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Universidade de Coimbra
Preprint Number 12–14

THE ROBUST VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS

AGOSTINHO AGRA, MARIELLE CHRISTIANSEN, ROSA FIGUEIREDO, LARS MAGNUS
HVATTUM, MICHAEL POSS AND CRISTINA REQUEJO

Keywords: robust linear programming; uncertainty polytope; dynamic program-
ming; vehicle routing problem; time windows.

Abstract: This paper addresses the robust vehicle routing problem with time win-
dows. We are motivated by a problem that arises in maritime transportation where
delays are frequent and should be taken into account. Our model only allows routes
that are feasible for all values of the travel times in a predetermined uncertainty
polytope, which yields a robust optimization problem. We propose two new formu-
lations for the robust problem, each based on a different robust approach. The first
formulation extends the well-known resource inequalities formulation by employing
robust programming with recourse. We propose two techniques, which, using the
structure of the problem, allow to reduce significantly the number of extreme points
of the uncertainty polytope. The second formulation generalizes a path inequalities
formulation to the uncertain context. The uncertainty appears implicitly in this
formulation, so that we develop a new cutting plane technique for robust combina-
torial optimization problems with complicated constraints. In particular, efficient
separation procedures are discussed. We compare the two formulations on a test
bed composed of maritime transportation instances. These results show that the
solution times are similar for both formulations while being significantly faster than
the solutions times of a layered formulation recently proposed for the problem.

1. Introduction

This paper demonstrates how to efficiently solve the vehicle routing problem
with time windows (VRPTW) when travel times are uncertain. The aim is to
find robust solutions, where routes are feasible for all travel times defined by
a predetermined uncertainty polytope. Although the formulations developed
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in this paper are general enough to describe many types of applications, the
motivation for the work comes from maritime transportation, where routing
problems are known to include many types of uncertainty [11] and where
travel times and service times can vary due to unforeseen events such as bad
weather, mechanical breakdowns and port congestions.
Much research has been performed on vehicle routing problems, not the

least due to its importance for applications in transportation, distribution
and logistics [15]. Two well known classes of vehicle routing problems are the
capacitated vehicle routing problem (CVRP) and the VRPTW. The V RPTW
and CV RP share many common features, and path-flow formulations where
integer variables represent paths in the network are very similar for both
problems [23]. However, arc-flow formulations, where integer variables repre-
sent single arcs in the network, have notable differences: While it is straight-
forward to express the capacity constraint in the space of arc variables, time
windows require either additional variables or an exponential number of in-
equalities [16].
We study integer programming formulations for a variant of the V RPTW .

More specifically, we study the problem where travel times belong to an un-
certainty polytope. Hence, our approach falls into the framework of robust
programming, where a solution is said to be feasible only if it is feasible for
all realizations of the data in a predetermined uncertainty set T . Robust
programming stems from the original work of [24] and has witnessed a con-
tinuous attention in the last decade. We refer the interested reader to the
survey from [6].
Prior to our recent note [1], [27] was the only work that mentioned a

robust vehicle routing problem with time windows and uncertain travel times
(T -V RPTW ). However, their modeling assumption led to all travel times
taking their maximum values, yielding an over-conservative model. In fact,
[27] mainly focused on the robust CV RP and study conditions under which
robust versions of the CV RP can be solved through methods similar to the
ones used for the deterministic version of the CV RP , see also [20] for a
survey on the robust CV RP . The literature on stochastic versions of the
V RPTW is scant when it comes to stochastic travel times, the only example
coming from [9] who propose pre-processing techniques based on stochastic
inequalities. In contrast to this, the stochastic versions of the CV RP have
witnessed continued attention for many years, see [10] and the references
therein.
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[1] present the first general approach to the robust vehicle routing problem
with time windows and uncertain travel times. Travel times belong to a
demand uncertainty polytope, which makes the problem harder to solve than
its deterministic counterpart. The benefit of the addition in complexity is
that the model from [1] is more flexible than the one from [27] and leads
to less conservative robust solutions. The work presented in [1] focuses on
applying the classical dualization technique for robust programming which
yields a very large formulation that are hardly solved for instances with
more than 20 nodes. The limited results obtained in [1] motivate us to tackle
the T -V RPTW with the more sophisticated robust approaches used in this
paper. Our first approach uses robust programming with recourse, while the
second one substitutes robust constraints with canonical cuts.
The first of our formulations extends the classical resource inequalities for-

