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Abstract: We prove that all semi-abelian categories with the Smith is Huq pro-
perty satisfy the Commutator Condition (CC): higher central extensions may be
characterised in terms of binary (Huq or Smith) commutators. In fact, even Hig-
gins commutators suffice. As a consequence, in the presence of enough projectives
we obtain explicit Hopf formulae for homology with coefficients in the abelianisa-
tion functor, and an interpretation of cohomology with coefficients in an abelian
object in terms of equivalence classes of higher central extensions. We also give a
counterexample against (CC) in the semi-abelian category of (commutative) loops.
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Introduction
The concept of higher centrality is a cornerstone in the recent approach to

homology and cohomology of non-abelian algebraic structures based on catego-
rical Galois theory [5, 33]. Through higher central extensions, the Brown–Ellis–
Hopf formulae [11, 14] which express homology objects as a quotient of com-
mutators have been made categorical [18, 19, 20], which greatly extends their
scope while simplifying the study of concrete cases (see, for instance, [13, 15]).
Higher central extensions are also essential in the study of relative commuta-
tors [22, 23] and are classified by cohomology groups [46].
To take full advantage of these results, sufficiently explicit characterisations

of higher centrality are essential. On the one hand, the higher Hopf formulae
are valid in any semi-abelian category [37] with enough projectives, but these
formulae only become concrete once the relevant concept of higher centrality is
appropriately characterised, ideally in terms of classical binary commutators.
Indeed, the main result of [20] says that in a semi-abelian monadic category A,
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for any n-presentation F of Z,

Hn�1pZ, abq �
rFn, Fns ^

�
iPn Kerpfiq

LnrF s
. (A)

Coefficients are chosen in the abelianisation functor ab : A Ñ AbpAq. Here Fn
is the initial object of F and the fi are the initial arrows. The object rFn, Fns
is the Huq commutator of Fn with itself, which makes the numerator entirely
explicit. But the denominator is not; rather, LnrF s is the smallest normal
subobject of Fn which, when divided out, makes F central with respect to
AbpAq in the sense of categorical Galois theory. Nevertheless, in all known
examples also this object may be expressed in terms of commutators.
On the other hand, given an object Z in a semi-abelian category, its co-

homology with coefficients in an abelian object A classifies the higher central
extensions of Z byA, provided those higher central extensions admit a characte-
risation in terms of Huq commutators. Thus far, such precise characterisations
of higher central extensions were only available in concrete cases.
A semi-abelian category A satisfies the Smith is Huq Condition (SH)

when two equivalence relations (Smith) commute if and only if their normalisa-
tions (Huq) commute. Under (SH) we may remedy the lack of characterisation
mentioned above. We prove that an n-fold extension in a semi-abelian cate-
gory A with (SH) is central with respect to the abelian objects in A if and only
if a certain join of binary Huq commutators vanishes. This gives us following
the refined version of the main theorem of [46].

Theorem. Let Z be an object and A an abelian object in a semi-abelian cate-
gory with (SH). Then for every n ¥ 1 we have an isomorphism Hn�1pZ,Aq �
CentrnpZ,Aq.

Examples of semi-abelian categories with (SH) are all action representative
semi-abelian categories [6, 4] and all action accessible ones [10], in particular
in all strongly semi-abelian categories [7], all Moore categories [24, 44], all
categories of interest [42, 41], but not all varieties of Ω-groups: the category
of digroups is a counterexample [3, 7]. Hence our results are valid, e.g., in
the categories of groups, Lie and Leibniz algebras, (pre)crossed modules and
associative algebras.
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The above can be made slightly more precise as follows. We shall say that
an n-fold extension F in a semi-abelian category A is H-central when

�©
iPI

Kerpfiq,
©
iPnzI

Kerpfiq
�
� 0

for all I � n. Here the fi are the initial arrows of the n-fold extension F
and the commutators are either Huq or Higgins commutators. The category A
satisfies the Commutator Condition (CC) when H-centrality is equivalent
to centrality with respect to AbpAq in the Galois-theory sense. This means
that the denominator LnrF s of (A) may be expressed as the join

ª
I�n

�©
iPI

Kerpfiq,
©
iPnzI

Kerpfiq
�
.

