ of a subsequence of
iterates (and in particular for those consisting of unsuccessful iterations for
which the step size tends to zero). The results are stated assuming that the
limit point x∗ is in the boundary of Ω, otherwise Theorems 5.1 and 5.2 apply
as they stand.

Theorem 5.3. Consider the version mean/mean applied to the constrained
setting and let ak =

∑mµ

i=1 ω
i
kd

i
k. Let x∗ ∈ fr(Ω) be the limit point of an

unsuccessful subsequence of iterates {xk}K for which limk∈K σk = 0. Assume
that f is Lipschitz continuous near x∗ with constant ν > 0.
If d ∈ TH

Ω (x∗) is a refining direction associated with {ak/‖ak‖}K, then
f ◦(x∗; d) ≥ 0.
If the set of refining directions associated with {ak/‖ak‖}K is dense in the

intersection of TΩ,ǫ,k0 with the unit sphere, then x∗ is a Clarke stationary
point.

Theorem 5.4. Consider the versions max/max and max/mean applied to
the constrained setting. Let x∗ ∈ fr(Ω) be the limit point of an unsuccessful
subsequence of iterates {xk}K for which limk∈K σk = 0. Assume that f is
Lipschitz continuous near x∗ with constant ν > 0.
If d ∈ TH

Ω (x∗) is a refining direction associated with {dikk /‖dikk ‖}K, where
ik ∈ argmax1≤i≤mµ

f(ỹik+1), then f ◦(x∗; d) ≥ 0.
If, for each i ∈ {1, . . . , mµ}, the set of refining directions associated with

{dik/‖dik‖}K is on the intersection of TΩ,ǫ,k0 with the unit sphere, then x∗ is a
Clarke stationary point.

It is very interesting to point out that there is a novel point in the as-
sembly of our approach for handling the constrained case with known con-
strained derivative information. In fact, if one looks at the existing litera-
ture of pure direct-search methods (of directional type) for constraints, one
sees approaches only developed for the bound or linear constrained cases
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(see [14, 15]), where one can compute the positive generators of the appro-
priated tangent cones and then use them for polling (i.e., for evaluating the
objective function at points of the form xk + σkd, where d is a positive gen-
erator). The single extension to the nonlinear case that we are aware of
required projections onto the feasible set at all iterations (see [16]), which
may be computationally troublesome. There are, surely, a number of hy-
brid approaches using penalty or augmented Lagrangean functions or filter
techniques, but without attempting to compute positive generators of the
appropriated tangent cones related to the nonlinear part of the constraints.
What makes the approach used in our paper successful is the combination
of (i) a sufficient decrease condition for accepting new iterates (which took
care of the need to drive the step size parameter to zero, a difficulty when
using integer/rational lattices in the nonlinear case since the positive genera-
tors of the tangent cones in consideration would lack of rationality) with (ii)
the dense generation of the directions in such tangent cones (which prevents
stagnation at boundary points).

6. Numerical results
We made a number of numerical experiences to try to measure the effect of

our modifications into ES. We are mainly interested in observing the changes
that occur in ES in terms of an efficient and robust search of stationarity.
We chose CMA-ES [11, 12] as our evolutionary strategy, on top of which we
tested our globally convergent modifications.

6.1.CMA-ES. In CMA-ES (CovarianceMatrix Adaptation Evolution Strat-
egy) the distributions Ck are multivariate normal distributions. The weights
are kept constant and besides belonging to the simplex S they also satisfy
ω1 ≥ · · · ≥ ωmµ > 0. Briefly speaking and using the notation of our paper,
CMA-ES updates the covariance matrix of Ck as follows:

CCMA-ES
k+1 = (1− c1 − cµ)C

CMA-ES
k + c1(p

c
k+1)(p

c
k+1)

⊤

+ cµ

mµ
∑

i=1

ωi (d
i
k)(d

i
k)

⊤,

where c1, cµ are positive constants depending on n, and pck+1 ∈ R
n is the

current state of the so-called evolution path, updated iteratively as described
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in [11]. CMA-ES’s step length is defined as follows:

σCMA-ES
k+1 = σCMA-ES

k exp

(

cσ
dσ

( ‖pσk+1‖
E‖N (0, I)‖ − 1

))

,

where E‖N (0, I)‖ =
√
2Γ(n+1

2 )/Γ(n2) is the expectation of the ℓ2 norm of an
N(0, I) distributed random vector, cσ, dσ are positive constants, and pσk+1 ∈
R

n is the current state of the so-called conjugate evolution path (see [11]).

