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Abstract: We investigate 3-permutability, in the sense of universal algebra, in an
abstract categorical setting which unifies the pointed and the non-pointed contexts
in categorical algebra. This leads to a unified treatment of regular subtractive
categories and of regular Goursat categories, as well as of E-subtractive varieties
(where E is the set of constants in a variety) recently introduced by the fourth
author. As an application, we show that “ideals” coincide with “clots” in any
regular subtractive category, which can be considered as a pointed analogue of a
known result for regular Goursat categories.
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Introduction

The concept of a category equipped with an ideal N of morphisms in the
sense of C. Ehresmann [6], which was used by M. Grandis in [9] in his “cat-
egorical foundation of homological and homotopical algebra”, turns out to
have yet another interesting use in modern categorical algebra, where it gives
a suitable general context for comparing and unifying results from pointed
and non-pointed contexts. The pointed context is captured by choosing N to
be the class of zero morphisms of a pointed category, while the non-pointed
context, which we call the total context, is given when N is the class of
all morphisms of a category. In [7] it was shown that the notion of an ideal
determined category [12] can be conveniently extended from the pointed con-
text to the context of a general N , so that in the total context it becomes
the notion of a Barr exact [2] Goursat category [5, 4]. Such an extension is
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based on replacing the notion of a kernel from the pointed context, not with
the standard notion of a kernel with respect to a class N (used in e.g. [9]),
which trivializes in the total context, but with the notion of a “star-kernel”
introduced in [7] (which was called a “kernel star” there), which in the total
context becomes the notion of a kernel pair.
In the present paper we study the Goursat property beyond Barr exact-

ness and show that its pointed counterpart is precisely subtractivity [15]. In
this process we establish a unified characterization theorem for regular Gour-
sat and regular subtractive categories. In particular, it gives the following
equivalent reformulation of the Goursat property: in a commutative diagram

X
e
������
��

� f

�� ��
??

??
?

Y

g������
��

�
W

d
�� ��
??

??
?

Z

of regular epimorphisms, if the e-image of the kernel pair of f is the kernel
pair of d, then symmetrically, the f -image of the kernel pair of e must be
the kernel pair of g (in our terminology, if the above regular diamond is left
saturated, then it is right saturated) — we call this the symmetric saturation
property. We also observe that requiring the class of left saturated regular
diamonds to coincide with the class of pushouts of regular epimorphisms gives
a characterization of Barr exact Goursat categories. In the pointed case this
distinction corresponds to the one between regular subtractive categories and
ideal determined categories.
One of the properties of an ideal determined category is that in it kernels

coincide with “ideals”, i.e. direct images of kernels along regular epimor-
phisms, which also coincide with “clots”, i.e. those ideals which appear as
“0-classes” of reflexive relations (see [14] and the references there). In the
present paper we show that the symmetric saturation property still implies
the coincidence of clots and ideals.
We also show that in the case of a variety of universal algebras, where

N is chosen to be the class of homomorphisms whose image is generated
by constants, the symmetric saturation property becomes “E-subtractivity”
(where E is the set of constants of the variety) introduced in [21].
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1. Preliminaries

Let C denote a category with finite limits, and N a distinguished class of
morphisms that forms an ideal, i.e. for any diagram

X
f

// Y
g

// Z

in C, if either f ∈ N or g ∈ N , then gf ∈ N . The class N is often referred
to as the class of null morphisms. An N -kernel of a morphism f : X → Y is
defined as a morphism k : K → X such that fk ∈ N and k is universal with
this property, i.e. for any other morphism k′ with fk′ ∈ N there is a unique
morphism u such that ku = k′; notice that an N -kernel is a monomorphism.
A pair of morphisms, written as σ = (σ1, σ2) : S ⇉ X and with σ1 ∈ N , is
called a star ; it is called a monic star when σ1, σ2 are jointly monomorphic
(i.e. when σ = (σ1, σ2) : S ⇉ X is a relation from X to X).
A commutative diagram of stars and morphisms

