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PHYSIOLOGIC PARAMETER ESTIMATION

USING INVERSE PROBLEMS

ISABEL N. FIGUEIREDO AND CARLOS LEAL

Abstract: The estimation of in vivo physiologic parameters is an important, but
difficult, issue in bio-medicine. Therefore the development of mathematical tech-
niques predicting these parameter values is very relevant. In a previous work we
have proposed a convection-diffusion-shape model, which correlates colonic crypt
patterns with the cellular kinetics ocuring inside the crypts (this correlation is sig-
nificant in the context of colorectal cancer). This model involves several physiologic
parameters, for which only qualitative information is available in the literature, as
for instance, the birth rate of proliferative cells. In this paper we present a frame-
work for estimating this birth rate parameter, in a colonic crypt, assuming that
the distribution of proliferative cells is known in that crypt. More precisely, we
resolve an inverse problem, where the unknown coefficient field, the birth rate, is
connected to the observed measurements, the proliferative cell density, through a
partial differential equation. This inverse problem is a PDE-constrained optimiza-
tion problem, highly non linear and time-dependent, which is solved by an inexact
Newton method. Some test simulations illustrate the efficacy of the proposed pa-
rameter inversion, and forecast its application with real patient data.

Keywords: convection-diffusion equations, inverse problem, optimality system, fi-
nite elements.
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1. Introduction
The epithelium of the colon is perforated by millions of small crypts, which

play a crucial role in colon physiology. Each crypt has a cylindrical tube
shape, that is closed at the bottom and with a round opening in the top,
directed at the lumen’s colon. Different types of cells fill the crypt. These
are aligned along the crypt wall: stems cells are believed to reside in the
bottom of the crypt, transit cells along the middle part of the crypt axis and
differentiated cells at the top of the crypt. The colon epithelium undergoes a
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complete renewal, by means of a programmed mechanism driven by the cel-
lular kinetics inside the crypts [14, 28, 29]. In normal human colonic crypts,
the cells renew completely each 5-6 days (see [23]), through an harmonious
and ordered procedure which includes the proliferation of cells, their migra-
tion along the crypt wall towards the top and their apoptosis, as they reach
the orifice of the crypt and the cell cycle is finished. Under normal conditions
the colonic cellular mechanism is regulated by biochemical and biomechanical
signals. Any disfunction of this process might originate loss of homeostasis in
colonic crypts, promoting an increase of the proliferative rate and a decrease
in the death rate of cells, and neoplasia results (see [5, 9, 11, 16, 21, 25, 27]).

There are many works, in which convection-diffusion equations are used
for describing tissue-growth, tumor-growth, cellular kinetics (see for instance
[15, 32, 31]). In particular, in a previous work (see [6]) we have proposed
and implemented a convection-diffusion-shape model for simulating and pre-
dicting the morphogenesis of a colonic crypt. This model couples a parabolic
type equation, whose unknown is the proliferative cell density inside a single
colonic crypt, with an elliptic equation whose unknown is the pressure, re-
lated to the convective velocity of the proliferative cells by Darcy’s law (we
assume the cells flow through the crypt, like fluid through a porous medium
[10, 22]). The parameters involved in this convection-diffusion system are
the rate of birth, the rate of death, and the diffusion, of the proliferative
cell density. There are many articles in the literature reporting qualitative
information about these parameters, but on the other hand there is very few
references, regarding quantitative values for these parameters (see for exam-
ple [1, 17, 18]). In reality these type of parameters are very difficult, or even
impossible, to be measured directly and in vivo, using experimental or imag-
ing techniques. Therefore, if other related quantities are available and can be
measured (as for instance, the distribution of proliferative cells, which may be
inferred using CEM images; CEM (confocal laser endomicroscopy) is a new
diagnosis technique that enables the histological examination of suspicious
tissues in real-time during an ongoing endoscopy), then solution methods
for inverse problems are, undeniably, valuable tools for estimating these pa-
rameters. In an inverse problem, the unknown parameters are associated to
the data or observable measurements, through a partial differential equation
(see for instance [13, 20, 30] for examples and solution methods for inverse
problems), and the goal is to minimize the misfit between the data and the
prediction of the model (the latter is the solution of the partial differential
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equation, whose coefficients are the unknown parameters). In particular, we
refer the papers [7, 12], where inverse problems have been formulated and
solved for estimating physiologic parameters, by taking medical images as
the observable measurements.

The aim of this paper is to show how the birth rate of proliferative cells
(understood as a parameter field) could possible be estimated and validated
from existing patient-data (for instance the density of proliferative cells), by
resolving an inverse problem. More precisely, assuming that the proliferative
cell mechanism, in the colonic crypt, is governed by the convection-diffusion
system defined in [6], we show that, by resolving an inverse problem (that
minimizes the misfit between two proliferative cell densities: one predicted
by the model and the other actually been observed), then the birth rate of
proliferative cells can be estimated, along all the colonic crypt. The location
where the birth rate deviates from normal qualitative values can then be
determined, and used for further clinical research and better understanding
of the abnormal process leading to the increase or decrease of proliferative
cells.

More specifically, the inverse problem, considered in this paper, is a PDE-
constrained optimization problem, highly nonlinear, and time-dependent.
We describe its formulation, the optimality conditions and explain the cor-
responding proposed solution algorithm, which is an inexact Newton-type
algorithm: a Gauss-Newton-Conjugate-Gradient method (we refer to [19] for
a comprehensive discussion about Newton methods and also to [20], where
different examples of inverse problems are formulated and solved with Gauss-
Newton-Conjugate-Gradient methods).

