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Abstract: A number of variants of the classical Markowitz mean-variance op-
timization model for portfolio selection have been investigated to render it more
realistic. Recently, it has been studied the imposition of a cardinality constraint,
setting an upper bound on the number of active positions taken in the portfolio,
in an attempt to improve its performance and reduce transactions costs. However,
one can regard cardinality as an objective function itself, thus adding another goal
to those two traditionally considered (the variance and the mean of the return).

In this paper, we suggest a new approach to directly compute sparse portfolios
by reformulating the cardinality constrained Markowitz mean-variance optimization
model as a biobjective optimization problem, allowing the investor to analyze the
efficient tradeoff between mean-variance and cardinality, in a general scenario where
short-selling is allowed.

Since cardinality is a nonsmooth objective function, one has chosen a derivative-
free algorithm (based on direct multisearch) for the solution of the biobjective opti-
mization problem. For the several data sets obtained from the FTSE 100 index and
the Fama/French benchmark collection, direct multisearch was capable of quickly
determining (in-sample) the efficient frontier for the biobjective cardinality/mean-
variance problem.

Our results showed that a number of efficient cardinality/mean-variance portfolios
(with values of cardinality not high) overcome the naive strategy in terms of out-of-
sample performance measured by the Sharpe ratio, which is known to be extremely
difficult.
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1. Introduction
Asset allocation is a core decision made by investors. Determining a strat-

egy which effectively maximizes the expected utility for each investor is a
challenging and arduous task. A first thought on asset allocation could lead
us to consider as an ideal strategy one that maximizes the portfolio profit,
measured for instance by the portfolio expected return. However, such a
strategy is known to be incomplete, and therefore a poor one.
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In fact, one knows since the pioneer work of Markowitz [20] that a rational
investor has typically two goals in mind: to maximize the portfolio return
(given, e.g., by the portfolio expected return) and to minimize the portfolio
risk (described, e.g., by the portfolio variance). Traditionally, the Markowitz
mean-variance optimization model is taken as a quadratic program (QP),
intended to minimize the portfolio risk (variance) for a given level of expected
return, over a set of feasible portfolios. By varying the level of expected
return, the Markowitz model determines the so-called efficient frontier, as the
set of nondominated portfolios regarding the two goals (variance and mean
of the return). The rational investor can thus makes choices, by analyzing
the tradeoff between expected return and variability of the investment, over
a set of appropriate portfolios.

Several modifications to the classical Markowitz model or alternative
methodologies have since then been proposed. One resulting from a sim-
ple observation was suggested in an article by DeMiguel, Garlappi, and Up-
pal [15]. These authors analyzed a number of methodologies inspired on
the classic model of Markowitz and showed that none were able to signifi-
cantly and consistently overcome the naive strategy, that is to say, the one
in which the available investor’s wealth is divided equally among the avail-
able securities. One possible explanation is related to the ill conditioning of
the objective function of the Markowitz model (given by the variance of the
return).

One of the important issues to consider in portfolio selection is how to
handle transaction costs. There are well known modifications that can be
made in the Markowitz model to incorporate transaction costs, such as to
bound the turnover, which basically amount to further linear constraints in
the QP. A recent technique to keep transaction costs low consists of selecting
sparse portfolios, i.e., portfolios with few active positions, by imposing a
cardinality constraint. Such a constraint, however, changes the classical QP
into a MIQP (mixed-integer quadratic programming), which can no longer
be solved in polynomial time.

In this paper, we suggest an alternative approach to the cardinality con-
strained Markowitz mean-variance optimization model, reformulating it di-
rectly as a biobjective problem, allowing the investor to analyze the tradeoff
between cardinality and mean-variance, in a general scenario where short-
selling is permitted. Such an approach allows us to find the set of nondom-
inated points of biobjective problems in which an objective is smooth and
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combines mean and variance and the other is nonsmooth (the cardinality or
`0 norm of the vector of portfolio positions). The mean-variance objective
function can take a number of forms. A parameter free possibility is given
by profit per unity of risk (a nonlinear function obtained by dividing the
expected return by its variance). Another possibility is a linear combination
of the expected return and the variance of the return (a quadratic function).

Given the lack of derivatives of the cardinality function, we decided then to
apply a directional derivative-free algorithm for the solution of the biobjective
optimization problem. Such methods do not require derivatives, although
their convergence results typically assume some weak form of smoothness
such as Lipschitz continuity. Direct multisearch is a derivative-free multiob-
jective methodology for which one can show some type of convergence in the
discontinuous case. More importantly, it exhibited excellent numerical per-
formance on a comparison to a number of other multiobjective optimization
solvers. We applied direct multisearch to determine (in-sample) the set of
efficient or nondominated cardinality/mean-variance portfolios.

To illustrate our approach, we gathered several data sets from the FTSE
100 index (for returns of single securities) and from the Fama/French bench-
mark collection (for returns of portfolios), computed the efficient
cardinality/mean-variance portfolios using (in-sample) optimization, and mea-
sured their out-of-sample performance using a rolling-sample approach. We
found that a large number of sparse portfolios for the FTSE data sets, among
the efficient cardinality/mean-variance ones, consistently overcome the naive
strategy in terms of out-of-sample performance measured by the Sharpe ra-
tio. This effect is also clearly visible for the FF data sets, where the perfor-
mance of a large portion of the cardinality/mean-variance efficient frontier
outperforms, in most of the instances, the naive strategy. The transactions
costs are shown to be relatively low for all efficient cardinality/mean-variance
portfolios, with a moderate increase with cardinality.