mulation to the robust context. This yields a two-stage robust program,
based on the framework of robust programming with recourse from [4]. Ro-
bust integer programs with arbitrary recourse are extremely hard to solve
exactly so that most authors have devised approximation schemes that are
computationally tractable, see for instance [4] and [14]. However, some au-
thors have raised the possibility of obtaining exact solutions to robust pro-
grams with arbitrary recourse, see [8, 22]. When it is possible to compute
all extreme points of the uncertainty set and the number of these points is
limited, [22] suggest to consider all of them and to solve the resulting formu-
lation. Very often, the numbers of extreme points are too large to be handled
explicitly so that [8] propose decomposition algorithms that require solving
non-convex subproblems.
For our two-stage robust program, we follow the approach of [8] and gen-

erate dynamically the extreme points of the uncertainty polytope. First, we
propose two techniques that allow a significant reduction of the number of
extreme points that are needed to formulate the problem. The first technique
shows that the number of extreme points which we must consider is not big-
ger than the number of extreme points of the projection of the uncertainty
polytope into the subspace corresponding to the coefficients defining any of
its constraints. The second technique introduces the notion of domination
among extreme points. Domination has been described already in the con-
text of robust network design by [21]. In this paper, we extend this property
to T -V RPTW . Finally, we apply a column-and-row generation algorithm to
generate only a subset of the non-dominated extreme points. In contrast to
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the approach of [8] that solves NP-hard subproblems, our subproblem can
be solved in polynomial time by a dynamic programming algorithm.
The second of our formulations extends the path inequalities formulation

from [16]. The uncertain parameters do not appear explicitly in the con-
straints of this formulation, so that we decompose the problem into a master
problem and a subproblem. The master problem contains the determinis-
tic constraints of the original problem plus a set of canonical cuts ensuring
that the robust constraints are also satisfied, while the subproblem gener-
ates additional canonical cuts when the master problem’s solution violates
some of the robust constraints. We apply this approach to V RPTW and
T -V RPTW and our numerical results show that the resulting optimization
problems for V RPTW and T -V RPTW are of the same difficulty for our in-
stances. This approach can easily be extended to other robust combinatorial
optimization problems where the number of robust constraints is limited and
their satisfaction is “easy” to check.
This paper is structured as follows. The next section introduces two dif-

ferent formulations of the V RPTW . Section 3 presents some key aspects of
robust programming that are needed to provide finite linear programming
formulations for linear problems under polyhedral uncertainty. In particular,
Section 3.1 presents our new technique based on implicit representation of
robust constraints. The tools from Section 3 are used in Section 4 to provide
two formulations for the T -V RPTW . Section 4.1 also presents a detailed
study on how to reduce the number of scenarios that must be considered.
Section 5 presents a numerical assessment of our formulations on a maritime
transportation problem that is described in Section 5.1, and we conclude the
paper in Section 6.

2. The vehicle routing problem with time windows

We first present a definition of the V RPTW . Considering the application
to maritime transportation that we will present in Section 5, the following
definition is more general than the standard V RPTW . By allowing travel
costs and travel times to be different for each vehicle, the definition includes
other related problems such as the V RPTW with multiple depots. Also due
to our maritime transportation application, we omit capacity constraints in
the formulation. However, including capacity is easy in all of the formulations
given in this paper. We are given a directed graph G = (N,A), a set of
vehicles K, a cost function c : A×K → R+, and a time function t : A×K →
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R+ for traveling along the arcs of G. The graph contains special depot nodes
o (origin) and d (destination) connected to all other nodes of G, and we
denote by N ∗ the set of nodes that are not depots, N ∗ := N\{o, d}. We
are given time windows [ai, bi] with ai, bi ∈ R+, for each i ∈ N ∗. Because
different vehicles may have access to different routes, we also introduce the
subset Ak of A for each k ∈ K.
The V RPTW consists of defining routes for the vehicles in K such that the

union of all routes passes exactly once by each i ∈ N ∗. When |K| = 1, the
problem contains a unique vehicle and reduces to the asymmetric traveling
salesman problem with time windows [2].
In this section, we recall two well-known formulations for the V RPTW ,

based on resource inequalities and path inequalities, respectively, and intro-
duce a new layered formulation for the problem. These formulations suppose
that all parameters are known with certainty.