The layout of this paper is as follows: after this introduction, in section 2,
the inverse problem is described and formulated as a PDE-constrained opti-
mization problem. In section 3 a continuous formulation of the inverse prob-
lem is presented. In section 4 the numerical approximation and a methodol-
ogy for its solution is explained and discussed. In section 5 some numerical
simulations are reported, for demonstrating and evaluating, the formulation
and solution methodology proposed in this paper. Finally some conclusions
and future work are discussed in the last section.



4 I. FIGUEIREDO AND C. LEAL

2. Parameter field inversion in convection-diffusion trans-
port

For defining the inversion problem proposed in this paper, and also for
computational purposes, we use a two-dimensional (2D) version of a colonic
crypt, obtained by unwrapping the crypt, which yields a rectangular domain.
Thus we denote by Ω ⊂ R2 a rectangular, open and bounded domain, sym-
bolizing the (fixed) spatial domain occupied by the crypt, and [0, T ] a time
interval (x and t denote hereafter arbitrary points in Ω̄ and [0, T ], respec-
tively). The inverse problem is defined as

min
α

J(α) :=
1

2

∫ T

0

∫
Ω

|N(x, t)−Nd(x, t)|2 dxdt +
γ1

2

∫
Ω

|α|2 dx +
γ2

2

∫
Ω

|∇α|2 dx (1)

where the unknown α is assumed to belong to the space L∞(Ω) (the set of
measurable and essentially bounded scalar functions defined in Ω), and N is
one component of the solution pair (N, p) of the time-dependent convection-
diffusion system (see [6])

Nt −∇ · (∇pN)−∇ · (D∇N)− (α− β)N = 0 in Ω× (0, T ),

−∆p−∇ · (D∇N)− αN = 0 in Ω× (0, T ),

p = 0 in Γ1 × (0, T ),

∂p
∂n

= 0 in
(
Γ2 ∪ Γ3 ∪ Γ4

)
× (0, T ),

N = 0 in Γ1 × (0, T ),

∂N
∂n

= 0 in
(
Γ2 ∪ Γ3 ∪ Γ4

)
× (0, T ),

N(., 0) = N0(.) in Ω.

(2)

In (2) the unknowns N and p represent, respectively, the density of prolif-
erative cells and the pressure exerted by those cells in the crypt wall. The
parameters α and β are, respectively, the rate of birth and death of prolifer-
ative cells, and D is the diffusion coefficient of these cells. The boundary of
the crypt is split into four disjoint parts, Γ1 (the top), Γ2 and Γ3 (the lateral
boundaries), and Γ4 (the bottom). We refer to [6] for a justification of the
boundary conditions for N and p. We remark that in [6], p = 1 in Γ1×(0, T ),
while here, in (2), p = 0, therefore for keeping exactly the same boundary
conditions for p as in [6], we should consider for the pressure p + 1 instead
of p in (2) (this does not change the solution of (2), since only the gradient
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and the laplacian of p are involved). The function N0 is the initial data, i.e.,
the density of proliferative cells at time t = 0.

The objective functional J in (1) involves a data misfit (the first term, with
Nd being the data, possibly noisy) and two regularizing terms (γ1 and γ2 are
regularizing constants). This inverse problem (1)-(2) can be interpreted in
the following sense : to find the birth rate of proliferative cells α (consid-
ered as a parameter field α(x)), from measurements of the cell density Nd

(estimated, or validated, for an individual or a group of individuals, over
the entire spatio-time domain), by matching the spatio-temporal evolution
of the cell density predicted by the model, N(x, t), with the corresponding
cell density measurements Nd(x, t).

3. Optimality system and Newton method
In this section we define the optimality system and Newton method in a

continuous functional framework. Though this continuous formalism will not
be used, fully, in the paper, it is necessary to describe it in order to derive
the finite element matrices for the discrete problem (see sections 4 and 5: in
this latter section we employ the software Comsol Multiphysicsr [2] for
extracting the finite element matrices, using precisely the weak formulations
described in the current section).

We consider the Sobolev space H1(Ω) := {u : u ∈ L2(Ω), ∂iu ∈ L2(Ω), i =
1, 2} (with ∂iu the two spatial partial derivatives of u in the weak sense), and
the space W := {u : u ∈ H1(Ω), u|Γ1

= 0}. In the sequel, we denote the
L2− inner product by (., ), i.e. for any scalar functions u, v defined on Ω

(u, v) :=

∫
Ω

u(x)v(x)dx.

Moreover, we introduce the functional space U := L2
(
0, T ; W

)
involving

time, which consists of all strongly measurable functions z : [0, T ] → W with

‖z‖L2(0,T ;W ) :=
( ∫ T

0
‖z(., t)‖2

H1(Ω)dt
) 1

2

< +∞ (3)

(see [4] for a detailed definition of Sobolev spaces and functional spaces in-
volving time).

We form the Lagrangian functional L associated to problem (1), by adding
to the objective functional J a duality pairing of the convection-diffusion
system (2) with a Lagrange multiplier (M, q) (also known as the adjoint pair
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variable).