The organization of our paper is as follows. In the next section, we formu-
late the classical Markowitz model for portfolio selection, describe the naive
strategy, and formulate the problem with cardinality constraint. In Sec-
tion 3, we reformulate the cardinality constrained Markowitz mean-variance
optimization model as a biobjective problem for application of multiobjec-
tive optimization. In Section 4, we present the empirical results. Some basic
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material about derivative-free optimization and direct multisearch for multi-
objective optimization is described in Appendix A. Finally, in Section 5 we
summarize our findings and discuss future research.

In the remaining of this section we present some concepts and notation
from multiobjective optimization used in our paper. In a multiobjective opti-
mization problem one optimizes ‘simultaneously’ multiple objective functions
(sometimes ‘conflicting’). A constrained nonlinear multiobjective problem
can be written in the form:

min
x∈Rn

F (x) ≡ (f1(x), . . . , fm(x))>

subject to x ∈ Ω ⊂ Rn,
(1)

involving m objective functions or objective function components
fi : Rn 7→ R ∪ {+∞}, i = 1, . . . ,m, and a feasible region Ω.

In the presence of several objective functions, the minimizers of one func-
tion are not necessarily the minimizers of another. To define some sort of
optimality, it is crucial to have a way of comparing different points, such as
the concept of Pareto dominance. Given two points x, y in Ω, we say that
x ≺ y (x dominates y) if and only if

F (x) ≺F F (y)⇐⇒ F (y)− F (x) ∈ Rm
+ \ {0},

where Rm
+ is the nonnegative orthant Rm

+ = {z ∈ Rm : z ≥ 0}. Note that the
use of the nonnegative orthant induces a strict partial order.

A set of points in Ω is nondominated when no point in the set is dominated
by another one in the set. The concept of Pareto dominance is thus used to
characterize optimality in multiobjective optimization, by defining the set of
Pareto optimizers or nondominated points. More formally, a point x∗ ∈ Ω is
said to be a (global) Pareto optimizer or a nondominated point of F in Ω if
there is no y ∈ Ω such that y ≺ x∗. The Pareto front or efficient frontier is
the mapping by F of such set of Pareto optimizers.

2. Portfolio selection models
2.1. The classical Markowitz mean-variance model. Portfolios consist
of securities (shares or bonds, for example, or classes or indices of the same).
Suppose the investor has a certain wealth to invest in a set of N securities.
The return of each security i is described by a random variable Ri, whose
average can be computed (from estimation based on historical data).
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Let µi = E(Ri), i = 1, . . . , N , denote the expected returns of the securities.
Let also wi, i = 1, . . . , N , represent the proportions of the total investment
to allocate in the individual securities. The portfolio return is assumed linear
in w1, . . . , wN , and thus the portfolio expected return can be written as

E(R) = E(wiR1 + · · ·+ wNRN) = w1µ1 + · · ·+ wNµN = µ>w

with

µ = (µ1, . . . , µN)> and w = (w1, . . . , wN)>.

The portfolio variance, in turn, is calculated by

V (R) = E

([ N∑
i=1

wiRi − E
( N∑

i=1

wiRi

)]2)
.

So,

V (R) =
N∑
i=1

N∑
j=1

E[(Ri − µi)(Rj − µj)]wiwj.

Representing each entry i, j of the covariance matrix Q by

σij = E[(Ri − µi)(Rj − µj)],

one has

V (R) = w>Qw,

where Q is symmetric and positive semi-definite (and typically assumed pos-
itive definite).

As said before, a portfolio is defined by an N × 1 vector w of weights
representing the proportion of the total funds invested in the N securities.
This vector of weights is thus required to satisfy the constraint

N∑
i=1

wi = e>w = 1,

where e is the N × 1 vector of entries equal to 1. Lower bounds on the
variables, of the form wi ≥ 0, i = 1, . . . , n, can be also considered if short
selling is undesirable. In general, we will say that Li ≤ wi ≤ Ui, i = 1, . . . , N ,
for given lower Li and upper Ui bounds on the variables.

Markowitz’s model [20, 21] is based on the formulation of a mean-variance
optimization problem. By solving this problem, we identify a portfolio of
minimum variance among all which provide an expected return not below a
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certain target value r. The aim is thus to minimize the risk from a given
level of return. The formulation of this problem can be described as:

min
w∈RN

w>Qw

subject to µ>w ≥ r,

e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(2)

Problem (2) is a convex quadratic programming problem (QP), for which
the first order necessary conditions are also sufficient for (global) optimality.
See [11, 22] for a survey of portfolio optimization.

The classical Markowitz mean-variance model can be seen as way of solv-
ing the biobjective problem which consists of simultaneously minimizing the
portfolio risk (variance) and maximizing the portfolio profit (expected re-
turn)

min
w∈RN

w>Qw

max
w∈RN

µ>w

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(3)

In fact, it is easy to prove that a solution of (2) is nondominated, efficient or
Pareto optimal for (3). Efficient portfolios are thus the ones which have the
minimum variance among all that provide at least a certain expected return,
or, alternatively, those that have the maximal expected return among all up
to a certain variance. The efficient frontier (or Pareto front) is typically rep-
resented as a 2-dimensional curve, where the axes correspond to the expected
return and the standard deviation of the return of an efficient portfolio.

