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WEAK SOLUTIONS FOR A BIOCONVECTION MODEL
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Abstract: We consider the initial-boundary value problem for the coupled Navier-
Stokes-Keller-Segel-Fisher-Kolmogorov-Petrovskii-Piskunov system in two- and three-
dimensional domains. The problem describes oxytaxis and growth of Bacillus sub-
tilis in moving water. We prove existence of global weak solutions to the problem.
We distinguish between two cases determined by the cell diffusion term and the
space dimension, which are referred to as the supercritical and subcritical ones. At
the first case, the choice of the kinetic function enjoys wide range of possibilities:
in particular, it can be zero. Our results are new even at the absence of the kinetic
term. At the second case, the restrictions on the kinetic function are less relaxed: for
instance, it cannot be zero but can be Fisher-like. In the case of linear cell diffusion,
the solution is regular and unique provided the domain is the whole plane. In ad-
dition, we study the long-time behaviour of the problem, find dissipative estimates,
and construct attractors.
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1. Introduction
Let us fix a number T > 0 and a domain Ω ⊂ Rd, with d = 2, 3, which can

be a bounded open set locally located on one side of its C2-smooth boundary
∂Ω or the whole space Rd itself. In the cylinder QT = (0, T )×Ω, we consider
the following set of equations

∂tn+ u · ∇n−∆(nm) = −∇ · (χ(c)n∇c) + f(n), (1)

∂tc+ u · ∇c−∆c = −k(c)n, (2)

∂tu+ u · ∇u−∆u+∇p = −n∇φ, (3)

∇ · u = 0. (4)

Here c(t, x) : QT → R, n(t, x) : QT → R, u(t, x) : QT → Rd and p(t, x) :
QT → R are the oxygen concentration, cell concentration, fluid velocity, and
hydrostatic pressure, respectively. The scalar functions k, χ and f determine
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the oxygen consumption rate, chemotactic sensitivity, and bacterial growth,
resp., φ : QT → R is the potential produced by the action of physical forces
on the cells, and m ≥ 1 is the nonlinear diffusion exponent. The cases m = 1
and f ≡ 0 are not excluded.

The system is complemented with the no-flux boundary conditions for nm

and c, and the no-slip condition for u,

∂nm(t, x)

∂ν
= 0,

∂c(t, x)

∂ν
= 0, u(t, x) = 0, x ∈ ∂Ω, (5)

and with the initial conditions

n(0, x) = n0(x), c(0, x) = c0(x), u(0, x) = u0(x), x ∈ Ω. (6)

The model (1)–(4) with f ≡ 0 and m = 1 was suggested in [17] in or-
der to describe the combination of chemotaxis, metabolism, cell–cell signal-
ing, buoyancy, diffusion, and mixing in water drops full of aerobic bacteria
(Bacillus subtilis). The coupled system consisting of the equations of cell and
oxygen balance and of the ones of fluid motion and continuity is based on
general considerations from the bioconvection theory (cf. [6] and [13]). The
nonlinear-diffusion variant of the model (i.e. when m > 1) was proposed in
[4]. In this paper, we also admit the proliferation/death term f in the cell bal-
ance equation (1). Note that the convectionless chemotactic models taking
into account the role of cell kinetics were put forward in [10] (see also the re-
view paper [7]), and studied, for instance, in [1, 11, 12, 19, 20]. The typical ki-
netic terms are f(n) = Kn(1−n) (Fisher’s one) and f(n) = Kn(1−n)(n−α)
(the Allee effect).

The known mathematical treatments of the problem (1)–(6) (without the
kinetic term) can be divided in two groups. The first one is concerned with
the simpler Stokes-Keller-Segel problem lacking the nonlinear inertial term
in (3). The local in time weak solutions are shown to exist in [9] at the case
m = 1. For Ω = R2 and m = 1, there is a global weak solution [5] provided
c0 or φ are small in some norms, and under certain restrictions on k and
χ. For Ω = R2 and m = 2, the global weak solution exists [4] without that
additional hypotheses. The same is true for bounded Ω, d = 2 and m > 1 [16]

or d = 3 and 1.81 < 7+
√

217
12 ≤ m ≤ 2 [4], as well as for Ω = R3 and m = 4/3

with some assumptions on k and χ [8]. Moreover, in the case of bounded
convex Ω (d = 2, 3) and slightly weaker restrictions on k and χ, the problem
admits a global weak solution for m = 1 [21]. The eventual convergence
to the homogeneous state

(
n ≡

∫
Ω n0/|Ω|, c ≡ 0, u ≡ 0

)
is shown in [4] for
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bounded Ω and m = 2; however, this result is not entirely correct due to the
presence of steady-state solutions of the form (n ≡ 0, c ≡ const, u ≡ 0).

The second group studies the full Navier-Stokes-Keller-Segel problem with
m = 1. The existence of local weak solutions is treated in [2, 9]. The global
weak solutions exist for Ω = R2 [8]. Moreover, if the domain Ω ⊂ R2 is
bounded and convex, the solution is regular and unique [21] (a similar result
in the whole plane is proved in [2]). Here, more [2] or less [8, 21] restrictive
assumptions are imposed on k and χ. Global solutions exist for Ω = R3

when the initial datum is a small smooth perturbation of the steady state
(n0 = const, 0, 0) ([5], strong and unique) or when k/χ = const ([2], weak).

