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1. Introduction

The study of real orthogonal polynomial sequences, {Pn}, that are solutions
of differential equations

N∑

j=0

Ajy
(j) = 0 (1)

where Aj are polynomials, is connected to measure perturbation theory and
spectral theory of differential operators (see [6]). The minimal order of a
differential equation (1) having orthogonal polynomial solutions is N = 2 or
N = 4 (see [14]). For the case N = 2 in (1) and and A0 = λ, where λ is some
spectral (eigenvalue) parameter,

A2y
′′ + A1y

′ + λy = 0 , (2)

it is known the classification of sequences of orthogonal polynomial solu-
tions: {Pn} must be, up to a linear change of variable, a member of the
classical families, i.e., the Hermite, Laguerre, Jacobi and Bessel orthogonal
polynomials (see [3] and also [11], for an overview on the problem of deter-
mination of orthogonal polynomial families that are solutions of (2)).
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In the present paper we focus our attention on differential equations satis-
fied by Laguerre-Hahn orthogonal polynomials on the real line. These poly-
nomials are related to Stieltjes functions satisfying Riccati type differential
equations with polynomial coefficients [10, 18, 19, 21, 22]

AS ′ = BS2 + CS +D . (3)

Note that the Laguerre-Hahn orthogonal polynomials are a generalization
of the semi-classical orthogonal polynomials, since the later ones are related
to (3) withB ≡ 0, the classical families appearing if, in addiction, deg(A) ≤ 2
and deg(C) = 1. Laguerre-Hahn orthogonal polynomials can be generated
by performing a perturbation on the Stieltjes function of semi-classical or-
thogonal polynomials or by doing a modification on the three term recurrence
relation coefficients of semi-classical orthogonal polynomials (see [1, 4, 9, 22]).
Thus, it turns out that the associated polynomials of semi-classical orthogo-
nal polynomials constitute a well-known example of Laguerre-Hahn polyno-
mials (see [1, 4, 7, 25]). Other examples include the co-recursive, co-dilated
and co-modified polynomials (see [4, 15, 16]).

Laguerre-Hahn families of orthogonal polynomials are solutions of differen-
tial equations (1), where the minimal order is N = 4 (see [2, 10, 14, 20, 23]),
thus when no simplification occurs, Laguerre-Hahn orthogonal polynomials
satisfy

A4P
(4)
n + A3P

(3)
n +A2P

′′
n +A1P

′
n +A0Pn = 0 ,

where the Aj’s are polynomials.
In this work we start by reinterpreting a result of [10], by showing an

equivalence between (3) and differential-difference equations with matrix co-
efficients

AΨ′
n = MnΨn + NnΨn−1 , Ψn =

[
Pn+1 P

(1)
n

]
, n ≥ 0 ,

with {Pn} the sequence of monic orthogonal polynomials related to (3) and

{P
(1)
n } the sequence of first order associated polynomials (cf. Theorem 2).

We prove the equivalence between (3) and differential-difference equations
for the sequence of functions of the second kind {qn} (cf. Section 2),

Aq′n = (ln−1 +
C

2
+BS)qn + Θn−1qn−1 , n ≥ 0 .
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Next, we prove the equivalence between (3) and a second order differential
equation with matrix coefficients having polynomial entries,

ÃnΨ
′′
n + B̃nΨ

′
n + C̃nΨn = 02×1 , n ≥ 1 (4)

as well as a second order differential equation for the sequence of functions
of the second kind {qn}

Ãnq
′′
n + B̃nq

′
n + C̃nqn = 0 , n ≥ 1 , (5)

where Ãn is a polynomial and B̃n, C̃n are functions. These equivalences are
the analogue for orthogonality on the real line of [5, Theorems 1 and 2].
Taking into account the above referred equivalence between (3) and (4),
we deduce a characterization of the sequences {Ψn} corresponding to the
Laguerre-Hahn class zero (i.e., max{deg(A), deg(B)} ≤ 2 and deg(C) = 1
in (3) [4, 10]) as solutions of second order matrix operators,

Ln(Ψn) = 0 , Ln = AD
2 + Ψ D + Λn I , n ≥ 0 , (6)

with A,Ψ,Λn 2 × 2 matrices explicitly given in terms of the polynomials A,
B, C, D in (3) (cf. Theorem 4).

Finally, the last part of the paper is devoted to the analysis of the classical
families. As a consequence of the above referred results some characteri-
zations for the classical orthogonal polynomials are shown, from which we
emphasize the characterizations in term of:

– the hypergeometric-type differential equation for the sequence of func-
tions of the second kind;

– the differential equation that links the associated polynomials P
(1)
n and

the derivative of Pn+1,

A
(
P (1)
n

)′′
+ (A′ − C)

(
P (1)
n

)′
+ λ∗n+1P

(1)
n = 2DP ′

n+1 , n ≥ 0 ,

where λ∗n+1 are constants, explicitly given in terms of the polynomials A, B,
C, D in (3);

– the Rodrigues-type formulas for {qn}.
This paper is organized as follows. In Section 2 we give the definitions

and state the basic results which will be used in the forthcoming sections.
In Section 3 we establish the equivalence between (3) and the second order
differential equations (4) and (5). In Section 4 we establish a characterization
of Laguerre-Hahn orthogonal polynomials of class zero as solutions of (6). In
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Section 5 we present characterizations of the classical families of orthogonal
polynomials.