Another way to determine the efficient frontier is to scalarize the biobjective
problem (3), introducing a weighting parameter λ ∈ [0, 1] and considering

min
w∈RN

λw>Qw − (1− λ)µ>w

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

Here λ = 0 leads to the maximization the expected return (‘independently’
of the risk involved) and λ = 1 corresponds to the minimization of the
risk (‘independently’ of the expected return involved). Values of λ ∈ (0, 1)
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provide the tradeoff between risk and expected return, generating efficient
portfolios between the two extremes of the efficient frontier.

2.2. The naive strategy 1/N . The naive strategy is the one in which the
available investor’s wealth is divided equally among the securities available

wi =
1

N
, i = 1, . . . , N.

This strategy has diversification as its main goal, it does not involve opti-
mization, and it completely ignores the data.

Although a number of theoretical models have been developed in the last
years, many investors pursuing diversification revert to the use of the naive
strategy to allocate their wealth (see [2]). DeMiguel, Garlappi, and Uppal [15]
evaluated fourteen models across seven empirical data sets and showed that
none is consistently better than the naive strategy. A possible explanation
for this phenomenon lies on the fact that the naive strategy does not in-
volve estimation and promotes ‘optimal’ diversification. The naive strategy
is therefore an excellent benchmarking strategy.

2.3. The cardinality constrained Markowitz mean-variance model.
Since the appearance of the classical Markowitz mean-variance model, a num-
ber of methodologies have been proposed to render it more realistic. The clas-
sical Markowitz model assumes a perfect market without transaction costs or
taxes, but such costs are an important issue to consider as far as the portfolio
selection is concerned, especially for small investors.

Recently, it has been studied the addition of a constraint that sets an upper
bound on the number of active positions taken in the portfolio, in an attempt
to improve performance and reduce transactions costs. Such a cardinality
constraint is defined by limiting card(x) = |{i ∈ {1, ..., N} : xi 6= 0}| and
leads to cardinality constrained portfolio selection problems. In particular,
the cardinality constrained Markowitz mean-variance optimization problem
has the form:

min
w∈RN

w>Qw

subject to µ>w ≥ r,

e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N,

(4)
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where K ∈ {1, . . . , N}. Although card(x) is not a norm, it is frequently
called the `0 norm in the literature, ‖x‖0 = card(x).

By introducing binary variables, one can rewrite the problem as a mixed-
integer quadratic programming (MIQP) problem:

min
w,y∈RN

w>Qw

subject to µ>w ≥ r,

e>y ≤ K,

e>w = 1,

Liyi ≤ wi ≤ Uiyi, i = 1, . . . , N,

yi ∈ {0, 1}, i = 1, . . . , N.

(5)

However such MIQPs are known to be hard combinatorial problems. The
number of sparsity patterns in w (i.e., number of different possibilities of
having K nonzeros entries) is

(
N
K

)
= N !/[(N − K)!K!]. Although there are

exact algorithms for the solution of MIQPs (see [3, 4, 5, 25]), many researchers
and portfolio managers prefer to use heuristics approaches (see [1, 7, 8, 16,
19, 26]). Some of these heuristics vary among evolutionary algorithms, tabu
search, and simulated annealing (see [16, 26]).

Promotion of sparsity is also used in the field of signal and imaging process-
ing, where a new technique called compressed sensing has been intensively
studied in the recent years. Essentially one aims at recovering a desired
signal or image with the least possible amount of basis components. The
major developments in compressed sensing have been achieved by replacing
the `0 norm by the `1 one, the latter being a convex relation of the former
and known to also promote sparsity. The use of the `1 norm leads to re-
covering optimization problems solvable in polynomial time (in most of the
cases equivalent to linear programs), and a number of sparse optimization
techniques have been developed for the numerical solution of such problems.
These ideas have already been used in portfolio selection primarily to pro-
mote regularization of ill conditioning (of the estimation of data or of the
variance of the return itself). DeMiguel et al. [14] constrained the Markowitz
classical model by imposing a bound on the `1 norm of the vector of portfolio
positions, among other possibilities. Brodie et al. [6] focus on a modification
to the Markowitz mean-variance classical model by the incorporation of a
term involving a multiple of the `1 norm of the vector of portfolio positions.
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Inspired by sparse reconstruction (see, for instance, [5]), they also proposed
an heuristic for the solution of the problem.

3. The cardinality/mean-variance biobjective model
Although the cardinality constrained Markowitz mean-variance model de-

scribed in (4) provides an alternative to the classical Markowitz model in the
sense of realistically limiting the number of active positions in a portfolio, it
is dependent on the parameter K, the maximum number of such positions.
Thus, one has to vary K to obtain various levels of cardinality or sparsity,
and for each value of K solve an MIQP of the form (5).

The alternative suggested in this paper is to consider the cardinality func-
tion as an objective function itself. At a first glance, one could see the
problem has a triobjective optimization problem by

• minimizing the variance of the return w>Qw,
• maximizing the expected return µ>w,
• minimizing the cardinality card(w),

over the set of feasible portfolios. However, one would then get a tridimen-
sional efficient frontier, difficult to visualize. One could consider some form
of projection of this frontier onto a plane but it is unclear how to proceed.