6.2. Algorithmic choices for the modified CMA-ES versions. A num-
ber of choices regarding parameters and updates of Algorithm 3.1 were made
before the tests were launched.
Regarding initializations, the values of mλ and mµ and the initial weights

followed the choices in CMA-ES (see [8]). The initial step length parameters
were set to σ0 = σCMA-ES

0 = 1. The forcing function selected was ρ(σ) =
10−4σ2.
To reduce the step length in unsuccessful iterations we used σk+1 = 0.5σk

which corresponds to setting β1 = β2 = 0.5. In successful iterations, we used
σk+1 = max{σk, σ

CMA-ES
k }, in attempt to reset the step length to the ES one

whenever possible.
The directions dik, i = 1, . . . , mλ, were drawn from the multivariate nor-

mal distribution Ck updated by CMA-ES, scaled if necessary to obey the
safeguards dmin ≤ ‖dik‖ ≤ dmax, with dmin = 10−10, dmax = 1010.
Re-updating the weights in Step 2 of Algorithm 3.1 was not activated. In

the one hand, we wanted the least amount of changes in CMA-ES. On the
other hand, the weights update of Step 2 did not seem to have a real impact
on the results, perhaps due to the convexity or convexity near the solutions
present in many of the problems.

6.3. Test set. Our test set P is the one suggested in [17] and comprises 22
nonlinear vector functions from the CUTEr collection. The problems in P
are then defined by a vector (kp, np, mp, sp) of integers. The integer kp is a
reference number for the underlying CUTEr [7] vector function, np is the
number of variables, mp is the number of components F1, . . . , Fmp

of the
corresponding vector function F .
The integer sp ∈ {0, 1} defines the starting point via x0 = 10spxs, where

xs is the standard starting point for the corresponding function. The use of
sp = 1 is helpful for testing solvers from a remote starting point since the
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standard starting point tends to be too close to a solution for many of the
problems.
The test set P is then formed by 53 different problems. No problem is

overrepresented in P in the sense that no function kp appears more than six
times. Moreover, no pair (kp, np) appears more than twice. In all cases,

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53,

with np ≤ mp. For other details see [17].
The test problems have been considered in four different types, each having

53 instances: smooth (least squares problems obtained from applying the
ℓ2 norm to the vector functions); nonstochastic noisy (obtained by adding
oscillatory noise to the smooth ones); piecewise smooth (as in the smooth
case but using the ℓ1 norm instead); stochastic noisy (obtained by adding
random noise to the smooth ones).

6.4. Results using data profiles. To compare our modified CMA-ES
versions to the pure one, we chose to work first with data profiles [17] for
derivative-free optimization. Data profiles show how well a solver performs,
given some computational budget, when asked to reach a specific reduction
in the objective function value, measured by

f(x0)− f(x) ≥ (1− α)[f(x0)− fL],

where α ∈ (0, 1) is the level of accuracy, x0 is the initial iterate, and fL is the
best objective value found by all solvers tested for a specific problem within
a given maximal computational budget. In derivative-free optimization, such
budgets are typically measured in terms of the number of objective function
evaluations.
Data profiles plot the percentage of problems solved by the solvers under

consideration for different values of the computational budget. These budgets
are expressed in number of points (n + 1) required to form a simplex set,
allowing the combination of problems of different dimensions in the same
profile. Note that a different function of n could be chosen, but n + 1 is
natural in derivative-free optimization (since it is the minimum number of
points required to form a positive basis, a simplex gradient, or a model with
first-order accuracy).
We used in our experiments a maximal computational budget consisting

of 500 function evaluations, as the dimension of the problems is relatively
small and we are primarily interested in the behavior of the algorithms for
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problems where the evaluation of the objective function is expensive. As for
the levels of accuracy, we chose two values, α = 10−3 and α = 10−7. Since
the best objective value fL is chosen as the best value found by all solvers
under the maximal computational budget, it makes some sense to consider
a high accuracy level (like 10−7 or less).
We compared the results obtained with the four versions of CMA-ES (pure,

mean/mean, max/max, and max/mean). Figures 1–4 report the data pro-
files obtained for the four types of problems, considering the two different
levels of accuracy, α = 10−3 and α = 10−7 (Figure 1: smooth problems; Fig-
ure 2: nonstochastic noisy problems; Figure 3: piecewise smooth problems;
Figure 4: stochastic noisy problems).
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(a) Accuracy level of 10−3.
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(b) Accuracy level of 10−7.