L(α, N, p, M, q) := J(α) +

∫ T

0

(
(Nt, M) + (∇pN,∇M) + (D∇N,∇M)−

(
(α− β)N, M

)
+(∇p,∇q) + (D∇N,∇q)− (αN, q)

)
dt,

(4)

where α ∈ L∞(Ω), (N, p) ∈ U × U and (M, q) ∈ U ′ × U ′ (with U ′ the dual
of U) . Then, the first-order optimality system is

L′(α, N, p, M, q)(α̃, Ñ , p̃, M̃ , q̃) = 0, (5)

with L′ the first derivative of L, and for arbitrary functions (α̃, Ñ , p̃, M̃ , q̃)
in L∞(Ω)× U × U × U ′ × U ′, with Ñ(., 0) = 0.

The variation of the Lagrangian functional with respect to (M, q) leads to
the weak formulation of the state system (2) (also called forward system).
The variation with respect to α, in the direction of α̃, is the control equation

Lα(α, N, p, M, q)(α̃) := γ1(α, α̃) + γ2(∇α,∇α̃)−
∫ T

0

(
(N, Mα̃) + (N, qα̃)

)
dt = 0, (6)

and the variation with respect to N and p, in the direction of Ñ and p̃,
respectively, yields the adjoint system

LN(α, N, p, M, q)(Ñ) :=

∫ T

0

(
(N −Nd, Ñ) + (Ñt, M) + (∇pÑ,∇M) + (D∇Ñ ,∇M)

−
(
(α− β)Ñ ,M

)
+ (D∇Ñ ,∇q)− (αÑ, q)

)
dt = 0,

Lp(α, N, p, M, q)(p̃) :=

∫ T

0

(
(∇p̃N,∇M) + (∇p̃,∇q)

)
dt = 0.

(7)

The strong form of this adjoint system is
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−Mt +∇p · ∇M −∇ · (D∇M)− (α− β)M = ∇ · (D∇q)
−(N −Nd) + αq in Ω× (0, T ),

−∆q −∇ · (N∇M) = 0 in Ω× (0, T ),

M = 0 in Γ1 × (0, T ),(
D∇(M + q)

)
· n = 0 in

(
Γ2 ∪ Γ3 ∪ Γ4

)
× (0, T ),

q = 0 in Γ1 × (0, T ),

(N∇M +∇q) · n = 0 in
(
Γ2 ∪ Γ3 ∪ Γ4

)
× (0, T ),

M(., T ) = 0 in Ω.
(8)

For effectively solving the optimality system (5), the Newton’s method can

be used. It computes an update direction (α̂, N̂ , p̂, M̂ , q̂) from the following
Newton step, for the Lagrangian functional

L′′(α, N, p, M, q)[(α̂, N̂ , p̂, M̂ , q̂), (α̃, Ñ , p̃, M̃ , q̃)] = −L′(α, N, p, M, q)(α̃, Ñ , p̃, M̃ , q̃), (9)

for all variations (α̃, Ñ , p̃, M̃ , q̃), with L′′ the second derivative of L. We
remark that (9) is equivalent to the following system involving the second
partial derivatives of L

LNN (.)(N̂ , Ñ) + LNp(.)(p̂, Ñ) + LNα(.)(α̂, Ñ) + LNM (.)(M̂, Ñ) + LNq(.)(q̂, Ñ) = −LN (.)(Ñ)

LpN (.)(N̂ , p̃) + Lpp(.)(p̂, p̃) + Lpα(.)(α̂, p̃) + LpM (.)(M̂, p̃) + Lpq(.)(q̂, p̃) = −Lp(.)(p̃)

LαN (.)(N̂ , α̃) + Lαp(.)(p̂, α̃) + Lαα(.)(α̂, α̃) + LαM (.)(M̂, α̃) + Lαq(.)(q̂, α̃) = −Lα(.)(α̃)

LMN (.)(N̂ , M̃) + LMp(.)(p̂, M̃) + LMα(.)(α̂, M̃) + LMM (.)(M̂, M̃) + LMq(.)(q̂, M̃) = −LM (.)(M̃)

LqN (.)(N̂ , q̃) + Lqp(.)(p̂, q̃) + Lqα(.)(α̂, q̃) + LqM (.)(M̂, q̃) + Lqq(.)(q̂, q̃) = −Lq(.)(q̃)
(10)

where we have omitted the argument (α, N, p, M, q) (and replaced it by
the notation (.)), for simplifying the notations. The explicit formulas for the
left-hand sides in (10) are
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∫ T

0

[
(N̂ , Ñ) + (∇p̂,∇MÑ)− (α̂, MÑ)− (α̂, qÑ)− (M̂t + (α− β)M̂, Ñ) + (∇p,∇M̂Ñ)

+(D∇M̂,∇Ñ)− (αq̂, Ñ) + (D∇q̂,∇Ñ)
]
dt + (Ñ(., T ), M̃(., T )) = −LN (.)(Ñ)

∫ T

0

[
(N̂∇M,∇p̃) + (N∇M̂,∇p̃) + (∇q̂,∇p̃)

]
dt = −Lp(.)(p̃)

∫ T

0

[
− (N̂ ,Mα̃)− (N̂ , qα̃)− (M̂, Nα̃)− (q̂, Nα̃)

]
dt + γ1(α̂, α̃) + γ2(∇α̂,∇α̃) = −Lα(.)(α̃)

∫ T

0

[
(N̂t, M̃)−

(
(α− β)N̂ , M̃

)
+ (∇p, N̂∇M̃)+

(D∇N̂ ,∇M̃) + (∇p̂, N∇M̃)− (α̂, NM̃)
]
dt = −LM (.)(M̃)

∫ T

0

[
(D∇N̂ ,∇q̃)− (αN̂, q̃) + (∇p̂,∇q̃)− (α̂, Nq̃)

]
dt = −Lq(.)(q̃)

(11)

4. The discrete problem
We discretize now the inverse problem and compute the corresponding

optimality conditions. The space-time discretization is based on continuous
finite elements, for the space variable, and finite differences (using an implicit
backward Euler scheme), for the time variable.