On the other hand, investors may find it useful to directly analyze the
tradeoff between cardinality and mean-variance. One possibility is to linearly
combine variance and mean of the return, assigning equal weights to both,
reducing the problem to a biobjective, by

• minimizing the mean-variance 1
2w
>Qw − 1

2µ
>w,

• minimizing the cardinality card(w),

over the set of feasible portfolios. More rigorously, the cardinality/mean-
variance biobjective optimization problem would then posed as

min
w∈RN

1
2w
>Qw − 1

2µ
>w

min
w∈RN

card(w)

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(6)

A drawback of this approach is that it depends on a choice of a parameter,
set above to 0.5. A parameter-free alternative is to consider a Sharpe ratio
type objective function, by
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• maximizing expected return per variance µ>w
w>Qw

,

• minimizing the cardinality card(w),

over the set of feasible portfolios. In this case, the cardinality/mean-variance
biobjective optimization problem is posed as

min
w∈RN

− µ>w
w>Qw

min
w∈RN

card(w)

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

(7)

By solving (7) (or (6)), we identify a cardinality/mean-variance efficient fron-
tier. A portfolio in this frontier is such that there exists no other feasible one
which simultaneously presents a lower cardinality and a lower mean-variance
measure. Given such an efficient frontier and a mean-variance target, an in-
vestor may directly find the answers to the questions of what is the optimal
(lowest) cardinality level that can be chosen and what are the portfolios lead-
ing to such a cardinality level. The construction of sparse or lower cardinality
portfolios is crucial in portfolio selection, since it makes portfolio manage-
ment easier and it reduces transaction costs (the fewer securities entering in
the construction of a portfolio, the lower are these costs).

Problem (7) has two objective functions and linear constraints. The first
objective f1(w) = −µ>w/w>Qw is nonlinear but smooth. However, the
second objective function f2(w) = card(w) = |{i ∈ {1, ..., N} : wi 6= 0}| is
piecewise linear discontinuous, consequently nonlinear and nonsmooth. We
have thus decided to solve the biobjective optimization problem (7) using
a derivative-free solver, based on direct multisearch. A brief description of
direct multisearch and the solver dms is given in the Appendix A.

4. Empirical performance of efficient cardinality/mean-
variance portfolios

Now we report a number of experiments made to numerically determine
and assess the efficient cardinality/mean-variance frontier. We applied di-
rect multisearch (see Appendix A.1) to determine the Pareto front or ef-
ficient frontier of the biobjective optimization problem (7) (according to
Appendix A.2). We tested three data sets collected from the FTSE 100
index and three others from the Fama/French benchmark collection (see
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Subsection 4.1). The efficient frontiers obtained by the initial in-sample op-
timization are given in Subsection 4.2. The out-of-sample performance of the
cardinality/mean-variance efficient portfolios, measured by a rolling-sample
approach, is described in Subsection 4.3. The proportional transaction costs
of each cardinality/mean-variance efficient portfolio are reported in Subsec-
tion 4.4. The section is ended with a discussion of the obtained results.

4.1. Data sets. For the first three data sets we collected daily data for
securities from the FTSE 100 index, from 01/2003 to 12/2007 (five years).
Such data is public and available from the site http://www.bolsapt.com.
The three data sets are referred to as DTS1, DTS2, and DTS3, and are
formed by 12, 24, and 48 securities, respectively. The composition of these
data sets is given in Table 1. Based on the daily closing prices pit of each
session, we calculated the daily returns, using the continuous rates

rit = ln

(
pit
pit−1

)
, i = 1, . . . , N, t = 1, . . . , T,

and the discrete rates

rit =
pit − pit−1

pit−1
, i = 1, . . . , N, t = 1, . . . , T,

where N (N = 12, 24, 48) is the number of securities and T (T = 1303) is
the number of observations. We used the daily continuous returns for the
in-sample optimization (estimation of Q and µ) and the daily discrete returns
for the out-of-sample analysis.

We also included in our experiments three data sets from the Fama/French
benchmark collection (FF10, FF17, and FF48, with cardinalities 10, 17, and
48), using the monthly returns from 07/1971 to 06/2011 (forty years) given
there for a number of industry security sectors. More information on these
security sectors (or portfolios of securities) can be found in http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
For all data sets, and given the observed returns, the estimate used for the

vector µ of expected returns (see Section 2.1) was given by the arithmetic
mean of the observations

µi '
1

T

T∑
t=1

rit, i = 1, . . . , N.
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SECURITIES
3 I GROUP (1,2,3) JOHNSON MATTHEY P (3)

AMEC (1,2,3) LEGAL & GENERAL (3)
ANGLO AMERICAN (1,2,3) LLOIDS BANKING GR (3)

ANTOFAGASTA (1,2,3) LONMIN (3)
ASSOCIAT BRIT FOO (1,2,3) MARKS & SPENCER (3)

ASTRAZENECA (1,2,3) MORRINSON SUPERMKT (3)
AVIVA (1,2,3) NEXT (3)

B SKY B GROUP (1,2,3) OLD MUTUAL (3)
BAE SYSTEMS (1,2,3) PEARSON (3)

BARCLAYS (1,2,3) PRUDENTIAL (3)
BG GROUP (1,2,3) REED ELSEVIER PLC (3)

BHP BILLITON (1,2,3) RENTOKIL INITIAL (3)
BP (2,3) REXAM (3)

BRIT AMER TOBACCO (2,3) RIO TINTO (3)
BRIT LAND CO REIT (2,3) ROYAL BK SCOTL GR (3)

BRITISH AIRWAYS (2,3) RSA INSUR GRP (3)
CAB & WIRE WRLD (2,3) SABMILLER (3)

CAPITA GRP (2,3) SAGE GRP (3)
COBHAM (2,3) SAINSBURY (3)
DIAGEO (2,3) SCHRODERS (3)

HAMMERSON REIT (2,3) SEVERN TRENT (3)
IMPERIAL TOBACCO (2,3) SHIRE (3)

INTERNATIONAL POW (2,3) UNITED UTILITIES (3)
INVENSYS (2,3) VODAFONE GRP (3)

Table 1. Composition of the three data sets from the FTSE
100 index. In brackets we indicate the data set to which each
security belongs to.