2.1. Resource inequalities. We first recall a classical formulation for the
V RPTW based on resource inequalities. The formulation uses a set of binary
flow variables xkij which indicates weather vehicle k travels from node i ∈ N

to node j ∈ N , and a set of continuous variables yki indicating the arrival
time of vehicle k at node i ∈ N . In fact, since only one vehicle can serve
node i, we may drop the index k and let yi be the arrival time at node i
of the vehicle that serves i. Time windows [ai, bi] are imposed at each node
i ∈ N ∗, and we assume that a vehicle arriving earlier than ai can wait until
ai at no cost. The resource inequalities model (RI) for V RPTW follows.

min
∑

k∈K

∑

(i,j)∈Ak

ckijx
k
ij (1)

s.t.
∑

k∈K

∑

j∈N :(i,j)∈Ak

xk
ij = 1, i ∈ N∗, (2)

∑

j∈N :(j,i)∈Ak

xk
ji −

∑

j∈N :(i,j)∈Ak

xk
ij =







−1 i = o
1 i = d
0 otherwise

, i ∈ N, k ∈ K, (3)

xk
ij(yi + tkij − yj) ≤ 0, (i, j) ∈ Ak, k ∈ K, (4)

ai ≤ yi ≤ bi, i ∈ N∗, (5)

xk
ij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

The objective function (1) minimizes the cost of operating the set of vehi-
cles. Constraints (2) ensure that all i ∈ N ∗ are serviced exactly once, and
constraints (3) are the flow conservation constraints for each vehicle. Con-
straints (4) link routes and schedules, that is, yj must be greater than or
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equal to yi + tkij whenever vehicle k travels from i to j, while constraints (5)
ensure that the time windows are respected. Constraint (4) can be linearized
and replaced with constraints

yi − yj + (bi + tkij − aj)x
k
ij ≤ bi − aj, (i, j) ∈ Ak, k ∈ K. (6)

It is shown in the next proposition that model (RI) can be improved by
strengthening constraints (6). Proof of Proposition 1 is straightforward and
thus, we omit it.

Proposition 1. Constraints

yi − yj +
∑

k∈K:(i,j)∈Ak

max{bi + tkij − aj, 0}x
k
ij ≤ bi − aj. (7)

are valid for (RI). Moreover, any (x, y) ∈ {0, 1}|A||K| × R|N∗| that satisfies
constraints (7) also satisfies constraints (6).

An important characteristic of (RI) is the presence of variables y that
depend explicitly on the travel time values tkij. Given routes described by
variables x, variables y enable us to know how much time the vehicles have
to wait before being able to serve each node along their route. This level of
information is useful in some applications that consider costs related to wait-
ing times such as described in [13]. However, in the application considered in
this paper, only travel costs are relevant. Hence, the formulations presented
in the next two sections only contain variables related to the vehicle routes.
This shall have a crucial impact when applying robust models and methods
to the V RPTW , as it will be discussed in Sections 3 and 4.

2.2. Path inequalities. A recent formulation that is based only on arc
variables x has been proposed by [16] for the V RPTW . The formulation
does not consider explicitly the satisfaction of the time windows. Instead,
it forbids routes in G for which it is not possible to construct a feasible
schedule. Let Pk be the set of infeasible paths from o to d in G, that is, the
set of paths in G for which it is not possible to define arrival times yi that
satisfy constraints (4) and (5). For p ∈ Pk, we denote by |p| the number of
arcs contained in p. The main idea of this formulation is simply to forbid
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such paths.

min
∑

k∈K

∑

(i,j)∈A

ckijx
k
ij

(PI) s.t. (2), (3)

cycle-breaking inequalities, (8)
∑

(i,j)∈p

xkij ≤ |p| − 1, p ∈ Pk, k ∈ K, (9)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

Formulation (PI) contains one set of variables which, as before, indicates
which arcs are used by each vehicle. Constraints (8) can be any set of con-
straints (possibly with additional variables) that forbid cycles. In our com-
putational results we use the MTZ inequalities [18] which, essentially, uses
an auxiliary set of variables similar to y in (RI) to impose an order on the
nodes visited by the vehicles. Then, constraints (9) forbid infeasible paths.
Formulation (PI) contains a very large number of inequalities (9), possibly
exponential in the size of the problem, so that branch-and-cut algorithms
must be devised to solve (PI) exactly.

