
Pré-Publicações do Departamento de Matemática
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Abstract: The aim of this paper is the study of finite difference methods for
quasilinear coupled problems of partial differential equations with unexpected con-
vergence rate - two. The partial differential system for the pressure and for the
concentration usually used to model a miscible displacement of one incompressible
fluid by another in a porous medium is a particularization of the problem considered
here. Thus the methods introduced in this paper allow us to compute supercon-
vergent approximations for the pressure, velocity and concentration. As the finite
difference methods studied in this paper can be seen as a fully discrete piecewise
linear finite element method, we conclude that such piecewise linear finite element
approximation for the pressure, velocity and concentration are second order accu-
rate.
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1. Introduction
In this paper we study a fully discrete method for the coupled system

−
(
a(c)px

)
x
= q1 in (0, 1)× (0, T ], (1)

ct +
(
b(c, px)cx

)
x
−
(
d(c, px)cx

)
x
= q2 in (0, 1)× (0, T ], (2)

with the following boundary conditions

p(0, t) = pℓ(t), p(1, t) = pr(t), t ∈ (0, T ], (3)

c(0, t) = cℓ(t), c(1, t) = cr(t), t ∈ (0, T ], (4)

and initial conditions

c(x, 0) = c0(x), x ∈ (0, 1), p(x, 0) = p0(x), x ∈ (0, 1). (5)
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2 J.A. FERREIRA AND L.PINTO

The initial boundary value problem (IBVP) (1)-(5) can be used to describe
miscible displacement of one incompressible fluid (resident fluid) by another
(injected fluid) in one dimensional porous media. In this case,

a(c) = Kµ(c)−1, b(c, px) =
1

ϕ
v, d(c, px) = Dm +Dd

1

ϕ
|v|, (6)

where v = −Kµ(c)−1px denotes the Darcy velocity of the fluid mixture, p
the pressure of the fluid mixture, c the concentration of the injected fluid, K
the permeability of the medium, Dm the molecular diffusion coefficient, Dd

the dispersion coefficient and ϕ represents the porosity. The viscosity of the
mixture µ(c) is determined by the commonly used rule µ(c) = µ0((1 − c) +

M
1
4c)−4, where M denotes the mobility ratio and µ0 represents the viscosity

of the resident fluid. The two-dimensional or three dimensional versions of
this problem with Dirichlet boundary conditions or with Neumann or Robin
boundary conditions were largely considered in the literature to study the
miscible displacement of one incompressible fluid by another in a porous
medium (see for instance [10], [16], [17], [19]).
Piecewise linear finite element method for (1) leads to a first order ap-

proximation for the space derivative of p in the L2-norm. This accuracy
deteriorates the numerical approximation for c obtained from (2) if the same
method is considered. Several approaches have been considered in the litera-
ture to increase the convergence order of the numerical approximation for the
velocity. Without be exhaustive we mention the use of cell centered schemes
([20]), mixed finite element methods ([2], [5], [12], [18]), gradient recovery
technique ([7] and [15]) and mimetic finite difference approximations which
can be seen as a mixed finite element methods with convenient quadrature
rules ([4]).
Finite difference methods that can be seen as fully discrete piecewise linear

Galerkin methods that allow to obtain a second order approximation for the
gradient of the solution of elliptic problems have been studied in [3], [8], [9],
[13] and [14].
In the present paper we introduce for the IBVP (1)-(5) methods belonging

to the class of methods analysed in the last mentioned works that enable
us to compute second order approximations for the pressure, for its gradient
and for the concentration. As such finite difference scheme can be seen as a
fully discrete Galerkin method based on piecewise linear approximation and
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convenient quadrature rules, our results can be also seen as a superconvecon-
vergent results.
The paper is organized as follows. In Section 2 we introduce the semi-

discretization of problem (1)-(5). Its stability is established in Section 3.
The convergence analysis is presented in Section 4. In the main result of
this paper - Theorem 1-presented in this section we establish that the semi-
discrete approximations introduced for the pressure, velocity and for the con-
centration are second order accurate. An implicit-explicit discrete scheme is
studied in Section 5. Its stability and convergence are analyzed and a nu-
merical simulation illustrating the convergence rate obtained for the pressure,
velocity and concentration is included. Finally in Section 6 we draw some
conclusions.

2. The semi-discrete approximation
In what follows we introduce the variational formulation of the IBVP (1)-

(5). To simplify we assume homogeneous boundary conditions. By L2(0, 1),
H1(0, 1) and H1

0(0, 1) we denote the usual Sobolev spaces where we consider
the usual inner products (., .)0 and (., .)1. Let V be a Banach space. By
L2(0, T ;V ) we denote the space of functions v : (0, T ) → V such that

∥v∥L2(0,T ;V ) =
(∫ T

0

∥v(t)∥2V dt
)1/2

is finite. By L∞(0, T ;V ) we represent the space of functions v : (0, T ) → V
such that

∥v∥L∞(0,T ;V ) := ess sup
[0,T ]

∥v(t)∥V < ∞.

The space os function v : (0, T ) → V such that v′ : (0, T ) → V defined in
distributional sense is such that

1∑
j=0

ess sup
[0,T ]

∥v(j)(t)∥V < ∞,

is denoted by W 1,∞(0, T ;V ) where we consider the norm

∥v∥W 1,∞(0,T ;V ) :=
1∑

j=0

ess sup
[0,T ]

∥v(j)(t)∥V < ∞.

We replace the IBVP (1)-(5) by the following variational problem: find
p ∈ L∞(0, T ;H1(0, 1)), c ∈ L2(0, T ;H1(0, 1))∩W 1,∞(0, T ;L2(0, 1)) such that
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conditions (3), (4) hold and

(a(c(t))px(t), w
′)0 = (q1(t), w)0 a.e. in (0, T ),∀w ∈ H1

0(0, 1), (7)

(c′(t), w)0 (d(c(t), px(t))cx(t), w
′)0 − (b(c(t), px(t))c(t), w

′)0

= (q2(t), w)0 a.e. in (0, T ),∀w ∈ H1
0(0, 1).

(8)

Let H be a sequence of vectors h = (h1, . . . , hN) such that
N∑
i=1

hi = 1 and

hmax = max
i

hi → 0. Let Ih = {xi, i = 0, . . . , N, x0 = 0, xN = 1, xi − xi−1 =

hi, i = 1, . . . , N} be a nonuniform partition of [0, 1]. By Wh we represent the
space of grid functions defined on Ih and by Wh,0 we represent the subspace
of Wh of functions null on the boundary points. Let Phuh be the piecewise
linear interpolator of a grid function uh ∈ Wh. The space of piecewise linear
functions induced by the partition Ih is denoted by Sh.
The piecewise linear approximations for the pressure and for the concen-

tration are solutions of the finite dimensional coupled variational problem:
find Phph ∈ L∞(0, T ;Sh) and Phch ∈ L2(0, T ;Sh) ∩W 1,∞(0, T ;Sh) satisfying
the boundary conditions (3), (4) and such that

(a(Phch(t))(Phph)x(t),Phw
′
h)0 = (q1(t),Phwh)0 a.e. in (0, T ),∀wh ∈ Wh,0,

(9)

((Phch)t(t),Phwh)0 + (d(Phch(t), (Phph)x(t))(Phch)x(t),Phw
′
h)0

−(b(Phch(t), (Phph)x(t))Phch(t),Phw
′
h)0

= (q2(t),Phwh)0 a.e. in (0, T ),∀wh ∈ Wh,0.

