
Pré-Publicações do Departamento de Matemática
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WEIGHTED SUMS OF ASSOCIATED VARIABLES

PAULO EDUARDO OLIVEIRA

Abstract: We study the convergence of weighted sums of associated random vari-
ables. The convergence for the typical n1/p normalization is proved assuming finite-
ness of moments somewhat larger than p, but still smaller than 2, together with
suitable control on the covariance structure described by a truncation that gener-
ates covariances that do not grow too fast. We also consider normalizations of the
form n1/q log1/γ n, where q is now linked with the properties of the weighting se-
quence. We prove the convergence under a moment assumption that is weaker that
the usual existence of moment generating function. Our results extend analogous
characterizations known for sums of independent or negatively dependent random
variables.
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1. Introduction

The interest on characterizing the asymptotics of weighted sums of random
variables arises from the fact that many statistical procedures depend on con-
sidering such sums: Tn =

∑n
i=1 an,iXi, where the variables Xi are centered.

For constant weights and identically distributed variables, it was proved by
Baum and Katz [3] that n−1/p Tn −→ 0 almost surely, p ∈ [1, 2), if and only
if E(|X1|

p) < ∞. Naturally this result was extended to dependent and not
necessarily identically distributed variables. The case of (positive) associ-
ated random variables, with constant weights, was studied by Louhichi [9],
who proved that the existence of the moment of order p together with an
integral assumption on the covariances of truncated variables implies the al-
most sure convergence n−1/p Tn −→ 0. Considering independent variables
and more general weights, Chow [6] proved that if supn−1

∑n
i=1 a

2
n,i < ∞

and E(X2
1) < ∞ the almost sure convergence for p = 1 holds. This was

extended by Cuzick [7] who proved that n−1 Tn −→ 0 if E(|X1|
p) < ∞ and
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supn−1
∑n

i=1 a
q
n,i < ∞ where p−1 + q−1 = 1. Cuzick [7] also studied the con-

vergence of b−1
n Tn, characterizing more general normalizing sequences bn, in-

cluding bn = n1/q log1/γ n, q < 2, considering uniformly bounded weights and
a moment condition on the variables involving logarithmic transformations.
This type of normalization became more popular after the rate characteriza-
tions proved by Cheng [5]. Bai and Cheng [2], for both choices for the bn’s,
and Sung [12] for the later choice of the normalizing sequence proved the
convergence assuming that n−1

∑n
i=1 |ani|

α converges and q = α, now linking
the assumption on the weights with the normalizing sequence bn, and the
existence of the moment generating function. Their proofs relied on suitable
versions of exponential inequalities. Naturally, these results were eventually
extended to dependent variables where, of course, some extra control on the
dependence structure was needed. Some extensions to negatively dependent
random variables were proved by Ko and Kim [8], Baek, Park, Chung and
Seo [1] or Cai [4] based on assumptions similar to the previous, and also
Qiu and Chen [11] now considering more general normalizing sequences bn.
These extensions, in a way, benefited from the particular dependence struc-
ture where covariances of sums of random variables tend to be smaller than
those in the case of sums of independent random variables. In this paper
we will consider positively associated random variables, were covariances of
sums tend to be larger than in the case of independent variables, and follow
an approach similar to what has been carried by Louhichi [9]. In this way
we will be able to prove sufficient conditions using assumptions that sepa-
rate well restrictions on the weighting coefficients from restrictions on the
distributions, expressed in terms of moments and control of the covariance
structure. For normalizing sequences bn = n1/p, p ∈ (1, 2), we will assume
the existence of moments of order slightly larger that p, although still smaller
than 2, and a control on the covariance structure that strengthens the one
used in Louhichi [9] in a way that depends on the behaviour of the weighting
coefficients and reduces to Louhichi’s condition if the coefficients are constant.
For the normalization bn = n1/q log1/γ n, we do not assume the existence of
moment generation functions but rather assume the existence of moments
of order 2, a moment condition involving logarithmic transformations, in a
way similar to some of the conditions used in Cuzick [7], and a control on
the covariance structure in the same spirit as for the other normalization,
relaxing somewhat the summability assumption.
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2. Framework and preliminaries