4.1. The discrete cost functional. Let J be the discretized cost functional
in (1)

min
α

J(α) :=
1

2
(N̄− N̄d)

T Q̄(N̄− N̄d) +
γ1

2
αTKα +

γ2

2
αTRα (12)

where α represents the finite element discretization of the birth rate, N̄ =
[N1 N2 . . .Ns] is the space-time discretization of N (s is the total number of
time steps, and Ni stands for the spatial degrees of freedom of the i−th time
step). Furthermore, N̄d is the discretized space-time measurement data, K
and R are the mass and stiffness (finite element) matrices, respectively, and
Q̄ is the discretized space-time operator, which is a block diagonal matrix,
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i.e.

Q̄ =


∆t
2 K 0 . . . 0 0
0 ∆tK . . . 0 0
...

... . . . ...
...

0 0 . . . ∆tK 0
0 0 0 0 ∆t

2 K

 (13)

with ∆t the time step size.

4.2. The discrete forward problem. Denoting by N0 the discretized
initial data N0 and by p̄ = [p1 p2 . . .ps] the space-time discretization of the
pressure p, then the discretized forward system (2) is defined by

N1 = N0
Rpi + (RD −Kα)Ni = 0, i = 1, . . . , s

K
Ni+1 −Ni

∆t
+

(
C(pi) + RD −Kα−β

)
Ni+1 = 0, i = 1, . . . , s− 1

(14)

where Kα, Kα−β and RD are modified mass and stiffness matrices, depending
on α, α − β and D, respectively, and C(pi) is also a finite element matrix,
depending on the pressure pi. For convenience we introduce the following
matrices,

A = RD −Kα, L = K + ∆t(RD −Kα−β), Ci = C(pi) (15)

where we remark that A depends on D and α, and L depends on D, α and
β. Then the discrete state system (14) can be written in matrix form as

S̄X̄ = F̄, (16)

where the discrete forward operator S̄ is defined by

S̄ =



I 0 0 0 0 . . . 0 0 0 0
A R 0 0 0 . . . 0 0 0 0
−K 0 L + ∆tC1 0 0 . . . 0 0 0 0
0 0 A R 0 . . . 0 0 0 0
0 0 −K 0 L + ∆tC2 . . . 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 . . . L + ∆tCs−2 0 0 0
0 0 0 0 0 . . . A R 0 0
0 0 0 0 0 . . . −K 0 L + ∆tCs−1 0
0 0 0 0 0 . . . 0 0 A R


(17)
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and

X̄ =


X1

X2

...
Xs

 =



(
N1

p1

)
(

N2

p2

)
...(

Ns

ps

)


, F̄ =


N0
0
...
0

 . (18)

4.3. The discrete Lagrangian. By setting

Ȳ =


Y1

Y2

...
Ys

 =



(
M1

q1

)
(

M2

q2

)
...(

Ms

qs

)


(19)

then the discrete Lagrangian is defined by (compare with (4))

L(α, X̄, Ȳ) := J(α) + YT (S̄X̄− F̄). (20)

Hereafter we also use the notations M̄ = [M1 M2 . . .Ms], q̄ = [q1 q2 . . .qs],
when referring to the adjoint variables (M̄, q̄). Introducing the following
block-matrices (each of which with s× s blocks)

Ā =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 0 A

 R̄ =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 0 R

 ,

B̄ =



I 0 0 . . . 0 0
−K L 0 . . . 0 0
0 −K L . . . 0 0
...

...
...

. . .
...

...
0 0 0 −K L 0
0 0 0 0 −K L

 , C̄ =


0 0 . . . 0
0 ∆tC1 . . . 0
...

...
. . .

...
0 0 0 ∆tCs−1

 .

(21)
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then, the discrete Lagrangian (20) is equivalently defined by

L(α, N̄, p̄, M̄, q̄) :=
1

2
(N̄− N̄d)

T Q̄(N̄− N̄d) +
γ1

2
αTKα +

γ2

2
αTRα

+q̄T (ĀN̄ + R̄p̄) + M̄T (B̄ + C̄)N̄− (M1)TN0.
(22)

4.4. The discrete adjoint problem. The gradient of the discrete La-
grangian (22) is

LN̄(α, N̄, p̄, M̄, q̄) := Q̄(N̄− N̄d) + q̄T Ā + M̄T (B̄ + C̄)

Lp̄(α, N̄, p̄, M̄, q̄) := q̄T R̄ + M̄T ∂C̄

∂p̄
N̄

Lα(α, N̄, p̄, M̄, q̄) :=
(
γ1K + γ2R

)
α + q̄T ∂Ā

∂α
N̄ + M̄T ∂B̄

∂α
N̄

LM̄(α, N̄, p̄, M̄, q̄) := N̄T (B̄ + C̄)T − N̄T
0 W̄

Lq̄(α, N̄, p̄, M̄, q̄) := N̄T ĀT + p̄T R̄T

(23)

where W̄ is a block diagonal matrix, with diagonal blocks equal to zero,
except the first which is the identity. In particular, we observe that the
nonlinear terms M̄T ∂C̄