(10)

In the space Wh we consider the norm

∥uh∥21,h = ∥uh∥2h + ∥D−xuh∥2h,+, (11)

where D−x denotes the backward finite difference operator with respect to
the space variable, ∥.∥h is the norm induced by the inner product

(wh, vh)h =
N∑
i=1

hi

2

(
wh(xi−1)vh(xi−1) + wh(xi)vh(xi)

)
, wh, vh ∈ Wh, (12)
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and

∥wh∥h,+ =
( N∑

i=1

hiwh(xi)
2
)1/2

.

In what follows we use the notation

(wh, vh)h,+ =
N∑
i=1

hiwh(xi)vh(xi), wh, vh ∈ Wh.

Then the fully discrete (in space) approximations for the pressure and for
the concentration are solutions of the following coupled variational problem:
find ph ∈ L∞(0, T ;Wh), ch ∈ L2(0, T ;Wh) ∩W 1,∞(0, T ;Wh) such that

(ah(t)D−xph(t), D−xwh)h,+ = (q1,h(t), wh)h a.e. in (0, T ), ∀wh ∈ Wh,0, (13)

(c′h(t), wh)h + (dh(t)D−xch(t), D−xwh)h,+ − (Mh(bh(t)ch(t)), D−xwh)h,+
= (q2,h(t), wh)h a.e. in (0, T ),∀wh ∈ Wh,0,

(14)
and

ph(x0, t) = pℓ(t), ph(xN , t) = pr(t) a.e. in (0, T ), (15)

ch(x0, t) = cℓ(t), ch(xN , t) = cr(t) a.e. in (0, T ), (16)

ch(xi, 0) = c0,h(xi), ph(xi, 0) = p0,h(xi), i = 1, . . . , N − 1. (17)

In (13), (14) the following notations were used:

qℓ,h(xi, t) =
1

hi+1/2

∫ xi+1/2

xi−1/2

qℓ(x, t) dx, i = 1, . . . , N − 1, ℓ = 1, 2, (18)

hi+1/2 =
1
2(hi + hi+1), Mh(wh)(xi) =

1

2
(wh(xi−1) + wh(xi)), i = 1, . . . , N. The

coefficient functions ah(t) and dh(t) are defined by

ah(xi, t) = a(Mh(ch(t))(xi)), (19)

dh(xi, t) = d(Mh(ch(t))(xi), D−xph(xi, t)) (20)

and the grid function bh(t) is given by

bh(xi, t) =


b(ch(x0, t), Dxph(x0, t)), i = 0,

b(ch(xi, t), Dhph(xi, t)), i = 1, . . . , N − 1,

b(ch(xN , t), D−xph(xN , t))), i = N,

(21)
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with

Dhph(xi, t) =
1

hi + hi+1

(
hiD−xph(xi+1, t) + hi+1D−xph(xi, t)

)
. (22)

In what follows we establish an ordinary differential algebraic coupled sys-
tem equivalent to the variational problem (13)-(17). In order to do that we
introduce the following finite difference operators

(Dcwh)i =
wi+1 − wi−1

hi + hi+1
,

(Dxwh)i+1/2 =
wi+1 − wi

hi+1
,

(D1/2
x wh)i =

wi+1/2 − wi−1/2

hi+1/2
,

where wj := wh(xj) and wj±1/2 are used as far as it makes sense. In order
to simplify the presentation we also consider that ah(xi±1/2, t) = ah(xi±1, t),
dh(xi±1/2, t) = dh(xi±1, t).
It can be shown that the approximations ph(t) and ch(t) are solutions of

the following discrete problem:

−D1/2
x (ah(t)Dxph(t)) = q1,h(t) in Ih − {0, 1}, (23)

c′h(t)−D1/2
x (dh(t)Dxph(t)) +Dc(bh(t)ch(t)) = q2,h(t) in Ih − {0, 1}, (24)

with the conditions (15), (16) and (17).

3. Stability of pressure and concentration
We establish now the stability of the coupled variational problem (13), (14)

or equivalently the stability of the coupled finite difference problem (23), (24)
under homogeneous Dirichlet boundary conditions, that is, pℓ(t) = pr(t) =
cℓ(t) = cr(t) = 0.
We require some smoothness on the solution of the variational problem

(13), (14), namely, we assume that ph ∈ C0(0, T ;WH,0), that is, ph : [0, T ] →
Wh,0 is continuous and ch ∈ C1(0, T ;WH,0), that is, ch, c

′
h : [0, T ] → Wh,0 are

continuous when we consider the norm ∥.∥h in Wh,0.

Proposition 1. If 0 < a0 ≤ a then there exists a positive constant Cp, h
independent, such that

∥ph(t)∥1,h ≤ Cp∥q1,h(t)∥h, t ∈ [0, T ]. (25)
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Proof: Taking in (13) wh = ph(t) and considering the Poincaré-Friedrich’s
inequality ∥wh∥h ≤ ∥D−xwh∥2h,+ for wh ∈ Wh,0, we conclude (25).

If

∥q1(t)∥0 ≤ Cq1, t ∈ [0, T ], (26)

then the sequence ∥ph(t)∥1,h, h ∈ H, satisfies

∥ph(t)∥1,h ≤ Cp, t ∈ [0, T ], h ∈ H, (27)

for some positive constant Cp.
As

|ph(xi)| ≤ ∥ph(t)∥1,h,
we get

max
i=1...,N−1

|ph(xi, t)| ≤ Cq,

that is

∥ph(t)∥∞ ≤ Cp.

Moreover, as holds the following

a(Mh(ch(t))(xi+1))D−xph(xi+1, t) =
i∑

j=1

hj+1/2D
(1/2)
x (ah(t)D−xph(t))(xj)

+a(Mh(ch(t))(x1))D−xph(x1, t),

= −
i∑

j=1

hj+1/2q1,h(xj, t)

+a(Mh(ch(t))(x1))D−xph(x1, t),

for i = 1, . . . , N − 1, we conclude

max
i=2,...,N

|a(Mh(ch(t))(xi))D−xph(xi, t)| ≤ Cp + |a(Mh(ch(t))(x1))|D−xph(x1, t)|,

provided that q1 ∈ L∞(0, T ;L2(0, 1)). It is then plausible to admit that, for
0 < a0 ≤ a and h ∈ H with hmax small enough, we have

max
i=1,...,N

|D−xph(xi, t)| ≤ Cp, (28)

for some positive constant Cp. If we replace the Dirichlet boundary conditions
for the pressure by Neumann boundary conditions px(0, t) = px(1, t) = 0
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that are discretized by D−xph(x1, t) = D−xph(xN , t) = 0, then condition (28)
holds.

Proposition 2. If 0 < a0 ≤ a, 0 < d0 ≤ d, (28) holds,

|b(x, y)| ≤ Cb|y|, (x, y) ∈ R2, (29)

then

∥ch(t)∥2h +
∫ t

0

∥D−xch(s)∥2h,+ ds ≤ 1

min{1, 2(d0 − ϵ2)}
e

(
1

2ϵ2
C2

bC
2
p+2η2

)
t

(
∥ch(0)∥2h +

1

2η2

∫ t

0

∥q2,h(s)∥2h ds
)
, t ∈ [0, T ],

(30)
η ̸= 0 is an arbitrary constant and ϵ ̸= 0 is such that

d0 − ϵ2 > 0. (31)

Proof: Taking in (14) wh replaced by ch(t), we easily deduce that

1

2

d

dt
∥ch(t)∥2h + d0∥D−xch(t)∥2h,+ − (Mh(bh(t)ch(t)), D−xch(t))h,+

≤ 1

4η2
∥q2,h(t)∥2h + η2∥ch(t)∥2h,

(32)

for arbitrary η ̸= 0.
As under the assumptions (28) and (29), we have successively

|(Mh(bh(t)ch(t)), D−xch(t))h,+|≤ CbCp∥ch(t)∥h∥D−xch(t)∥h,+, (33)

consequently, from (32), we obtain

d

dt
∥ch(t)∥2h + 2(d0 − ϵ2)∥D−xch(t)∥2h,+ ≤

( 1

2ϵ2
C2

bC
2
p + 2η2

)
∥ch(t)∥2h

+
1

2η2
∥q2,h(t)∥2h,

where ϵ, η are nonzero constants.This inequality leads to

∥ch(t)∥2h + 2(d0 − ϵ2)

∫ t

0

∥D−xch(s)∥2h,+ ds≤ ∥ch(0)∥2h

+
( 1

2ϵ2
C2

bC
2
p + 2η2

)∫ t

0

∥ch(s)∥2h ds++
1

2η2

∫ t

0

∥q2,h(s)∥2h ds.
(34)
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Finally inequality (30) easily follows from inequality (34).