Let Xn, n ≥ 1, be a sequence of random variables. Recall that these vari-
ables are associated if, for anym ∈ N and any two real-valued coordinatewise
nondecreasing functions f and g, it holds

Cov
(

f (X1, . . . , Xm) , g (X1, . . . , Xm)
)

≥ 0,

whenever this covariance exists. For centered associated variables, it was
proved in Theorem 2 of Newman and Wright [10] that

E

(

max
k≤n

(X1 + · · ·+Xk)
2

)

≤ E(X1 + · · ·+Xn)
2. (1)

This maximal inequality is one of the key ingredients in the approach followed
by Louhichi [9] to control tail probabilities of maxima of sums of associated
random variables.
We will here be interested in weighted sums of associated random variables.

Let us now introduce the coefficients an,i, i ≤ n, n ≥ 1, and consider Tn =
∑n

i=1 an,iXi. In order to keep the association we must assume that an,i ≥ 0,
for every i ≤ n and n ≥ 1. We shall need to strengthen somewhat this
assumption to extend (1).

Lemma 2.1. Let Xn, n ≥ 1, be centered and associated random variables.
Assume that the coefficients are such that

an,i ≥ 0, i ≤ n, n ≥ 1, and ak,j ≥ ak−1,j for each k, j ∈ N. (2)

Then

E

(

max
k≤n

T 2
k

)

≤ E(T 2
n). (3)

Proof : Define Y1 = a1,1X1 and, for n≥ 2, Yn = (an,1 − an−1,1)X1 + · · · +
(an,n−1 − an−1,n−1)Xn−1 + an,nXn. Given the assumptions on the coefficients,
these variables are associated, so the result immediately follows by applying
(1) to the Yn’s.

For each α > 0, define An,α = 1
n1/α (

∑n
i=1 |ani|

α)
1/α

. These coefficients are
considered in Cuzick [7], where it is assumed they are bounded, and also later
in [1, 2, 4, 8, 11, 12], for example, where it is assumed that An,α converges. In
the sequel we will be interested in the case where α > 1. Then the following
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inequalities hold:

max
i≤n

|an,i| ≤ n1/αAn,α, and

n
∑

i=1

|an,i| ≤ nAn,α. (4)

Getting back to the random variables, introduce, for notational conve-
nience,

∆i,j(x, y) = P(Xi ≥ x,Xj ≥ y)− P(Xi ≥ x)P(Xj ≥ y).

Of course, Cov(Xi, Xj) =
∫ ∫

∆i,j(x, y) dxdy.
Most of the techniques used in the proofs later depend on truncation ar-

guments. As in Louhichi [9], define, for each M > 0, the nondecreasing
function gM(u) = max(min(u,M),−M), describing the truncation at level
M . Moreover, introduce the random variables

X̄n = gM(Xn), and X̃n = Xn − X̄n, n ≥ 1.

It is easily checked that both families of variables X̄n, n ≥ 1, and X̃n, n ≥
1, are associated, as they are nondecreasing transformations of the original
variables. Still, define

Gi,j(M) = Cov(X̄i, X̄j) =

∫ ∫

[−M,M ]2
∆i,j(x, y) dxdy. (5)

To complete this section, we introduce some more notation needed to describe
our results. Define the partial sums after truncation:

T̄n =
n
∑

i=1

an,i(X̄i − EX̄i), and T̃n =
n
∑

i=1

an,i(X̃i − EX̃i), n ≥ 1,

and the maxima T ∗
n = maxk≤n |Tk| and T̄ ∗

n = maxk≤n

∣

∣T̄k

∣

∣. It is obvious that

T ∗
n ≤ T̄ ∗

n +
n
∑

i=1

an,i

(∣

∣

∣
X̃i

∣

∣

∣
+ E

∣

∣

∣
X̃i

∣

∣

∣

)

. (6)

Also, assuming the weights verify ak,j ≥ ak−1,j for each k > j, it follows from
Lemma 2.1 that

E
(

(T ∗
n)

2
)

≤ 2E
(

T 2
n

)

and E
(

(T̄ ∗
n)

2
)

≤ 2E
(

T̄ 2
n

)

.
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3. An auxiliary inequality

In this section we prove a few upper bounds that will be used later for the
proof of our main results. First we mention a bound for the second order
moments on sums of the truncated variables. Remembering (4), we have
that, due to the nonnegativity of each term,

E
(

T̄ 2
n

)

=

n
∑

i,j=1

an,ian,jGi,j(M)

≤ max
i≤n

a2n,i

n
∑

i,j=1

Gi,j(M) ≤ n2/αA2
n,α

n
∑

i,j=1

Gi,j(M).