It follows from results in [8] and [27] that the Commutator Condition holds for
(one-fold) extensions (Subsection 1.6). For double extensions, the Commuta-
tor Condition holds as soon as the Smith is Huq Condition does (see Subsec-
tion 1.7). Our main concern now becomes to find conditions which imply (CC)
in all degrees.
In Section 1 we give a more detailed outline of the mathematical context we

shall be working in. Section 2 contains the main result of the paper: The-
orem 2.8, which says that the Commutator Condition for double extensions
implies the Commutator Condition for all higher degrees. Hence the Commu-
tator Condition is weaker than the Smith is Huq Condition.
Even though (SH) is known to be independent of semi-abelianness, thus far

we did not have any examples to show that also (CC) is independent. The
known counterexamples (in digroups [3, 7] or loops [30]) give an action of
an object on an abelian object which is not a module. However, when an
action is considered as double extension, it cannot be H-central without being
central—see Subsection 4.1—which forces us to find a new counterexample.
This is done in Section 3 where we show that the category of loops Loop does
not satisfy (CC). In fact this counterexample also works in the category of
commutative loops CLoop; it gives a new example of a semi-abelian category
in which (SH) does not hold.
There are certain further questions which remain unanswered as yet; we give

a short overview in Section 4.
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1. Preliminaries
In this paper A will always denote a semi-abelian category [37].

1.1. The Huq commutator and the Smith commutator. A coterminal
pair

K
� ,2 k ,2 X L

�lrllr

of normal monomorphisms (i.e., kernels) in A is said to (Huq-)commute [9,
32] when there is a (necessarily unique) morphism ϕ such that the diagram

K
x1K , 0y

z�������� k

�$???????

K � L ϕ ,2 X

L
x0, 1Ly

Zd??????? l

:D�������

is commutative. The Huq commutator rk, lsHuq : rK,LsHuq Ñ X of k and l
[8, 3] is the smallest normal subobject of X which should be divided out to
make k and l commute, so that k and l commute if and only if rK,LsHuq � 0.
We can define rK,LsHuq as the kernel of the (normal epi)morphism X Ñ Q,
where Q is the colimit of the outer square above.
Given a pair of equivalence relations pR, Sq on a common object X

R

r1 ,2

r2
,2 X∆R

lr ∆S
,2 S,

s1
lr

s2lr

consider the induced pullback of r2 and s1:

R �X S
πS ,2

πR

��

S

s1

��

R r2
,2 X.
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The congruences R and S centralise each other or (Smith-)commute [47,
43, 9] when there is a (necessarily unique) morphism θ such that the diagram

R
x1R,∆Sr2y

z�������� r1

�$???????

R �X S θ ,2 X

S
x∆Rs1, 1Sy

Zd??????? s2

:D�������

is commutative. Like for the Huq commutator, the Smith commutator is the
smallest equivalence relation rR, SsS on X which, divided out of X, makes R
and S commute. It can be obtained through a colimit, similarly to the situation
above; see Section 3 for a concrete example. Thus R and S commute if and only
if rR, SsS � ∆X , where ∆X denotes the smallest equivalence relation on X. We
say that R is a central equivalence relation when it commutes with ∇X , the
largest equivalence relation on X, so that rR,∇Xs

S � ∆X .

1.2. The Smith is Huq Condition. It is well known, and easily verified,
that if the Smith commutator of two equivalence relations is trivial, then the
Huq commutator of their normalisations is also trivial [9]. But, in general,
the converse is false; in [3, 7] a counterexample is given in the category of
digroups, which is a semi-abelian variety, even a variety of Ω-groups [31]. The
requirement that the two commutators vanish together is known as the Smith
is Huq Condition (SH) and it is shown in [40] that, for a semi-abelian
category, this condition holds if and only if every star-multiplicative graph
is an internal groupoid, which is important in the study of internal crossed
modules [35]. Moreover, the Smith is Huq Condition is also known to hold
for pointed strongly protomodular categories [9] (in particular, for any Moore
category [24, 44]) and in action accessible categories [10] (in particular, for any
category of interest [41, 42]).

1.3. Extensions. We write ArrnpAq for the category of n-fold arrows in A.
A zero-fold extension in A is an object of A and a (one-fold) extension

is a regular epimorphism in A. For n ¥ 2, an n-fold extension is an object



6 DIANA RODELO AND TIM VAN DER LINDEN

pc, fq of ArrnpAq (a morphism of Arrn�1pAq) as in

X
c ,2

d
��

C
g

��

D
f

,2 Z,

such that the morphisms c, d, f , g and the universally induced comparison
morphism xd, cy : X Ñ D �Z C to the pullback of f with g are pn � 1q-fold
extensions. A two-fold extension is also called a double extension. The
n-fold extensions determine a full subcategory ExtnpAq of ArrnpAq; we write
ExtpAq � Ext1pAq.
An n-fold arrow may be considered as a diagram 2n Ñ A in A, a cube of

dimension n; in particular, n-fold extensions are pictured as n-cubes. Given
such an n-fold extension F , we shall write Fn for its initial object and

fi : Fn Ñ Fnztiu,

i P n, for the initial arrows. The extension property of F implies that for any
choice of i P n, the induced square in A

Fn
fi � ,2

_��

Fnztiu

_��

lim
tiu�J�n

FJ � ,2 lim
J�nztiu

FJ

is still a double extension [46].