S
σ

////

g

��

X

f

��

T //

τ
// Y

(where the commutativity fσ = τg means that fσ1 = τ1g and fσ2 = τ2g) is
called a star-pullback when given another such commutative (outer) diagram

S ′

σ′

%%%%

g′

��

h

��

S //

σ
//

g

��

X

f

��

T //

τ
// Y

there exists a unique morphism h : S ′ → S such that gh = g′ and σh = σ′.
Given a relation ̺ = (̺1, ̺2) : R ⇉ X on an object X, by ̺∗ we denote the

biggest subrelation of ̺ which is a (monic) star, provided it exists; it indeed
exists when N -kernels exist and can be constructed as ̺∗ = (̺1k, ̺2k), where
k is the N -kernel of ̺1. In particular, ∆∗

X = (kX , kX) where ∆X denotes the
discrete (equivalence) relation ∆X = (1X , 1X) : X ⇉ X on an object X, and
kX denotes the N -kernel of 1X . When ̺ = (̺1, ̺2) is a kernel pair, we get
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the following notion: the star-kernel of a morphism f : X → Y is a universal
(monic) star κ = (κ1, κ2) : K ⇉ X with the property fκ1 = fκ2; it can be
equivalently defined as the star κ∗

f of the kernel pair of f , which we denote
by κf : Kf ⇉ X.
In the pointed context, the first morphism σ1 in a star σ = (σ1, σ2) : S ⇉ X

is the unique null morphism S → X and hence a star σ can be identified
with a morphism (its second component σ2); then, N -kernels and star-kernels
become the usual kernels. In the total context stars are pairs of parallel
morphisms, N -kernels are isomorphisms and star-kernels are kernel pairs.

Convention 1.1. Throughout the paper we work in a regular category C

equipped with an ideal N such that every morphism admits an N -kernel.
Following the terminology used in [7], such a category will be called a regular
multi-pointed category with kernels.

Definition 1.2. [7] A regular multi-pointed category C with kernels is said
to be star-regular when every regular epimorphism in C is a coequalizer of a
star.

In the total context a star-regular category is precisely a regular category.
In the pointed context a star-regular category is the same as a normal cat-
egory [17], i.e. a regular category in which any regular epimorphism is a
normal epimorphism.
By a diamond we mean a commutative diagram

X
e

����
��

� f

��
??

??
?

Y

g����
��

�
W

d ��
??

??
?

Z.

(1)

We say that the diamond (1) is

• left saturated if the direct image e〈κ∗
f〉 along e of the star-kernel κ∗

f of
f is the star-kernel of d:

e〈κ∗
f 〉 = κ∗

d;

• right saturated if, symmetrically, f〈κ∗
e〉 = κ∗

g;
• saturated if it is both left and right saturated;
• a regular diamond if all morphisms in the diamond are regular epi-
morphisms.
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Theorem 1.3. A regular multi-pointed category C with kernels is star-regular
if and only if the following conditions hold:

(a) C admits coequalizers of star-kernels;
(b) every left saturated regular diamond in C is a pushout.

Proof : Suppose that C is star-regular. Consider a star-kernel κ∗
f of a mor-

phism f . Decompose f = me as a regular epimorphism e followed by a
monomorphism m. Then, κ∗

f is a star-kernel of e. By star-regularity, e is a
coequalizer of a star, which implies that it is a coequalizer of its own star-
kernel. Now consider a regular diamond (1). By Theorem 2.14 in [7], such
a diamond is a pushout if and only if d is a coequalizer of e〈κ∗

f 〉. If the dia-
mond is left saturated, then e〈κ∗

f 〉 is a star-kernel of d. Since d is a regular
epimorphism, star-regularity gives that d is a coequalizer of its star-kernel.
Now suppose star-kernels have coequalizers and every left saturated regular

diamond is a pushout. For a regular epimorphism d : X ։ Z, consider the
following commutative diagram

X
1X

������
��

� f

�� ��
??

??
?

Y

g������
��

�
X

d
�� ��
??

??
?