∂p̄ N̄, q̄T ∂Ā
∂α N̄, M̄T ∂B̄

∂α N̄, appearing on (23) and involving
the derivatives with respect to the pressure and the birth rate, have a direct
relation with the corresponding terms in the continuous Lagrangian gradient
(see (5)-(7)). In effect, the discretization of∫ T

0
(∇p̃N,∇M)dt yields

(
M̄T ∂C̄

∂p̄
N̄

)
(p̃)

−
∫ T

0
(N, qα̃)dt yields

(
q̄T ∂Ā

∂α
N̄

)
(α̃)

−
∫ T

0
(N, Mα̃)dt yields

(
M̄T ∂B̄

∂α
N̄

)
(α̃)

(24)

where p̃ is the space-time discretization of p̃, and for α̃, representing a vari-
ation of the birth rate parameter field, we have kept the same notation for
its finite element discretization.
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The discrete adjoint system is (compare with the continuous adjoint system
(7))

LNs(α, N̄, p̄, M̄, q̄) := ∆t
2
KT (Ns −Nd

s) + ATqs + (L + ∆tCs−1)TMs = 0,

LNi(α, N̄, p̄, M̄, q̄) := ∆tKT (Ni −Nd
i) + ATqi + (L + ∆tCi−1)TMi −KTMi+1 = 0,

LN1(α, N̄, p̄, M̄, q̄) := ∆t
2
KT (N1 −Nd

1) + ATq1 + M1 −KTM2 = 0,

Lps(α, N̄, p̄, M̄, q̄) := RTqs = 0,

Lpi(α, N̄, p̄, M̄, q̄) := RTqi + (∆tMi+1)T ∂Ci

∂pi
Ni+1 = 0,

(25)

where i = s − 1, . . . , 1, and ∂(.)
∂pi denotes the derivative with respect to pi.

From the penultimate equation in (25) we obtain qs = 0, because RT (the
transpose of the stiffness matrix) is positive definite. Therefore, the discrete
adjoint system is a backwards-in-time Euler discretization.

Finally, the discrete control equation is (compare with the continuous ad-
joint equation (6))

Lα(α, N̄, p̄, M̄, q̄) := (γ1K + γ2R)α + q̄T ∂Ā

∂α
N̄ + M̄T ∂B̄

∂α
N̄

:= (γ1K + γ2R)α−
s∑

i=1

qiT ∂Kα

∂α
Ni −∆t

s∑
i=2

Mi ∂Kα−β

∂α
Ni = 0

(26)

where ∂(.)
∂α denotes the derivative with respect to α.

4.5. The Gauss-Newton-Conjugate-Gradient method. In this discrete
setting, the Newton step on the optimality conditions is defined by (compare
with (9))



(
LN̄N̄ LN̄p̄

Lp̄N̄ Lp̄p̄

) (
LN̄α

Lp̄α

) (
LN̄M̄ LN̄q̄

Lp̄M̄ Lp̄q̄

)
(
LαN̄ Lαp̄

)
Lαα

(
LαM̄ Lαq̄

)
(
LM̄N̄ LM̄p̄

Lq̄N̄ Lq̄p̄

) (
LM̄α

Lq̄α

) (
LM̄M̄ LM̄q̄

Lq̄M̄ Lq̄q̄

)





ˆ̄N

ˆ̄p

α̂

ˆ̄M

ˆ̄q


= −



LN̄

Lp̄

Lα

LM̄

Lq̄


(27)
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where ( ˆ̄N, ˆ̄p, α̂, ˆ̄M, ˆ̄q) is the update direction and both the first and second
derivatives of the Lagrangian are evaluated at (α, N̄, p̄, M̄, q̄) (we have omit-
ted it for simplifying the notations). The explicit definition for the Hessian
matrix of the discrete Lagrangian functional L, appearing on the left-hand
side in (27), is easily derived from (23) yielding



 Q̄ M̄T ∂C̄

∂p̄

M̄T ∂C̄

∂p̄
0


 q̄T ∂Ā

∂α
+ M̄T ∂B̄

∂α
0


 B̄T + C̄T ĀT

(
∂C̄

∂p̄
N̄)T R̄T


(

q̄T ∂Ā

∂α
+ M̄T ∂B̄

∂α
0

)
γ1K + γ2R

(
(
∂B̄

∂α
N̄)T (

∂Ā

∂α
N̄)T

)
 B̄ + C̄

∂C̄

∂p̄
N̄

Ā R̄




∂B̄

∂α
N̄

∂Ā

∂α
N̄

 (
0 0
0 0

)



(28)

We now assume that (N̄, p̄), and (M̄, q̄) satisfy the state and adjoint
equations, such that LN̄ = Lp̄ = LM̄ = Lq̄ = 0 in (27), and use a block
elimination in (27) for removing the incremental state and adjoint variables

( ˆ̄N, ˆ̄p) and ( ˆ̄M, ˆ̄q). In fact, denoting by Hij, with i, j = 1, 2, 3 (remark that
Hji = HT

ij), the nine block matrices displayed in the Hessian of L (see (27)

and (28)), then from the last block-line the incremental state variables ( ˆ̄N, ˆ̄p)
can be written as a function of the incremental control variable α̂[