Remark 1. Considering in (32) and (33) the discrete Poincaré-Friedrich’s
inequality ∥ch(t)∥h ≤ ∥D−xch(t)∥h,+, we deduce

d

dt
∥ch(t)∥2h + 2(d0 − η2 − CbCp)∥D−xch(t)∥2h,+ ≤ 1

2η2
∥q2,h(t)∥2h

that leads to

∥ch(t)∥2h ≤ ∥ch(0)∥2h +
1

2η2

∫ t

0

∥q2,h(s)∥2h ds, t ∈ [0, T ], (35)

provided that d0, Cb, Cp and η ̸= 0 satisfy

d0 − η2 − CbCp > 0.

As a consequence of Propositions 1 and 2 we conclude the stability of the
solution of the variational problems (13), (14) or, equivalently, the stability
of the coupled finite difference problems (23), (24) under Dirichlet boundary
conditions.

4. Supraconvergent result
4.1. Auxiliary results. We start by introducing two auxiliary problems.
We assume that a ∈ W 1,∞(R), d ∈ W 1,∞(R2) and b ∈ W 2,∞(R2). Let
p̃h(t), c̃h(t) ∈ Wh,0 be solutions of the discrete variational problems

(ãh(t)D−xp̃h(t), D−xwh)h,+ = (q1,h(t), wh)h, wh ∈ Wh,0, (36)

(d̃h(t)D−xc̃h(t), D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)), D−xwh)h,+

= (q̃2,h(t), wh)h , wh ∈ Wh,0,
(37)

with q̃2,h(t) defined by (18) with q2(t) replaced by q2(t)− c′(t). In (36) and

(37) the coefficient functions ãh and d̃h are defined by

ãh(xi, t) = a(c(xi−1/2, t)), i = 1, . . . , N,

d̃h(xi, t) = d(c(xi−1/2, t), px(xi−1/2, t)), i = 1, . . . , N,

and

b̃h(xi, t)c̃h(xi, t) = b(c(xi, t), px(xi, t))c̃h(xi, t), i = 1, . . . , N − 1,

b̃h(xi, t)c̃h(xi, t) = 0, i = 0, N.
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It can be shown that p̃h(t) and c̃h(t) are solutions of a coupled finite dif-
ference problem analogous to (23), (24).
An error bound for p̃h is established now considering Theorem 3.1 of [3]. By

Rh we denote the restriction operatorRh :C[0, 1] →Wh, Rhv(x) = v(x), x∈Ih.

Proposition 3. If 0 < a0 ≤ a then, for p̃h(t) defined by (36) and for h ∈ H
with hmax small enough, holds the following error estimate

∥Ph

(
p̃h(t)−Rhp(t)

)
∥21 ≤ Cp̃

N∑
i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

(38)

provided that p(t) ∈ Hs+1(0, 1) ∩H1
0(0, 1), s ∈ {1, 2}. In (38) Ii = (xi−1, xi)

and Cp̃ denotes a positive constant which does not depend on h.

As a consequence of this result, we conclude that, for h ∈ H with hmax

small enough, we have

max
i=1,...,N

|D−xp̃h(xi, t)| ≤ Cp̃, (39)

for some positive constant Cp̃. In fact, from (38) we obtain

|D−x(p̃(xi, t)− p(xi, t))| ≤ Ch
s− 1

2
max,

for some positive constant C. Then

|D−xp̃h(xi, t)| ≤ |D−x(p̃(xi, t)− p(xi, t))|+ | 1
hj

∫ xj

xj−1

px(x, t) dx|

≤ Ch
s−1

2
max + ∥px(t)∥∞,

that leads to (39) provided that p ∈ L∞(0, T ;Hs+1(0, 1) ∩ H1
0(0, 1)),

s ∈ {1, 2}.
In order to obtain an upper bound for the error of c̃h(t) we need to guarantee

the stability of the bilinear form

ac̃h(vh, wh) = (d̃h(t)D−xvh, D−xwh)h,+−(Mh(b̃h(t)vh), D−xwh)h,+, vh, wh ∈ Wh,0.

In the next proposition we specify the condition that allow us to conclude
such stability (see Proposition 3.1 of [3]).

Proposition 4. Let d̃(t) and b̃(t) be defined by d̃(t) = d(c(t), px(t)), b̃(t) =
b(c(t), px(t)), where p, c are the solutions of the coupled variational problem
(7), (8) with homogeneous Dirichlet boundary conditions. If the variational
problem: find u ∈ H1

0(0, 1) such that (d̃(t)v′, w′)0 − (b̃(t)v, w′)0 = 0 for w ∈
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H1
0(0, 1), has only the null solution, then there exists a positive constant αe,c

which does not depend on h such that, for h ∈ H with hmax small enough,
holds the following stability inequality

∥Phvh∥1 ≤ αe,c sup
0 ̸=wh∈Wh,0

|ac̃h(vh, wh)|
∥Phwh∥1

, vh ∈ Wh,0. (40)

Using now Theorem 3.1 of [3] we can state the error estimate for c̃h. Con-
sidering this result, it suffices to estimate

Td =
N∑
i=1

hidi−1/2

(
D−xc(xi, t)− cx(xi−1/2, t)

)
D−xwh(xi), (41)

Tb =
N∑
i=1

hi

(
b(xi−1/2, t)−

b(xi−1, t) + b(xi, t)

2

)
D−xwh(xj) (42)

with

di−1/2 = (c(xi−1/2, t), px(xi−1/2, t))

and

b(xℓ, t) = b(c(xℓ, t), px(xℓ, t)), ℓ = i− 1, i− 1/2, i.

Using Bramble-Hilbert lemma in Td we get

|Td| ≤ C∥d(c(t), px(t))∥∞
( N∑

i=1

h2s
i ∥c(t)∥2Hs+1(Ii)

)1/2

∥D−xwh∥h,+, (43)

provided that c(t) ∈ Hs+1(0, 1) ∩H1
0(0, 1), for s ∈ {1, 2}.

To estimate Tb we apply Bramble-Hilbert lemma again. In this case we
obtain, for s ∈ {1, 2},

|Tb| ≤ C
( N∑

i=1

h2s
i |b(c(t), px(t))c(t)|2Hs(Ii)

)1/2

∥D−xwh∥h,+ (44)

As the imbedding of Hj+1(0, 1) into Cj
B(0, 1) is continuous, where Cj

B(0, 1)
denotes the space of functions having bounded, continuous derivatives up to
order j on (0, 1) (Theorem 4.12 of [1]), we deduce for s = 1

|Tb| ≤ C
( N∑

i=1

h2
i∥c(t)∥2∞

(
∥c(t)∥2H1(Ii)

+ ∥p(t)∥2H2(Ii)

))1/2

∥D−xwh∥h,+ (45)
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and for s = 2

|Tb| ≤ C
( N∑

i=1

h4
j

(
∥cx(t)∥2∞

(
∥c(t)∥2∞ + 1

)(
∥cx(t)∥2L2(Ii)2

+ ∥px2(t)∥2L2(Ii)

)
+∥c(t)∥2∞

(
∥px2(t)∥2∞∥px2∥2L2(Ii)

+ ∥px3∥2L2(Ii)

)
+∥cx2∥2L2(Ii)

))1/2

∥D−xwh∥h,+.
(46)

We summarize the previous error estimates in the following proposition.