2. Preliminary Results

Let P = span {zk : k ∈ N0} be the space of polynomials with complex
coefficients, and let P

′ be its algebraic dual space, i.e., the linear space of
linear functionals defined on P. We will denote by 〈u, f〉 the action of u ∈ P

′

on f ∈ P. We consider a linear functional u ∈ P
′ and 〈u, xn〉 = un, n ≥ 0,

its moments. We will take u normalized, i.e., u0 = 1.
Given the sequence of moments (un) of u, the principal minors of the cor-

responding Hankel matrix are defined by Hn = det((ui+j)
n
i,j=0), n ≥ 0. By

convention, H−1 = 1. The linear functional u is said to be quasi-definite
(respectively, positive-definite) if Hn 6= 0 (respectively, Hn > 0), for all inte-
ger n ≥ 0. If u is positive-definite, then it has an integral representation in
terms of a positive Borel measure, µ, supported on an infinite set of points
of the real line, I, such that

〈u, xn〉 =

∫

I

xn dµ , n ≥ 0 .

Definition 1. Let u ∈ P
′. A sequence {Pn}n≥0 is said to be orthogonal with

respect to u if the following two conditions hold:
(i) deg(Pn) = n, n ≥ 0 ,
(ii) 〈u, PnPm〉 = knδn,m, kn = 〈u, P 2

n〉 6= 0, n ≥ 0 .
If the leading coefficient of each Pn is 1, then {Pn} is said to be a sequence
of monic orthogonal polynomials with respect to u, and it will be denoted by
SMOP.

The equivalence between the quasi-definiteness of u ∈ P
′ and the existence

of a SMOP with respect to u is well-known in the literature of orthogonal
polynomials (see [8, 24]).

Monic orthogonal polynomials satisfy a three term recurrence relation
(see [24])

Pn+1(x) = (x− βn)Pn(x) − γnPn−1(x), n = 1, 2, . . . (7)

with P0(x) = 1, P1(x) = x−β0 and γn 6= 0, n ≥ 1, γ0 = u0 = 1. Conversely,
given a SMOP {Pn} satisfying a three-term recurrence relation as above,
there exists a unique quasi-definite linear functional u such that {Pn} is the
SMOP with respect to u (see [8, 24]).
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Definition 2. Let {Pn} be the SMOP with respect to a linear functional u.
The sequence of first order associated polynomials is defined by

P (1)
n (x) = 〈ut,

Pn+1(x) − Pn+1(t)

x− t
〉 , n ≥ 0 ,

where ut denotes the action of u on the variable t.

Note that the sequence {P
(1)
n } also satisfies a three term recurrence relation,

P (1)
n (x) = (x− βn)P

(1)
n−1(x) − γnP

(1)
n−2(x), n = 1, 2, . . .

with P
(1)
−1 (x) = 0, P

(1)
0 (x) = 1.

Definition 3. Let u ∈ P
′ be quasi-definite and (un) its sequence of moments.

The Stieltjes function of u is defined by

S(z) =

+∞∑

n=0

un
zn+1

.

Given a SMOP {Pn} and {P
(1)
n } its sequence of associated polynomials,

let S and and S(1) denote the corresponding Stieltjes functions, respectively.
One has

γ1S
(1) = −

1

S
− (z − β0) . (8)

The sequence of functions of the second kind corresponding to {Pn} is
defined as follows:

qn(z) = 〈ut,
Pn(t)

z − t
〉 , n ≥ 1 , q0 = S ,

thus

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S . (9)

Definition 4. Let u ∈ P
′ be quasi-definite and let S be its Stieltjes function.

u (or S) is said to be Laguerre-Hahn if there exist polynomials A,B,C,D,
with A 6= 0, such that S satisfies a Riccati differential equation

AS ′ = BS2 + CS +D . (10)

The corresponding sequence of orthogonal polynomials is called Laguerre-
Hahn. If B = 0, then S is said to be semi-classical or Laguerre-Hahn affine.
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Note that if u is semi-classical, with the corresponding Stieltjes function
satisfying AS ′ = CS + D, then, taking into account (8), there follows that
S(1) is Laguerre-Hahn, since it satisfies a Riccati type differential equation,

A
(
S(1)

)′
= B1

(
S(1)

)2

+D1S
(1) +D1 ,

where

B1 = γ1D, C1 = −C + 2(z − β0)D, D1 =
−A

γ1
−

(z − β0)

γ1
(C − (z − β0)D) .

Equation (10) is equivalent to the distributional equation for the corre-
sponding linear functional u,

D(Au) = ψu +B(x−1u2) , (11)

where A,B are the same as in (10), ψ = A′ + C (cf. [22]), being the left
product of u by a polynomial defined as

〈g u, p〉 = 〈u, g p〉 , p ∈ P ,

the derivative Du defined as

〈Du, p〉 = −〈u, p′〉 , p ∈ P ,

and the functional x−1u and the product of two linear functionals defined,
respectively, as follows:

〈x−1u, p〉 = 〈u, θ0p〉 , (θ0p)(x) =
p(x) − p(0)

x
, 〈u v, p〉 = 〈u, v p〉 , p ∈ P ,

with the right product given by

v p =
n∑

m=0

(
n∑

j=m

pjvj−m

)
xm , p(x) =

n∑

j=0

pjx
j .

Note that the distributional equation (11) is not unique, many triples of
polynomials can be associated with such an equation, but only one canonical
set of minimal degree exists. The class of u is defined as the minimum
value of max{deg(ψ) − 1, d − 2}, d = max{deg(A), deg(B)}, for all triples
of polynomials satisfying (11). When B ≡ 0 and the class of u is zero,
i.e., deg(ψ) = 1 and deg(A) ≤ 2, u is called a classical functional, and the
corresponding orthogonal polynomials are the so-called classical orthogonal
polynomials.
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In the sequel we will use the following matrices:

Ψn =

[
Pn+1

P
(1)
n

]
, Qn =

[
qn+1

qn

]
, n ≥ 0 . (12)

Hereafter I denotes the 2 × 2 identity matrix.