(7)

Lemma 3.1. Let Xn, n ≥ 1, be centered and identically distributed associated
random variables. Assume the weights satisfy (2). Then, for every α > 1,
x ∈ R and M > 0,

P(T ∗
n > x)

≤
4

x2
n1+2/αA2

n,αE
(

X2
1I|X1|≤M

)

+
4

x2
n1+2/αA2

n,αM
2P(|X1| > M) (8)

+
8

x2
n2/αA2

n,α

∑

1≤i<j≤n

Gi,j(M) +
4

x
nAn,αE

(

|X1| I|X1|>M

)

.

Proof : Taking into account (6) and Markov’s inequality, we have

P(T ∗
n > x) ≤ P

(

T̄ ∗
n >

x

2

)

+
4

x

n
∑

i=1

an,iE
(∣

∣

∣
X̃i

∣

∣

∣

)

≤
4

x2
E
(

(T̄ ∗
n)

2
)

+
4

x

n
∑

i=1

an,iE
(∣

∣

∣
X̃i

∣

∣

∣

)

≤
4

x2
E
(

T̄ 2
n

)

+
4

x

n
∑

i=1

an,iE
(∣

∣

∣
X̃i

∣

∣

∣

)

.

The last term is, remembering (4), bounded above by

4

x
E
(∣

∣

∣X̃1

∣

∣

∣

)

∑

i

an,i ≤
8

x
E
(

|X1| I|X1|>M

)

nAn,α.
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For the upper bound of E
(

T̄ 2
n

)

use (7) and

n
∑

i,j=1

Gi,j(M) ≤ nE
(

X̄2
1

)

+ 2
∑

1≤i<j≤n

Gi,j(M)

= nE
(

X2
1I|X1|≤M

)

+ nM2P(|X1| > M) + 2
∑

1≤i<j≤n

Gi,j(M).

As in Louhichi [9] the previous result implies a maximal inequality for
weighted sums, that follows immediately from the representation

E ((T ∗
n)

p) = p

∫ ∞

0

xp−1P(T ∗
n > x) dx. (9)

Lemma 3.2. Assume all the assumptions of Lemma 3.1 are satisfied and
that E (|X1|

p) < ∞, p ∈ (1, 2). Then, for α > 1,

E ((T ∗
n)

p) ≤ 4pnAn,α

(

n2/α

2− p
An,α +

n2/α

p
An,α +

2

p− 1

)

E (|X1|
p)

+4pn2/αA2
n,α

∫

xp−3
∑

1≤i<j≤n

Gi,j(x) dx.

Proof : In (9) use the upper bound (8) choosing M = x and integrate using
Fubini’s Theorem.

This is the counterpart for weighted sums of Proposition 1 in Louhichi [9].
Moreover, if α −→ +∞ and limα→+∞An,α = An < ∞, the above inequality
coincides with the one proved by Louhichi [9].

4.Main results

We have now the tools needed to prove the almost sure convergence of
b−1
n Tn based on the Borel-Cantelli Lemma. A direct use of this argument
would mean that one should prove

∑

nP(Tn > εbn) < ∞. Instead, we replace
Tn by the larger T ∗

n , which is then an increasing sequence, as we have now an
adequate control on the weighting sequence, taking care of the dependence of
this weighting sequence on n. Now, for this increasing sequence T ∗

n , the use of
the Borel-Cantelli Lemma may be reduced to verification of the convergence
of
∑

n
1
nP(T

∗
n > εbn), so we will concentrate on this last one. We first consider

the normalization bn = n1/p.
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Theorem 4.1. Let Xn, n ≥ 1, be centered and identically distributed asso-
ciated random variables such that

E
(

|X1|
pα+2

α

)

< ∞, for some p ∈ (1, 2), α >
2p

2− p
,

∑

1≤i<j<∞

∫ ∞

j1/p
v−3+2 p

α Gi,j(v) dv < ∞.