Z

where f is the coequalizer of the star-kernel κ∗
d of d and g is the canonical

morphism arising from the universal property of f . The above regular di-
amond is trivially left saturated (κ∗

d is a star-kernel of f), and hence must
be a pushout. Then, g must be an isomorphism, which implies that d is a
coequalizer of κ∗

d.

2. 3-star-permutability and the symmetric saturation

property

Given a morphism f : X → Y , by f+ we denote the relation from X to Y

X
1X
~~||

||
| f

  
AA

AA
A

X Y
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and by f− the opposite relation from Y to X

X
f

~~}}
}}

} 1X
!!C

CC
CC

Y X.

In particular, 1+X = 1−X = ∆X .
For the results of this section we need to develop a “calculus of star rela-

tions”. First of all we note that for any relation ̺ : R ⇉ X we have

̺∗ = ̺ ◦∆∗
X .

Inspired by this formula, for any relation ̺ from X to an object Y , we define
̺∗ as ̺◦∆∗

X , and we define ∗̺ as ∆∗
Y ◦̺. Note that associativity of composition

yields
∗(̺∗) = (∗̺)∗

and so we can write ∗̺∗ for the above. For any relation σ (from some object
Z to X), the associativity of composition also gives

(̺∗) ◦ σ = ̺ ◦ (∗σ),

which suggests to write

̺ ∗ σ

for the above equal composites. It is easy to verify that for any morphism
f : X → Y we have

(f+)∗ = ∗(f+)∗,
∗(f−) = ∗(f−)∗.

These “techniques” can be used to establish the following basic properties of
direct and inverse images

f〈̺∗〉 = f+ ◦ ̺ ∗ f− = f+ ◦ ̺ ∗ (f−)∗ = f〈̺∗〉∗,

f−1〈̺〉∗ = f− ◦ ̺ ◦ (f+)∗ = f− ◦ ̺ ∗ (f+)∗ = f−1〈̺∗〉∗.