In this paper, we consider the problem (posed in [21]) of complete classifi-
cation of all m which allow for global solutions. It turned out to be suitable
to deal with this problem in the general setting (1)–(6) admitting the kinetic
term f . Herewith, two cases, which we call subcritical (1 ≤ m ≤ d+1

3 ) and

supercritical (m > d+1
3 ), naturally arise. In both cases, we prove existence of

global weak solutions (Theorems 3.1 and 4.1). However, the choice of the ki-
netic function in the supercritical case enjoys wider range of possibilities: in
particular, it can be zero. The typical kinetic terms mentioned above satisfy
all the assumptions in both sub- and supercritical cases. In the case Ω = R2

and m = 1, we prove existence of a unique classical solution without the
hypothesis of [2] that k/χ is almost a constant (our Theorem 4.2). Finally,
in Section 5, we show that in the supercritical case there exist weak solutions
satisfying certain dissipative estimates (Theorem 5.1), and construct mini-
mal trajectory and global attractors of the problem in the framework of [22]
(our Theorem 5.2).

2. Preliminaries and notation
We use the brief notations Lp, W

β
p , Hβ = W β

2 , p ≥ 1, β ∈ R, for the

Lebesgue and Sobolev spaces on Ω with values in F = R or Rd or Rd2.
Parentheses denote the bilinear form

(u, v) =

∫
Ω

(u(x), v(x))Fdx, u, v ∈ L1.

The norm in L2 is ‖u‖ =
√

(u, u). The symbol ‖u‖l, l ∈ N, will stand for
the Euclidean norm in H l.
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Let V be the set of smooth, divergence-free, compactly supported in Ω
functions with values in Rd. The symbols H, V , Vδ (δ > 0) denote the
closures of V in L2, H

1, Hδ, resp.
The symbols C(J ;E), Cw(J ;E), L2(J ;E) etc. denote the spaces of

continuous, weakly continuous, quadratically integrable etc. functions on
an interval J ⊂ R with values in a Banach space E. A pre-norm in the
Frechet space C([0,+∞);E) may be defined by the formula

‖v‖C([0,+∞);E) =
+∞∑
i=1

2−i
‖v‖C([0,i];E)

1 + ‖v‖C([0,i];E)
.

The symbol C will stand for a generic positive constant that can take
different values in different lines, whereas Ki, i = 1, 2, . . . , will be fixed
positive constants.

We set 〈x〉 =
√

1 + |x|2 in the case Ω = Rd, and 〈x〉 = 1 for bounded Ω.
For any scalar function ξ, we denote ξ+ = max(ξ, 0) and ξ− = max(−ξ, 0).
Finally, we give here the following definition of weak solution.

Definition 2.1. A triple (n, c, u) is a weak solution to the problem (1)–(6)
provided

n ≥ 0, c ≥ 0,

n ∈ L∞(0, T ;L1) ∩ L2(0, T ;L2) ∩ Lm(0, T ;Lm) ∩W 1
1 (0, T ; (W 1

∞)∗),

f(n) ∈ L1(0, T ;L1), ∇(nm) ∈ L1(0, T ;L1),

c ∈ L∞(0, T ;L∞ ∩H1) ∩ L2(0, T ;H2) ∩H1(0, T ; (H1)∗),

u ∈ L∞(0, T ;L2) ∩ L2(0, T ;V ) ∩W 1
1 (0, T ;V ∗),

and for any test functions ζ ∈ W 1
∞, θ ∈ H1, ψ ∈ V one has

d

dt
(n, ζ)− (un,∇ζ) + (∇(nm),∇ζ)− (χ(c)n∇c,∇ζ) = (f(n), ζ), (7)

d

dt
(c, θ)− (uc,∇θ) + (∇c,∇θ) + (k(c)n, θ) = 0, (8)

d

dt
(u, ψ)−

d∑
i,j=1

(
uiuj,

∂ψj
∂xi

)
+ (∇u,∇ψ) + (n∇φ, ψ) = 0 (9)

a.e. on (0, T ), and equalities (6) hold in the spaces (W 1
∞)∗, (H1)∗, V ∗, resp.
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3. The supercritical case
In the supercritical case, the existence of weak solutions is provided by

Theorem 3.1. Let m > d+1
3 . Let φ ∈ L1(0, T ;L1,loc) with ∇φ ∈ L2(0, T ;L∞).

Let k, χ and f be continuously differentiable functions, χ′ ≥ 0, k ≥ 0, k(0) =
0, f(0) ≥ 0 (but f(0) = 0 for Ω = Rd) and

f(y) ≤ f(0) + Cy (10)

for y ≥ 0.
Let n0 ∈ L1∩Lmax(1,m/2), n0 lnn0 ∈ L1, 〈·〉n0(·) ∈ L1, c0 ∈ H1∩L∞, n0 ≥ 0,

c0 ≥ 0, u0 ∈ H. Then problem (1)–(6) possesses a weak solution.

Proof : Let us show that a solution (n, c, u) to (1)–(6) satisfies the following
formal a priori bound:

‖u‖L∞(0,T ;L2) + ‖n lnn‖L∞(0,T ;L1) + ‖〈·〉n‖L∞(0,T ;L1) + ‖∇c‖L∞(0,T ;L2)

+ ‖∇u‖L2(0,T ;L2) + ‖n‖L2(0,T ;L2) + ‖nm/2‖L2(0,T ;H1)

+ ‖f(n)‖L1(0,T ;L1) + ‖f(n) lnn‖L1(0,T ;L1) + ‖c‖L2(0,T ;H2) ≤ C. (11)

Letting ζ ≡ 1 in (7), we get

d

dt
‖n(t)‖L1

=

∫
Ω

f(n(t, x)) dx, (12)

so

d

dt
‖n(t)‖L1

+ ‖f−(n)‖L1
= ‖f+(n)‖L1

≤
∫
Ω

f(0) dx+ C‖n(t)‖L1
≤ C(1 + ‖n(t)‖L1

), (13)

whence

‖n‖L∞(0,T ;L1) + ‖f−(n)‖L1(0,T ;L1) ≤ C. (14)