Assume the weights satisfy (2) and supn∈N An,α < ∞. Then

1

n1/p
Tn −→ 0 almost surely.

Proof : As mentioned above we need to control the behaviour of 1
nP(T

∗
n >

εn1/p). Taking into account (8), choosing M = n1/p, we find that

1

n
P(T ∗

n > εn1/p)

≤
4

ε2n2/p
n2/αA2

n,αE
(

X2
1I|X1|≤n1/p

)

+
4

ε2
n2/αA2

n,αP(|X1| > n1/p)

+
8

ε2n1+2/p
n2/αA2

n,α

∑

1≤i<j≤n

Gi,j(n
1/p) +

4

εn1/p
An,αE

(

|X1| I|X1|>n1/p

)

.

We prove next that each of the four terms above defines a convergent series.
Of course, as the sequence An,α is bounded, we may discard these terms. The
first, second and fourth terms are controlled using Fubini’s Theorem.

• The first term:
∞
∑

n=1

1

n2/p−2/α
E
(

X2
1I|X1|

p
≤n

)

= E



X2
∞
∑

n=|X |
p

1

n2/p−2/α



 ≤ c1E
(

|X1|
p+2p/α

)

< ∞,

as 2/p− 2/α > 1, so the series converges.
• The second term:

∞
∑

n=1

n2/αE
(

I|X1|
p
>n

)

≤ c2E
(

|X1|
p+2p/α

)

< ∞.
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• The fourth term:
∞
∑

n=1

1

n1/p
E
(

|X1| I|X1|
p
>n

)

≤ c3E (|X1|
p) < ∞.

The constants c1, c2 and c3 used above only depend on p and α. Finally,
the control of the remaining term requires a little more effort. Again, using
Fubini’s Theorem we may write

∞
∑

n=1

1

n1+2/p−2/α

∑

1≤i<j≤n

Gi,j(n
1/p)

=
∑

1≤i<j≤∞

∫ ∫

∑

n>j

1

n1+2/p−2/α
In>max(|x|

p
,|y|

p
,j)∆i,j(x, y) dxdy

≤ c4
∑

1≤i<j≤∞

∫ ∫

(

max(|x|p , |y|p , j)
)−2/p+2/α

∆i,j(x, y) dxdy,

where c4 depends only on p and α. Now, adapting the arguments in Louhichi [9],
we have that
(

max(|x|p , |y|p , j)
)−2/p+2/α

=

∫ 1

0

I
|x|≤u

−

α
2(α−p)

I
|y|≤u

−

α
2(α−p)

Iu≤j−2/p+2/αdu. (10)

Inserting this representation in the integral above, using Fubini again and
remembering (5), we are lead to controlling

∑

1≤i<j≤∞

∫ j−2/p+2/α

0

Gi,j

(

u− α
2(α−p)

)

du

=
2(α− p)

α

∑

1≤i<j≤∞

∫ ∞

j1/p
v−3+2 p

α Gi,j(v) dv < ∞,

so the proof is concluded.

Remark 4.2. Notice that, as assumed in Theorem 4.1, α > 2p
2−p implies that

the moment of the variables considered in the assumptions is p+ 2p
α < 2.

Remark 4.3. If we allow α −→ ∞ in the assumptions of Theorem 4.1, these
reduce to the assumptions of Theorem 1 in Louhichi [9]. As mentioned before,
Louhichi’s framework corresponds to case of constant weights so, for every
α > 0, An,α is equal to the constant defining the weight, thus we are really
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allowed to let α −→ ∞. That is, our Theorem 4.1 really extends Louhichi’s
result.