The estimate for the entries of the covariance matrix Q (see Section 2.1) was
calculated by

σij '
1

T

T∑
t=1

(rit − µi)(rjt − µj), i = 1, . . . , N, j = 1, . . . , N.

Both µ and Q were computed using MATLAB [23] functions.
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4.2. In-sample optimization. We then applied the solver dms (version 0.2)
to compute the efficient frontier (or Pareto front) of the cardinality/mean-
variance biobjective optimization problem (7). A few modifications to (7)
were made before applying the solver as well as a few changes to the solver
default parameters (the details are described in Appendix A.2).

We present results for the initial in-sample optimization. For the FTSE
data sets this sample is from 03/2003 to 12/2006 and for the FF data sets
is from 07/1971 to 06/1996. Figures 1–3 and Figures 4–6 contain the plots
of the efficient frontiers calculated for, respectively, the FTSE and FF data
sets.

In all these plots we also marked three other portfolios. The first one
is the 1/N portfolio corresponding to the naive strategy. The other two are
classical Markowitz related portfolios. One is obtained by optimizing a linear
combination of mean and variance (allowing short-selling)

min
w∈RN

1
2w
>Qw − 1

2µ
>w

subject to e>w = 1.
(8)

The other is obtained by minimizing variance under no short-selling

min
w∈RN

w>Qw

subject to e>w = 1,

w ≥ 0.

(9)

Both instances were solved using the quadprog function from the MATLAB
Optimization Toolbox. Regarding problem (9), it is known that not allowing
short-sale has a regularizing effect on minimum-variance Markowitz portfolio
selection (see [17]) and leads to portfolios of low cardinality.

4.3. Out-of-sample performance. The analysis of out-of-sample perfor-
mance relies on a rolling-sample approach. For the FTSE data sets we consid-
erer 12 periods (months) of evaluation. We begin by computing the efficient
frontier (or Pareto front) of the cardinality/mean-variance biobjective opti-
mization problem (7) for the in-sample time window from 01/2003 to 12/2006
(see Subsection 4.2). We then held fixed each portfolio and observed its re-
turns over the next period (January 2007). Then we discarded January 2003
and brought January 2007 into the sample. We repeated this process un-
til exhausting the 12 months of 2007. We applied the same rolling-sample
approach to the FF data sets, considering an initial in-sample time window
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from 07/1971 to 06/1996 (see Subsection 4.2) and 15 periods of evaluation
(the 15 next years).

In each period of evaluation, the out-of-sample performance was then mea-
sured by the Sharpe ratio

S =
m− rf
σ

,

where m is the mean return, rf is the return of the risk-free asset1, and σ is
the standard deviation. The results (over all the periods of evaluation) are
given in Figures 7–9 for the FTSE portfolios and in Figures 10–12 for the FF
ones.

4.4. Transaction costs. Since one is rebalancing portfolios for each out-of-
sample period, one can compute the transaction costs of such a trade. We
set the proportional transaction cost equal to 50 basis points per transaction
(as usually assumed in the literature). Thus the cost of a trade over all assets
is given by

0.5
N∑
i=1

| wit+1 − wit |

with t = 1, . . . , 11 for the FTSE data sets and t = 1, . . . , 14 for the FF data
sets. The results are given in Figures 13–15 for the FTSE portfolios and in
Figures 16–18 for the FF ones.

4.5. Discussion of the results. Contrary to one could think, given the
intractability of f2(w) = card(w) and the fact that no derivatives are be-
ing used for f1(w) = −µ>w/w>Qw, direct multisearch (the solver dms) was
capable of quickly determining (in-sample) the efficient frontier for the biob-
jective optimization problem (7). For instance, for the data sets of roughly 50
assets, a regular laptop takes a few dozens of seconds to produce the efficient
frontiers.

For the portfolios constructed using the FTSE 100 index data (portfo-
lios of individual securities), a large number of our sparse portfolios, among
the efficient cardinality/mean-variance ones, consistently overcame the naive
strategy and at least one of the two classical Markowitz models, in terms

1For the FTSE data sets we used the 3 month Treasury-Bills UK. Such data is public and made
available by the Bank of England, at the site http://www.bankofengland.co.uk. For the FF data
sets we used the 90-day Treasury-Bills US. Such data is public and made available by the Federal
Reserve, at the site http://www.federalreserve.gov.
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of out-of-sample performance measured by the Sharpe ratio. This effect has
even happened for the largest data set (DTS3 with 48 securities), where the
demand for sparsity is more relevant.

For the portfolios constructed using the Fama/French benchmark collection
(where securities are portfolios rather than individual securities), the scenario
is different since the behavior of the naive strategy is even more difficult
to outperform. Still, a large number of sparse efficient cardinality/mean-
variance portfolios consistently overcame the naive strategy. For the FF
data, we also made the same set of experiments using instead 10 periods
(years) for the out-of-sample evaluation. The Sharpe ratio of the naive
strategy increased proportionally more than the Sharpe ratio of the efficient
cardinality/mean-variance portfolios. This is due to the nature of the data
and indicates a tendency of robustness of these portfolios in comparison to
the naive strategy.