For any span

X
e

~~~~||
||

||
|| f

    
AA

AA
AA

A

W Y

(2)

of regular epimorphisms, we have

κe ◦ κf ∗ κ
∗
e = (e− ◦ e+ ◦ κf ∗ e

− ◦ e+)∗ = e−1〈e〈κ∗
f 〉〉

∗,
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and, symmetrically,

κf ◦ κe ∗ κ
∗
f = f−1〈f〈κ∗

e〉〉
∗.

If κe = (ε1, ε2), then κe = ε+2 ◦ ε−1 = ε+1 ◦ ε−2 and so we get

κe ◦ κf ∗ κ
∗
e = (ε+1 ◦ ε−2 ◦ κf ∗ ε

+
2 ◦ ε−1 )

∗ = ε1〈ε
−1
2 〈κ∗

f 〉〉
∗.

We write κ̇e for

κ̇e = ε+2 ∗ ε−1 .

Then, similarly as above, we get

κe ◦ κf ◦ κ̇e = ε+1 ◦ ε−2 ◦ κf ◦ ε
+
2 ∗ ε−1 = ε1〈ε

−1
2 〈κf 〉

∗〉.

Notice that we have

κ̇e =
∗(κ̇e)

∗

and, since κ̇e 6 κe, we get

κe ◦ κf ◦ κ̇e = κe ◦ κf ∗ κ̇
∗
e 6 κe ◦ κf ∗ κ

∗
e. (3)

Definition 2.1. A regular multi-pointed category C with kernels is said to
be

(a) 2-star-permutable if for any span (2) of regular epimorphisms, we have

κe ◦ κ
∗
f = κf ◦ κ

∗
e;

(b) 3-star-permutable if for any span (2) of regular epimorphisms, we have

κe ◦ κf ∗ κ
∗
e 6 κf ◦ κe ∗ κ

∗
f

(and, consequently, the equality holds) or equivalently,

e−1〈e〈κ∗
f 〉〉

∗
6 f−1〈f〈κ∗

e〉〉
∗

(and, consequently, the equality holds);
(c) nearly 3-star-permutable if for any span (2) of regular epimorphisms,

we have

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ
∗
f .

Remark 2.2. In the total context we always have

κe ◦ κf ◦ κ̇e = κe ◦ κf ◦ κe = κe ◦ κf ∗ κ
∗
e
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and so both the 3-star-permutability and the near 3-star-permutability be-
come the usual 3-permutability which defines Goursat categories, while 2-
star-permutability defines precisely the Mal’tsev categories [5]. In the pointed
context we always have

κe ◦ κf ◦ κ̇e = κe ◦ κ
∗
f = κe ◦ κf ∗ κ

∗
e

and so 3-star-permutability and near 3-star-permutability coincide with 2-
star-permutability. Pointed categories having these equivalent properties are
precisely the regular subtractive categories (this follows easily from the char-
acterization of subtractivity given in Theorem 6.9 in [16]).

As in the total and pointed contexts, in general we have:

Proposition 2.3. For any regular multi-pointed category with kernels, 2-
star-permutability implies 3-star-permutability, which in turn implies near
3-star-permutability.

Proof : The following calculation shows that 2-star-permutability implies 3-
star-permutability:

κe ◦ κf ∗ κ
∗
e 6 κe ◦ κf ◦ κ

∗
e = κe ◦ κ

∗
f = κf ◦ κ

∗
e = κf ◦ κe ∗∆

∗
6 κf ◦ κe ∗ κ

∗
f .

3-star-permutability implies near 3-star-permutability by (3).

Remark 2.4. We do not have an example which would show that near 3-
star-permutability is strictly weaker than 3-star-permutability.

The aim of the rest of this section is to examine intermediate properties
between 3-star-permutability and near 3-star-permutability, which, in view
of Remark 2.2, yield characterizations of regular subtractive and of Goursat
categories.

Lemma 2.5. In a regular multi-pointed category with kernels, for a saturated
regular diamond (1) we have

κe ◦ κf ∗ κ
∗
e = κf ◦ κe ∗ κ

∗
f ,

or equivalently,
e−1〈e〈κ∗

f 〉〉
∗ = f−1〈f〈κ∗

e〉〉
∗.

Proof : Suppose a regular diamond (1) is saturated. Then

e−1〈e〈κ∗
f 〉〉

∗ = e−1〈κ∗
d〉

∗ = e−1〈κd〉
∗,

f−1〈f〈κ∗
e〉〉

∗ = f−1〈κ∗
g〉

∗ = f−1〈κg〉
∗.
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By the commutativity of the diamond we see that e−1〈κd〉
∗ = f−1〈κg〉

∗.

A diamond (1) is said to be

• left split if e and g are split epimorphisms with right inverses e′ and g′

such that fe′ = g′d;
• right split if, symmetrically, f and d are split epimorphisms having
right inverses f ′ and d′ satisfying ef ′ = d′g.

Lemma 2.6. In a regular multi-pointed category with kernels, a diamond (1)
which is left split is always left saturated.

Proof : The splittings of the diamond obviously induce a splitting between
the kernel pairs of f and d, thus between their star-kernels.

If a regular diamond is left split, then it is a pushout. In [8], in the to-
tal context, such a left split pushout of regular epimorphisms was called a