But

‖f+(n)‖L1(0,T ;L1) ≤ C(1 + ‖n‖L1(0,T ;L1)) ≤ C(1 + ‖n‖L∞(0,T ;L1)). (15)

Thus,

‖f(n)‖L1(0,T ;L1) ≤ C. (16)
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Putting θ = cp−1, p ≥ 2, in (8), we obtain

1

p

d

dt
‖c(t)‖pLp

≤ 0,

and thus

‖c‖L∞(0,T ;Lp) ≤ ‖c(0)‖Lp
. (17)

Passing to the limit as p→∞, we derive

‖c‖L∞(0,T ;L∞) ≤ C. (18)

Hence,

‖χ(c)‖L∞(0,T ;L∞) + ‖k(c)‖L∞(0,T ;L∞) ≤ C. (19)

Note that the fact of non-negativity of c and n is standard and follows from
the parabolic comparison principle.

We now take ζ = 1+lnn in (7), θ = −∆c in (8), and ψ = u in (9), arriving
at

d

dt

∫
Ω

n lnn dx+
4

m
(∇(nm/2),∇(nm/2))− (χ(c)∇c,∇n) = (f(n), 1 + lnn),

(20)

1

2

d

dt
(∇c,∇c) + (uc,∇∆c)− (∇c,∇∆c)− (k(c)n,∆c) = 0, (21)

1

2

d

dt
(u, u) + (∇u,∇u) + (n∇φ, u) = 0. (22)

Integrating by parts, we rewrite (20) as

d

dt

∫
Ω

n lnn dx+
4

m
‖∇(nm/2)‖2

+ (χ′(c)∇c, n∇c) + (χ(c)∆c, n) = (f(n), 1 + lnn), (23)
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and observe that

− (uc,∇∆c) =
d∑

i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+

(
ui,

∂c

∂xj

∂2c

∂xi∂xj

)

=
d∑

i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+

1

2

(
ui,

∂

∂xi

[
∂c

∂xj

]2
)

=
d∑

i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
.

(24)

Now, (21) reads as

1

2

d

dt
‖∇c‖2 −

d∑
i,j=1

(
∂ui
∂xj

, c
∂2c

∂xi∂xj

)
+ (∆c,∆c)− (k(c)n,∆c) = 0. (25)

When Ω is bounded, due to classical regularity issues for the Neumann
problem for the Poisson equation,

‖c(t)‖2 ≤ C(‖∆c(t)‖+ ‖c(t)‖). (26)

For the whole space, we have

‖c(t)‖2 = ‖c(t)−∆c(t)‖ ≤ ‖c(t)‖+ ‖∆c(t)‖ (27)

Hence, in both cases,

‖c(t)‖2 ≤ C(‖∆c(t)‖+ 1), t ∈ (0, T ). (28)

Applying (28) and the Cauchy inequality with epsilon to (25), we get

d

dt
‖∇c‖2 + 2K1‖c‖2

2 ≤ C +K2‖∇u‖2 +K3‖n‖2. (29)

Observe that both for n > 1 and n ≤ 1 (since f is C1-smooth),

[f(n) lnn]+ ≤ Cn| lnn|. (30)

Therefore, (23) yields

d

dt

∫
Ω

n lnn dx+
4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C + C‖n‖L1
+ C‖n lnn‖L1

+K1‖c‖2
2 +K4‖n‖2. (31)
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Multiply (22) by 2K2 and add with (29) and (31):

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnn dx+K2
d

dt
‖u‖2

+K1‖c‖2
2 +K2‖∇u‖2 +

4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C + C‖n lnn‖L1
+K5‖n‖2 +K6‖u∇φ‖2. (32)

If Ω = Rd, put ζ(x) = 〈x〉 in (7) (this test function is unbounded, but (7)
still holds since we are dealing with strong solutions now):

d

dt
‖n〈·〉‖L1

= (un,∇〈·〉) + (nm,∆〈·〉) + (χ(c)n∇c,∇〈·〉) + (f(n), 〈·〉). (33)

Let us estimate the terms in the right-hand side:

(un,∇〈·〉) ≤ C(‖u‖2 + ‖n‖2), (34)

(nm,∆〈·〉) ≤ C‖nm/2‖2, (35)

(χ(c)n∇c,∇〈·〉) ≤ C(‖n‖2 + ‖∇c‖2), (36)

(f(n), 〈·〉) ≤ C‖〈·〉n‖L1
, (37)

whence

3
d

dt
‖n〈·〉‖L1

≤ K7(1 + ‖u‖2 + ‖n‖2 + ‖nm/2‖2 + ‖∇c‖2 + ‖〈·〉n‖L1
). (38)

If Ω is bounded and 〈x〉 ≡ 1, (38) is a trivial consequence of (13).
Let us show that

‖n‖2 + ‖nm/2‖2 ≤ 2

(K5 +K7)m
‖∇(nm/2)‖2 + C. (39)

Indeed, let m ≤ 2. Let β = 2
m for d = 2 and β = 6

3m−1 for d = 3. In both
cases β < 2. Then, using the Gagliardo-Nirenberg inequality, we proceed as

‖n‖2 + ‖nm/2‖2 ≤ C(‖n‖2 + ‖n1/2‖2) = C(‖nm/2‖4/m
L4/m

+ ‖n‖2
L1

)

≤ C + C‖∇(nm/2)‖β‖nm/2‖4/m−β
L2/m

+ C‖nm/2‖4/m
L2/m

= C + C‖∇(nm/2)‖β‖n‖2−mβ/2
L1

+ C‖n‖2
L1
≤ C(1 + ‖∇(nm/2)‖β)