Lemma 1. Let u ∈ P
′ be quasi-definite, let {Pn} be the corresponding SMOP

and βn, γn the coefficients of the three term recurrence relation (7). Let {Ψn},
{Qn} be the sequences defined in (12). Then,
(a) Ψn satisfies

Ψn = (x− βn)Ψn−1 − γnΨn−2 , n ≥ 1 , (13)

with initial conditions Ψ−1 =

[
P0

P
(1)
−1

]
,Ψ0 =

[
P1

P
(1)
0

]
;

(b) ϕn =

[
Ψn+1

Ψn

]
satisfies

ϕn = Knϕn−1 , Kn =

[
(x− βn+1)I −γn+1I

I 02×2

]
, n ≥ 1 , (14)

with initial conditions ϕ0 =
[
P2 P

(1)
1 P1 P

(1)
0

]T
;

(c) Qn satisfies

Qn = AnQn−1 , n ≥ 1 ,

with An =

[
x− βn −γn

1 0

]
and initial conditions Q0 =

[
(x− β0)S − 1

S

]
.

Theorem 1 (see [17]). Let {fn} be a sequence of functions satisfying a three
term recurrence relation

xfn(x) = fn+1(x) + βnfn(x) + γnfn−1

with γn 6= 0, n ≥ 1, f−1 = 0, f0(x) = 1. If gn =
fn+1

fn
satisfies

an(x)g
′
n(x) = bn(x)g

2
n(x) + cngn(x) + dn(x), n ≥ 0 ,
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where an, bn, cn and dn are bounded degree polynomials, then, for all n ≥ 0,
the following relations hold:

an+1 = an ,

bn+1 =
dn
γn+1

,

cn+1 = −cn − 2(x− βn+1)
dn
γn+1

, (15)

dn+1 = an + γn+1bn + (x− βn+1)cn + (x− βn+1)
2 dn
γn+1

. (16)

3. Second order differential equations with matrix coef-

ficients

Theorem 2. Let u ∈ P
′ be quasi-definite and S its Stieltjes function. Let

{Ψn} be the corresponding sequence defined in (12), and let {qn} be the se-
quence of functions of the second kind. The following statements are equiva-
lent:
(a) S satisfies

AS ′ = BS2 + CS +D , A,B, C,D ∈ P ;

(b) Ψn satisfies

AΨ′
n = MnΨn + NnΨn−1 , n ≥ 0 , (17)

Mn =

[
ln −

C
2 −B

D ln + C
2

]
, Nn = ΘnI, Θn, ln bounded degree polynomials, with

initial conditions A = (l0−C/2)(x−β0)−B+Θ0 , 0 = D(x−β0)+(l0+C/2) ;
(c) qn satisfies

Aq′n = (ln−1 +
C

2
+ BS)qn + Θn−1qn−1 , n ≥ 0 , (18)

with q−1 = 1, Θ−1 = D, l−1 = C/2.
Moreover, the following relations hold, for all n ≥ 0:

ln+1 + ln = −
(x− βn+1)

γn+1
Θn , (19)

Θn+1 = A+
γn+1

γn
Θn−1 + (x− βn+1)(ln − ln+1) . (20)
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Proof : (a) ⇔ (b).
This equivalence was proven in [10, 17]. Note that equation (17) is the matrix
form of the equations in [10, 17].
(b) ⇒ (c).

Take derivatives in (9), Pn+1S − P
(1)
n = qn+1 , n ≥ 0, then multiply the

resulting expression by A and use the equations enclosed in (17), to get

Aq′n+1 = (ln +
C

2
+BS)qn+1 + Θnqn , n ≥ 0 ,

thus

Aq′n = (ln−1 +
C

2
+BS)qn + Θn−1qn−1 , n ≥ 1 .

Furthermore, since (17) holds and since q−1 = 1, q0 = S, taking into account
Θ−1 = D, l−1 = C/2, there follows that the above equation also holds for
n = 0. Hence we obtain (18).
(c) ⇒ (a)
Take n = 0 in (18), with q−1 = 1, q0 = S, Θ−1 = D, l−1 = C/2.

Finally, to obtain (19) and (20) we proceed as follows. From (18) we get

A(q′n+1qn − q′nqn+1) = Θnq
2
n + (ln − ln−1)qnqn+1 − Θn−1qn−1qn+1 , n ≥ 0 .

The division of both members by q2
n and the use of the three term recurrence

relation for qn yields

A

(
qn+1

qn

)′

=
Θn−1

γn

q2
n+1

q2
n

+

(
ln − ln−1 −

(x− βn)

γn
Θn−1

)
qn+1

qn
+ Θn .

Taking into account Theorem 1 we get, using (15),

ln+1 − ln−1 = −
(x− βn+1)

γn+1
Θn +

(x− βn)

γn
Θn−1 , n ≥ 0 . (21)

Therefore, we get, for all n ≥ 0,

mn +
(x− βn+1)

γn+1
Θn = mn−1 +

(x− βn)

γn
Θn−1 , mn = ln+1 + ln , (22)

from which there follows

mn +
(x− βn+1)

γn+1
Θn = m−1 +

(x− β0)

γ0
Θ−1 , n ≥ 0 ,
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that is,

ln+1 + ln +
(x− βn+1)

γn+1
Θn = l0 + l−1 +

(x− β0)

γ0
Θ−1 , n ≥ 0 ,

Using the initial conditionsD = Θ−1, C/2 = l−1 we get l0+l−1+
(x−β0)
γ0

Θ−1 =

0, thus (19) follows.
Eq. (20) follows taking into account (16) and the use of (19).

Remark . If the class of u is s, then deg(Θn) ≤ s, deg(ln) ≤ s+ 1.

If we take B = 0 in the previous theorem we obtain differential relations
in the semi-classical class.

Corollary 1. Let u ∈ P
′ be quasi-definite and let S be its Stieltjes function.