3. Robust linear programming

In this work, we consider uncertain travel times that belong to a poly-
tope T . This makes the problem a robust program, a class of optimization
problems that has witnessed a tremendous attention in the recent years. Con-
ducting an exhaustive literature review of robust programming is beyond the
scope of this paper and we redirect the interested reader to [6], among others.
The classical approach for robust programming relies on static models

where the variables of the problem are not allowed to vary to account for
the different values taken by the uncertain parameters. This is different
from robust programming with recourse that will be introduced later in this
section. Consider the following linear program in {0, 1}−variables

min cTx

(P ) s.t. Bx ≤ b, (10)

Tx ≤ d, (11)

x ∈ {0, 1}n,
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with c ∈ Rn, b ∈ Rr, d ∈ Rs, T ∈ Rsn, and B ∈ Rrn. Suppose that the
problem is subject to uncertainty in the sense that matrix T belongs to a
polytope T ⊂ Rsn. The robust counterpart of (P ) is

min cTx

(T -P ) s.t. Bx ≤ b,

Tx ≤ d T ∈ T , (12)

x ∈ {0, 1}n,

where the s linear constraints in (11) must now be satisfied for each value
of T ∈ T . Hence, the finite set of constraints (11) has been replaced by the
infinite set of constraints (12).
The classical approach in linear robust programming under polyhedral un-

certainty to handle the infinite set of constraints (12), see [5], relies on du-
alizing constraints (12). This results in the addition of a polynomial set of
constraints and variables that depend on the definition of the uncertainty
polytope T . To be applied to the T -V RPTW , this approach requires to use
an extended formulation, which contains a set of constraints Tx ≤ d that
describe the time windows in a static manner, that is, using only variables
related to the routes (and not to the actual schedule). Such a formulation
has been proposed in [1]. The formulation from [1] yields very poor numer-
ical results already in the deterministic case. For this reason, we introduce
alternative formulations in this paper, respectively based on the implicit rep-
resentation of (12) and on robust programming with recourse.

3.1. Implicit reformulation. The method described in this section is based
on the implicit representation of (12) via canonical cuts. Implicit reformu-
lation has been used already in this paper to obtain formulation (PI) where
the satisfaction of time windows is not included explicitly. Instead, (9) play
this role by forbidding individual paths that do not satisfy the time win-
dows. The idea of replacing complicating constraints by canonical cuts has
been used in other contexts as well, see [12, 25] among others. According to
our knowledge, this paper is the first work that applies this implicit reformu-
lation to a robust program. In the following, we recall first the general idea
for the deterministic problem (P ). Then, we extend it to the robust problem
(T -P ).
Let X ⊂ {0, 1}n be the set of all binary vectors that violate at least one

of the constraints (11). For x∗ ∈ {0, 1}n, we denote by x∗(1) ⊆ {0, . . . , n}
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(resp. x∗(0) ⊆ {0, . . . , n}) the set of indices where x∗ is equal to 1 (resp. 0).
Hence, a vector x∗ ∈ X can be cut-off by the following canonical cut

∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1,

first mentioned by [3]. Thus, constraints (11) for x binary are equivalent to
the following set of canonical cuts

∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1, x∗ ∈ X . (13)

We see that constraints (9) are an example of (13). Similarly, let X (T ) be
the set of binary vectors that violate at least one of the constraints in (12).
This set of constraints for x binary are equivalent to

∑

i∈x∗(1)

(1− xi) +
∑

i∈x∗(0)

xi ≥ 1, x∗ ∈ X (T ). (14)

Therefore, (T -P ) can equivalently be written as

min cTx

(T -Png) s.t. (10), (14)

x ∈ {0, 1}n,

which is a finite linear program in {0, 1}−variables.
Let us make a couple of remarks about (T -Png). First, canonical cuts

employed in (14) are extremely weak because each of these constraints cuts off
a unique binary vector. Hence, one should try to reinforce these constraints
with problem-dependent valid inequalities. For instance, each path inequality
in (9) cuts-off a unique path o to d. They can be improved as follows.
Instead of considering a whole path from o to d, we can forbid its smallest
subpath that is not feasible for the time windows. By doing so, we cut off all
paths from o to d that contain the forbidden subpath. Even further, these
inequalities can be lifted to obtain the tournament inequalities [2].
Second, (T -Png) is likely to contain a very large number of constraints in