1.4. Central extensions. We write AbpAq for the full subcategory of A de-
termined by the abelian objects, that is, those objects which admit an internal
abelian group structure. Let ab : A Ñ AbpAq denote the abelianisation func-
tor, left adjoint to the inclusion of AbpAq in A. It sends an object X of A
to the abelian object abpXq � X{rX,XsHuq. We define centrality of (higher)
extensions with respect to the Birkhoff subcategory AbpAq of A [36, 8].
An extension f : X Ñ Z is called trivial when the induced naturality square

X
f � ,2

ηX
_��

Z
ηZ

_��

abpXq
abpfq

� ,2 abpZq
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is a pullback, and f is central when there exists an extension g : Y Ñ Z such
that the pullback of f along g is trivial. In our context we can take g � f
so that f is central if and only if either projection of its kernel pair is trivial
(central extensions coincide with normal extensions).
The full subcategory CExt1AbpAqpAq of Ext1pAq determined by those extensi-

ons which are central is again reflective. Inductively, we get a reflective sub-
category CExtnAbpAqpAq of ExtnpAq containing the n-fold central extensions
(relative to AbpAq) of A, n ¥ 1. Each level gives rise to a notion of cen-
tral extension which determines the next level—see [20, Theorem 4.6] and [18]
where this is worked out in detail. In particular, for every n ¥ 1 we have a
reflector, the centralisation functor

centrn : ExtnpAq Ñ CExtnAbpAqpAq,
left adjoint to the inclusion of CExtnAbpAqpAq in ExtnpAq.

1.5. The Commutator Condition (CC). Given an n-fold extension F
with initial object Fn and initial arrows fi : Fn Ñ Fnztiu, we write ki : Ki �
Kerpfiq Ñ Fn for all i P n. We say that F is H-central when�©

iPI

Ki,
©
iPnzI

Ki

�pHuqq

� 0 (B)

for all I � n. Here the commutators are either Huq or Higgins commutators
(Subsection 1.8); this explains the “H” (see Lemma 2.5). The category A
satisfies the Commutator Condition (CC) when H-centrality is equivalent
to centrality with respect to AbpAq in the Galois-theory sense (Subsection 1.4).
The condition (CC) falls apart in one version for each degree of extension n:

the category A satisfies (CCn) when an n-fold extension in it is H-central if
and only if it is central. The principal result in this work is to show that (CC2)
implies (CC) (Theorem 2.8).

1.6. One-fold extensions and (CC1). Recall that an extension f : X Ñ Z
in the category of groups is central (with respect to Ab) when rKerpfq, Xs �
0. This result was adapted to a semi-abelian context in [25, 8]: the one-
fold central extensions (in the sense of Galois theory) may be characterised
through the Smith commutator of equivalence relations as those extensions
f : X Ñ Z such that rRrf s,∇Xs

S � ∆X , where Rrf s denotes the kernel pair
of f . This means that Rrf s is a central equivalence relation (Subsection 1.1).
A characterisation closer to the group case appears in [27] where the condition
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is reformulated in terms of the Huq commutator of normal subobjects so that
it becomes rKerpfq, XsHuq � 0. Hence f is central if and only if it is H-central,
so that (CC1) is true in any semi-abelian category.

1.7. Double central extensions and (CC2). One level up, the double
central extensions of groups vs. abelian groups were first characterised in [34].
A double extension (of Z) is a pushout square of regular epimorphisms

X
c � ,2

d _��

C
g

_��

D
f

� ,2 Z.

(C)

Let us write K � Kerpcq, L � Kerpdq for the kernels of c and d and R � Rrcs,
S � Rrds for the respective kernel pairs. Then (C) is central when

rK,Ls � 0 � rK ^ L,Xs.

General versions of this characterisation were given in [26] for Mal’tsev varieties,
then in [45] for semi-abelian categories and finally in [21] for exact Mal’tsev
categories: the double extension (C) is central if and only if

rR, SsS � ∆X � rR ^ S,∇Xs
S.

This means that the span pX, d, cq is a special kind of pregroupoid in the slice
category A{Z (see [38] for the definition of a pregroupoid).
The problem we are now confronted with is that the correspondence between

the Huq commutator of normal monomorphisms and the Smith commutator
of equivalence relations which exists in level one is no longer there when we
go up in degree. However, we know that always rK ^ L,XsHuq � 0 if and
only if rR ^ S,∇Xs

S � ∆X by (CC1). Furthermore, rR, SsS � ∆X implies
rK,LsHuq � 0, so when (C) is central it is also H-central. On the other hand,
the Smith is Huq Condition says that rK,LsHuq � 0 implies rR, SsS � ∆X ,
so that the two concepts of centrality are equivalent—and hence (CC2) holds
under (SH).