ˆ̄N

ˆ̄p

]
= −H−1

31 H32 α̂, (29)

and from the first block-line it results the following system for the incremental

variables ( ˆ̄M, ˆ̄q) [
ˆ̄M

ˆ̄q

]
= −H−1

13

(
H11

[
ˆ̄N

ˆ̄p

]
+ H12 α̂

)
. (30)

Consequently, the Newton step (27) reduces to the system

Hα̂ = −Lα, (31)
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where H is the reduced Hessian, defined by

H := H22 + HT
32 H−T

31

(
H11 H−1

31 H32 −H12

)
−H21 H−1

31 H32. (32)

Remark that this reduced Hessian involves the inverse of the state op-
erator and the inverse of its adjoint (H31 and H13 = HT

31). The reduced
Hessian system (31) can be solved by an iterative method, as for instance
the conjugate gradient method. We observe as well that the Newton direc-
tion α̂ (solution of (31)) is a descent direction for the inverse problem (12),
if the reduced Hessian (see (32)), or some appropriate approximation of it,
is positive definite. Therefore, in order to guarantee the positive definite-
ness of the reduced Hessian we neglect the block matrices H12, H21, and
also the sub-block matrices LN̄p̄ and Lp̄N̄ in H11. This leads to the following
Gauss-Newton approximation of the Hessian in (32), which is always positive
definite

H := H22 + HT
32 H−T

31 H̃11 H−1
31 H32, with H̃11 :=

(
Q̄ 0

0 0

)
. (33)

Then, returning to (29) and (30) (with H21 = H12 = 0 and H̃11 instead of
H11, in the definition of the Hessian of

L), the solution ( ˆ̄N, ˆ̄p) of system (29) is defined by

N̂1 = 0,

−KN̂i−1 +
(
L + ∆tCi−1

)
N̂i + ∆t

(∂Ci−1

∂pi−1
Ni

)
p̂i −∆t

(∂Kα−β

∂α
Ni

)
α̂ = 0, ∀i = 2, . . . , s

Rp̂i + AN̂i −
(∂Kα

∂α
Ni

)
α̂ = 0, ∀i = 1, . . . , s

(34)

and the solution ( ˆ̄M, ˆ̄q) of system (30) is defined by

RT q̂s = 0,

RT q̂i + ∆t
(∂Ci

∂pi
Ni+1

)T

M̂i+1 = 0, ∀i = s− 1, . . . , 1

∆t
2
KN̂s + (L + ∆tCs−1)TM̂s + AT q̂s = 0,

∆tKN̂i + (L + ∆tCi−1)TM̂i −KM̂i+1 + AT q̂i = 0, ∀i = s− 1, . . . , 2

∆t
2
KN̂1 + M̂1 −KM̂2 + AT q̂1 = 0.

(35)
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Therefore, the computation of the Newton direction α̂, in (31), using the
approximate reduced Hessian, and by the conjugate gradient method reduces
to computing the vector

Hα̂ := (γ1K + γ2R)α̂ +
(∂B̄

∂α
N̄

)T ˆ̄M +
(∂Ā

∂α
N̄

)T
ˆ̄q

:= (γ1K + γ2R)α̂−∆t
s∑

i=2

(∂Kα−β

∂α
Ni

)T

M̂i −
s∑

i=1

(∂Kα

∂α
Ni

)T

q̂i.
(36)

The terms involving the derivatives, with respect to the pressure and the
birth rate, on (34)-(35)-(36), are nonlinear terms, which are obtained directly
from the derivatives of the continuous Lagrangian, as explained in (24).

We conclude this section by summarizing the main steps of the Gauss-
Newton-Conjugate-Gradient method (GNCG method), we propose, for solv-
ing the inverse problem:
Algorithm

Step 1. Set k = 0 and initialize with α0.

Step 2. For k ≥ 0, and with αk, solve the state and adjoint systems (14)
and (25), respectively, and get (N̄k, p̄k), (M̄k, q̄k). Then solve the system

Hα̂k = −Lα(αk, N̄k, p̄k, M̄k, q̄k)

by the conjugate gradient method, where the vector Hα̂k is defined by the
formula (36) (the reduced Hessian H is defined in (33)). Update the birth
rate of proliferative cells by

αk+1 = αk + θkα̂k

where θk is a suitable chosen step length, such that the cost functional is
sufficiently decrease at αk+1 (this can be achieved by choosing a θk that
satisfies the Armijo condition or the Wolfe condition [19]).

Step 3. Terminate when either the norm of the gradient of J with respect
to α at αk, or, the norm of α̂k in the Gauss-Newton step is sufficiently small
(i.e, smaller than a prescribed tolerance tol).

Remark 4.1. We observe that in Step 2, the procedure for choosing the step
length in the line search, involves the computation of the cost functional,
which means a solution for the state system (which is nonlinear) must be
computed for each trial αk+1. This is computationally costly, since new finite
element matrices should be built, see (14).
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Remark 4.2. For avoiding the possibility of having α negative (the birth rate
of proliferative cells verifies α ≥ 0), we can extend the method to incorporate
the bound α ≥ 0, by adding a logarithmic barrier term with barrier parameter
µ to the cost functional (i.e. µ ln α). Then, in the control equation (26) the
term −µ

α (interpreted as a finite element vector) should be added, and in the
Hessian matrix (28) a diagonal matrix Z with components µ

α2 should be added
to γ1K + γ2R.