≤ 2

(K5 +K7)m
‖∇(nm/2)‖2 + C. (40)
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If m > 2, employing the Lp-interpolation, Young and Gagliardo-Nirenberg
inequalities, we have

‖n‖2 + ‖nm/2‖2 ≤ C(‖n1/2‖2 + ‖nm/2‖2)

≤ C(1 + ‖∇(nm/2)‖
2n
n+2‖nm/2‖

4
n+2

L1
+ ‖nm/2‖2

L1
)

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖nm/2‖2

L1
+ C

=
1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖n‖mLm/2

+ C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖n‖

m
m−1
L1
‖n‖

m2−2m
m−1

Lm
+ C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 + C‖nm/2‖

2m−4
m−1 + C

≤ 1

(K5 +K7)m
‖∇(nm/2)‖2 +

1

2
‖nm/2‖2 + C, (41)

which implies (39).
Since (n lnn)− ≤ C

√
n, it is easy to check (cf. [2] in the unbounded case)

that

‖n lnn‖L1
≤ K8 + 2‖〈·〉n‖L1

+

∫
Ω

n lnn dx. (42)

Adding (38) with (32), and taking into account (16),(39) and (42), we get

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnn dx+ 3
d

dt
‖〈·〉n‖L1

+K2
d

dt
‖u‖2

+K1‖c‖2
2 +K2‖∇u‖2 +

2

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C(1 + ‖∇φ‖2
L∞

)

×

1 +K8 + ‖∇c‖2 +

∫
Ω

n lnn dx+ 3‖〈·〉n‖L1
+K2‖u‖2

 . (43)
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Gronwall’s inequality and (42) yield

‖∇c‖2 + ‖n lnn‖L1
+ ‖〈·〉n‖L1

+K2‖u‖2

≤ 1 +K8 + ‖∇c‖2 +

∫
Ω

n lnn dx+ 3‖〈·〉n‖L1
+K2‖u‖2 ≤ C, (44)

and (43) gives

K1‖c‖2
L2(0,T ;H2) +K2‖∇u‖2

L2(0,T ;L2)

+
2

m
‖∇(nm/2)‖2

L2(0,T ;L2) + ‖[f(n) lnn]−‖L1(0,T ;L1) ≤ C. (45)

To conclude the proof of (11), it remains to remember (16),(30) and (39).
Note that

‖∇(nm)‖L1(0,T ;L1) ≤ 2‖∇(nm/2)‖L2(0,T ;L2)‖nm/2‖L2(0,T ;L2) ≤ C. (46)

We still require some more estimates. Firstly, let m < 2. We find

‖∇n‖Lm(0,T ;Lm) = ‖(∇n)m‖L1(0,T ;L1)

= ‖(nm−1∇n)2−m(n
m−2
2 ∇n)2m−2‖L1(0,T ;L1)

≤ ‖(nm−1∇n)2−m‖L 1
2−m

(0,T ;L 1
2−m

)‖(n
m−2
2 ∇n)2m−2‖L 1

m−1
(0,T ;L 1

m−1
)

= ‖(nm−1∇n)‖2−m
L1(0,T ;L1)‖(n

m−2
2 ∇n)‖2m−2

L2(0,T ;L2)

≤ C‖∇(nm)‖2−m
L1(0,T ;L1)‖∇(nm/2)‖2m−2

L2(0,T ;L2) ≤ C. (47)

In the case m > 2, let ζ = n
m−2
2 in (7). Then we derive

2

m

d

dt
‖nm/2‖L1

+
8m(m− 2)

(3m− 2)2
(∇(n

3m−2
4 ),∇(n

3m−2
4 ))

− m− 2

m
(χ(c)∇c,∇(nm/2)) + (f−(n), n

m−2
2 ) = (f+(n), n

m−2
2 ). (48)

Therefore, by the Cauchy-Bunyakovsky-Schwarz and Young inequalities,

d

dt
‖nm/2‖L1

+ ‖∇(n
3m−2

4 )‖2 + (f−(n), n
m−2
2 )

≤ C

‖∇c‖2 + ‖∇(nm/2)‖2 + ‖nm/2‖L1
+

∫
Ω

f(0)m/2 dx

 . (49)
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Gronwall’s lemma and (11) imply

‖nm/2‖L∞(0,T ;L1) + ‖∇(n
3m−2

4 )‖L2(0,T ;L2) + ‖f(n)n
m−2
2 ‖L1(0,T ;L1) ≤ C. (50)

We find, via a reasoning similar to (41), that

‖n
3m−2

4 ‖L2(0,T ;L2) ≤ C‖∇(n
3m−2

4 )‖L2(0,T ;L2) + C ≤ C. (51)

Now, test (7) by the function ζn
m−2
2 , ζ ∈ W 1

∞:

2

m

(
d

dt
nm/2, ζ

)
+

8m(m− 2)

(3m− 2)2
(∇(n

3m−2
4 ), ζ∇(n

3m−2
4 ))

+
4m

3m− 2
(∇(n

3m−2
4 ), n

3m−2
4 ∇ζ)− m− 2

m
(χ(c)∇c, ζ∇(nm/2))

− (χ(c)∇c, nm/2∇ζ) = (f(n), ζn
m−2
2 ). (52)

Using (11), (50), (51), it is easy to deduce from (52) that

T∫
0

∣∣∣∣ ddt(nm/2, ζ)

∣∣∣∣ dt ≤ C‖ζ‖W 1
∞
. (53)

In the same manner, not necessarily for m > 2, we derive from (11), (46),
(7)–(9) that

T∫
0

∣∣∣∣ ddt(n, ζ)

∣∣∣∣ dt ≤ C‖ζ‖W 1
∞
, (54)