1.8. The Higgins commutator. Central extensions, relative to AbpAq, may
also be characterised in terms of the Higgins commutator [29, 39], which in turn
may be obtained through a co-smash product [12] or a cross-effect [16, 2, 28]
of the identity functor on A.
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Given two objects K and L of A, the co-smash product [12] of K and L

K b L � Ker
�@

1K 0
0 1L

D
: K � LÑ K � L

�

behaves as a kind of “formal commutator” of K and L. (See [29] and [39]; this
object is also written K � L, or pK|Lq when it is interpreted as the second
cross-effect of the identity functor 1A evaluated in K, L.) If now k : K Ñ X
and l : L Ñ X are subobjects of an object X, their Higgins commutator
rK,Ls ¤ X is a subobject of X given by the image of the induced composite
morphism

K b L � ,2
ιK,L

,2


 !*MMMMMMMM
K � L

x kl y ,2 X.

rK,Ls
5?

5?tttttttt

When K and L are normal subobjects of X and K _ L � X, the Higgins
commutator rK,Ls is normal in X so that it coincides with the Huq commu-
tator (Subsection 1.1). In particular, we always have rK,XsHuq � rK,Xs. In
general the Huq commutator is the normal closure of the Higgins commutator.
So, rK,Ls ¤ rK,LsHuq and rK,Ls � 0 if and only if rK,LsHuq � 0. The
Higgins commutator may also be used to measure normality of subobjects. In
fact, a result in [39] states that K�X if and only if rK,Xs ¤ K, and is further
refined in [29] as follows: the normal closure of K in X may be computed as
the join K _ rK,Xs. In any case, an extension in A such as

0 ,2 K
� ,2 k ,2 X

f � ,2 Z ,2 0

is central if and only if rK,XsHuq � rK,Xs � 0.

1.9. The ternary commutator. The Higgins commutator generally does
not preserve joins, but the defect may be measured precisely—it is a ternary
commutator which can be computed by means of a ternary co-smash product
or a cross-effect of order three. Let us extend the definition above: given a third
subobject m : M Ñ X of the object X, the ternary Higgins commutator
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rK,L,M s ¤ X is the image of the composite

K b LbM � ,2
ιK,L,M

,2

� &-TTTTTTTTTTTTT
K � L�M

B
k
l
m

F
,2 X,

rK,L,M s
3;

3;nnnnnnnnnnnn

where ιK,L,M is the kernel of

K � L�M

C
iK iK 0
iL 0 iL
0 iM iM

G
,2 pK � Lq � pK �Mq � pL�Mq;

ik, iL and iM denote the injection morphisms. The object K b L bM is the
third cross-effect of the identity functor 1A or ternary co-smash product
evaluated in K, L and M .

Proposition 1.10. If K, L, M ¤ X then

rK,L_M s � rK,Ls _ rK,M s _ rK,L,M s.

Proof : Via the result in [29] or [30].

1.11. (SH) and (CC2) via the ternary commutator. It is precisely the
availability of this join decomposition which makes the Higgins commutator
useful in what follows. This, and the fact that (SH) may be expressed in terms
of ternary commutators. By the main result in [30], two normal subobjects K,
L�X have Smith-commuting denormalisations when rK,Ls � 0 � rK,L,Xs.
Hence the Smith is Huq Condition is equivalent to saying that rK,Ls � 0 (they
Huq- or Higgins-commute) implies rK,L,Xs � 0 (what is missing for them to
also Smith-commute).
What we shall be studying here (the Commutator Condition, at first for

n � 2) is slightly weaker, because next to rK,Ls � 0 we shall also assume
rK^L,Xs � 0 to obtain the same conclusion rK,L,Xs � 0. This will give us
“H-centrality” implies “centrality” (Theorem 2.8) as in our paper [46]. Thus,
(SH) ñ (CC2) ñ (CC).
Many other things can be said about these ternary commutators; let us just

mention that they are generally not decomposable into iterated binary ones,
and refer to [30] for further information.
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2. Main result
In this section we prove our main result, Theorem 2.8: (CC2), the Commu-

tator Condition in degree n � 2, implies (CC) in all degrees. So (CC) does not
explode—in the sense that it would give rise to a new mysterious condition in
each dimension separately—but instead stays within bounds, as it is implied
by the well-studied condition (SH).

2.1. Degree two. We use the same notation as in Subsection 1.7 for double
extensions in a semi-abelian category.

Lemma 2.2. Let (C) be a double extension in a semi-abelian category. Then

rK,Ls _ rK ^ L,Xs

is normal in X, and rK,Ls _ rK ^ L,Xs � rK,LsHuq _ rK ^ L,XsHuq.

Proof : This follows form the fact that rK,LsHuq _ rK ^ L,Xs is normal in X
while rK,LsHuq � rK,Ls _ rrK,Ls, Xs and rK,Ls ¤ K ^ L. The second
statement is now obvious.

When in A (SH) holds, this implies that the normalisation of

rR, SsS _ rR ^ S,∇Xs
S

is rK,Ls _ rK ^ L,Xs. Hence the centralisation of (C) is its quotient
X

rK,Ls_rK^L,Xs
� ,2

_��

C

_��

D
� ,2 Z.