(14). Therefore, a solution method that intends to solve (T -Png) efficiently
should employ a cutting plane algorithm that alternates between feasibility
checks – does the current x∗ belong to X (T ) – and the addition of canonical
cuts to a master problem, see for instance [12, 2, 16]. An important issue in
these iterative techniques is related to how to perform the feasibility check.
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A binary vector x∗ belongs to X (T ) if and only if there exists a T ∈ T such
that Tx > d, which is equivalent to

∃i ∈ {1, . . . , s} s.t. max
Ti∈Ti

Tix > di. (15)

Hence, checking whether x∗ belongs to X (T ) amounts to solve s linear pro-
grams. Solving s linear programs can be time consuming in general. Hence,
it is useful to devise more efficient algorithms that make use of the partic-
ular structure of the problem under the consideration and the uncertainty
polytope T .
We show later in this paper that this check can be improved when using

the budget uncertainty from [7] and even further for T -V RPTW by taking
into account that vector x describes a set of paths from o to d.

3.2. Robust programming with recourse. Model (T -P ) suffers from a
certain rigidity in the sense that a vector x must satisfy constraints (12) for
all T ∈ T to be feasible for (T -P ). In particular, the problem variables
are not allowed to adjust themselves to the values taken by the uncertain
parameters. This is an important modeling restriction that may not suit
many problem formulations, including the formulation (RI) from last section.
Namely, adapting (RI) in the way suggested by model (T -P ) would yield
an optimization problem where the arrival times would be fixed once for all
travel times in the uncertainty set. Such an optimization problem is likely
to be infeasible whenever T is not a singleton, see Example 1 from [1].
[4] have introduced a more flexible class of robust programs, where a subset

of variables is allowed to adapt itself as the uncertain parameters vary in the
uncertainty set T . Applied to (P ), their model essentially allows a subset
of variables, which we denote by x2, to become functions defined on T . To
keep notations simple, we suppose that these functions take only real values,
x2 : T → Rn2. Hence, x = (x1, x2), c = (c1, c2), B = (B1, B2), T = (T 1, T 2),
and x2 is allowed to vary as T 1 takes different values in T . For the sake of
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simplicity, we also suppose that c2 = B2 = 0. The problem becomes:

min (c1)Tx1

(T R-P ) s.t. B1x1 ≤ b,

T 1x1 + T 2x2(T 1) ≤ d, T 1 ∈ T , (16)

x1 ∈ {0, 1}n1,

x2(T 1) ∈ Rn2, T 1 ∈ T .

Problem (T R-P ) is often called a robust program with recourse, which fea-
tures two levels of decisions: first-stage variables x1 must be fixed before the
uncertainty is revealed, while recourse variables x2 can react to account for
the uncertainty. Notice that (T R-P ) can be extended to the case of uncer-
tain cost c1 by replacing the objective function with min z and adding the
restrictions z ≥ (c1)Tx1 to the set of uncertain constraints. Similarly, one
can suppose that B2 6= 0 or that c2 6= 0. In the latter, one must add term
maxT∈T 1(c2)Tx2(T 1) to the objective function. However, the situation where
c2 or T 2 is uncertain is more complicated and we do not address it in the
following.
Model (T R-P ) has an infinite number of variables x2(T 1) and constraints

(16). However, given that all constraints present in the problem are linear,
it is easy to show that we can restrict ourselves to the extreme points of T ,
ext(T ), which exist in finite number since T is a polytope. This simple result
is recalled below.

Lemma 1. Let T ⊂ Rsn1 be a polytope and ext(T ) be the set of its extreme
points. Consider vectors x1 ∈ [0, 1]n1 and d ∈ Rs. There exists x2 : T → Rn2

such that T 1x1 + T 2x2(T 1) ≤ d, ∀T 1 ∈ T if and only if there exists x2 :
ext(T ) → Rn2 such that T 1x1 + T 2x2(T 1) ≤ d, ∀T 1 ∈ ext(T ).