T∫
0

∣∣∣∣ ddt(c, θ)
∣∣∣∣2 dt ≤ C‖θ‖2

1, (55)

T∫
0

∣∣∣∣ ddt(u, ψ)

∣∣∣∣ dt ≤ C‖ψ‖1. (56)

Note that (54) coincides with (53) for m = 2.
Having bounds (11), (46), (50), (53)–(56) in hand, we can prove the ex-

istence of weak solution via approximation of (1)–(6) by a more regular
problem, and consequent passage to the limit. We omit a major part of the
details (see [2, 4, 5, 16] for similar issues), and restrict ourselves on the pecu-
liarities of passage to the limit in the porous-medium-like and growth terms.
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For definiteness, we consider the case of bounded Ω (the unbounded case is
very similar, merely the spaces Lp should be replaced by Lp,loc).

The growth term f can be approximated by a sequence of bounded func-
tions fN = fN

|f |+N , N ∈ N. Let (nN , cN , uN) be the corresponding sequence of

solutions and (n, c, u) be the limit (intended to be the weak solution).
Due to (11), without loss of generality (passing to a subsequence, if nec-

essary) n
m/2
N → nm/2 weakly in L2(0, T ;H1). Assume first that m ≥ 2.

In view of (53), we can employ the Aubin–Lions–Simon lemma [15] to get

n
m/2
N → nm/2 strongly in L2(0, T ;L2) (here and below we always mean “up

to a subsequence”). On the other hand, for m < 2, nN → n weakly in
Lm(0, T ;W 1

m) in view of (47) and (11). Due to (54), by the Aubin–Lions–
Simon lemma we conclude that nN → n strongly in Lm(0, T ;Lm), whence

n
m/2
N → nm/2 strongly in L2(0, T ;L2) again. Hence, in both cases,

∇(nmN) = 2n
m/2
N ∇(n

m/2
N )→ 2nm/2∇(nm/2) = ∇(nm)

weakly in L1(0, T ;L1).
Finally, let us show that fN(nN) → f(n) in L1(0, T ;L1). By the Vitali

convergence theorem, it suffices to see that fN(nN) → f(n) in measure on

(0, T ) × Ω and |fN(nN)| are uniformly integrable. We have n
m/2
N → nm/2 in

L2(0, T ;L2), thus nN → n a.e. in (0, T )× Ω. Therefore

fN(nN)− f(n) = −f(nN)|f(nN)|
|f(nN)|+N

+ f(nN)− f(n)→ 0

a.e. and hence in measure. Due to (11), ‖fN(nN) lnnN‖L1(0,T ;L1) ≤ C. Thus,∫
|fN (nN )|>M

|fN(nN)| dx dt

≤ C sup
|fN (nN )|>M

| lnnN |−1 ≤ C sup
|f(nN )|>M

| lnnN |−1 → 0 (57)

as M → +∞.

4. The subcritical case
The subcritical case requires an additional assumption on the kinetic func-

tion:
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Theorem 4.1. Let 1 ≤ m ≤ d+1
3 . Suppose that

f(y) + Cfy
2 ≤ f(0) + Cy (58)

with some positive Cf independent of y ≥ 0, and the remaining assumptions
of Theorem 3.1 hold. Then problem (1)–(6) possesses a weak solution.

Proof : Let us describe the differences with the proof of Theorem 3.1. We
still need to secure inequality (11). Firstly, (12), apart from yielding (13),
gives

d

dt
‖n(t)‖L1

+ Cf‖n‖2 ≤ C(1 + ‖n(t)‖L1
), (59)

whence
‖n‖L2(0,T ;L2) ≤ C. (60)

Since m ≤ 2,

‖nm/2‖L2(0,T ;L2) ≤ C(‖n1/2‖L2(0,T ;L2) + ‖n‖L2(0,T ;L2)) ≤ C. (61)

Thus, we do not need (39), which only holds in the supercritical case, but
instead of (43) we have

d

dt
‖∇c‖2 +

d

dt

∫
Ω

n lnn dx+ 3
d

dt
‖〈·〉n‖L1

+K2
d

dt
‖u‖2

+K1‖c‖2
2 +K2‖∇u‖2 +

4

m
‖∇(nm/2)‖2 + ‖[f(n) lnn]−‖L1

≤ C(1 + ‖n‖2 + ‖nm/2‖2 + ‖∇φ‖2
L∞

)

×

1 +K8 + ‖∇c‖2 +

∫
Ω

n lnn dx+ 3‖〈·〉n‖L1
+K2‖u‖2

 . (62)

Gronwall’s lemma, (60), (61) and (42) imply (44), (45) and (11).

In the whole-plane case, the problem possesses a unique global regular
solution:

Theorem 4.2. Let Ω = R2, m = 1, f , χ and k are C3-smooth, f ′(y) +
|f ′′(y)| ≤ C for y ≥ 0, ∇φ ∈ W 2

∞ (and independent of t), n0 ∈ H2, c0 ∈ H3,
u0 ∈ H3, and the remaining assumptions of Theorem 4.1 hold. Then there
exists a unique classical solution to (1)–(6), satisfying

n ≥ 0, c ≥ 0,
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n ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3), (63)

c ∈ L∞(0, T ;H3) ∩ L2(0, T ;H4), (64)

u ∈ L∞(0, T ;H3) ∩ L2(0, T ;H4). (65)

Proof : We observe that

(∇ f(n),∇n) = (f ′(n)∇n,∇n) ≤ C‖∇n‖2, (66)

and

(∆ f(n),∆n) = (f ′(n)∆n,∆n) + (f ′′(n)∇n∆n,∇n)

≤ C(∆n,∆n) + C‖∆n‖‖∇n‖2
L4
≤ C‖∆n‖2 + C‖∆n‖2‖∇n‖. (67)

Having this at hand, one may check that the blow-up criterion

‖∇c‖L2(0,T ;L∞) = +∞ (68)

proven in [2] for f ≡ 0 remains valid in our situation, and at the absence of
blow-up, i.e. when

‖∇c‖L2(0,T ;L∞) < +∞, (69)

the solution is unique and its regularity is determined by (63)– (65). The
argument showing that (69) takes place is a slight variation of the one ending
the proof of Theorem 3 in [2].