5. Numerical tests
Here we report the results obtained for two test-cases, we have simulated,

for analyzing the performance of our formulation and methodology. But
firstly we reformulate the inverse problem in a synthetic domain, and de-
fine the common values for the data in both tests (which are solved in the
synthetic domain).

5.1. Nondimensionlization. The average number of cells in a normal hu-
man colonic crypt is 120 cells in height (from bottom to top) and 60 cells
in perimeter. Since the size of each cell is about 6 to 10 µm [3] (where
µm = 10−6m) we define Ω = (0, 360)× (0, 720), and consider the unit length
to be 1µm. Regarding the time interval [0, T ], it is measured in hours, and
T = 120, by assuming that 5 days is the average time for a cell to reach the
top of the crypt, given an initial starting position.

In order to perform the numerical tests we nondimensionalize problem (2)
as follows. By doing the change of coordinates

[0, 360]× [0, 720] → [0, 1]× [0, 2]

(x, y) → (x̃ = x
360

, ỹ = y
360

)
and

[0, 120] → [0, 1]

t → t̃ = t
120

(37)

the two first equations in (2) become

Nt̃ − 120
3602∇ · (∇pN)− 120

3602∇ · (D∇N)− 120(α− β)N = 0,

− 120
3602∆p− 120

3602∇ · (D∇N)− 120αN = 0.
(38)

Thus, by solving the inverse problem (1)-(2) in the nondimensionalized do-
main Ω̃ × (0, T̃ ), with Ω̃ = (0, 1) × (0, 2) and (0, T̃ ) = (0, 1), the correspon-
dence between the new and original unknowns and parameters, respectively
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(Ñ , p̃, D̃, α̃, β̃) and (N, p, D, α, β), is given by

Ñ := N, p̃ :=
120

3602p, D̃ :=
120

3602D α̃ := 120α, β̃ := 120β. (39)

5.2. Data for the test cases. For the two test cases we use the following:
20× 40 finite elements for discretizing the spatial domain Ω̃ = (0, 1)× (0, 2);
the time step size ∆t̃ = 1

20 = 0.05; the regularizing parameters γ1 and γ2 are
set equal to 10−5; the termination tolerance tol is equal 5× 10−6.

It is known, that in normal colonic crypts, the proliferative cells are essen-
tially located in the lower two-thirds of the crypt, with a strong activity at
the bottom of the crypt, while the fully differentiated and apoptotic cells are
located in the upper third part of the crypt (see [8, ?, 24]). Accordingly, we
choose for the initial condition Ñ0 a decreasing function of the height of the
crypt, that must be zero in the upper third top part

Ñ0(x̃, ỹ) := 0.5(1 +
2

π
) arctan (

4/3− ỹ

0.45
), ∀(x̃, ỹ) ∈ (0, 1)× (0, 2). (40)

Also because the proliferative cells are essentially located in the lower two-
thirds of the crypt, then in normal colonic crypts, the birth rate of prolif-
erative cells should be essentially a decreasing function of the height of the
crypt, that must be zero in the upper third top part. In test 2 we adopt this
definition for the birth rate (for generating the synthetic data), see Figure
4 (a), as opposed to test 1, where we assume an abnormal birth rate, see
Figure 3(a). For the rate of death of the proliferative cell density, we just
adopt, in both tests, the reverse definition of a normal birth rate. The rate
of death β̃ is then prescribed as

β(x̃, ỹ) := 2.5(1− 2

π
) arctan (

4/3− ỹ

0.45
), ∀(x̃, ỹ) ∈ (0, 1)× (0, 2) (41)

For the diffusion coefficient D̃ we consider two possible choices: either a
constant D̃1 or a function D̃2, with

D̃1 := 10−2, D̃2(x̃, ỹ) :=
0.05

(1 + 2
π) arctan (4/3−ỹ

0.45 )
, ∀(x̃, ỹ) ∈ (0, 1)× (0, 2).

(42)
The second choice D̃2 relies on [17, 18], where a one-dimensional model is
proposed with a diffusion coefficient that has an inverse quadratic depen-
dence on cell number density, so it should be bigger at the top of the crypt.
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(a) (b) (c)

Figure 1. Common data for both tests. (a) Initial cell density
Ñ0. (b) Rate of death cells β̃. (c) Non constant diffusion D̃2.

The graphics of the data parameters Ñ0, β̃ and D̃2 are shown in Figure 1.
Hereafter we omit the symbol tilde for the spatio-temporal synthetic domain,
variables, unknowns and parameters, in order to simplify the notations.

For starting the GNCG method, the initial proliferative rate α0 is 3.0,
for all the two test problems. The stopping criterion for the Gauss-Newton
algorithm is either the L2-norm of the control equation (i.e, the L2-norm of
the derivative of J with respect to α), or the L2-norm of α̂ in the Gauss-
Newton step, less than a prescribed termination tolerance, set to 5 × 10−6

in all the tests. The implementation is done in MATLABr [26]; we use
Comsol Multiphysicsr [2] only for extracting the finite element matrices
(for that we follow the same type of implementation described in [20]).