In both cases, FTSE and FF data, the transaction costs of the efficient
cardinality/mean-variance portfolios are much lower than the classical mean-
variance portfolio (solution of problem (8)) and slightly higher than the
minimum-variance portfolio (solution of problem (9)). Note that the
minimum-variance portfolio does not allow short-selling, and so the weights
at the outset are much more limited, thus leading to better results. Finally
we point out that the increase with cardinality is moderate.

We also computed the cardinality/mean-variance efficient frontier for the
data set FF100, where portfolios are formed on size and book-to-market (see
Figure 19). (This time we needed a budget of the order of 107 function
evaluations, see Appendix A.2.) We point out that the data in FF100 was
incomplete and filled in by interpolation.

We remark that FF48 and FF100 are the data sets also used in [6]. In
this paper, as we said before, the authors focus on a modification to the
Markowitz classical model by the incorporation of a term involving a mul-
tiple of the `1 norm of the vector of portfolio positions. Despite the differ-
ent sparse-oriented techniques and different strategies for evaluating out-of-
sample performance, in both approaches (theirs and ours), sparse portfolios
are found overcoming the naive strategy. In our approach one computes
sparse portfolios satisfying an efficient or nondominant property and one
does it directly and in single run, whereas in [6], there is a need to vary a
tunable parameter and select the portfolios according to some criterion to be
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met (for example, sparsity). It is unclear what sort of efficient or nondom-
inant property their portfolios satisfy. Moreover, we provide results for all
cardinality values (from 1 to 48 in FF48 and from 1 to 100 in FF100), while
in [6] the authors report results for cardinality values from 4 and 48 (FF48)
and from 3 to 60 (FF100). We therefore claim to have a more direct way of
dealing with sparsity, which offers a complete determination of an efficient
frontier for all cardinalities.

Finally, we point out that we also made the same set of experiments using
instead the cardinality/mean-variance biobjective optimization problem (6).
Complete Pareto fronts were also determined. The results, in terms of out-
of-sample performance, were not as good. A number of other alternatives
were also tried, leading to the same conclusion (success in determining the
efficient cardinality/mean-variance frontiers, but not so good out-of-sample
performance).

5. Conclusions and perspectives for future work
In this paper we have developed a new methodology to deal with the com-

putation of mean-variance Markowitz portfolios with pre-specified cardinali-
ties. Instead of imposing a bound on the maximum cardinality or including
a penalization or regularization term into the objective function (in classi-
cal Markowitz mean-variance models), we took the more direct approach of
explicitly considering the cardinality as a separate goal. This led us to a
cardinality/mean-variance biobjective optimization problem (7) whose solu-
tion is given in the form of an efficient frontier or Pareto front, thus allow-
ing the investor to tradeoff among these two goals when having transaction
costs and portfolio management in mind. In addition, and surprisingly, a
significant portion of the efficient cardinality/mean-variance portfolios (with
cardinality values considerably lower than the number N of securities) have
exhibited superior out-of-sample performance (under reasonably low trans-
action costs that only increase moderately with cardinality).

We solved the biobjective optimization problem (7) using a derivative-free
solver running direct multisearch. Direct-search methods based on polling
are known in general to be slow but extremely robust due their directional
properties. Such a feature is crucial given the difficulty of the problem (one
discontinuous objective function, the cardinality, and discontinuous Pareto
fronts). We have observed the robustness of direct multisearch, in other
words, its capability of successfully solving a vast majority of the instances
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(all in our case) even if at the expense of a large budget of function evalua-
tions.

Direct multisearch was applied off-the-shelf to determine the
cardinality/mean-variance efficient frontier. The structure of problem (7),
or of its practical counterpart (10), was essentially ignored. One can use
the fact that the first objective function is smooth and of known derivatives
(or even quadratic in the case of the alternative problem (6)) to speed up
the optimization and reduce even further the budget of function evaluations.
Moreover, we also point out that it is trivial to run the poll step of direct
multisearch in a parallel mode.

The use of derivative-free single or multiobjective optimization opens the
research range of future work in sparse or dense portfolio selection. In fact,
since derivative-free algorithms only rely on zero order information, they are
applicable to any objective function of black-box type. One can thus use any
measure to quantify the profit and risk of a portfolio. The classical Markowitz
model assumes that the return of a portfolio is a linear combination of the
returns of the individual securities. Also, it implicitly assumes a Gaussian
distribution for the return, letting its variance be a natural measure of risk.
However, it is known from the analysis of stylized facts that the distribution
for the return of securities exhibits tails which are fatter than the Gaussian
ones. Practitioners consider other measures of risk and profit better tailored
to reality. Our approach to compute the cardinality/mean-variance efficient
frontier is ready for application in such general scenarios.

Appendix A.Direct multisearch for multiobjective opti-
mization

A.1. A description of direct multisearch. Direct multisearch is a class
of methods for the solution of multiobjective optimization problems of the
form (1) without the use of derivatives, which does not aggregate or scalar-
ize any of the objective function components. It essentially generalizes all
direct-search methods of directional type from single to multiobjective opti-
mization. As in direct search [10, 18], each iteration of direct multisearch is
organized around a search step and a poll step, and it is the latter the one
responsible for the convergence properties. The search step is optional and
when included it aims at improving numerical performance. Direct multi-
search tries, however, to capture the whole Pareto front (or efficient frontier)
from the polling procedure itself.
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These methods maintain a list of feasible nondominated points. In both
search and poll steps, the objective function components are evaluated at
a finite set of points. A new trial list is then formed after adding the new
points to the current list and removing all nondominated ones that might
have appeared. Successful iterations correspond then to list changes, i.e., to
iterations where the trial list differs from the current one.