Let {Ψn} be the corresponding sequence defined in (12), and let {qn} be the
sequence of functions of the second kind. The following statements are equiv-
alent:
(a) S is semi-classical and it satisfies AS ′ = CS +D;
(b) Ψn satisfies

AΨ′
n = MnΨn + NnΨn−1 , n ≥ 0 ,

where Mn =

[
ln −

C
2

0
D ln + C

2

]
, Nn = ΘnI, and Θn, ln are bounded degree

polynomials;
(c) qn satisfies the differential-difference equation with polynomial coeffi-
cients

Aq′n = (ln−1 +
C

2
)qn + Θn−1qn−1 , n ≥ 0 .

Theorem 3. Let u ∈ P
′ be quasi-definite and let S be its Stieltjes function.

Let {Ψn} be the corresponding sequence defined in (12), and let {qn} be the
sequence of functions of the second kind. The following statements are equiv-
alent:
(a) S satisfies

AS ′ = BS2 + CS +D , A,B, C,D ∈ P ;

(b) Ψn satisfies the second order differential equation

ÃnΨ
′′
n + B̃nΨ

′
n + C̃nΨn = 02×1 , n ≥ 1 , (23)
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where Ãn, B̃n, C̃n are matrices, with polynomial entries, given by

Ãn = A2ΘnI , (24)

B̃n = AΘn(A
′I −Mn −Mn−1) − AΘn−1Θn

(x− βn)

γn
I − A2Θ′

nI , (25)

C̃n = Θn

(
Θn−1Θn

γn
I − AM′

n

)

+

{
Θn

(
Mn−1 +

(x− βn)

γn
Θn−1I

)
+ AΘ′

nI

}
Mn ; (26)

(c) qn satisfies the second order differential equation

Ãnq
′′
n+1 + B̃nq

′
n+1 + C̃nqn+1 = 0 , n ≥ 0 , (27)

where Ãn, B̃n, C̃n are functions given by

Ãn = A2Θn , (28)

B̃n = AΘn(A
′ − C − 2BS) −A2Θ′

n , (29)

C̃n = Θn

(
Θn−1Θn

γn
− A(ln +

C

2
+ BS)′

)

+(ln +
C

2
+ BS)

(
Θn(−ln +

C

2
+BS) + AΘ′

n

)
. (30)

Corollary 2. Let u ∈ P
′ be quasi-definite and S its Stieltjes function. Let

{Ψn} be the corresponding sequence defined in (12), and let {qn} be the se-
quence of functions of the second kind. The following statements are equiva-
lent:
(a) S is semi-classical and satisfies

AS ′ = CS +D , A,C,D ∈ P ;

(b) {Ψn} satisfies the second order differential equation (23) with matrix
coefficients of polynomials entries given by (24)-(26);
(c) {qn} satisfies the second order differential equation (27) with polynomial



12 BRANQUINHO, A. FOULQUIÉ MORENO, A. PAIVA AND M.N. REBOCHO

coefficients Ãn, B̃n, C̃n given by

Ãn = AΘn , (31)

B̃n = Θn(A
′ − C) − AΘ′

n , (32)

C̃n = Θn

(
n∑

k=1

Θk−1

γk
+D − (ln +

C

2
)′

)
+ Θ′

n(ln +
C

2
) . (33)

Proof : If u is semi-classical then we take B ≡ 0 in the previous theorem, thus
we get the second order differential equation (27) with polynomial coefficients
Ãn, B̃n, C̃n given by

Ãn = A2Θn ,

B̃n = A (Θn(A
′ − C) − AΘ′

n) ,

C̃n = Θn

(
Θn−1Θn

γn
− l2n + (C/2)2

)
− A (Θn(ln + C/2)′ − Θ′

n(ln + C/2)) .

Let τn =
Θn−1Θn

γn
− l2n + (C/2)2.

Using (19) and (20) we obtain

Θn−1Θn

γn
− l2n = A

Θn−1

γn
+

Θn−2Θn−1

γn−1
− l2n−1 , n ≥ 1 ,

thus,

Θn−1Θn

γn
− l2n = A

n∑

k=1

Θk−1

γk
+

Θ−1Θ0

γ0
− l20 , n ≥ 1 . (34)

The initial conditions

Θ−1 = D, D(x− β0) + (l0 + C/2) = 0, A = (l0 − C/2)(x− β0) −B + Θ0

yield
Θ−1Θ0

γ0
− l20 = AD +BD − (C/2)2 . (35)

From (34) and (35) there follows

τn = A

n∑

k=1

Θk−1

γk
+ AD +BD . (36)
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Note that we are assuming B ≡ 0, thus we obtain C̃n given by

C̃n = A

{
Θn

(
n∑

k=1

Θk−1

γk
+D − (ln +

C

2
)′

)
+ Θ′

n(ln +
C

2
)

}
.

Consequently, {qn} satisfies a second order differential equation (27) with
polynomial coefficients (31)-(33).

In the sequel X(i,j) will denote the (i, j) entry in the matrix X.

Corollary 3. Let S be a Laguerre-Hahn Stieltjes function satisfying AS ′ =
BS2+CS+D. The SMOP related to S, {Pn}, as well as the sequence of first

order associated polynomials, {P
(1)
n }, satisfy fourth order linear differential

equations with polynomial coefficients.