Recall that a double presentation of an object Z is a double extension
such as (C) in which the objects X, D and C are (regular epi)-projective.

Theorem 2.3. Let A be a semi-abelian category with enough projectives and
such that (SH) holds. Let Z be an object in A and (C) a double presentation
of Z. Then

H3pZ, abq �
K ^ L^ rX,Xs

rK,Ls _ rK ^ L,Xs
.

When, moreover, A is monadic over Set, these homology objects are comonadic
Barr–Beck homology objects [1] with respect to the canonical comonad on A.

Proof : This follows from the main result of [18]; see also [20].
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2.4.Higher degrees. Our purpose is now to prove that the Commutator Con-
dition for double extensions (CC2) implies the Commutator Condition for all
n-fold extensions (CC). Consequently, n-fold extensions are central if and only
if they are H-central. We shall assume that a Higgins-style characterisation
exists for the pn� 1q-fold central extensions and prove that such a characteri-
sation is also valid for n-fold central extensions. More precisely, we shall prove
that under (CC2), the condition (CCpn� 1q) implies (CCn).
We begin with a higher-dimensional version of the result above for double

extensions which allows us to use either Huq or Higgins commutators in the
definition of H-centrality and in (CC). We use the notation from Subsection 1.5.

Lemma 2.5. Let F be an n-fold extension in a semi-abelian category. Thenª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

�
�
ª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

�Huq

(D)

(so the join is normal in X).

Proof : We give an argument by induction on n of which Lemma 2.2 is the base
step. (So we start at n � 2. The case n � 1 is of course also valid, even well
known; see Subsection 1.8.) Suppose indeed that the claimed equality holds
for some number n � 1, then it will also hold for n: we may cut up (D) into
the n distinct equalitiesª

I�nztku

�©
iPI

Ki,
©

iPnzpIYtkuq

Ki

�
�

ª
I�nztku

�©
iPI

Ki,
©

iPnzpIYtkuq

Ki

�Huq

,

one for each k P n, each of which holds by the induction hypothesis and the
extension property of F—see Subsection 1.3.

Before we prove that (CC2) implies (CCn), so that we can go up in dimension,
let us first explain how to go down.

Proposition 2.6. For any n ¥ 1, the condition (CCpn� 1q) implies (CCn).

Proof : An n-fold arrow F is an n-fold extension if and only if the pn� 1q-fold
arrow F Ñ 0 is an pn � 1q-fold extension. It follows immediately from the
definitions that F is central (resp. H-central) precisely when F Ñ 0 is central
(resp. H-central).

Lemma 2.7. If F : X Ñ Z is an n-fold H-central extension, then also any of
the two projections

π1, π2 : RrF s Ñ X
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in its kernel pair are H-central.

Proof : We prove that G � π1 is H-central. Consider I � n and write

kergi : Kerpgiq Ñ Gn

for the kernel of gi : Gn Ñ Gnztiu. Then gn is the “top morphism” of the first
projection π1 : RrF s Ñ X; similarly, write hn for the top morphism of H � π2.
Now

�
iPI kergi and

�
iPnzI kergi commute: to see this, we compose them with

the morphisms gn and hn, which form a jointly monic pair. Composing with gn
makes one of the intersections—the one containing the kernel of gn—trivial,
so already gn

�
iPI kergi and gn

�
iPnzI kergi commute. On the other hand, the

composites hn
�

iPI kergi and hn
�

iPnzI kergi factor through the intersections�
iPI ki and

�
iPnzI ki, respectively. These two intersections commute because F

is H-central.

Theorem 2.8. Every semi-abelian category with (CC2) satisfies the Commu-
tator Condition (CC).

Proof : We give a proof by induction on n: we show that under (CC2), for all
n ¥ 3 the condition (CCpn� 1q) implies (CCn).
Let F be an n-fold H-central extension, i.e., r

�
iPI Ki,

�
iPnzI Kis � 0 for

all I � n. To prove that F is central, we must show that either one of the
projections in the kernel pair of F is an n-fold trivial extension. Consider, for
i P n, the commutative diagram

Kn ^Mi
� ,2

ki ,2
_��

mi

��

Mi

πi
1 ,2

πi
2

,2_��

mi

��

Ki_��

ki

��

eilr

Kn
� ,2 �kn ,2 Rrfns

π1 ,2

π2
,2

Rpfiq

_��

Fn
fn � ,2

fi

_��

elr Fn�1

_��

Rrfn�1s
p1 ,2

p2
,2 Fnztiu fn�1

� ,2lr Fnzti,n�1u,

(E)

where rkn is the kernel of π1, so π2
rkn � kn, while πi1, πi2, ei and Rpfiq are the

induced morphisms and Mi � KerpRpfiqq.
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By the induction hypothesis (CCpn� 1q), the first projection π1 of the kernel
pair of F is a trivial n-fold extension when the naturality square

Rrfns
π1 ,2

��

Fn

��

Rrfns�
I�n�1

��
iPIMi,

�
iPpn�1qzIMi

� ,2
Fn�

I�n�1

��
iPI Ki,

�
iPpn�1qzI Ki

�

is a pullback. This amounts to proving that
ª
I�n�1

�©
iPI

Mi,
©

iPpn�1qzI

Mi

�
�

ª
I�n�1

�©
iPI

Ki,
©

iPpn�1qzI

Ki

�
.