Figure 1. Data profiles computed for the set of smooth prob-
lems, considering the two levels of accuracy, 10−3 and 10−7.

Among our three modified versions of CMA-ES (mean/mean, max/max,
and max/mean), the max/mean one performed clearly better than the pure
one. The remaining two versions (mean/mean and max/max) did not over-
come the pure one but performed competitively.

6.5. Results using performance profiles. Performance profiles [5] are
defined in terms of a performance measure tp,s > 0 obtained for each problem
p ∈ P and solver s ∈ S. For example, this measure could be based on the
amount of computing time or the number of function evaluations required to
satisfy a convergence test. Larger values of tp,s indicate worse performance.
For any pair (p, s) of problem p and solver s, the performance ratio is defined
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(a) Accuracy level of 10−3.
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(b) Accuracy level of 10−7.

Figure 2. Data profiles computed for the set of nonstochastic
noisy problems, considering the two levels of accuracy, 10−3 and
10−7.
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(a) Accuracy level of 10−3.
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(b) Accuracy level of 10−7.

Figure 3. Data profiles computed for the set of piecewise
smooth problems, considering the two levels of accuracy, 10−3

and 10−7.

by

rp,s =
tp,s

min{tp,s : s ∈ S} .
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(a) Accuracy level of 10−3.
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(b) Accuracy level of 10−7.

Figure 4. Data profiles computed for the set of stochastic noisy
problems, considering the two levels of accuracy, 10−3 and 10−7.

The performance profile of a solver s ∈ S is then defined as the fraction of
problems where the performance ratio is at most τ , that is,

ρs(τ) =
1

|P|size{p ∈ P : rp,s ≤ τ},

where |P| denotes the cardinality of P . Performance profiles seek to capture
how well the solver s ∈ S performs relatively to the others in S for all the
problems in P . Note, in particular, that ρs(1) is the fraction of problems for
which solver s ∈ S performs the best (efficiency), and that for τ sufficiently
large, ρs(τ) is the fraction of problems solved by s ∈ S (robustness). In gen-
eral, ρs(τ) is the fraction of problems with a performance ratio rp,s bounded
by τ , and thus solvers with higher values for ρs(τ) are preferable.
It was suggested in [6] to use the same (scale invariant) convergence test

for all solvers compared using performance profiles. The convergence test
used in our experiments was

f(x)− f∗ ≤ α(|f∗|+ 1),

where α is an accuracy level and f∗ is an approximation for the optimal value
of the problem being tested. The convention rp,s = +∞ is used when the
solver s fails to satisfy the convergence test on problem p. We computed f∗
as the best objective function value found by the four CMA-ES solvers using
an extremely large computational budget (a number of function evaluations
equal to 500000). Thus, in this case, and as opposed to the data profiles
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case, it makes more sense not to select the accuracy level too small, and our
tests were performed with α = 10−2, 10−4.
We now examine the performance of CMA-ES and of our three modified

versions on the four types of problems P mentioned in Section 6.3. Fig-
ures 5–8 report performance profiles obtained for the four types of problems,
considering the two different levels of accuracy, α = 10−2 and α = 10−4

(Figure 5: smooth problems; Figure 6: nonstochastic noisy problems; Fig-
ure 7: piecewise smooth problems; Figure 8: stochastic noisy problems) and
a maximum of 1500 function evaluations.
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(a) Accuracy level of 10−2.
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(b) Accuracy level of 10−4.

Figure 5. Performance profiles computed for the set of smooth
problems with a logarithmic scale, considering the two levels of
accuracy, 10−2 and 10−4.

On the smooth and stochastic noisy problems, the performance profiles for
the lower accuracy level (α = 10−2) show that max/mean version is the fastest
solvers in approximately 40% of the problems. For α = 10−4, differences in
efficiency are not so visible when compared to the pure version.
The performance profiles for the nonstochastic noisy problems show that

the max/mean version is the fastest solver for α = 10−2, with differences
getting tighter for α = 10−4.
For the piecewise smooth problems, the performance profiles show that the

four solvers exhibit a more similar behavior in terms of efficiency (perhaps
with the exception of the max/max version which performs clearly worse for
α = 10−4).
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(a) Accuracy level of 10−2.
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(b) Accuracy level of 10−4.