Lemma 1 allows us to solve (T R-P ) through (ext(T )R-P ). Though finite,
(ext(T )R-P ) tends to be very large because the number of extreme points of
the uncertainty polytope tends to grows rapidly with the problem size. For
this reason, we present in Section 4.1.1 techniques to reduce the number of
extreme points.

4. The robust V RPTW
From this section on, we suppose that travel times tkij are not known with

precision and belong to an uncertainty set. This is because in our application
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in maritime transportation, it often happens that delays occur during some
of sailings due to unstable weather. We must however ensure that the routes
proposed for the ships are feasible in most situations. Hence, we model the
travel times with the help of an uncertainty polytope T ⊂ R|A||K|, making
the optimization problem a robust program. In the following subsections, we
apply the methods described in Section 3 to the formulations for V RPTW
from Section 2. For each formulation, we first present the robust equivalent
for a general uncertainty polytope T . Then, we particularize the formulations
to take into account the structure of the polytope TΓ used in our numerical
experiments. We suppose that each component tkij of t lies between its mean

value t
k
ij and its peak value t

k
ij + t̂kij and that, for each k ∈ K, at most Γ of

them can reach their peak values simultaneously. Formally, this is defined by

TΓ = ×k∈KT
k
Γ where each T k

Γ is such that each tkij lies in [t
k
ij, t

k
ij + δkij t̂

k
ij] with

0 ≤ δkij ≤ 1,
∑

ij δ
k
ij ≤ Γ for some Γ ∈ Z with Γ < |A|. This is the budget

uncertainty polytope studied by [7].
Before presenting the robust formulations, we introduce a set of constraints

that has been proposed by [9] to check that time windows are satisfied with-
out the need of additional variables. Consider a binary vector x ∈ {0, 1}|A||K|

that describes a path p from i0 to in, that is, p = i0, . . . , in and xkij = 1 for

each (i, j) ∈ p, such that xkij = 0 otherwise. Constraints (4) and (5) for k
along p are equivalent to

ail1 +
∑

l=l1,...,l2−1

tkilil+1
≤ bil2 , 0 ≤ l1 < l2 ≤ n. (17)

Constraints (17) will be used in the next two subsections to check that a
path satisfies the time windows.

4.1. Resource inequalities. Model (RI) can be naturally extended to
handle uncertain polytope T : x becomes the set of first-stage variables,
while y becomes y(t), a function of t ∈ T . Thanks to Lemma 1, we only
need to consider travel times vectors t that belong to ext(T ). Hence, the
robust problem contains equations (5) and (7) written for every scenario
t ∈ ext(T ), that is

ai ≤ yi(t) ≤ bi, i ∈ N, t ∈ ext(T ), (18)
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and

yi(t)−yj(t)+
∑

k∈K:(i,j)∈Ak

max{(bi+tkij−aj), 0}x
k
ij ≤ bi−aj, (i, j) ∈ A, t ∈ ext(T ).

(19)
The robust version of (RI) becomes

min
∑

k∈K

∑

(i,j)∈Ak

cijx
k
ij

(ext(T )-RI) s.t. (2), (3), (18), (19)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K.

To simplify notations, we assume in the rest of this section that Ak = A for
each k ∈ K. However, the results presented next are easy to generalize to
the case where Ak can be different from Ah for any pair of distinct vehicles k
and h. In what follows, we denote the elements of ext(T ) either by extreme
points or by scenarios. Considering every scenario in ext(T ) is certainly
prohibitive when solving reasonable size instances. In the next subsection,
we focus on approaches to reduce the number of scenarios to be considered
by proposing formulations that are equivalent to (ext(T )-RI). Given a finite
set S ⊂ R|A||K|, we define (S-RI) as (ext(T )-RI) by replacing ext(T ) with
S in constraints (18) and (19). Hence, we want to characterize finite sets
S with the lowest possible cardinality that satisfies the following property:
a first stage solution x is feasible for (S-RI) if and only if it is feasible for
(ext(T )-RI). We mention that S may not be a subset of ext(T ).