As subobjects of Rrfns, we have

e
� ª
I�n�1

�©
iPI

kipKiq,
©

iPpn�1qzI

kipKiq
�	

(F)

�
ª
I�n�1

�©
iPI

ekipKiq,
©

iPpn�1qzI

ekipKiq
�

(G)

¤
ª
I�n�1

�©
iPI

mipMiq,
©

iPpn�1qzI

mipMiq
�
. (H)

To prove the other inclusion, we shall decompose the subobject (H) as a join
using Proposition 1.10.
From Mi � kipKn ^Miq _ eipKiq, we get
©
iPI

mipMiq �
©
iPI

mikipKn ^Miq _
©
iPI

mieipKiq

�
©
iPI

rknmipKn ^Miq _
©
iPI

ekipKiq

for all H � I � n� 1 and©
iPH

mipMiq � Rrfns � rknpKnq _ epFnq.
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For H � I � n� 1 we have�©
iPI

mipMiq,
©

iPpn�1qzI

mipMiq
�

�
�©
iPI

rknmipKn ^Miq _
©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�
,

which decomposes to the join�©
iPI

rknmipKn ^Miq,
©

iPpn�1qzI

mipMiq
�
_
�©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�

_
�©
iPI

rknmipKn ^Miq,
©
iPI

ekipKiq,
©

iPpn�1qzI

mipMiq
�
. (I)

The first term of (I) vanishes by Lemma 2.7 and the assumption that F is
H-central. In fact, the intersection

�
iPI
rknmipKn ^ Miq may be written asrknpKnq ^

�
iPImipMiq, i.e., an intersection of kernels of the initial arrows of

the first projection of RrF s. Consequently, the commutator� ©
iPn�1

rknmipKn ^Miq,Rrfns
�

vanishes as it one of the commutators which express the H-centrality of the
first projection of the kernel pair RrF s. So by (CC2) also the last term in (I)
is trivial, because it is smaller than�©

iPI

rknmipKn ^Miq,Rrfns,
©

iPpn�1qzI

mipMiq
�
� 0

as explained in Subsection 1.11.
We now further decompose the second term of (I)�©

iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq _
©

iPpn�1qzI

ekipKiq
�

into the join�©
iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq
�
_
�©
iPI

ekipKiq,
©

iPpn�1qzI

ekipKiq
�

_
�©
iPI

ekipKiq,
©

iPpn�1qzI

rknmipKn ^Miq,
©

iPpn�1qzI

ekipKiq
�
. (J)
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The first term of (J) vanishes, as the even larger subobjects©
iPI

mipMiq and
©

iPpn�1qzI

rknmipKn ^Miq

commute, again by Lemma 2.7 and the assumption that F is H-central. By
(CC2) also the last term in (J) is trivial, because it is smaller than�©

iPI

mipMiq,
©

iPpn�1qzI

rknmipKn ^Miq,Rrfns
�
� 0.

So all commutators determined by H � I � n � 1 in the join (H) are also in
the join (G). As I � H and I � n� 1 give rise to the same commutator, this
finally tells us that the join (H) is smaller than the join (G)—which finishes
the proof that when F is H-central, then it is central.
The other implication was almost proved in [46]; the only difference between

the result there and the present claim is that there, H-centrality was characteri-
sed in terms of Huq commutators, rather than Higgins commutators as in (B).
But the two concepts are equivalent by Lemma 2.5.

Corollary 2.9. Every semi-abelian category with (SH) satisfies the Commu-
tator Condition (CC).

Corollary 2.10. Every semi-abelian category with (CCn) for some n ¥ 2
satisfies the Commutator Condition (CC).

This immediately gives us explicit versions of Hopf formulae obtained in [18,
20]. Recall that an n-fold extension of an object Z is an n-fold presentation
of Z when all its objects, but its terminal object Z, are projective.

Theorem 2.11. Let A be a semi-abelian category with enough projectives such
that (SH) holds. Let Z be an object in A and F an n-fold presentation of Z.
Then

Hn�1pZ, abq �

rFn, Fns ^
©
iPn

Ki

ª
I�n

�©
iPI

Ki,
©
iPnzI

Ki

� .