5. Attractors
In this section we study the long-time behaviour of problem (1)–(5). We

restrict ourselves to the supercritical case (cf. Remark 5.2 below). Since we
cannot establish uniqueness of the weak solutions, we treat the question via
the theory of trajectory attractors. More precisely, owing mainly to technical
convenience, we use our version of the theory [22, Chapter 4] instead of more
classical approaches of Chepyzhov–Vishik [3] and Sell [14]. However, we do
not know if the latter ones are applicable to (1)–(5).

In order to simplify the presentation, we consider the autonomous case

∇φ ∈ L∞
(independent of t). However, similar results can be obtained in the non-
autonomous case via employment of the more involved theory of pullback
trajectory attractors developed recently in [18].

We start with recalling some basic framework from [22, Chapter 4].
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Let E and E0 be Banach spaces, E ⊂ E0, E is reflexive. Fix some set

H+ ⊂ C([0,+∞);E0) ∩ L∞(0,+∞;E)

of solutions (strong, weak, etc.) for any given autonomous differential equa-
tion or boundary value problem. Hereafter, the set H+ will be called the
trajectory space and its elements will be called trajectories. Generally speak-
ing, the nature of H+ may be different from the just described one.

Definition 5.1. A set P ⊂ C([0,+∞);E0)∩L∞(0,+∞;E) is called attract-
ing (for the trajectory space H+) if for any set B ⊂ H+ which is bounded in
L∞(0,+∞;E), one has

sup
u∈B

inf
v∈P
‖T (h)u− v‖C([0,+∞);E0) →

h→∞
0.

Here T (h) stands for the translation (shift) operator,

T (h)(u)(t) = u(t+ h).

Definition 5.2. A set P ⊂ C([0,+∞);E0)∩L∞(0,+∞;E) is called absorbing
(for the trajectory space H+) if for any set B ⊂ H+ which is bounded in
L∞(0,+∞;E), there is h ≥ 0 such that T (t)B ⊂ P for all t ≥ h.

Definition 5.3. A set U ⊂ C([0,+∞);E0) ∩ L∞(0,+∞;E) is called the
minimal trajectory attractor (for the trajectory space H+) if

i) U is compact in C([0,+∞);E0) and bounded in L∞(0,+∞;E);
ii) T (t)U = U for any t ≥ 0;
iii) U is attracting;
iv) U is contained in any other set satisfying conditions i), ii), iii).

Definition 5.4. A set A ⊂ E is called the global attractor (in E0) for the
trajectory space H+ if

i) A is compact in E0 and bounded in E;
ii) for any bounded in L∞(0,+∞;E) set B ⊂ H+ the attraction property

is fulfilled:

sup
u∈B

inf
v∈A
‖u(t)− v‖E0

→
t→∞

0;

iii) A is the minimal set satisfying conditions i) and ii) (that is, A is
contained in every set satisfying conditions i) and ii)).

Proposition 5.1. Assume that there exists an absorbing set P for the tra-
jectory space H+, which is relatively compact in C([0,+∞);E0) and bounded
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in L∞(0,+∞;E). Then there exists a minimal trajectory attractor U for the
trajectory space H+.

Proposition 5.2. If there exists a minimal trajectory attractor U for the
trajectory space H+, then there is a global attractor A for the trajectory space
H+, and for all t ≥ 0 one has A = {ξ(t)|ξ ∈ U}.

Remark 5.1. As a matter of fact, the existence of an absorbing set P
implies that U and A also attract the trajectories in the weak-* topology
of L∞(0,+∞;E) and weak topology of E, resp. The reason is that, for
any set B ⊂ H+ which is bounded in L∞(0,+∞;E) and large h, the sets
{T (h)u|u ∈ B} and {u(h)|u ∈ B} are bounded and thus relatively weakly-*
and weakly compact in L∞(0,+∞;E) and E, resp. This simple remark is
important since in the applications the space E0 can be comparatively weird.

We return to the bioconvection model, and make the following assumptions:
a) Ω is bounded.
b) m > d+1

3 .
c) φ ∈ L1, ∇φ ∈ L∞.
d) k, χ and f are continuously differentiable functions, χ′ ≥ 0, k ≥ 0,

k(0) = 0.
e) The initial concentration of oxygen does not exceed some constant cO.

This unusual assumption is necessary for the presence of a compact attractor,
at least when f(0) = 0. Indeed, without an assumption of this kind no
compact attractor may exist due to the presence of steady-state solutions
(n ≡ 0, c ≡ c0, u ≡ 0) with arbitrarily large constants c0 independent of x.
An alternative (which we do not like) is to fix the initial oxygen concentration,
and to only let n0 and u0 vary.

f) There exists a positive number γ so that

f(y) + 2γy ≤ C, y ≥ 0, (70)

2γ ≤ K1, (71)

and
4γ‖u‖2 ≤ ‖∇u‖2, u ∈ V. (72)

Let us specify the class of solutions to (1)–(5) to be considered within this
section.