Proposition 5. Under the assumptions of Proposition 4, for c̃h(t) defined
by (37) and for h ∈ H with hmax small enough, holds the following error
estimate

∥Ph(c̃h(t)−Rhc(t))∥21 ≤ Cc̃

N∑
i=1

h2s
i

(
∥c(t)∥2Hs+1(Ii)

+ ∥p(t)∥2Hs+1(Ii)

)
, (47)

provided that c(t), p(t) ∈ Hs+1(0, 1) ∩ H1
0(0, 1). In (47), s ∈ {1, 2} and Cc̃

denotes a positive constant which does not depend on h.

Under the assumptions of Proposition 4, it is clear that

∥c̃h(t)∥1,h ≤ Cc̃,

for some positive Cc̃, which implies that

∥c̃h(t)∥∞ ≤ Cc̃, (48)

provided that c, p ∈ L∞(0, T ;H2(0, 1)∩H1
0(0, 1)), for some positive constant

Cc̃ and for h ∈ H with hmax small enough.
As for p̃h(t), it can be shown that, for h ∈ H with hmax small enough, we

have
max

i=1,...,N
|D−xc̃h(xi, t)| ≤ Cc̃. (49)

In the next proposition we establish an upper bound for ∥Ph(ph(t)−p̃h(t))∥1.

Proposition 6. If 0 < a0 ≤ a, then,for h ∈ H with hmax small enough,

∥Ph(ph(t)− p̃h(t))∥1 ≤ Cp,p̃

(
∥ch(t)−Rhc(t)∥h

+
( N∑

i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2)
,

(50)
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provided that c(t) ∈ Hs(0, 1) ∩H1
0(0, 1). In (50), s ∈ {1, 2} and Cp,p̃ denotes

a positive constant which does not depend on h.

Proof: From (13) and (36) it can be shown that, for wh ∈ Wh,0, holds the
following

(ah(t)D−x(ph(t)− p̃h(t)), D−xwh)h,+

= ((ãh(t)− a∗h(t))D−xp̃h(t), D−xwh)h,+

+ ((a∗h(t)− ah(t))D−xp̃h(t), D−xwh)h,+,

(51)

where a∗h(t) is defined as ah(t) but with ch(t) replaced by Rhc(t).
For the second term of the second member of (51) we have

|((a∗h(t)− ah(t))D−xp̃h(t), D−xwh)h,+| ≤ C∥ch(t)−Rhc(t)∥h∥D−xwh∥h,+,
(52)

for wh ∈ Wh,0, where ∥.∥1,∞ denotes the usual norm in W 1,∞(0, 1). Consider-
ing now the Bramble-Hilbert lemma in the first term of the second member
of (51) we deduce

|((ãh(t)− a∗h(t))D−xp̃h(t), D−xwh)h,+|≤ C
( N∑

i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2

∥D−xwh∥h,+.

(53)
for wh ∈ Wh,0. Considering (52) and (53) in (51), we conclude the proof of
(50) choosing wh = ph(t)− p̃h(t).

Corollary 1. If 0 < a0 ≤ a, then for ph(t) and ch(t) defined by (13), (14)
and for h ∈ H with hmax small enough, holds the following

∥Ph(ph(t)−Rhp(t))∥1 ≤ C
(
∥ch(t)−Rhc(t)∥h +

( N∑
i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
,

(54)
provided that c(t) ∈ Hs(0, 1)∩H1

0(0, 1), p(t) ∈ Hs+1(0, 1)∩H1
0(0, 1), s ∈ {1, 2}.

Lemma 1. Let c̃h(t) be defined by (37) and p(t), c(t) ∈ Hs+1(0, 1)∩H1
0(0, 1),

s ∈ {1, 2}. Under the assumptions of Proposition 4 and Corollary 1, for the
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functional

τd(t, wh) = (d̃h(t)D−xc̃h(t), D−xwh)h,+ − (dh(t)D−xch(t), D−xwh)h,+,

defined on Wh,0 and for h ∈ H with hmax small enough, holds the following

τd(t, wh) = (dh(t)D−x(Rhc(t)− ch(t)), D−xwh)h,+ + τd,h(t, wh), (55)

where

|τd,h(t, wh)| ≤ Cd

(
∥ch(t)−Rhc(t)∥h +

( N∑
i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥c(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+, wh ∈ Wh,0.

(56)

Proof: For τd(t, wh) holds the representation (55) with τd,h(t, wh) given by

τd,h(t, wh) = τ
(1)
d,h(t, wh) + τ

(2)
d,h(t, wh) + τ

(3)
d,h(t, wh) (57)

where

τ
(1)
d,h(t, wh) = ((d̃h(t)− d∗h(t))D−xc̃h(t), D−xwh)h,+,

τ
(2)
d,h(t, wh) = ((d∗h(t)− dh(t))D−xc̃h(t), D−xwh)h,+,

τ
(3)
d,h(t, wh) = (dh(t)D−x

(
c̃h(t)−Rhc(t)

)
, D−xwh)h,+,

and d∗h is defined as dh with ch and ph replaced by Rhc and Rhp, respectively.

Using the Bramble-Hilbert lemma it can be shown that for τ
(1)
d,h(t, wh) and

for h ∈ H with hmax small enough, holds the following

|τ (1)d,h(t, wh)| ≤ C
(( N∑

i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+, wh ∈ Wh,0.

For τ
(2)
d,h(t, wh) we have, for wh ∈ Wh,0,

|τ (2)d,h(t, wh)|≤
(
∥Rhc(t)− ch(t)∥h + ∥D−x(ph(t)−Rhp(t))∥h,+

)
∥D−xwh∥h,+.
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Considering Corollary 1 we get

|τ (2)d,h(t, wh)| ≤ C
(
∥ch(t)−Rhc(t)∥h +

( N∑
i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+, wh ∈ Wh,0.

Taking into account Proposition 5, for τ
(3)
d,h(t, wh) we deduce, for h ∈ H with

hmax small enough,

|τ (3)d,h(t, wh)| ≤ C
(( N∑

i=1

h2s
i ∥c(t)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+, wh ∈ Wh,0.

From the estimates established for τ
(ℓ)
d,h(t, wh), ℓ = 1, 2, 3, we conclude (56).

Lemma 2. Let c̃h(t) be defined by (37) and c(t), p(t) ∈ Hs+1(0, 1)∩H1
0(0, 1), s ∈

{1, 2}. If 0 < a0 ≤ a, condition (28) holds and the coefficient function b sat-
isfies (29) then, under the assumptions of Proposition 4, for the functional

τb(t, wh) = (Mh(bh(t)ch(t)), D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)), D−xwh)h,+, ,

defined on Wh,0 and for h ∈ H with hmax small enough, holds the following

τb(t, wh) = (Mh(bh(t)(ch(t)−Rhc(t))), D−xwh)h,+ + τb,h(t, wh), (58)

where

|τb,h(t, wh)| ≤ Cb,2

(
∥ch(t)−Rhc(t)∥h +

( N∑
i=1

h2s
i ∥c(t)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+, wh ∈ Wh,0,

(59)
for h ∈ H with hmax small enough.
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Proof: For τb(t, wh) holds the representation (58) with

τb,h(t, wh) = τ
(1)
b,h (t, wh) + τ

(2)
b,h (t, wh) + τ

(3)
b,h (t, wh),

τ
(1)
b,h (t, wh) = (Mh(bh(t)(Rhc(t)− c̃h(t))), D−xwh)h,+,

τ
(2)
b,h (t, wh) = (Mh((bh(t)− b∗h(t))c̃h(t)), D−xwh)h,+,

τ
(3)
b,h (t, wh) = (Mh((b

∗
h(t)− b̃h(t))c̃h(t)), D−xwh)h,+,

being b∗h defined as bh with ch and ph replaced by Rhc and Rhp, respectively.
Considering Proposition 5 and condition (28), under the assumptions (29)

for b it can be shown that for τ
(1)
b,h (t, wh) and for h ∈ H with hmax small

enough, holds the following

|τ (1)b,h (t, wh)| ≤ C
(( N∑

i=1

h2s
i ∥c(t)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i

(
∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+,

provided that c(t), p(t) ∈ Hs+1(0, 1) ∩H1
0(0, 1), for s ∈ {1, 2}.