“Goursat pushout” when it is right saturated, inspired by the following re-
sult: a regular category is a Goursat category if and only if every left split
pushout of regular epimorphisms is right saturated (and hence saturated,
due to the above lemma). We revisit this result in our more general context
(see Theorem 2.12 below), where we use the same construction of a left split
regular diamond from a span, which was used in [8] for the proof of the above
characterization of Goursat categories. Namely, any span (2) gives rise to a
left split regular diamond as follows: consider the “right slice” of the diagram
which specifies the image of κe = (ε1, ε2) under f

Ke
ε2
������
��

�� ϕ

�� ��
??

??
??

f〈Ke〉

γ2������
��

�

X

f �� ��
??

??
??

?

Y.

(4)

The diamond (4) will be called the right derived diamond of the span (2) (the
left derived diamond is defined symmetrically). A right derived diamond is
always left split, and hence it is always left saturated by Lemma 2.6 (similarly,
a left derived diamond is always right split and hence right saturated).

Proposition 2.7. In a regular multi-pointed category with kernels, for any
span (2) whose right derived diamond is right saturated, we have:

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ
∗
f .
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Proof : The right saturation of the right derived diamond (4) of the span (2)
is the identity

κ∗
γ2
= ϕ〈κ∗

ε2
〉.

Taking the inverse image along ϕ followed by direct image along ε1, of both
sides of the above equality, we get

ε1〈ϕ
−1〈κ∗

γ2
〉〉 = ε1〈ϕ

−1〈ϕ〈κ∗
ε2
〉〉〉.

We are going to show that we always have the following, which will complete
the proof:

κe ◦ κf ◦ κ̇e 6 ε1〈ϕ
−1〈κ∗

γ2
〉〉∗,

ε1〈ϕ
−1〈ϕ〈κ∗

ε2
〉〉〉∗ 6 κf ◦ κe ∗ κ

∗
f .

We begin by proving the first inequality:

κe ◦ κf ◦ κ̇e = ε1〈ε
−1
2 〈κf 〉

∗〉

= ε1〈ϕ
−1〈κγ2〉

∗〉

= ε1〈ϕ
−1〈κ∗

γ2
〉∗〉∗

6 ε1〈ϕ
−1〈κ∗

γ2
〉〉∗.

Now, the second inequality:

ε1〈ϕ
−1〈ϕ〈κ∗

ε2
〉〉〉∗ = (ε+1 ◦ ϕ− ◦ ϕ〈κ∗

ε2
〉 ◦ ϕ+ ◦ ε−1 )

∗

6 (ε+1 ◦ ϕ− ◦ ϕ〈κ∗
ε2
〉 ◦ γ−

1 ◦ f+)∗

= (ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ϕ
− ◦ γ−

1 ◦ f+)∗

= (ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ε
−
1 ◦ f− ◦ f+)∗

= ε+1 ◦ ϕ− ◦ ϕ+ ◦ κε2 ∗ ε
−
1 ∗ κ∗

f

6 ε+1 ◦ ϕ− ◦ ϕ+ ◦ ε−1 ◦ ε+1 ◦ κε2 ◦ ε
−
1 ∗ κ∗

f

= ε+1 ◦ ϕ− ◦ ϕ+ ◦ ε−1 ◦ κe ∗ κ
∗
f

6 ε+1 ◦ ϕ− ◦ γ−
1 ◦ f+ ◦ κe ∗ κ

∗
f

= ε+1 ◦ ε−1 ◦ f− ◦ f+ ◦ κe ∗ κ
∗
f

= κf ◦ κe ∗ κ
∗
f .
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Definition 2.8. A morphism f : X → Y is said to be saturating if the
following condition holds: the right derived diamond

X
1X

����
��

� f

��
??

??
?

Y

1Y����
��

�
X

f ��
??

??
?

Y

associated to the span

X
1X

~~}}
}}

}}
}} f

  
AA

AA
AA

A

X Y

is right saturated.

In other words, f is saturating when the induced morphism from the N -
kernel of 1X to the N -kernel of 1Y is a regular epimorphism.
In the pointed context, all morphisms are saturating. In the total context,

any regular epimorphism is saturating.
The proof of the following result is straightforward:

Lemma 2.9. For a regular epimorphism f : X ։ Y the following conditions
are equivalent:

(a) f is saturating.
(b) ∆∗

Y = (f+ ∗ f−)∗.
(c) For any relation ̺ : R ⇉ Y we have f〈f−1〈̺〉∗〉 = ̺∗.

Proposition 2.10. In a regular multi-pointed category with kernels, a left
saturated regular diamond (1) with saturating f is saturated if and only if
κe ◦ κf ∗ κ∗

e = κf ◦ κe ∗ κ∗
f , or, equivalently, if and only if

e−1〈e〈κ∗
f 〉〉

∗ = f−1〈f〈κ∗
e〉〉

∗.

Proof : The “only if” part is exactly Lemma 2.5 (which does not require the
fact that f is saturating). To prove the “if” part, suppose that for a left
saturated regular diamond (1) we have the 3-star-permutability property.
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Then, the following calculation shows that the diamond is right saturated:

f〈κ∗
e〉 = f〈κ∗

e〉
∗

= f〈f−1〈f〈κ∗
e〉〉

∗〉

= f〈e−1〈e〈κ∗
f 〉〉

∗〉

= f〈e−1〈κ∗
d〉

∗〉