Figure 6. Performance profiles computed for the set of non-
stochastic noisy problems with a logarithmic scale, considering
the two levels of accuracy, 10−2 and 10−4.
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(a) Accuracy level of 10−2.
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(b) Accuracy level of 10−4.

Figure 7. Performance profiles computed for the set of piece-
wise smooth problems with a logarithmic scale, considering the
two levels of accuracy, 10−2 and 10−4.

In all types of problems and levels of accuracy considered and by looking at
the profiles for large values of τ , one observes that the version max/mean is
the most robust one. The other two modified versions of CMA-ES (max/max
and mean/mean) seem to be less robust than the pure version in terms of
efficiency.
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(a) Accuracy level of 10−2.
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(b) Accuracy level of 10−4.

Figure 8. Performance profiles computed for the set of stochas-
tic noisy problems with a logarithmic scale, considering the two
levels of accuracy, 10−2 and 10−4.

6.6. Some global optimization experiments. In this section we are inter-
ested in assessing the impact of our modifications on the ability of CMA-ES
to identify the global minimum on nonconvex problems with a high number
of different local minimizers.
We recall that the max/mean version exhibited the best performance among

the three modified versions of CMA-ES on the test set mentioned in Sec-
tion 6.3. Therefore in this section we will report a comparison of CMA-ES
only against this version.
The test set is now composed of the 19 highly multi-modal problems used

in [9, 10], being the last 9 noisy. We selected dimensions n = 10 and n =
20. For each dimension and using a large maximal computational budget,
we ran our max/mean CMA-ES version and unmodified CMA-ES using 20
different starting points randomly chosen. We then computed the mean of all
the 20 ‘optimal’ values found for each each algorithm as well as the respective
number of function evaluations taken.
Each run was ended when the stopping criterion of CMA-ES is achieved

(which includes finding a function value below a certain fitness value, for our
problems chosen as f∗ + 10−10, where f∗ is the optimal value of the corre-
sponding problem), when the number of function evaluations reaches 250000,
and when σk becomes smaller than 10−10. The budget is therefore extremely
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large and the tolerances extremely small since we are interested in observing
the asymptotic ability to determine a global minimum.
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Figure 9. Results for the max/mean version and CMA-ES on
a set of multi-modal functions of dimension 10.
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Figure 10. Results for the max/mean version and CMA-ES on
a set of multi-modal functions of dimension 20.

Figures 9(a) and 10(a) show the averaged best objective value obtained by
both the max/mean version and by the unmodified CMA-ES, as well as the
global optimal value, for all the 19 problems. Except for the last problem (in
dimension 10), the max/mean version seemed to have reached roughly the
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same value as CMA-ES. However, Figures 9(b) and 10(b)), which plot the
average number of objective function evaluations taken, show that the effort
of the max/mean version was all together considerably lower.

7. Conclusions and future work
We have seen that it is possible to modify ES so that they converge to sta-

tionary points without any assumption on the starting mean. The modified
versions of ES promote smaller steps when the larger steps are uphill and
thus lead to an improvement in the efficiency of the algorithms in the search
of a stationary point. The so-called max/mean version, where the step is
reduced whenever the maximum objective value of the trial offsprings does
not sufficiently reduce the objective value at the current weighted mean, has
emerged as the best modified version in our numerical experiments. Such a
behavior seems related to the fact that it is the max/mean version the one
where unsuccessful iterations can more easily occur (when compared to the
mean/mean and max/max versions). Apparently, this promotion of smaller,
better steps has not jeopardize the search for the global minimizer in noncon-
vex problems, although one probably needs further experiments to be totally
sure about such a statement.
Our approach applies to all ES of the type considered in this paper (see

Section 2) although we only used CMA-ES in our numerical tests. A number
of issues regarding the interplay of our ES modifications (essentially the step
size update based on different sufficient decrease conditions) and the CMA
scheme to update the covariance matrix and corresponding step size must be
better understood and investigated. In addition, we have not explored to our
benefit any hidden ability of the CMA scheme to approximate or predict first
or second order information (which might be used in the sufficient decrease
conditions or to guide the offspring generation).
The treatment of constraints was certainly preliminary but revealed that

one can extend our convergence theory to both the cases where the derivatives
of the functions defining the constraints are known or unknown. We leave
also to the future a full treatment of the constrained case, in particular how
can one randomly generate the trial offsprings with a sample geometry that
conforms to the constraints, in particular when the constraints are linear or
consist of bounds on the variables.
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