As c̃h(t) satisfies (48), we can establish for τ
(2)
b,h (t, wh) the upper bound

|τ (2)b,h (t, wh)|≤ C
(
∥ch −Rhc∥h + ∥D−x(ph(t)−Rhp(t))∥h,+

)
∥D−xwh∥h,+.

Considering now Corollary 1, for h ∈ H with hmax small enough, we conclude

|τ (2)b,h (t, wh)| ≤ C
(
∥ch(t)−Rhc(t)∥h +

( N∑
i=1

h2s
i ∥c(t)∥2Hs(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+,

provided that c(t) ∈ Hs(0, 1) ∩ H1
0(0, 1), p(t) ∈ Hs+1

0 (0, 1) ∩ H1
0(0, 1),

s ∈ {1, 2}.
To estimate τ

(3)
b,h (t, wh) we start by remarking that

px(xi, t)−Dhp(xi, t) =
1

hi + hi+1
λ(v),
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with

λ(v) = vξ(ρ)− ρ̂(v(1)− v(ρ))− 1

ρ̂
(v(ρ)− v(0),

and

v(ξ) = p(xi−1 + ξ(hi + hi+1, t)), ρ =
hi

hi + hi+1
, ρ̂ =

hi

hi+1
.

Applying Bramble-Hilbert lemma to λ(v) we obtain, for s ∈ {1, 2},

|λ(v)| ≤ C

∫ 1

0

|vξs(ξ)| dx

≤ C(hi + hi+1)
s−1

∫ xi+1/2

xi−1/2

|pxs(x, t)| dx.

Then, for h ∈ H with hmax small enough, we have

|τ (3)b,h (t, wh)| ≤ C
( N∑

i=1

h2s
i ∥p(t)∥2Hs+1(Ii)

)1/2

∥Dxwh∥h,+,

provided that p(t) ∈ Hs+1(0, 1) ∩H1
0(0, 1), for s ∈ {1, 2}.

From the upper bounds obtained for τ
(ℓ)
b,h(t, wh), ℓ = 1, 2, 3, we conclude the

proof.

The following result was proved in [3] and has an important role in the
proof of the main result of this paper - Theorem 1.

Lemma 3. If g ∈ H2(0, 1) and gh is defined by (18) with qℓ replaced by g,
then there exits a positive constant Cin which does not depend on h such that

|(gh −Rhg, wh)h| ≤ Cin

( N∑
i=1

h4
i∥g∥2H2(Ii)

)1/2

∥wh∥1,h, wh ∈ Wh,0, (60)

for h ∈ H with Hmax small enough.

4.2.Main convergence result. Let ec,h(t) = ch(t)−Rhc(t) ep,h(t) = ph(t)−
Rhp(t)be the semi-discretization error induced by the discretization (13),
(14), (15) and (16). An estimate for ∥Phep,h(t)∥1 depending on ∥ec,h(t)∥h was
established in Corollary 1. In the next result we establish an estimate for
∥ec,h(t)∥h that allow us to obtain with Corollary 1 an estimate for ∥Phep,h(t)∥1.
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Theorem 1. Let c and p be the solutions of the coupled quasi-linear prob-
lem (7), (8), c ∈ L2(0, T ;Hs+1(0, 1) ∩ H1

0(0, 1)) ∩ H1(0, T ;H2(0, 1)), p ∈
L∞(0, T ;Hs+1(0, 1)∩H1

0(0, 1)), s ∈ {1, 2}, and let ch and ph be their approxi-
mations defined by (13), (14). We assume that the variational problem: find
v ∈ H1

0(0, 1) such that (d̃(t)v′, w′)0 − (b̃(t)v, w′)0 = 0 for w ∈ H1
0(0, 1), has

only the null solution, where d̃(t) = d(c(t), px(t)) and b̃(t) = b(c(t), px(t)).
If 0 < a0 ≤ a, 0 < d0 ≤ d, b satisfies (29), then, under the assumption

(28), there exists positive constant Ce such that, for h ∈ H with hmax small
enough, holds the following

∥ec,h(t)∥2h +
∫ t

0

∥D−xec,h(µ)∥2h,+ dµ ≤ 1

min{1, 2(d0 − 4ϵ2)}
eωt

(
∥ec,h(0)∥2h

+Ce

N∑
i=1

∫ t

0

(
h2s
i

(
∥p(µ)∥2Hs+1(Ii)

+ ∥c(µ)∥2Hs+1(Ii)

)
+ h4

i∥c′(µ)∥2H2(Ii)

)
dµ

)
≤ 1

min{1, 2(d0 − 4ϵ2)}
eωt

(
∥ec,h(0)∥2h + Ce

(
h2s
max

(
∥c∥2L2(0,T ;Hs+1(0,1))

+∥p∥2L2(0,T ;Hs+1(0,1))

)
+ h4

max∥c∥2H1(0,T ;H2(0,1))

))
,

(61)
where ϵ is nonzero constant such that d0 − 4ϵ2 > 0, ω is given by

ω =
1

ϵ2

(
C2

d + C2
b,2 +

1

2
C2

bC
2
p

)
+ 2ϵ2 (62)

and Cd, Cb, Cb,2, Cin were introduced before.

Proof: It can be shown that ec,h(t) is solution of the variational problem

(e′c,h(t), wh)h = −(dh(t)D−xch(t), D−xwh)h,+ + (Mh(bh(t)ch(t)), D−xwh)h,+

+(q2,h(t), wh)h − (Rhc
′(t), vh)h.

As c̃h(t) satisfies (37) we obtain

(e′c,h(t), wh)h = (d̃h(t)D−xc̃h(t), D−xwh)h,+ − (dh(t)D−xch(t), D−xwh)h,+

+(Mh(bh(t)ch(t)), D−xwh)h,+ − (Mh(b̃h(t)c̃h(t)), D−xwh)h,+

+(ĉ′h(t), wh)h − (Rhc
′(t), wh)h,

(63)
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where ĉ′h(t) is given by (18) with qℓ replaced by c′(t).
Taking into account Lemmas 1 and 2 we deduce, from (63) with wh = ec,h(t),
the inequality

(e′c,h(t), wh)h ≤ −(dh(t)D−x(ch(t)−Rhc(t)), D−xec,h(t))h,+

+(Mh(bh(t)(ch(t)−Rhc(t))), D−xec,h(t))h,+

+(ĉ′h(t)−Rhc
′(t), ec,h(t))h + τd,h(t, ec,h(t)) + τb,h(t, ec,h(t)).