= f〈e−1〈κd〉
∗〉

= f〈f−1〈κg〉
∗〉

= κ∗
g

(we use Lemma 2.9(c) in the second and last equalities).

Definition 2.11. We say that C has the symmetric saturation property if
the following equivalent conditions hold:

(a) any left saturated regular diamond is right saturated;
(b) any right saturated regular diamond is left saturated;
(c) left/right saturated regular diamonds are the same as the saturated

ones.

Theorem 2.12. For a regular multi-pointed category C with kernels, each of
the conditions below implies the subsequent one:

(a) C is 3-star-permutable and has saturating regular epimorphisms;
(b) C has the symmetric saturation property;
(c) any left split regular diamond in C is saturated;
(d) C is nearly 3-star-permutable and has saturating regular epimorphisms.

Both in the pointed and total contexts these conditions are equivalent and
characterize regular subtractive and Goursat categories, respectively.

Proof : (a)⇒(b) follows from Proposition 2.10.
(b)⇒(c) follows from Lemma 2.6.
(c)⇒(d) follows from Proposition 2.7.
The final claim in the theorem follows from Remark 2.2.

Recall from [7] that a proto-pointed context refers to the context of a regular
multi-pointed category where null morphisms w : W → X are precisely those
whose regular image is the smallest subobject of X. When the category is
a variety of universal algebras such morphisms are those whose image is the
subalgebra of constants of the algebra X (by a “constant” we mean a nullary
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operation/term): this latter situation will be referred to as the algebraic
proto-pointed context. In this context, anN -kernel of a morphism f : X → Y

is given by the subalgebra of X consisting of those elements x ∈ X which are
mapped by f to a constant in Y . In particular, if the set E of constants of the
variety is empty, thenN -kernels are empty subalgebras; in this case, stars are
parallel morphisms whose domain is the empty algebra and the conditions in
Theorem 2.12 hold trivially. In the case when E is non-empty, any regular
epimorphism (i.e. a surjective homomorphism) is still trivially saturating,
since saturating morphisms are those homomorphisms which are surjective
on constants. The conditions of Theorem 2.12 are then still equivalent and
define E-subtractive varieties in the sense of [21], as we are now going to
prove:

Theorem 2.13. In the algebraic proto-pointed context, each of the conditions
2.12(a)-(d) is equivalent to 2-star-permutability and is also equivalent to the
following syntactic condition: for every constant c, there exists a binary term
sc such that sc(x, x) = c and sc(x, c) = x.

Proof : Suppose that near 3-star-permutability holds. For a given constant
c, we apply the inequality

κe ◦ κf ◦ κ̇e 6 κf ◦ κe ∗ κ
∗
f

in the case when e and f are the following algebra homomorphisms

e : Fr{x, y} → Fr{x}, x 7→ x, y 7→ x

and

f : Fr{x, y} → Fr{x}, x 7→ x, y 7→ c,

where Fr{x} and Fr{x, y} are the free algebras over one and two generators,
respectively. Then the chain

c
κ̇e

// c
κf

// y
κe

// x

must give rise to a chain

c
κ∗

f
// c′

κ∗

e
// s(x, y)

κf
// x

where each arrow yields, respectively, the equalities c = c′, s(x, x) = c′, and
s(x, c) = x. It follows that sc = s is the required binary term.
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Suppose now that the syntactic condition given in the theorem holds. To
deduce from it 2-star-permutability we observe that every chain

c
κ∗

f
// x

κe
// y

of elements of an algebra X, where c is a constant, produces the chain

c = sc(x, x)
κ∗

e
// sc(y, x)

κf
// sc(y, c) = y.

Since 2-star-permutability implies 3-star-permutability (see Proposition 2.3),
and any regular epimorphism is saturating, Theorem 2.12 completes the
proof.

3. Some remarks on clots and ideals

The notion of an ideal has been extended from varieties of universal alge-
bras [11, 19, 20] to pointed regular categories (with finite coproducts) in [14]