When, moreover, A is monadic over Set, these homology objects are comonadic
Barr–Beck homology objects with respect to the canonical comonad on A.
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3. A counterexample
We prove that not every semi-abelian category needs to satisfy the Com-

mutator Condition (CC): for instance, the category of loops and loop homo-
morphisms Loop doesn’t. This is a refinement of the result from [30] saying
that the category Loop does not satisfy (SH). Incidentally, our counterexample
also works in the category of commutative loops CLoop, so it is a new example
of a semi-abelian category where (SH) is not valid.
Let us recall a few basic notions. A loop is a quasigroup with a neutral

element: an algebraic structure pX, �, z, {, 1q that satisfies x � 1 � x � 1 �x and
y � x � pxzyq y � xzpx � yq

x � px{yq � y x � px � yq{y.

We also write xy for the product x � y. An associative loop is the same thing
as a group. A commutative loop has xy � yx for all x, y P X—which
doesn’t yet imply that X is abelian in Loop: X carries an internal abelian
group structure precisely when it is an abelian group, when it is commutative
and associative. The defect in being associative is measured by means of the
associator elements

vx, y, zw � pxy � zq{px � yzq.

The associator elements are in the ternary commutator rX,X,Xs of X since
they are expressions in three variables which vanish as soon as one of the
variables is equal to 1.
We take X to be the non-associative commutative loop of which the multi-

plication table is Table 1. (Any Latin square determines a quasigroup, and a
loop is a quasigroup with unit. It is commutative as the multiplication table is
symmetric.) We take I to be its normal subloop t1,�1, i,�iu, as indicated in
the multiplication table of X, and H the normal subloop t1,�1, h,�hu of X.
The normal subloop

Y � t1,�1, i,�i, g,�g, h,�hu � H _ I

ofX is actually an abelian group (isomorphic to the cube C3
2 of the cyclic group

of order two C2), so that I and H commute in Y , hence in X. Furthermore,
A � H ^ I � t1,�1u is central in X, as the multiplication on X restricts to a
loop homomorphism � : A�X Ñ X. Hence we have the the equalities

rH, Is � 0 � rH ^ I,Xs.
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1 �1 i �i g �g h �h j �j k �k l �l m �m
�1 1 �i i �g g �h h �j j �k k �l l �m m
i �i 1 �1 h �h g �g k �k j �j �m m l �l
�i i �1 1 �h h �g g �k k �j j m �m �l l
g �g h �h 1 �1 i �i l �l m �m j �j k �k
�g g �h h �1 1 �i i �l l �m m �j j �k k
h �h g �g i �i 1 �1 m �m l �l k �k j �j
�h h �g g �i i �1 1 �m m �l l �k k �j j

j �j k �k l �l m �m 1 �1 i �i g �g h �h
�j j �k k �l l �m m �1 1 �i i �g g �h h
k �k j �j m �m l �l i �i 1 �1 h �h g �g
�k k �j j �m m �l l �i i �1 1 �h h �g g
l �l �m m j �j k �k g �g h �h 1 �1 i �i
�l l m �m �j j �k k �g g �h h �1 1 �i i
m �m l �l k �k j �j h �h g �g i �i 1 �1
�m m �l l �k k �j j �h h �g g �i i �1 1

Table 1. The loop X with its normal subloops I and Y

On the other hand, the commutator rH, I,Xs is non-trivial, as hi � l � gl � j
while h � il � hp�mq � �j, so that

1 � phi � lq{ph � ilq � vh, i, lw P rH, I,Xs.

This violates the Commutator Condition for n � 2 (Subsection 1.11), since H
and I � X determine a double extension (of C2 � X{Y ) which is H-central
but not central.
A direct proof without ternary commutators goes as follows. Let R and S be

the respective denormalisations of H and I. Then px, yq P R (resp. P S) when
xH � yH (resp. xI � yI). The Smith commutator rR, SsS is the kernel pair
of t in the colimit diagram

R
x1R,∆Sr2y

z����������

��

r1

�$?????????

R �X S ,2 T Xtlr

S
x∆Rs1, 1Sy

Zd????????? s2

:D���������

LR
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(Subsection 1.1). We claim that t maps vh, i, lw P X to 1, so that the couple
pvh, i, lw, 1q is a non-trivial element of rR, SsS. This violates the characterisation
of double central extensions recalled in Subsection 1.7.
The above colimit may be computed as the pushout

R � S
x r1s2 y ,2A

1R ∆Sr2
∆Rs1 1S

E
_��

X

t
_��

R �X S ,2 T.

Certainly the formal associator

vph, 1q, p1, iq, pl, lqw

in R � S, where pl, lq is considered as belonging to R, is mapped to vh, i, lw
in X. On the other hand, the arrow

@
1R ∆Sr2

∆Rs1 1S

D
sends this associator to the

element
vph, 1, 1q, p1, 1, iq, pl, l, lqw

of the pullback R �X S. This element is equal to

pvh, 1, lw, v1, 1, lw, v1, i, lwq � p1, 1, 1q,

because any associator containing 1 vanishes, so that indeed

p1, 1q � pvh, i, lw, 1q P rR, SsS.