Poll centers are chosen from the list. Note that each point in the list is
associated with a step size parameter. Polling consists of evaluating the
function at points obtained by adding to the poll center a multiple (defined
by the step size) of a set of directions. These directions typically form a
positive spanning set (in other words, a set of directions that spans Rn with
nonnegative coefficients).

In direct multisearch, constraints are handled using an extreme barrier
function

FΩ(x) =

{
F (x) if x ∈ Ω,
(+∞, . . . ,+∞)> otherwise,

which prevents adding infeasible points to the current list of nondominated
points.

Direct multisearch is described below following the algorithmic framework
in [12]. A number of details are omitted and the reader is referred to [12] for a
complete description. In particular, we omitted the two known globalization
strategies (generation of points in integer lattices and imposition of sufficient
decrease), under which the algorithm is known to be globally convergent, in
the sense of yielding some form of convergence independently of the starting
point or starting list. In practice, these globalization strategies amount to
very minor modifications to the algorithm.

Algorithm A.1 (Direct Multisearch for MOO).

Initialization
Choose x0 ∈ Ω with fi(x0) < +∞,∀i ∈ {1, . . . ,m}, α0 > 0, 0 <
β1 ≤ β2 < 1, and γ ≥ 1. Initialize the list of nondominated points
and corresponding step size parameters (L0 = {(x0;α0)} in case of a
singleton).

For k = 0, 1, 2, . . .
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(1) Selection of an iterate point: Order the list Lk in some way
and select the first item (x;α) ∈ Lk as the current iterate and
step size parameter (thus setting (xk;αk) = (x;α)).

(2) Search step: Compute a finite set of points {zs}s∈S and evalu-
ate FΩ at each element. Set Ladd = {(zs;αk), s ∈ S}.
Form Ltrial by eliminating dominated points from Lk ∪ Ladd. If
Ltrial 6= Lk declare the iteration (and the search step) successful,
set Lk+1 = Ltrial, and skip the poll step.

(3) Poll step: Choose a positive spanning set Dk. Evaluate FΩ at
the set of poll points Pk = {xk + αkd : d ∈ Dk}. Set Ladd =
{(xk + αkd;αk), d ∈ Dk}.
Form Ltrial by eliminating dominated points from Lk ∪ Ladd. If
Ltrial 6= Lk declare the iteration (and the poll step) as successful
and set Lk+1 = Ltrial. Otherwise, declare the iteration (and the
poll step) unsuccessful and set Lk+1 = Lk.

(4) Step size parameter update: If the iteration was successful
then maintain or increase the corresponding step size parameters:
αk,new ∈ [αk, γαk] and replace all the new points (xk +αkd;αk) in
Lk+1 by (xk + αkd;αk,new), when success is coming from the poll
step, or (zs;αk) in Lk+1 by (zs;αk,new), when success is coming
from the search; replace also (xk;αk), if in Lk+1, by (xk;αk,new).
Otherwise decrease the step size parameter: αk,new ∈ [β1αk, β2αk]
and replace the poll pair (xk;αk) in Lk+1 by (xk;αk,new).

The goal of direct multisearch is to approximate the true Pareto front,
although theoretically one is only able to prove that there is a limit point in
a stationary form of this front, as no aggregation or scalarization technique
is incorporated. In fact, it is possible to prove under standard assumptions
that direct multisearch (globalized by integer lattices or sufficient decrease)
generates a sequence of (unsuccessful) iterates driving the step size to zero
and converging to a candidate for Pareto minimizer of the original problem,
meaning to a point that satisfies some form of Pareto stationary. Essentially,
one is able to prove at such a limit point x∗ that, given a direction d (in
the cone tangent to Ω at x∗), there exists at least one objective function
component j ∈ {1, . . . ,m} such that f ◦j (x∗; d) ≥ 0. Here the directional
derivative f ◦j (x∗; d) is defined in the Clarke [9] way if fj is only assumed
Lipschitz continuous near x∗. The set of directions used by the algorithm
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(contained in the positive spanning sets Dk) must then be asymptotically
dense in the unit sphere for x∗ to be Pareto-Clarke stationary (see [12] for
all the details). Such a result can be further generalized for discontinuous
objective functions following the steps in [24].

The comprehensive numerical experience reported in [12] showed that di-
rect multisearch performed the best among all derivative-free solvers for mul-
tiobjective optimization, even using a relatively simple implementation with
an empty search step. In particular, direct multisearch clearly outperformed
the very popular NSGA-II [13]. This benchmarking was done in a test set of
more than 100 problems, among them some with discontinuous and noncon-
vex Pareto fronts. A number of tools and metrics were used to summarize
the numerical findings, including data and performance profiles for the pre-
sentation of the results and purity and spread metrics to measure the quality
of the obtained Pareto fronts.