(see also [13]). First recall that a subobject c : C ֌ X is a clot when it
is the “0-class” of a reflexive relation, i.e. there exists an internal reflexive
relation

R
̺2

//

̺1
//

Xoo

such that c = ̺2 ◦ ker(̺1) (see [1, 14, 18]). As proposed in [13], in a cate-
gorical setting an ideal should be defined as a direct image of a clot along a
regular epimorphism: a subobject i : I ֌ Y is an ideal when there exists a
commutative square

C
q

// //

��

c
��

I
��

i
��

X p
// // Y

with p and q regular epimorphisms and c a clot. It was later observed in [14]
that ideals can be equivalently defined as those subobjects which are direct
images of kernels along regular epimorphisms; indeed, as clots themselves
are a particular type of direct images of kernels along regular epimorphisms,
direct images of clots along regular epimorphisms will coincide with those of
kernels. Writing N(X), C(X) and I(X) for the classes of kernels, clots and
ideals of an object X, respectively, the inclusions

N(X) ⊂ C(X) ⊂ I(X)
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are strict, in general. A crucial axiom in the definition of an ideal determined
category [12] states that these inclusions are, in fact, equalities. More pre-
cisely, an ideal determined category is a normal category with finite colimits,
in which every ideal is a kernel. Recall also that ideal determined varieties
[10] were introduced in [20] under the name of BIT (for “Buona Teoria degli
Ideali”) varieties. This explains the choice of the term “category with a good
theory of ideals” for the notion we are now going to recall.
The wish of unifying the pointed and non-pointed contexts led the authors

of [7] to introduce a more general notion of ideal in the context of a regular
multi-pointed category C, which in the pointed case gives the one recalled
above. Since in a regular multi-pointed category the role of kernels is played
by star-kernels, it is natural to say that a monic star ̺ : R ⇉ Y is an ideal
when there exists a commutative diagram

K

��

κ

��

q
// // R

̺

����

X p
// // Y

with κ : K ⇉ X a star-kernel, and p, q regular epimorphisms (thus, ̺ =
p〈κ〉). Now, a star-regular category C (with coequalizers of ideals) has a
good theory of ideals if any ideal is a star-kernel [7]. From what we said
above it is then evident that, in the pointed context, this gives precisely the
notion of an ideal determined category (under the further assumption of the
existence of finite colimits, since this is required in the definition of an ideal
determined category given in [12]). In the total context, categories with a
good theory of ideals are precisely the Barr exact Goursat categories, since
these latter ones can be characterized as those regular categories in which the
direct image of an effective equivalence relation (i.e. of a kernel pair) along
a regular epimorphism is an effective equivalence relation (see [4]).
We observe that in view of Theorem 1.3 above, Theorem 3.8 of [7] can be

refined as follows:

Theorem 3.1. C has a good theory of ideals if and only if the following
conditions hold:

(a) C admits coequalizers of ideals;
(b) pushouts of regular epimorphisms in C are the same as left saturated

regular diamonds.
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As it follows from this theorem, any category with a good theory of ideals
has the symmetric saturation property.
We now extend the notion of a clot to an arbitrary regular multi-pointed

category with kernels:

Definition 3.2. A monic star β : B ⇉ X is said to be a clot if there is a
reflexive relation ̺ = (̺1, ̺2) : R ⇉ X in C such that β = ̺2〈κ∗

̺1
〉.

Thus, any star-kernel is a clot, and any clot is an ideal.
In the pointed context, the above notion of a clot becomes the one recalled

earlier.
In the total context, a clot is the same as a relation β which has the

form β = ̺ ◦ ̺◦ for some reflexive relation ̺ (where ̺◦ denotes the opposite
relation of ̺). In particular, any equivalence relation ε is a clot since ε =