Proof : Let us consider the differential equations enclosed in (23),

A2ΘnP
′′
n+1 + B̃(1,1)

n P ′
n+1 + C̃(1,1)

n Pn+1 + B̃(1,2)
n

(
P (1)
n

)′
+ C̃(1,2)

n P (1)
n = 0 , (37)

A2Θn

(
P (1)
n

)′′
+ B̃(2,2)

n

(
P (1)
n

)′
+ C̃(2,2)

n P (1)
n + B̃(2,1)

n P ′
n+1 + C̃(2,1)

n Pn+1 = 0 . (38)

Take derivatives in (37), multiply the resulting equation byA2Θn and use (38)

to eliminate
(
P

(1)
n

)′′
, thus obtaining an equation of the following type:

(A2Θn)
2P ′′′

n+1 + bnP
′′
n+1 + cnP

′
n+1 + dnPn+1 + en

(
P (1)
n

)′
+ fnP

(1)
n = 0 . (39)

Now take derivatives in (39), multiply the resulting equation by A2Θn and

again use (38) to eliminate
(
P

(1)
n

)′′
, thus obtaining an equation of the fol-

lowing type:

(A2Θn)
3P

(4)
n+1 + gnP

′′′
n+1 + hnP

′′
n+1 + jnP

′
n+1 + knPn+1

+mn

(
P (1)
n

)′
+ rnP

(1)
n = 0 . (40)

The elimination of
(
P

(1)
n

)′
and P

(1)
n between (37), (39) and (40) yields a

fourth order differential equation with polynomial coefficients for Pn,

A4P
(4)
n + A3P

(3)
n +A2P

′′
n +A1P

′
n +A0Pn = 0 .
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The fourth order differential equation with polynomial coefficients for P
(1)
n ,

can be obtained analogously, starting by taking derivatives to (38) and elim-
inating P ′′

n+1, P
′
n+1, as well as Pn+1.

Now we will prove the Theorem 3, by using the lemmas that follow.

Lemma 2. Let u ∈ P
′ be quasi-definite and let S be its Stieltjes function.

Let {Ψn} be the corresponding sequence defined in (12), and let {qn} be the
sequence of functions of the second kind. If S satisfies AS ′ = BS2 + CS +
D , A,B, C,D ∈ P , then {Ψn} satisfies (23) with coefficients (24)-(26) and
{qn} satisfies (27) with coefficients (28)-(30).

Proof : If we take derivatives in (17) and multiply the resulting equation by
A we get

A2Ψ′′
n = A(Mn − A′I)Ψ′

n + NnAΨ′
n−1 + AM′

nΨn + AN ′
nΨn−1 . (41)

If we use (17) to n− 1 and the recurrence relation (13) for Ψn we obtain

AΨ′
n−1 =

(
Mn−1 +

(x− βn)

γn
Θn−1

)
Ψn−1 −

Θn−1

γn
Ψn . (42)

The substitution of (42) into (41) yields

A2Ψ′′
n = A(Mn −A′I)Ψ′

n +

(
AM′

n −
Θn−1

γn
Nn

)
Ψn

+

[
Nn

(
Mn−1 +

(x− βn)

γn
Θn−1

)
+ AN ′

n

]
Ψn−1 .

The multiplication of the above equation by Θn and the use of (17) gives
us (23) with coefficients (24)-(26).

To get (27) we proceed analogously as before, starting by taking derivatives
in (18), thus obtaining Ãnq

′′
n+1 + B̃nq

′
n+1 + C̃nqn+1 = 0, with Ãn = A2Θn and

B̃n = −AΘn(ln + ln−1 + C + 2BS −A′) − A
(x− βn)

γn
Θn−1Θn −A2Θ′

n ,

C̃n = Θn

(
Θn−1Θn

γn
− A(ln +

C

2
+ BS)′

)

+ (ln +
C

2
+ BS)

[
Θn

(
(x− βn)

γn
Θn−1 + ln−1 +

C

2
+ BS

)
+ AΘ′

n

]
.
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The use of ln + ln−1 = − (x−βn)
γn

Θn−1 (cf. (19)) in the above equations yields

B̃n and C̃n given by (29) and (30).

Lemma 3. Let u ∈ P
′ be quasi-definite and let {Ψn} be the corresponding se-

quence defined in (12). If {Ψn} satisfies the second order differential equation
(23) with coefficients (24)-(26), then the following equation holds:

ÂnΨ
′
n = MnΨn + NnΨn−1 , n ≥ 1 ,

where Ân ∈ P, Mn is a matrix of order two with polynomial entries, and Nn

is a scalar matrix.

Proof : We write the equation (23) in the form

Dnϕ
′′
n + Enϕ

′
n + Fnϕn = 04×1 (43)

where, ϕn =
[
Ψn+1 Ψn

]T
, n ≥ 1, and Dn, En,Fn are block matrices given by

Dn = A2

[
Θn+1 I 02×2

02×2 Θn I

]
, En =

[
B̃n+1 02×2

02×2 B̃n

]
, Fn =

[
C̃n+1 02×2

02×2 C̃n

]
.

Taking n + 1 in (43) and using the recurrence relations for ϕn (cf. (14)) we
obtain

Dn+1Kn+1ϕ
′′
n + (2Dn+1K

′
n+1 + En+1Kn+1)ϕ

′
n

+ (En+1K
′
n+1 + Fn+1Kn+1)ϕn = 04×1 . (44)

To eliminate ϕ′′
n between (43) and (44) we proceed in two steps: firstly we

multiply (43) by Θn+2Kn+1Gn, Gn =

[
ΘnI 0
0 Θn+1I

]
, thus obtaining

A2ΘnΘn+1Θn+2Kn+1ϕ
′′
n+Θn+2Kn+1GnEnϕ

′
n+Θn+2Kn+1GnFnϕn = 04×1 , (45)

and we multiply (44) by ΘnGn+1, thus obtaining

A2ΘnΘn+1Θn+2Kn+1ϕ
′′
n + ΘnGn+1(2Dn+1K

′
n+1 + En+1Kn+1)ϕ

′
n

+ ΘnGn+1(En+1K
′
n+1 + Fn+1Kn+1)ϕn = 04×1 . (46)

Then we subtract (46) to (45), thus obtaining

Hnϕ
′
n = Jnϕn , (47)
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with

Hn = Θn+2Kn+1GnEn − ΘnGn+1(2Dn+1K
′
n+1 + En+1Kn+1)

Jn = ΘnGn+1(En+1K
′
n+1 + Fn+1Kn+1) − Θn+2Kn+1GnFn .