5.3. Tests 1 and 2. For the first test we suppose the diffusion coefficient is
defined by D2, and we generate a data cell density Nd, by solving the forward
problem (2) for a birth rate α exhibiting high values in a circular region at
the bottom of the crypt, as illustrated in Figure 3 (a). We add noise to
this synthetic data Nd. The Figure 2 shows three time instances of the cell
density N predicted by the inverse problem, as well as the noisy data cell
density Nd, for the same time instances. The solution of the inverse problem
is depicted in Figure 3 (b).

In the second test we suppose the diffusion coefficient is constant and de-
fined by D1. As before, we generate a data cell density Nd, by solving the
forward problem (2) for a birth rate α as illustrated in Figure 4 (a). We add
noise to this synthetic data Nd. The recovered α, which is the solution of
the inverse problem, is depicted in Figure 4 (b). The Figures 4 (c) and (d)
display two time instances of the noisy data cell density Nd.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Test 1: Noisy data cell density Nd (top row) and cell
density N predicted by the model (bottom row), for time t = 4
in (a)-(d), t = 10 in (b)-(e) , and at t = 19 in (c)-(f).

(a) (b)

Figure 3. Test 1: True birth rate α in (a) and recovered α by
the inverse problem in (b).

For both tests we have checked the convergence and accuracy of the algo-
rithm, by considering finer meshes, with more finite elements, and decreasing
the tolerance.

The Tables 1 and 2 illustrate the performance of the GNGC algorithm for
the two tests: GNit stands for the Gauss-Netwon iteration; CGit represents
the number of iterations in the Conjugate-Gradient algorithm; cost is the
value of the objective functional J; misfit represents the value of the first
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(a) (b)

(c) (d)

Figure 4. Test 2: True birth rate α in (a) and recovered α by
the inverse problem in (b). Two instances of the noisy data cell
density Nd at time t = 3 in (c) and t = 20 in (d).

term in the definition of J; reg is the value of the sum of the regularizing
terms (second and third terms in the definition of J); ‖α̂‖ is the L2-norm of
α̂ in the Gauss-Newton step; ‖grad‖ is the L2-norm of the control equation,
i.e the derivative of J with respect to α; ‖α− true α‖ is the L2-norm of the
difference between the true birth rate, true α, and the birth rate predicted
by the model α.

Table 1. Perfomance of the GNCG method for Test 1

GNit CGit cost misfit reg ‖α̂‖ ‖grad‖ ‖α− trueα‖
1 1 2.865992e-02 2.865557e-02 4.207597e-06 3.774526e+00 2.022944e-02 1.394284e+00
2 1 5.659012e-04 5.497131e-04 1.620605e-05 1.254839e+00 4.575001e-02 7.864178e-01
3 4 1.539155e-04 1.067717e-04 4.715264e-05 5.498807e-01 1.745195e-03 4.604079e-01
4 5 1.361310e-04 7.783774e-05 5.829999e-05 1.350029e-01 4.893038e-04 3.982325e-01
5 9 1.350829e-04 7.483539e-05 6.025444e-05 2.939835e-02 7.785556e-05 3.854918e-01
6 12 1.350808e-04 7.489755e-05 6.019017e-05 1.577682e-03 3.553042e-06 3.855713e-01

GN method converged after 6 iterations.
Total number of CG iterations: 32

Total number of forward-adjoint solves: 38
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Table 2. Perfomance of the GNCG method for Test 2

GNit CGit cost misfit reg ‖α̂‖ ‖grad‖ ‖α− trueα‖
1 1 1.565938e-02 1.565533e-02 3.882688e-06 4.654272e+00 2.389825e-02 1.191270e+00
2 1 1.431946e-03 1.421627e-03 1.031402e-05 8.875193e-01 3.527189e-02 1.069731e+00
3 2 8.562983e-05 7.267626e-05 1.290504e-05 9.308110e-01 3.395806e-03 1.639861e-01
4 1 6.777264e-05 5.518686e-05 1.253286e-05 3.357337e-02 1.113041e-03 1.497473e-01
5 6 5.798690e-05 4.421412e-05 1.369337e-05 1.334136e-01 1.995245e-04 2.127643e-02
6 11 5.794314e-05 4.416346e-05 1.369754e-05 9.737750e-03 1.660610e-05 1.418488e-02
7 15 5.794311e-05 4.416332e-05 1.369767e-05 1.544920e-04 4.442516e-07 1.422052e-02

GN method converged after 7 iterations.
Total number of CG iterations: 37

Total number of forward-adjoint solves: 44

6. Conclusions
In this paper a PDE-constrained optimization problem has been formulated

and solved by an inexact Newton method, for estimating the birth rate of
proliferative cells in colonic crypts. We have assumed that the proliferative
cell mechanism is driven by the convection-diffusion system defined in [6],
and the fitting term of the inverse problem, fits the density of proliferative
cells data (for instance obtained from medical images or by biopsy analysis)
with the density of proliferative cells predicted by the model, by variations
of the birth rate parameter. Details on the Newton method have been ex-
plained, with emphasis on the definition of the reduced Hessian, for solving
the Newton step, by a conjugate-gradient method. The two test simulations
described in this paper, with synthetic database, show a good performance
of the methodology. Furthermore, a similar procedure could be used for esti-
mating the other parameter fields involved in the convection-diffusion system
(2) (as the rate of death or the diffusion of the proliferative cells). Though
the simultaneous inversion of several parameter fields is computationally very
expensive. In the future, we intend to apply this inverse problem with real
medical databases (i.e. with densities of proliferative cells in colonic crypts,
taken either from one individual or from different groups of individuals).
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