ε ◦ ε◦. Observe that in general a clot is always reflexive and symmetric. By
Theorem 3.5 in [4], the coincidence of equivalence relations and clots (which
is equivalent to every clot being transitive) is equivalent to 3-permutability
and hence to the symmetric saturation property by Theorem 2.12. At the
same time, by Theorem 6.8 in [4], it is further equivalent to the stability of
equivalence relations under direct images along regular epimorphisms, and
hence to the coincidence of equivalence relations and ideals. This readily
gives that, in the total context, the symmetric saturation property implies
the coincidence of clots and ideals. More generally, we have:

Proposition 3.3. If C is a regular multi-pointed category with kernels satis-
fying 2.12(c), then clots are stable under direct images along regular epimor-
phism in C, i.e. clots coincide with ideals: for any object X in C,

C(X) = I(X).

Proof : Consider a clot β : B ⇉ X and a reflexive relation ̺ = (̺1, ̺2) :
R ⇉ X such that β = ̺2〈κ∗

̺1
〉. We are going to show that its direct image

p〈β〉 along a regular epimorphism p : X ։ Y is a clot. For this, consider a
regular-image decomposition (the bottom square in the following diagram),
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and the induced square of star-kernels (the top square in the same diagram):

K1

��

κ∗

̺1
��

q
// K2

κ∗

π1
����

R

��

̺
��

r
// // R′

p〈̺〉=(π1,π2)
����

X p
// // Y.

Since ̺ is reflexive it follows that p〈̺〉 is reflexive, and further, the regular
diamond

R
̺1
������
��

� r
�� ��
??

??
?

R′

π1
������
��

�
X

p �� ��
??

??
??

Y

is left split. Then it is right saturated by the assumption on C, and conse-
quently, q is a regular epimorphism. This implies

π2〈κ
∗
π1
〉 = (p̺2)〈κ

∗
̺1
〉 = p〈̺2〈κ

∗
̺1
〉〉 = p〈β〉

which shows that p〈β〉 is a clot, as desired.

In the pointed context the above result says that clots and ideals coincide
in any regular subtractive category. This result extends a well known one
for subtractive varieties (see [1]). Note however that, unlike subtractive vari-
eties where kernels, clots and ideals coincide, in general a regular subtractive
category may have ideals which are not kernels. In fact, there are regular
subtractive categories where every monomorphism is an ideal, but not every
ideal is a kernel: any non-abelian regular additive category is such. Indeed,
as shown in [3], a regular subtractive category in which every monomorphism
is a kernel is the same as an abelian category. Consequently, suitable coun-
terexamples are given here by the category of torsion-free abelian groups,
as already pointed out in [12], and by the category of topological abelian
groups.



18 MARINO GRAN, ZURAB JANELIDZE, DIANA RODELO AND ALDO URSINI

References
[1] P. Agliano and A. Ursini, Ideals and other generalizations of congruence classes, J. Austal.

Math. Soc. 53 (Ser. A) (1992), 103-115.
[2] M. Barr, P. A. Grillet and D. H. van Osdol, Exact categories and categories of sheaves, Springer

Lecture Notes in Mathematics 236, 1971.
[3] D. Bourn and Z. Janelidze, A note on the abelianization functor, submitted for publication.
[4] A. Carboni, G. M. Kelly, and M. C. Pedicchio, Some remarks on Maltsev and Goursat cate-

gories, Appl. Cat. Struct. 1 (1993) 385-421.
[5] A. Carboni, J. Lambek, and M. C. Pedicchio, Diagram chasing in Malcev categories, J. Pure

Appl. Alg. 69 (1991) 271-284.
[6] C. Ehresmann, Sur une notion générale de cohomologie, C. R. Acad. Sci. Paris 259 (1964)

2050-2053.
[7] M. Gran, Z. Janelidze, and A. Ursini, A good theory of ideals in a regular multi-pointed

category, accepted for publication in J. Pure Appl. Algebra.
[8] M. Gran and D. Rodelo, A new characterisation of Goursat categories, Appl. Categ. Structures,

published online 27 September 2010.
[9] M. Grandis, On the categorical foundations of homological and homotopical algebra, Cah.
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