A.2. Using dms to determine efficient cardinality/mean-variance
portfolios. A few modifications to problem (7) were required to make it
solvable by a multiobjective derivative-free solver, in particular by a direct
multisearch one. In practice the first modification to (7) consisted of approx-
imating the true cardinality, by introducing a tolerance ε,

min
w∈RN

− µ>w
w>Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e>w = 1,

Li ≤ wi ≤ Ui, i = 1, . . . , N.

chosen as ε = 10−8 (11 represents the indicator function). Secondly, we se-
lected symmetric bounds on the variables Li = −b and Ui = b,

min
w∈RN

− µ>w
w>Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e>w = 1,

−b ≤ wi ≤ b, i = 1, . . . , N,

setting b = 10. Finally, we eliminated the constraint e>w = 1 since direct
search methods do not cope well with equality constraints. The version fed
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to the dms solver was then

min
w(1:N−1)∈RN−1

− µ>w
w>Qw

min
w(1:N−1)∈RN−1

∑N−1
i=1 11{|wi|>ε}

subject to −b ≤ wi ≤ b, i = 1, . . . , N − 1,

−b ≤ 1−
∑N−1

i=1 wi ≤ b,

(10)

where wN in −µ>w/w>Qw was replaced by 1−
∑N−1

i=1 wi.
We used all the default parameters of dms (version 0.2) with the follow-

ing four exceptions. First, we needed to increase the maximum number of
function evaluations allowed (from 20000 to 2000000 for N(= n) up to 50)
given the dimension of our portfolios, as well as to require more accuracy by
reducing the step size tolerance from 10−3 to 10−7. Then we turned off the
use of the cache of previously evaluated points to make the runs faster (the
default version of dms keeps such a list to avoid evaluating points too close
to those already evaluated). Lastly, we realized that initializing the list of
feasible nondominated points with a singleton led to better results than ini-
tializing it with a set of roughly N points as it happens by default. Thus, we
set the option list of dms to zero, which, given the bounds on the variables,
assigns the origin to the initial list.
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[24] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.

Math. Program., 2012, to appear.
[25] J. P. Vielma, S. Ahmed, and G. L. Nemhauser. A lifted linear programming branch-and-bound

algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput., 20:438–450,
2008.

[26] M. Woodside-Oriakhi, C. Lucas, and J. E. Beasley. Heuristic algorithms for the cardinality
constrained efficient frontier. European J. Oper. Res., 213:538–550, 2011.

R. P. Brito
Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
(rpedro.brito@gmail.com).

L. N. Vicente
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt).



EFFICIENT CARDINALITY/MEAN-VARIANCE PORTFOLIOS 23

Figure 1. Efficient frontier of the biobjective cardinality/mean-
variance problem for DTS1.
F Naive H Markowitz mean-variance � Markowitz minimum
variance

Figure 2. Efficient frontier of the biobjective cardinality/mean-
variance problem for DTS2. See the caption of Figure 1 for an
explanation of the various symbols.
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Figure 3. Efficient frontier of the biobjective cardinality/mean-
variance problem for DTS3. See the caption of Figure 1 for an
explanation of the various symbols.

Figure 4. Efficient frontier of the biobjective cardinality/mean-
variance problem for FF10.
F Naive H Markowitz mean-variance � Markowitz minimum
variance
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Figure 5. Efficient frontier of the biobjective cardinality/mean-
variance problem for FF17. See the caption of Figure 4 for an
explanation of the various symbols.

Figure 6. Efficient frontier of the biobjective cardinality/mean-
variance problem for FF48. See the caption of Figure 4 for an
explanation of the various symbols.
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Figure 7. Out-of-sample performance for DTS1 measured by
the Sharpe ratio over all the out-of-sample periods.
- - Naive — Markowitz mean-variance -.- Markowitz minimum
variance

Figure 8. Out-of-sample performance for DTS2. See the cap-
tion of Figure 7 for an explanation of the various symbols and
lines.
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Figure 9. Out-of-sample performance for DTS3. See the cap-
tion of Figure 7 for an explanation of the various symbols and
lines.

Figure 10. Out-of-sample performance for FF10 measured by
the Sharpe ratio over all the out-of-sample periods.
- - Naive — Markowitz mean-variance -.- Markowitz minimum
variance
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Figure 11. Out-of-sample performance for FF17. See the cap-
tion of Figure 10 for an explanation of the various symbols and
lines.

Figure 12. Out-of-sample performance for FF48. See the cap-
tion of Figure 10 for an explanation of the various symbols and
lines.
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Figure 13. Transaction costs of the efficient cardinality/mean-
variance portfolios for DTS1.
— Markowitz mean-variance -.- Markowitz minimum variance

Figure 14. Transaction costs of the efficient cardinality/mean-
variance portfolios for DTS2. See the caption of Figure 13 for an
explanation of the various symbols and lines.
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Figure 15. Transaction costs of the efficient cardinality/mean-
variance portfolios for DTS3. See the caption of Figure 13 for an
explanation of the various symbols and lines.

Figure 16. Transaction costs of the efficient cardinality/mean-
variance portfolios for FF10.
— Markowitz mean-variance -.- Markowitz minimum variance
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Figure 17. Transaction costs of the efficient cardinality/mean-
variance portfolios for FF17. See the caption of Figure 16 for an
explanation of the various symbols and lines.

Figure 18. Transaction costs of the efficient cardinality/mean-
variance portfolios for FF48. See the caption of Figure 16 for an
explanation of the various symbols and lines.
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Figure 19. Efficient frontier of the biobjective
cardinality/mean-variance problem for FF100. See the caption
of Figure 4 for an explanation of the various symbols.