4. Further remarks
4.1. Modules. The Smith is Huq Condition implies that every action of
an object on an abelian object A is a module (i.e., an abelian group in the
slice category A{Z): given any split epimorphism f : X Ñ Z, the equality
rRrf s,Rrf ssS � ∆X follows from

rKerpfq,KerpfqsHuq � rA,AsHuq � 0.

All known counterexamples against (SH), in digroups [3, 7] or in loops [30],
were examples of an action of an abelian object which is not a module, so
where rRrf s,Rrf ssS is bigger than ∆X . Under (CC) the situation is different:
considering f as a double extension

X
f � ,2

f
_��

Z

Z Z,
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in order to make use of (CC2) we would have to assume the stronger condition

rA^ A,XsHuq � rA,XsHuq � 0;

by (CC1) this already implies the stronger rRrf s,∇Xs
S � ∆X , which defeats

the purpose.

4.2. Relative commutators. Many of the examples obtained in [20] through
explicit calculations now become instances of Theorem 2.11, as do several other
examples considered in the literature: groups vs. abelian groups, rings vs. zero
rings, and Lie algebras vs. vector spaces, for instance. Nevertheless, there is
still a whole class of examples missing, namely all those where the homology is
not absolute, i.e., the functor which is being derived is not the abelianisation
functor. Higher Hopf formulae exist e.g. for precrossed modules vs. crossed
modules, groups vs. groups of a certain nilpotency or solvability class [20], loops
vs. groups (in low dimensions) [22], compact groups vs. profinite groups [19]
and Leibniz n-algebras vs. Lie n-algebras [13]. We hope to extend the results of
the present paper to the relative case so that also these examples may become
instances of the general theory. This problem is closely related to the results
of [17, 22, 23], as it depends on a suitable notion of relative commutator. In
the article [19] a solution is given for reflectors which are protoadditive.

4.3. Equivalence of (CC) and (SH). Another question we did not answer
now is whether or not (CC) implies (SH). The problem is that already against
(SH) alone the counterexamples are exotic, and now we would have to find a
category which does not have (SH) but does satisfy (CC).

4.4. Exact Mal’tsev categories. Under (CC), higher central extensions in
a semi-abelian category may be characterised in terms of binary Huq commu-
tators. So under (SH), this characterisation may be reformulated using binary
Smith commutators as follows.

Corollary 4.5. Given an n-fold extension F in a semi-abelian category with
(SH), ª

I�n

�©
iPI

Rrfis,
©
iPnzI

Rrfis
�S

� ∆Fn

if and only if F is central.
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We know, however, that when n � 2 this characterisation of double central
extensions is valid in all exact Mal’tsev categories: in [21], the proof given in
the article [45] in a semi-abelian context was replaced by a much more efficient
one which avoids the use of the Huq commutator and doesn’t need that the
category is pointed nor that it is protomodular but works in the exact Mal’tsev
context. This naturally leads to the following conjecture:

Conjecture 4.6. The above characterisation of n-fold central extensions is
also valid in exact Mal’tsev categories.

The difficulty here may be better understood when observing the difference
in underlying geometry between the vanishing of the Smith commutators that
occur in Corollary 4.5 on the one hand, and the characterisation of higher cen-
trality given in [46]—which is also geometrical in nature, and makes sense in
the exact Mal’tsev context—on the other. One could argue that this latter
characterisation of higher centrality leads to a “higher-order Smith commuta-
tor”. This would be just one n-ary Smith commutator involving higher-order
diamonds, instead of a join of several binary Smith commutators, each of which
only gives rise to a fragment of the geometry of those higher-order diamonds.
The question now essentially becomes whether the characterisation of double
central extensions in terms of binary Smith commutators is a coincidence ty-
pical for degree two or not.

4.7. Higgins instead of Smith. Even when a semi-abelian category does
not have the property (CC), the double central extensions in it may still be
characterised in terms of Higgins commutators. The only problem is that binary
commutators will not suffice, but rather a ternary commutator is needed: the
result in [30] says that (C) is central when the join rK ^ L,Xs _ rK,Ls _
rK,L,Xs vanishes. An unpublished result by Tomas Everaert, on which the
proof of Theorem 2.8 was based, gives the higher-dimensional analogue. It says
that an n-fold extension F in a semi-abelian category is central if and only if
the join of higher-order Higgins commutators [29]ª

I0Y���YIk�I�n

�©
iPI0

Kerpfiq, . . . ,
©
iPIk

Kerpfiq
�

vanishes. The size of the commutators stays bounded, and the join finite, as
a commutator in which an entry is repeated is smaller than the commutator
with the repetition removed.
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