(64)

We estimate in what follows the quantities (ĉth(t)−Rhct(t), ec,h(t))h, τd,h(t, ec,h(t))
and τb,h(t, ec,h(t)) :
From Lemma 3 we have

|(ĉ′h(t)−Rhc
′(t), ec,h(t))h| ≤

1

4σ2
C2

in

N∑
i=1

h4
i∥c′(t)∥2H2(Ii)

+ σ2∥ec,h(t)∥21,h, (65)

provided that c′(t) ∈ H2(0, 1). In the previous inequality σ ̸= 0 is an arbitrary
constant.
We remark that for τd,h(t, ec,h(t)) and τb,h(t, ec,h(t)) hold the estimates (56)
and (59), respectively. Consequently

|τd,h(t, ec,h(t))| ≤ 1

2ϵ2
C2

d∥ec,h(t)∥2h + ϵ2∥D−xec,h(t)∥2h,+

+
1

2ϵ2
C2

d

N∑
i=1

h2s
i

(
∥p(t)∥2Hs+1(Ii)

+ ∥c(t)∥2Hs+1(Ii)

)
,

(66)

and

|τb,h(t, ec,h(t))| ≤ 1

2η2
C2

b,2∥ec,h(t)∥2h + η2∥D−xec,h(t)∥2h,+

+
1

2η2
C2

b,2

N∑
i=1

h2s
i

(
∥p(t)∥2Hs+1(Ii)

+ ∥c(t)∥2Hs+1(Ii)

)
,

(67)

where ϵ ̸= 0, η ̸= 0 are arbitrary constants.
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Considering estimates (65), (66) and (67) in (64) we obtain

1

2

d

dt
∥ec,h(t)∥2h+(dh(t)D−xec,h(t), D−xec,h(t))h,+

−(Mh(bh(t)ec,h(t)), D−xec,h(t))h,+ −
( 1

2ϵ2
C2

d +
1

2η2
C2

b,2 + σ2
)
∥ec,h(t)∥2h

−(ϵ2 + η2 + σ2)∥D−xec,h(t)∥2h,+ ≤ τh(t)
2,

(68)
where

τh(t)
2 ≤

( 1

2ϵ2
C2

d +
1

2η2
C2

b,2

)( N∑
i=1

h2s
i

(
∥p(t)∥2Hs+1(Ii)

+ ∥c(t)∥2Hs+1(Ii)

))
+

1

4σ2
C2

in

N∑
i=1

h4
i∥c′(t)∥2H2(Ii)

.

In what concerns

(dh(t)(D−xec,h(t), D−xec,h(t))h,+

and

(Mh(bh(t)ec,h(t)), D−xec,h(t))h,+

we have

(dh(t)(D−xec,h(t), D−xec,h(t))h,+ ≥ d0∥D−xec,h(t)∥2h,+, (69)

and, as (33) holds with ch(t) replaced by ec,h(t), we also have

|(Mh(bh(t)ec,h(t)), D−xec,h(t))h,+| ≤
1

4γ2
C2

bC
2
p∥ec,h(t)∥2h + γ2∥D−xec,h(t)∥2h,+,

(70)
where γ ̸= 0 is an arbitrary constants.
Considering now in (68) the estimates (69) and (70) for ϵ = η = γ = σ, we

conclude

d

dt
∥ec,h(t)∥2h + 2(d0 − 4ϵ2)∥D−xec,h(t)∥h,+ ≤ ω∥ec,h(t)∥2h + τh(t)

2 (71)

with ω defined by (62).



SUPRA-SUPERCONVERGENT METHODS FOR QUASILINEAR COUPLED PROBLEMS 21

Inequality (71) implies

∥ec,h(t)∥2h + 2(d0 − 4ϵ2)

∫ t

0

∥D−xec,h(s)∥2h,+ ds ≤ ∥ec,h(0)∥2h

+ω

∫ t

0

∥ec,h(µ)∥2h dµ+

∫ t

0

τh(µ)
2 dµ

that leads to (61).

Theorem 1 and Corollary 1 imply the error estimate for the pressure.

Corollary 2. Under the assumption of Theorem 1, for the pressure we have

∥Phep,h(t)∥21 ≤ Cp,n

(
∥ch(0)− c(0)∥2h + Ce

N∑
i=1

∫ t

0

(
h2s
i

(
∥p(µ)∥2Hs+1(Ii)

+ ∥c(µ)∥2Hs+1(Ii)

)
+ h4

i∥c′(µ)∥2H2(Ii)

)
dµ

)
≤ Cp,n

(
∥ch(0)− c(0)∥2h + Ce

(
h2s
max

(
∥c∥2L2(0,T ;Hs+1(0,1))

+ ∥p∥2L2(0,T ;Hs+1(0,1))

)
+ h4

max∥c∥2H1(0,T ;H2(0,1))

)
, (72)

for some positive constants Cp,n and Ce which do not depend on h and for
h ∈ H with hmax small enough.

5. An IMEX method
In [0, T ] we introduce a uniform grid {tn} with t0 = 0, tM = T and

tj − tj−1 = ∆t. By D−t we denote the backward finite difference operator
with respect to t. Let us suppose that the numerical approximations pnh(xi)
and cnh(xi) for p(xi, tn) and c(xi, tn), respectively, are known. Let pn+1

h (xi)
and cn+1

h (xi) be the numerical approximations for p(xi, tn+1) and c(xi, tn+1),
respectively, defined by the following system

(anhD−xp
n+1
h , D−xwh)h,+ = (qn+1

1,h , wh)h, wh ∈ Wh,0, (73)

(D−tc
n+1
h , wh)h + (dn,n+1

h D−xc
n+1
h , D−xwh)h,+ − (Mh(b

n,n+1
h cn+1

h ), D−xwh)h,+

= (qn+1
2,h , wh)h, wh ∈ Wh,0,

(74)
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with the boundary conditions

pn+1
h (x0) = pℓ(tn+1), p

n+1
h (xN) = pr(tn+1), (75)

cn+1
h (x0) = cℓ(tn+1), c

n+1
h (xN) = cr(tn+1), (76)

and with the initial conditions

c0h(xi) = c0,h(xi), p
0
h(xi) = p0,h(xi), i = 1, . . . , N − 1. (77)

In (73) and (74), qn+1
ℓ,h is obtained from qℓ,h(t) taking t = tn+1, (ℓ = 1, 2), the

coefficient anh is obtained from ah(t) replacing ch(t) by cnh, d
n,n+1
h and bn,n+1

h

are obtained from dh(t) and bh(t), respectively, replacing ch(t) and ph(t) by
cnh and pn+1

h , respectively.
We establish in what follows the stability of the numerical approximations

cn+1
h , pn+1

h defined by (73) and (74). In order to do that we assume that
pℓ = pr = cℓ = cr = 0.

Proposition 7. Under the assumption of Proposition 1, there exists a posi-
tive constant Cp which does not depend on h such that

∥pn+1
h ∥1,h ≤ Cp∥qn+1

1,h ∥h, n = 0, . . . ,M − 1. (78)

If q1 satisfies (26) then the sequence ∥pnh∥1,h, h ∈ H, satisfies

∥pnh∥1,h ≤ Cp, n = 1, . . . ,M − 1, h ∈ H, (79)

for some positive constant Cp.
As in the semi-discrete case, from (79) we conclude

∥pnh∥∞ ≤ Cp, n = 1, . . . ,M,

and, as in the semi-discrete case, it is reasonable to assume

max
i=1,...,N

|D−xp
n
h(xi)| ≤ Cp, n = 1, . . . ,M. (80)

In the proof of Proposition 8 we use the following discrete Gronwall Lemma:

Lemma 4. (Discrete Gronwall Lemma (Lemma 4.3 of [6])) Let {ηn} be a
sequence of nonnegative real numbers satisfying

ηn ≤
n−1∑
j=0

ωjηj + βn for n ≥ 1,
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where ωj ≥ 0 and {βn} is a nondecreasing sequence of nonnegative numbers.
Then

ηn ≤ βn exp
( n−1∑

j=0

ωj

)
for n ≥ 1. (81)