Definition 5.5. A triple (n, c, u) ∈ L∞(0,+∞;L1×H1×H) is an admissible
weak solution to problem (1)–(5) if it is a weak solution on each bounded
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interval [0, T ], and it satisfies the inequalities

‖n‖L∞(t,t+1;L1) + ‖n lnn‖L∞(t,t+1;L1)

+ ‖n‖max(1,m/2)
L∞(t,t+1;Lmax(1,m/2))

+ ‖c‖2
L∞(t,t+1;H1) + ‖u‖2

L∞(t,t+1;H)

+ ‖n‖2
L2(t,t+1;L2) + ‖n[max(4,3m−2)]/2‖L1(t,t+1;L1) + ‖c‖2

L2(t,t+1;H2) + ‖u‖2
L2(t,t+1;V )

≤ Γ[1 + e−γt(‖n(0)‖L1
+ ‖n(0) lnn(0)‖L1

+ ‖n(0)‖max(1,m/2)
Lmax(1,m/2)

+ ‖c(0)‖2
1 + ‖u(0)‖2)], (73)

‖c(t)‖L∞ ≤ cO (74)

for all t ≥ ln(‖n0‖L1
)

γ , where Γ is a certain constant depending on ∇φ, k, χ, f ,

cO, γ and m (it will be defined during the proof of Theorem 5.1).

As the following proposition shows, the class of admissible weak solutions
is sufficiently wide.

Theorem 5.1. Let (n0, c0, u0) be as in Theorem 3.1, and c0 ≤ cO. Then there
exists an admissible weak solution to (1)–(5) satisfying the initial condition
(6).

Proof : It suffices to formally establish (73) and (74) for the solutions of (1)–
(5), and to pass to the limit as in the proof of Theorem 3.1.

Inequality (74) is straightforward, giving also (19).
As a consequence of (70), we have

(f(y) + γy) ln y ≤ C, y ≥ 0, (75)

and

(f(y) + γy)yp ≤ C, y ≥ 0, (76)

for any fixed p > 0.
We deduce from (12) that

d

dt
‖n(t)‖L1

+ γ‖n(t)‖L1
≤ C, (77)

so

‖n(t)‖L1
≤ C + e−γt‖n0‖L1

. (78)

For t ≥ ln(‖n0‖L1
)

γ , we have

‖n(t)‖L1
≤ C. (79)
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Formulas (23) and (75) imply

d

dt

∫
Ω

n lnn dx+
4

m
‖∇(nm/2)‖2 + γ

∫
Ω

n lnn

≤ C +K1‖c‖2
2 +K4‖n‖2, (80)

whereas (22) gives

1

2

d

dt
‖u‖2 + ‖∇u‖2 ≤ K9‖n‖2 +

γ

2
‖u‖2. (81)

Multiply (81) by 2K2e
γt and add with (29) and (80) multiplied by eγt:

d

dt
[eγt‖∇c(t)‖2] +

d

dt

∫
Ω

eγtn(t, x) lnn(t, x) dx+K2
d

dt
[eγt‖u(t)‖2]

− γeγt‖∇c(t)‖2 −K2γe
γt‖u(t)‖2

+K1e
γt‖c(t)‖2

2 +K2e
γt‖∇u(t)‖2 +

4eγt

m
‖∇(nm/2)(t)‖2

≤ Ceγt +K10e
γt‖n(t)‖2 +K2γe

γt‖u(t)‖2. (82)

Similarly to (39), we see that

‖n(t)‖2 ≤ 2

K10m
‖∇(nm/2(t))‖2 + C. (83)

Taking into account (72) and (71), we conclude that

d

dt
[eγt‖∇c(t)‖2] +

d

dt

∫
Ω

eγtn(t, x) lnn(t, x) dx+K2
d

dt
[eγt‖u(t)‖2]

+
K1e

γt

2
‖c(t)‖2

2 +
K2e

γt

2
‖∇u(t)‖2 +

2eγt

m
‖∇(nm/2)(t)‖2 ≤ Ceγt. (84)

Integration in time implies
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eγh‖∇c(h)‖2 +

∫
Ω

eγhn(h, x) lnn(h, x) dx+K2[e
γh‖u(h)‖2]

+

h∫
0

K1e
γt

2
‖c(t)‖2

2 dt+

h∫
0

K2e
γt

2
‖∇u(t)‖2 dt+

h∫
0

2eγt

m
‖∇(nm/2)(t)‖2 dt

≤ C

h∫
0

eγt dt+ ‖c0‖2
1 + ‖n0 lnn0‖L1

+K2‖u0‖2. (85)

Therefore,

‖∇c(h)‖2 +

∫
Ω

n(h, x) lnn(h, x) dx+K2‖u(h)‖2

≤ C + e−γh(‖c0‖2
1 + ‖n0 lnn0‖L1

+K2‖u0‖2). (86)

This inequality, (74), (78) and (42) yield

‖c(h)‖2
1 + ‖n(h) lnn(h)‖L1

+ ‖u(h)‖2

≤ C(1 + e−γh(‖c0‖2
1 + ‖n0‖L1

+ ‖n0 lnn0‖L1
+ ‖u0‖2)). (87)

Integrating (84) from h to h+ 1, we find

eγ(h+1)‖∇c(h+1)‖2+

∫
Ω

eγ(h+1)n(h+1, x) lnn(h+1, x) dx+K2[e
γ(h+1)‖u(h+1)‖2]

+

h+1∫
h

K1e
γt

2
‖c(t)‖2

2 dt+

h+1∫
h

K2e
γt

2
‖∇u(t)‖2 dt+

h+1∫
h

2eγt

m
‖∇(nm/2)(t)‖2 dt

≤ C

h+1∫
h

eγt dt+ ‖c(h)‖2
1 + ‖n(h) lnn(h)‖L1

+K2‖u(h)‖2. (88)