We shall now consider the convergence b−1
n Tn with bn = n1/q log1/γ n, where

γ ∈ (0, 1) and q > 0 is suitably chosen taking into account the exponent α
used in the definition of the coefficients An,α. This normalization extends the
one used in a few recent references, such as [1, 2, 4, 8, 11, 12]. In all these later
references the choice q = α is made. However, due to the particular structure
of dependence we are considering and the method of approach that follows
from the previous maximal inequalities, this later choice for q does not allow
to derive the convergences analogous to the ones proved in Theorem 4.1

Theorem 4.4. Let Xn, n ≥ 1, be centered and identically distributed asso-
ciated random variables such that

E
(

X2
1

)

< ∞,

E

(

X2
1

log
2
γ−1 |X1|

)

, for some γ ∈ (0, 2),

∑

1≤i<j<∞

∫ ∞

j1/β

1

vβ+1
Gi,j(v) dv < ∞,

where β > 0 if α < 2 and β ∈
(

0, 2α
α−2

)

if α > 2. Assume that α > 1 and that

the weights satisfy (2) and supn∈N An,α < ∞, and define q = 2α
α+2 . Then

1

n1/q log1/γ n
Tn −→ 0 almost surely.

Proof : We follow the same arguments as before. This time we will be inter-
ested in controlling 1

nP(T
∗
n > εn1/q log1/γ n), again based in (8) and choosing

now M = n1/β log1/γ n, where β is chosen in as described in the theorem
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statement:

1

n
P(T ∗

n > εn1/q log1/γ n)

≤
4n2/αA2

n,α

ε2n2/q log2/γ n
E
(

X2
1I|X1|≤n1/β log1/γ n

)

+
4n2/α+2/βA2

n,α

ε2n2/q
P(|X1| > n1/β log1/γ n)

+
8n2/αA2

n,α

ε2n1+2/q log2/γ n

∑

1≤i<j≤n

Gi,j(n
1/β log1/γ n)

+
4An,α

εn1/q log1/γ n
E
(

|X1| I|X1|>n1/β log1/γ n

)

.

As the An,α are bounded we do not need to include them for the proof of
the convergence of the terms above. Similarly as in the previous theorem we
analyze separately each of the four terms, using Fubini’s Theorem.

• First term: we start by remarking that 2
q −

2
α = 1, so we have, as

γ < 2,

∑

n

1

n log2/γ n
E
(

X2
1 I|X1|≤n1/β log1/γ n

)

≤ E



X2
1

∑

n: |X1|≤n1/β log1/γ n

1

n log2/γ n





≤ E



X2
1

∞
∑

n=|X1|
β

1

n log2/γ n



 ≤ c′E

(

X2
1

log
2
γ−1 |X1|

)

< ∞.

• Second term:

∑

n

n2/β−1E
(

I|X1|>n1/β log1/γ n

)

≤ E

(

∑

n

n2/β−1
I|X1|>n1/β

)

≤ c′′E
(

X2
1

)

< ∞.
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• Fourth term: reasoning as in the previous case, we have
∑

n

1

n1/q log1/γ n
E
(

|X1| I|X1|>n1/β log1/γ n

)

≤ c′′′E
(

|X1|
β+1−β/q

)

.

Given the choice for β and q it follows that β + 1 − β/q < 2, so this
expectation is also finite.

Remark that, as in the proof of Theorem 4.1, the constants c′, c′′ and c′′′

do not depend on n. The control of the remaining term follow arguments
similar to those on the proof of Theorem 4.1. Taking again into account that
2
q −

2
α = 1 and using Fubini’s Theorem we need to bound:

∑

n

1

n2 log2/γ n

∑

1≤i<j≤n

Gi,j(n
1/β log1/γ n)

≤
∑

1≤i<j≤∞

∫ ∫

∑

n>j

1

n2
In>max(|x|β ,|y|β ,j)∆i,j(x, y) dxdy (11)

≤ c∗
∑

1≤i<j≤∞

∫ ∫

(

max(|x|β , |y|β , j)
)−1

∆i,j(x, y) dxdy,

where c∗ > 0 is independent from n. We need now an analogous to the
representation (10), which is easily found as:

(

max(|x|β , |y|β , j)
)−1

=

∫ 1

0

I|x|≤u−1/β I|y|≤u−1/β Iu≤j−1 du. (12)

Inserting this on the expression above, using the same arguments as in the
final part of the proof of Theorem 4.1, and making the change of variable
v = u1/β, (11) is, up to the multiplication by a constant depending only on
β, bounded above by

∑

1≤i<j<∞

∫ ∞

j1/β

1

vβ+1
Gi,j(v) dv < ∞.
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