Proposition 8. If 0 < a0 ≤ a, 0 < d0 ≤ d, (29) and (80), then cnh defined
by (73),(74) with homogeneous boundary conditions satisfies

∥cnh∥2h +∆t
n∑

j=0

∥D−xc
j
h∥

2
h,+≤ 1

min{1− θ∆t, 2(d0 − ϵ2)}
e

θn∆t
min{1−θ∆t,2(d0−ϵ2)}

(
(1− θ∆t)∥ch(0)∥2h + 2(d0 − ϵ2)∥D−xc

0
h∥2h,+ +

1

2η2
∆t

n∑
m=1

∥qm2,h∥2h ds
)
,

(82)
where

θ =
1

2ϵ2
C2

bC
2
p + 2η2, (83)

η ̸= 0 is an arbitrary constant, ϵ ̸= 0 is fixed by (31) and ∆t satisfies

1− θ∆t > 0. (84)

Proof: Taking in (74) n and wh replaced by m and cm+1
h , respectively, and

following the proof of Proposition 2, it can be shown that

∥cm+1
h ∥2h + 2(d0 − ϵ2)∆t∥D−xc

m+1
h ∥2h,+ ≤ ∥cmh ∥2h +

( 1

2ϵ2
C2

bC
2
p + 2η2

)
∆t∥cm+1

h ∥2h

+
1

2η2
∆t∥qm+1

2,h ∥2h, (85)

where ϵ, η are nonzero constants. Summing (85) for m = 0, . . . , n − 1, we
obtain

∥cnh∥2h + 2(d0 − ϵ2)∆t
n∑

m=1

∥D−xc
m
h ∥2h,+ ≤ ∥c0h∥2h + θ∆t

n∑
m=1

∥cmh ∥2h

+
1

2η2
∆t

n∑
m=1

∥qm2,h∥2h , (86)

with θ defined by (83).
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Inequality (86) can be rewritten in the following equivalent form

∥cnh∥2h +∆t
n∑

m=0

∥D−xc
m
h ∥2h,+ ds≤ θ∆t

min{2(d0 − ϵ2), 1− θ∆t}

n−1∑
m=0

∥cmh ∥2h

+
1

min{2(d0 − ϵ2), 1− θ∆t}

(
(1− θ∆t)∥c0h∥2h + 2(d0 − ϵ2)∆t∥D−xc

0
h∥2h,+

+
1

2η2
∆t

n∑
m=1

∥qm2,h∥2h
)
,

(87)
provided that ϵ and ∆t satisfy (31) and (84), respectively. Using in (87)
Gronwall Lemma we deduce (82).

We establish in what follows an upper bound for the errors en+1
c,h = cn+1

h −
Rhc(tn+1) e

n+1
p,h = pn+1

h −Rhp(tn+1)

∥en+1
p,h ∥1,h , ∥en+1

c,h ∥2h +∆t
n+1∑
j=0

∥D−xe
j
c,h∥

2
h,+.

We start by introducing p̃n+1
h , c̃n+1

h as the solutions of the auxiliary problems
(36), (37) where the source terms and the coefficients are defined taking
t = tn+1. The estimate (38) holds for p̃n+1

h . Moreover, under the assumptions
of Proposition 4 for t = tn+1, Proposition 5 enable us to conclude that (47)
holds for c̃n+1

h . As in the semi-discrete case, it can be shown that the time
discrete version of (39) and (49) holds, that is,

max
i=1,...,N

|D−xp̃
n
h(xi)| ≤ Cp̃, n = 1, . . . ,M, (88)

max
i=1,...,N

|D−xc̃
n
h(xi)| ≤ Cc̃, n = 1, . . . ,M, (89)

for h ∈ H with hmax small enough. We also have

∥c̃nh∥∞ ≤ Cc̃, n = 1, . . . ,M.
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Under the assumptions of Proposition 6 we can prove that

∥Ph(p
n+1
h − p̃n+1

h )∥1 ≤ Cp,p̃

(
∥enc,h∥h +

( N∑
i=1

h2s
i ∥c(tn+1)∥2Hs(Ii)

)1/2

+
(
∆t2∥Rhc

′(tn)∥2h +∆t3∥Rhc∥2H2(tn,tn+1,Wh)

)1/2)
.

(90)

As in Corollary 1, for ∥Phe
n+1
p,h ∥1 we have

∥Phe
n+1
p,h ∥1≤ C

(
∥enc,h∥h +

( N∑
i=1

h2s
i ∥c(tn+1)∥2Hs(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(tn+1)∥2Hs+1(Ii)

)1/2

+∆t
(
∥Rhc

′(tn)∥2h +∆t∥Rhc∥2H2(tn,tn+1,Wh)

)1/2)
.

(91)

We are now in position to establish for (D−te
m+1
c,h , wh)h an estimate similar

to the one established in Theorem 1 for (ec,h(t), wh)h. In fact under the
assumptions of this result and using the fact (80) we can prove that holds
the following

(D−te
m+1
c,h , wh)h = −(dm,m+1

h D−xe
m+1
c,h , D−xwh)h,+

+(Mh(b
m,m+1
h em+1

c,h ), D−xwh)h,+ + τm+1
h (wh),

(92)

where

τm+1
h (wh) = τm+1

d,h (wh) + τm+1
b,h (wh) + τm+1

c,h (wh)

with

|τm+1
d,h (wh)| ≤ Cd,d

(
∥emc,h∥h+∆t

(
∥Rhc

′(tm)∥2h +∆t∥Rhc∥2H2(tm,tm+1,Wh)

)1/2

+
( N∑

i=1

h2s
i ∥p(tm+1)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥c(tm+1)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+,
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|τm+1
b,h (wh)| ≤ Cb,d

(
∥emc,h∥h +∆t

(
∥Rhc

′(tm)∥2h +∆t∥Rhc∥2H2(tm,tm+1,Wh)

)1/2

+
( N∑

i=1

h2s
i ∥c(tm+1)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(tm+1)∥2Hs+1(Ii)

)1/2)
∥D−xwh∥h,+

and

|τm+1
c,h (wh)| ≤ Cin,d

(
∆t∥Rhc∥W 2,∞(tm,tm+1,Wh)

+
( N∑

i=1

h4
i∥Rhc

′(tm+1)∥2H2(Ii)

)1/2)
∥D−xwh∥h,+,

for some positive constants Cd,d, Cb,d and Cin,d and for h ∈ H with hmax small
enough.
Taking in (92) wh = em+1

c,h and following the proof of Proposition 8 we can
prove that

∥em+1
c,h ∥2h + 2∆t(d0 − 4ϵ2)∥D−xe

m+1
c,h ∥2h,+ ≤ (1 + θ2∆t)∥emc,h∥2h + θ1∆t∥em+1

c,h ∥2h

+∆t(τm+1
r )2

(93)
with

θ1 =
1

2ϵ2
C2

pC
2
b ,

θ2 =
1

2ϵ2

(
C2

d,d + C2
b,d + C2

in,d

)
and

(τm+1
r )2 ≤ 1

2ϵ2

(
C2

d,d + C2
b,d

)(
∆t∥Rhc

′(tm)∥h +∆t∥Rhc∥2H2(tm,tm+1,Wh)

+
( N∑

i=1

h2s
i ∥c(tm+1)∥2Hs+1(Ii)

)1/2

+
( N∑

i=1

h2s
i ∥p(tm+1)∥2Hs+1(Ii)

)1/2)2

+
1

2ϵ2
C2

in,d

(
∆t∥Rhc∥W 2,∞(tm,tm+1,Wh) +

( N∑
i=1

h4
i∥c′(tm+1)∥2H2(Ii)

)1/2)2

.