Due to (42), (83) and (87), we arrive at
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eγ‖∇c(h+ 1)‖2 + eγ‖n(h+ 1) lnn(h+ 1)‖L1
+K2e

γ‖u(h+ 1)‖2

+
K1

2

h+1∫
h

‖c(t)‖2
2 dt+

K2

2

h+1∫
h

‖∇u(t)‖2 dt+K10

h+1∫
h

‖n‖2 dt

≤ C(1 + e−γh(‖c0‖2
1 + ‖n0‖L1

+ ‖n0 lnn0‖L1
+ ‖u0‖2)). (89)

Let m > 2. Then (48) and (76) imply

2

m

d

dt
‖n‖m/2Lm/2

+ γ‖n‖m/2Lm/2
+

8m(m− 2)

(3m− 2)2
‖∇(n

3m−2
4 )‖2

≤ C(1 + ‖∇c‖2 + ‖∇(nm/2)‖2). (90)

This, (85) and (42) yield (by [3, p. 35])

‖n(h)‖m/2Lm/2
≤ e−γmh/2‖n0‖m/2Lm/2

+C

h∫
0

eγm(t−h)/2(1+‖c(t)‖2
2+‖∇(nm/2)(t)‖2) dt

≤ e−γh‖n0‖m/2Lm/2
+ C

h∫
0

eγ(t−h)(1 + ‖c(t)‖2
2 + ‖∇(nm/2)(t)‖2) dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖2

1 + ‖n0‖L1
+ ‖n0 lnn0‖L1

+ ‖u0‖2)). (91)

Now, integration of (90) from h to h+ 1 gives

h+1∫
h

‖∇(n
3m−2

4 )(t)‖2 dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖2

1 + ‖n0‖L1
+ ‖n0 lnn0‖L1

+ ‖u0‖2)). (92)

Similarly to (51), we deduce

h+1∫
h

‖n(3m−2)/2(t)‖L1
dt

≤ C(1 + e−γh(‖n0‖m/2Lm/2
+ ‖c0‖2

1 + ‖n0‖L1
+ ‖n0 lnn0‖L1

+ ‖u0‖2)). (93)
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In view of (78), (87), (89), (91), (93) and (72), there exists Γ such that
(73) holds true.

We are going to construct the minimal trajectory attractor and the global
attractor for problem (1)–(5). In the sequel, we assume that

|f(y)| ≤ C(ym + 1), y ≥ 0, (94)

and m > 2. It seems that other supercritical values of m can also be treated,
even without (94), although m = 2 may be troublesome. For this purpose,
one should observe that the major part of the considerations in [22, Chapter
4] and [18] remains valid for non-reflexive E.

We let

E = Lm/2 ×H1 ×H

and

E0 = W−δ
m/2 ×H

1−δ × V ∗δ ,

where δ ∈ (0, 1] is a fixed number. The trajectory space H+ is the set of
all admissible weak solutions to (1)–(5). It is contained in L∞(0,+∞;E).
Moreover, without loss of generality we may assume that it is contained in
C([0,+∞); (W 1

∞)∗× (H1)∗×V ∗). By the Lions-Magenes lemma [22, Lemma
2.2.6], L∞(0,+∞;E) ∩ C([0,+∞); (W 1

∞)∗ × (H1)∗ × V ∗) ⊂ Cw([0,+∞);E).
Since the embedding E ⊂ E0 is compact, H+ lies in C([0,+∞);E0).

Lemma 5.1. The time derivatives of admissible weak solutions satisfy the
estimate

‖n′‖L 3
2−

1
m

(t,t+1;W−21 ) + ‖c′‖2
L2(t,t+1;(H1)∗) + ‖u′‖2

L4/3(t,t+1;V ∗)

≤ Ψ(‖n‖L2(t,t+1;L2), ‖n‖L(3m−2)/2(t,t+1;L(3m−2)/2),

‖c‖L∞(t,t+1;H1), ‖u‖L∞(t,t+1;H), ‖u‖L2(t,t+1;V )) (95)

with some continuous function Ψ independent of t ≥ 0.

Theorem 5.2. The trajectory space H+ possesses a minimal trajectory at-
tractor and a global attractor.

Proof : Due to Propositions 5.1 and 5.2, it suffices to find an absorbing set
for the trajectory space H+, which is relatively compact in C([0,+∞);E0)
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and bounded in L∞(0,+∞;E). Consider the set P of all triples (n, c, u) ∈
C([0,+∞);E0) ∩ L∞(0,+∞;E) such that (95) and

‖n‖L∞(t,t+1;L1) + ‖n lnn‖L∞(t,t+1;L1)

+ ‖n‖max(1,m/2)
L∞(t,t+1;Lmax(1,m/2))

+ ‖c‖2
L∞(t,t+1;H1) + ‖u‖2

L∞(t,t+1;H)

+ ‖n‖2
L2(t,t+1;L2) + ‖n(3m−2)/2‖L1(t,t+1;L1)

+ ‖c‖2
L2(t,t+1;H2) + ‖u‖2

L2(t,t+1;V ) ≤ 2Γ, (96)

hold for every t ≥ 0.
It is an absorbing set for the trajectory space H+ and is bounded in

L∞(0,+∞;E). By the Aubin–Lions–Simon lemma, the set {y|[0,M ], y ∈ P}
is relatively compact in C([0,M ];E0) for any M > 0. This implies (cf. [22,
p. 183]) that P is relatively compact in C([0,+∞);E0).

Remark 5.2. Observe that (58) implies (70) for all positive γ, in particular,
for the ones at which (72) and (71) hold true. Thus, one can expect existence
of attractors in the subcritical case. We leave it as an open problem.
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