The multiplication of (47) by adj(Hn) yields

Ânϕ
′
n = L̂nϕn , (48)

with

Ân = det(Hn), L̂n = adj(Hn)Jn .

Thus, the assertion follows.

Now we study the coefficients of the structure relations obtained in the
preceding lemma.

Lemma 4. Let u ∈ P
′ be quasi-definite and let {Ψn} be the corresponding

sequence defined in (12). Let ϕn =
[
Ψn+1 Ψn

]T
satisfy

Ânϕ
′
n = L̂nϕn, n ≥ 1 , (49)

where Ân are bounded degree polynomials and L̂n, n ≥ 1, are block matrices
of order two whose entries are bounded degree polynomials. Then, (49) is
equivalent to

Âϕ′
n = Lnϕn , n ≥ 1 . (50)

Furthermore, it holds that

ÂK′
n+1 = Ln+1Kn+1 −Kn+1Ln , n ≥ 1 , (51)

where Kn are the matrices of the recurrence relation (14).

Proof : If we take n+1 in (49) and use the recurrence relation for ϕn (cf. (14))
we get

Ân+1ϕ
′
n = K−1

n+1

(
L̂n+1Kn+1 − Ân+1K

′
n+1

)
ϕn (52)

From (49) and (52) we conclude that there exists a polynomial Ln such that,
for all n ≥ 1,

{
Ân+1 = LnÂn

K−1
n+1

(
L̂n+1Kn+1 − Ân+1K′

n+1

)
= LnL̂n.
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because the first order differential equation for ϕn is unique, up to a multi-
plicative factor. But from Ân+1 = LnÂn we obtain

Ân+1 = (Ln · · ·L2) Â1 , ∀n ≥ 1 .

Since, for all n ≥ 1, the degree of Ân is bounded by a number independent
of n, then the degree of the Ln’s must be zero, i.e., Ln is constant, for all
n ≥ 1. Hence we obtain (50) with Â = Â1 and

Ln = K−1
n+1

(
L̂n+1Kn+1 − Ân+1K

′
n+1

)
/(Ln · · ·L2) .

To obtain (51) we take derivatives on ϕn+1 = Kn+1ϕn and multiply the

result by Â, to get

Â ϕ′
n+1 = ÂK′

n+1ϕn + Kn+1Â ϕ
′
n .

Using (50) in the previous equation and the recurrence relation (14) there
follows

Ln+1Kn+1ϕn = ÂK′
n+1ϕn + Kn+1Lnϕn ,

thus (51).

Corollary 4. Let {ϕn} satisfy (50), Âϕ′
n = Lnϕn , n ≥ 1 , where Ln are

block matrices of order two whose entries are bounded degree polynomials.
Then, the following assertions take place:

(a) L
(1,2)
n is a scalar matrix if, and only if, L

(2,1)
n is scalar.

(b) If L
(2,1)
n is a scalar matrix, then there exist polynomials pi, i = 1, . . . , 3,

such that

L(1,1)
n =

[
ln+1 − p1 p2

p3 ln+1 + p1

]
, n ≥ 1 . (53)

Proof : Taking into account the definition of Kn, (50) is equivalent to, ∀n ≥ 1,

ÂI = (x− βn+2)(L
(1,1)
n+1 −L(1,1)

n ) + L
(1,2)
n+1 + γn+2L

(2,1)
n , (54)

−γn+2L
(1,1)
n+1 − (x− βn+2)L

(1,2)
n + γn+2L

(2,2)
n = 0 , (55)

(x− βn+2)L
(2,1)
n+1 + L

(2,2)
n+1 −L(1,1)

n = 0 , (56)

−γn+2L
(2,1)
n+1 − L(1,2)

n = 0 . (57)

Assertion (a) follows taking into account (57), i.e., L
(1,2)
n = −γn+2L

(2,1)
n+1 .

Let us prove assertion (b).
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Since L
(1,2)
n and L

(2,1)
n are diagonal, from (54) there follows that the entries

(1, 2) and (2, 1) of the matrix L
(1,1)
n are independent of n.

Further, from (54) we obtain that
[
L

(1,1)
n

](1,1)

−
[
L

(1,1)
n

](2,2)

is independent

of n. Hence, (53) follows.

Remark . Note that eq. (48) in Lemma 3, combined with the independence

of n in the polynomials Ân (cf. Lemma 4) reads as
{
ÂΨ′

n+1 = L
(1,1)
n Ψn+1 + L

(1,2)
n Ψn

ÂΨ′
n = L

(2,1)
n Ψn+1 + L

(2,2)
n Ψn .

(58)

Using the recurrence relation (13) in the second equation of (58) we obtain

ÂΨ′
n =

[
(x− βn+1)L

(2,1)
n + L(2,2)

n

]
Ψn − γn+1L

(2,1)
n Ψn−1 . (59)

Taking into account (56) as well as (57), there follows that (59) is the first
equation of (58) for n− 1, that is,

ÂΨ′
n = L

(1,1)
n−1 Ψn + L

(1,2)
n−1 Ψn−1 .

Lemma 5. Let u ∈ P
′ be quasi-definite and let {qn} be the corresponding

sequence of functions of the second kind. If {qn} satisfies the second order
differential equation (27)

Ãnq
′′
n+1 + B̃nq

′
n+1 + C̃nqn+1 = 0

with coefficients (28)-(30), then the Qn’s given in (12) satisfy

ÂnQ
′
n = L̂nQn, n ≥ 1 ,

with Ân ∈ P and L̂n a matrix of order two with analytic entries.

Proof : Analogous to the proof of the Lemma 3.

Lemma 6. Let u ∈ P
′ be quasi-definite and let {Qn} be the corresponding

sequence given in (12). If

ÂnQ
′
n = L̂nQn, n ≥ 1 ,

with Ân ∈ P and L̂n a matrix of order two with analytic entries, then Ân

does not depend on n.