(94)
In (93) and (94) ϵ is a nonzero constants.
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Summing (93) for m = 0, . . . , n− 1, we obtain

(1− θ1∆t)∥enc,h∥2h + 2(d0 − 4ϵ2)∆t
n∑

m=0

∥D−xe
m
c,h∥2h,+

≤ (1− θ1∆t)∥e0c,h∥2h + 2∆t(d0 − 4ϵ2)∥D−xe
0
c,h∥2h,+

+(θ1 + θ2)∆t
n−1∑
m=0

∥emc,h∥2h +∆t
n∑

m=1

(τmr )2

which implies

∥enc,h∥2h +∆t
n∑

m=0

∥D−xe
m
c,h∥2h,+

≤ 1

min{1− θ1∆t, 2(d0 − 4ϵ2)}

(
(1− θ1∆t)∥e0c,h∥2h + 2∆t(d0 − 4ϵ2)∥D−xe

0
c,h∥2h,+

)
+

(θ1 + θ2)∆t

min{1− θ1∆t, 2(d0 − 4ϵ2)}

n−1∑
m=0

∥emc,h∥2h +∆t
n∑

m=1

(τmr )2,

(95)
provided that

1− θ1∆t > 0 (96)

and

d0 − 4ϵ2 > 0. (97)

Applying discrete Gronwall Lemma to (95) we deduce

∥enc,h∥2h +∆t

n∑
m=0

∥D−xe
m
c,h∥2h,+ ≤ 1

min{1− θ1∆t, 2(d0 − 4ϵ2)}
e

(θ1+θ2)n∆t

min{1−θ1∆t,2(d0−4ϵ2)}

(
(1− θ1∆t)∥e0c,h∥2h + 2(d0 − 4ϵ2)∆t∥D−xe

0
c,h∥2h,+ +∆t

n∑
m=1

(τmr )2
)
.

(98)
We remark that the error estimate for the concentration depends on ∥e0c,h∥h

and ∥D−xe
0
c,h∥h,+. Moreover, if c and p are smooth enough, then there exists



28 J.A. FERREIRA AND L.PINTO

a positive constant C which does not depend on ∆t and h such that

∆t
n∑

m=1

(τmr )2 ≤ C
(
∆t2

(
max

j=1,...,M
∥Rhc

′(tj)∥2h + ∥Rhc∥2W 2,∞(0,T ;Wh)

)
+ max

j=1,...,M

N∑
i=1

(
h2s
i

(
∥c(tj)∥2Hs+1(Ii)

+ ∥p(tj)∥2Hs+1(Ii)

)
+ h4

i∥c′(tj)∥2H2(Ii)

))
.

(99)
Considering c0h = Rhc0 we conclude from (98) and (99) that, for some positive
constant C and for ∆t and hmax small enough, holds the following

∥enc,h∥2h +∆t
n∑

m=0

∥D−xe
m
c,h∥2h,+

≤ C
(
∆t2

(
max

j=1,...,M
∥Rhc

′(tj)∥2h + ∥Rhc∥2W 2,∞(0,T ;Wh)

)
+ max

j=1,...,M

N∑
i=1

(
h2s
i

(
∥c(tj)∥2Hs+1(Ii)

+ ∥p(tj)∥2Hs+1(Ii)

)
+ h4

i∥c′(tj)∥2H2(Ii)

))
.

(100)
Considering now (100) in the estimate (91) we deduce for the pressure the
estimate

∥en+1
p,h ∥21,h ≤ C

(
∆t2

(
max

j=1,...,M
∥Rhc

′(tj)∥2h + ∥Rhc∥2W 2,∞(0,T ;Wh)

)
+ max

j=1,...,M

N∑
i=1

(
h2s
i

(
∥c(tj)∥2Hs+1(Ii)

+ ∥p(tj)∥2Hs+1(Ii)

)
+ h4

i∥c′(tj)∥2H2(Ii)

))
.

(101)
Estimates (100) and (101) allow us to conclude, for s ∈ {1, 2},

∥en+1
p,h ∥21,h ≤ C

(
∆t2 + h2s

max

)
, (102)

∥enc,h∥2h +∆t
n∑

m=0

∥D−xe
n
c,h∥2h,+ ≤ C

(
∆t2 + h2s

max

)
. (103)

We illustrate in what follows the estimates (102) and (103).

Example 1. Let us consider (1)-(5) with

a(c) = 1+ c(x, t), b(c, px) = (c(x, t)px(x, t))
2, d(c, px) = c(x, t)+ px(x, t)+2
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q1, q2, the initial and boundary conditions such that this IBVP has the fol-
lowing solution

p(x, t) = etx(x− 1), c(x, t) = et(1− cos(2πx))sin(x), x ∈ [0, 1], t ∈ [0, T ].

The numerical approximations cnh and p
n
h were obtained with the IMEX method

(73)-(77) with nonuniform grids in [0, 1] and with T = 0.1 and ∆t = 10−6.
The spatial initial grid is arbitrary and the new grid is obtained introducing
in [xi, xi+1] the midpoint. In Table 1 we present the errors

Errorc = max
n=1,...,M

(
∥enc,h∥2h +∆t

n∑
j=0

∥D−xe
j
c,h)∥

2
h,+

)1/2

, (104)

Errorp = max
n=1,...,M

∥D−xe
n
p,h∥h,+ (105)

and the rates Ratec, Ratep that were computed by the formula

Rate =
ln
(
Errorhmax,1

Errorhmax,2

)
ln
(
hmax,1

hmax,2

) , (106)

where hmax,1 and hmax,2 are the maximum step sizes of two consecutive par-
titions.

hmax Errorc Errorp Ratec Ratep
1.3174× 10−1 5.5435× 10−2 1.1099× 10−2 1.9492 1.5048
6.5869× 10−2 1.4355× 10−2 3.9113× 10−3 2.0010 1.5808
3.2934× 10−2 3.5863× 10−3 1.3075× 10−3 2.0024 1.8337
1.6467× 10−2 8.9511× 10−4 3.6682× 10−4 2.0008 1.9296
8.2336× 10−3 2.2366× 10−4 9.6288× 10−5 2.0029 1.9671
4.1168× 10−3 5.5804× 10−5 2.4628× 10−5 2.0109 1.9866
2.0584× 10−3 1.3846× 10−5 6.2144× 10−6 2.0301 2.0015
1.0292× 10−3 3.3899× 10−6 1.5520× 10−6 - -

Table 1

The numerical results presented in Table 1 show that Errorp = O(h2
max) and

Errorc = O(h2
max).

6. Conclusions
The behavior of the pressure and concentration of an incompressible fluid

in a one dimensional porous media is described by an elliptic equation for
the pressure and a parabolic equation for the concentration linked by the
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Darcy’s law for the velocity. Quasilinear coupled problems that have as a
particular case the previous problem were considered in this paper.
The use of piecewise linear finite element method for the pressure and con-

centration of a incompressible fluid in a porous media leads to a first order
approximation to the velocity. Consequently, the concentration is of first
order in the L2-norm. This behavior is observed for uniform and nonuni-
form partitions of the spatial domain. Fully discrete schemes based on the
piecewise linear finite element method with special quadrature formulas were
studied in this paper. Error estimates for the semi-discrete and fully discrete
approximations were established. These error estimates allow us to conclude
that the methods studied leads to second order accuracy numerical approxi-
mations for the pressure and concentration and for their gradients.
A common approach in the convergence analysis of the spatial discretiza-

tion of parabolic equations is the split of the semi-discretization error into
two terms ([21]) considering the correspondent discretization of an auxil-
iary elliptic problem. Such approach was largely followed in the literature
and implies an increasing in the smoothness requirements of the solution for
the parabolic problem. In this paper a different approach was followed that
avoids such smoothness requirements.
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