Proof : Analogous to the proof of the Lemma 4, using the Theorem 1.
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Proof of the Theorem 3:
Lemma 2 proves (a) ⇒ (b) and (a) ⇒ (c). Using the Lemmas 3 and 4 and
Corollary 4 we prove (b) ⇒ (a). Lemmas 5 and 6 prove (c) ⇒ (a).

4. Second order matrix operators in the Laguerre-Hahn

class zero

Theorem 4. Let u be a Laguerre-Hahn Stieltjes functional satisfying D(Au)
= ψu + B(x−1u2), with deg(ψ) = 1, max{deg(A), deg(B)} ≤ 2. Let {Pn} be

the SMOP related to u and let {P
(1)
n } be the sequence of first order associated

polynomials. It holds that

Ln(Ψn) = 0 , Ψn =

[
Pn+1

P
(1)
n

]
, n ≥ 0 , (60)

where Ln is a matrix operator given by

Ln = AD
2 + ΨD + ΛnI , Ψ =

[
ψ 2B

−2D 2A′ − ψ

]
, Λn =

[
λn+1 B′

0 λ∗n+1

]
(61)

where D
k denotes the derivative operator, D

0 = I, and

λn+1 = λ∗n+1 −A′′ + ψ′ , λ∗n+1 = 2(n+ 1)D − n(n+ 3)
A′′

2
+ nψ′ ,

D =
A′′

2
− ψ′ −

B′′

2
.

Moreover, the coefficients of the three term recurrence relation of the MOP
sequences {Pn} satisfying (60) are given by

γn =
(2D − 2(n− 1)a2 + ψ1) νn−1 + (λ∗n − λ∗n+1) νn

λ∗n−1 − λ∗n

+
(2β0D + 2(n− 1)a1 − ψ0)αn−1 − 2γ1D − 2(n− 1)a0

λ∗n−1 − λ∗n
, n ≥ 2 , (62)

βn = αn − αn−1 , n ≥ 1 , (63)

with for n ≥ 1,

αn =
n [−(n+ 1)a1 + ψ0 − 2β0D]

−(n− 1)(n+ 2)a2 + (n− 1)ψ1 − λ∗n+1 + 2nD
, α0 = 0 , (64)

νn =
(n− 1) [αn (na1 − ψ0 + 2β0D) − na0 − 2γ1D]

(n− 2)(n+ 1)a2 − (n− 2)ψ1 + λ∗n+1 − 2(n− 1)D
. (65)
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Remark . We emphasize the equation enclosed by (60),

L∗
n(P

(1)
n ) = 2DP ′

n+1 , n ≥ 0 , (66)

where L∗
n is the operator defined by

L∗
n = AD2 + (2A′ − ψ)D + λ∗n+1I .

The preceding theorem gives us the formulas for the three term recurrence
relation coefficients of the SMOP {Pn} satisfying (66). This result is an
extension of [13].

Remark . The Theorem 4 gives us a characterization of the sequences of
monic orthogonal polynomials of the Laguerre-Hahn class zero. The full
description of the three term recurrence relation coefficients of such family
was given in [4].

Proof : The Stieltjes function of u satisfies

AS ′ = BS2 + CS +D , C = ψ − A′ , D is constant.

Since the class of u is zero, the Θ’s involved in the structure relation (17)

are constant. If we use the notation τn =
Θn−1Θn

γn
− l2n + (C/2)2, then,

taking into account (cf. (36)) τn = A
n∑

k=1

Θk−1/γk + AD + BD, the second

order differential equation (23) can be written as (60) with the operator Ln

given by (61).
To obtain the three term recurrence coefficients of {Pn} we start by writing

P (1)
n (x) = xn − αnx

n−1 + νnx
n−2 + · · ·

Pn+1(x) = xn+1 − (αn + β0)x
n + (νn + β0αn − γ1)x

n−1 + · · ·

with

αn =

n∑

k=1

βk , νn =

n∑

1≤i<j≤n

βiβj −
n∑

k=2

γk , n ≥ 1 . (67)

Equating coefficients of xn−1 and xn−2 in (66) we get (64) and (65).
Taking derivatives in (7) we get

Pn = P ′
n+1 − (x− βn)P

′
n + γnP

′
n−1 .
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If we multiply the above equation by 2D and use the equation enclosed
by (60),

L∗
n(P

(1)
n ) = 2DP ′

n+1 , n ≥ 0 ,

where L∗
n is the operator defined by

L∗
n = AD2 + (2A′ − ψ)D + λ∗n+1I ,

as well as the recurrence relation, we get

2DPn = 2A
(
P

(1)
n−1

)′

+ (2A′ − ψ)P
(1)
n−1 + (λ∗n+1 − λ∗n)P

(1)
n + (λ∗n−1 − λ∗n)γnP

(1)
n−2 . (68)

Equating coefficients of xn−2 in (68) we get (62). (63) follows from (67).

5. Characterizations of classical orthogonal polynomials

Taking into account the results of the preceding sections, we will deduce
characterizations of the classical families. Hereafter we consider the distri-
butional equation D(Au) = ψu with the canonical expressions for A and
ψ given in Table 1. We denote the corresponding orthogonal polynomials,

Hermite, Laguerre, Jacobi and Bessel, by Hn, L
α
n, P

(α,β)
n and Bα

n , respectively.

A ψ

Hn 1 −2x

L
(α)
n x −x+ α + 1

P
(α,β)
n 1 − x2 −(α+ β + 2)x+ β − α

B
(α)
n x2 (α+ 2)x+ 2

Table 1

We also present the three term recurrence relation coefficients βn, γn+1, n ≥ 0.
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βn γn+1

Hn 0 n+1
2

L
(α)
n 2n+ α + 1 (n+ 1)(n+ α+ 1)

P
(α,β)
n

β2−α2

(2n+α+β)(2n+α+β+2)
4(n+1)(n+α+1)(n+β+1)(n+α+β+1)

(2n+α+β+1)(2n+α+β+2)2(2n+α+β+3)

B
(α)
n

−2α
(n+α)(2n+α+2)

−4(n+1)(n+α+1)
(2n+α+1)(2n+α+2)2(2n+α+3)

Table 2

Theorem 5. Let u ∈ P
′ be regular, let {Pn} be the SMOP with respect to u, let

{P
(1)
n } be the sequence of associated polynomials, and let {qn} be the sequence

of functions of the second kind. The following statements are equivalent:
(a) u is classical and it satisfies D(Au) = ψu;
(b) {Pn} satisfies

AP ′′
n + ψP ′

n + λnPn = 0 , n ≥ 0 ; (69)

(c) qn satisfies the second order differential equation

Aq′′n + (2A′ − ψ)q′n + (λn +A′′ − ψ′)qn = 0 , n ≥ 0 , (70)

(d) the derivative P ′
n is linked to the associated polynomial P

(1)
n through a

relation of the same type as (66),

A
(
P (1)
n

)′′
+ (2A′ − ψ)

(
P (1)
n

)′
+ λ∗n+1P

(1)
n = 2DP ′

n+1 , n ≥ 0 , (71)

where, for all n ≥ 0,

λ∗n+1 = 2(n+1)D−n(n+3)
A′′

2
+nψ′ , λn+1 = λ∗n+1−A

′′+ψ′ , D =
A′′

2
−ψ′ ,

and, by convention, λ0 = 0.

Proof : Note that D(Au) = ψu is equivalent to the first order differential
equation for the corresponding Stieltjes function

AS ′ = CS +D , C = ψ − A′ .

Since u is classical, that is, deg(A) ≤ 2, deg(ψ) = 1, then the Θn’s and the
ln’s involved in the coefficients of the second order differential equations (23)
and (27) satisfy deg(Θn) = 0, deg(ln) ≤ 1. Thus, (23) yields (69) and (71),
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and (27) yields (70) for all n ≥ 1. Notice that (70) for n = 0, with λ0 = 0,
reads as AS ′′+(A′−C)S ′−C ′S = 0 , which is the derivative of AS ′ = CS+D .

To prove (d) ⇒ (a) we use the equations (62) and (63) (cf. Remark 3) with
the values of β0 and γ1 given in Table 2, thus recovering the expressions for
γn+1 and βn for all n ≥ 1, thus obtaining the classical families of orthogonal
polynomials.

The preceding theorem gives a characterization of the classical families in
terms of hypergeometric-type differential equations for the orthogonal poly-
nomials, as well as for the functions of the second kind. Note that given any
hypergeometric-type differential equation, that is,

Ay′′ +Hy′ + kny = 0, deg(A) ≤ 2, deg(H) ≤ 1, kn constant,

and given a nonnegative integer n, the above differential equation has a
unique polynomial solution Pn of degree exactly n if, and only if,

n(n− 1)

2
A′′ + nH ′ + kn = 0 , n ≥ 0 . (72)

Under the hypothesis (72), the existence of w(x) satisfying

d

dx
(A(x)w(x)) = H(x)w(x)

allows the representation of the solution in terms of a Rodrigues formula
(see [12])

Pn(x) =
1

w(x)

dn

dxn
(An(x)w(x)) .

Combining the previous theorem with the above referred results we obtain
the characterization that follows.

Theorem 6. Let u ∈ P
′ be regular, let {Pn} be the SMOP with respect to u

and let {qn} be the sequence of functions of the second kind. The following
statements are equivalent:
(a) u is classical and it satisfies D(Au) = ψu;
(b) {Pn} has a Rodrigues representation

Pn(x) =
1

w(x)

dn

dxn
(An(x)w(x)) , n ≥ 0 ; (73)

(c) {qn} has a Rodrigues-type representation

qn(x) =
dn

dxn
(An(x)w(x)) , n ≥ 1 , (74)
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where w = 1
A
eΦ ,Φ =

∫ x
x0

ψ(t)
A(t)dt.

Proof : (a) ⇒ (b) and (a) ⇒ (c).
From Theorem 5 we have (69),

AP ′′
n + ψP ′

n + λnPn = 0 , n ≥ 0 .

Note that by equating the leading coefficients in (69) we get

A′′

2
n(n− 1) + nψ′ + λn = 0 , n ≥ 0 ,

which is the assumption (72). Hence, there follows the Rodrigues represen-
tation (73) for Pn.

To deduce a Rodrigues-type formula for {qn} we recall, from Theorem 5,
the second order differential equation (70),

Aq′′n + ψ̃q′n + λ̃nqn = 0 , ψ̃ = 2A′ − ψ, λ̃n = λn + A′′ − ψ′ .

If we multiply the above equation by w̃ = 1
A
eΦ̃, Φ̃ =

∫ x
x0

ψ̃(t)
A(t)

dt, we get

(Aw̃q′n)
′
+ λ̃nw̃qn = 0 . (75)

Let
Z = w̃qn . (76)

Then, (75) becomes

AZ ′′ + (2A′ − ψ̃)Z ′ + (λ̃n + A′′ − ψ̃′)Z = 0 ,

which yields
AZ ′′ + ψZ ′ + λnZ = 0 .

Therefore, there holds a Rodrigues representation for Z,

Z =
1

w(x)

dn

dxn
(An(x)w(x)) . (77)

Using qn = w̃−1Z (cf. (76)), (77) yields

qn =
1

ww̃

dn

dxn
(An(x)w(x)) .

Since w̃ = w−1, there follows (74).
(b) ⇒ (a) and (c) ⇒ (a).

From (73) and (74) we obtain the second order differential equations (69)
and (70), respectively, thus from the Theorem 5 there follows the distribu-
tional equation for the corresponding u.
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Pura ed Appli. 149 (1987), 165-184.
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