4.1.1. Reducing the number of scenarios. The simplest approach tries to
withdraw individual scenarios from ext(T ) by comparing them to other sce-
narios that are more representative in the sense explained next. Namely, we
say that an extreme point t ∈ ext(T ) is dominated by another extreme point
τ ∈ ext(T ) if any solution for first stage variables x feasible for scenario τ
is also feasible for t. Hence, only those extreme points that are not domi-
nated need to be considered. In particular, there exists an easy sufficiency
condition to check whether t is dominated by τ .

Proposition 2. Let t, τ be two vectors in ext(T ). If τ kij ≥ tkij for each k ∈ K
and (i, j) ∈ A, then t is dominated by τ .

Proof : The result follows directly by considering the rewriting of the time
windows performed in (17).
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In what follows we make an abuse of language and say that a vector t
is dominated by τ when they satisfy the conditions of Proposition 2. The
concept of domination has already been used with success in the context of
robust network design, see [21, 22].

Figure 1. The set of scenarios {t, t̂} dominates t̃.

i′
(j′, i′)

(j′′, i′)

(j′, i′)

(j′′, i′)

T
t

t̂

t̃

(a) node i′ (b) projection of T in the space
corresponding to arcs (j′, i′) and (j′′, i′)

In what follows, we refine the concept of domination by using the special
structure of the T -V RPTW , and more specifically the fact that a route can
follow at most one arc that enters any node of the graph. Example 1 gives
an intuitive description of our idea on a simple instance of the problem.

Example 1. Consider an instance of the problem with |K| = 1 and let i′

be a node with two incoming arcs, see Figure 1(a). We assume that T is
a polytope whose projection in the space corresponding to arcs (j′, i′) and
(j′′, i′) is the triangle depicted in Figure 1(b). Hence, none of the scenarios
in {t, t̂, t̃} is dominated by another scenario in {t, t̂, t̃}. Also, we suppose that
tij > t̃ij and t̂ij > t̃ij for all (i, j) ∈ A\{(j′, i′), (j′′, i′)}.
We are going to show that a path p feasible for both t and t̂ is always feasi-

ble for t̃. The result follows easily from the next observation: p must contain
at most one of the arcs (j′, i′) and (j′′, i′), see Figure 1(a). Then, recall that
p = i0, . . . , in is feasible for the time windows if and only if constraints (17)
are satisfied. If (j′, i′) ∈ p (resp. (j′′, i′) ∈ p), then constraint (17) written
for t (resp. t̂) implies constraint (17) written for t̃. If i′ /∈ p, constraint (17)
written for t̃ is implied by either of the two other constraints.

Let us extend Example 1 to the general case. Consider a node i ∈ N ∗. Let
δ+(i) (resp. δ−(i)) be the set of arcs leaving (resp. entering) node i. We say
that an extreme point t ∈ ext(T ) is dominated by a subset S ⊆ ext(T )\{t}
if there exists an arc set

A′ = δ+(i) or A′ = δ−(i) (20)
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and a vehicle k′ ∈ K such that the following is satisfied:

tkij ≤ τ kij (i, j) ∈ A\A′, k ∈ K, τ ∈ S, (21)

tkij ≤ τ kij (i, j) ∈ A′, k ∈ K\{k′}, τ ∈ S, (22)

tk
′

ij ≤ max
τ∈S

τ k
′

ij (i, j) ∈ A′. (23)

Proposition 3. Let t be a scenario in ext(T ) dominated by S ⊆ ext(T )\{t}.
Any solution for first stage variables x feasible for each scenario τ ∈ S is also
feasible for t.

Proof : Let x be any first stage solution feasible for each scenario τ ∈ S
and A′ be an arc set that satisfies (20)–(23). The result follows directly by
noticing that x is equal to one on at most one arc from A′ and considering
the rewriting of the time windows performed in (17).

Any scenario that is dominated either by one scenario or by a group of sce-
narios may be withdrawn from the set of scenarios that must be considered,
which will be used in our numerical experiments.
In what follows, we present a different approach for reducing the scenario

set that combines the components of t for different vehicles. Let T k ⊂ R|A|

be the projection of T into the components corresponding to vehicle k, see
Figure 2. For any finite set S ⊂ R|A||K|, let Sk be the projection of S into
the components corresponding to vehicle k. We are going to prove that we
may replace ext(T ) by any finite set S ⊂ R|A||K| such that ext(T k) = Sk for
each k ∈ K.

Proposition 4. Consider x ∈ {0, 1}|A||K| and a finite set S ⊂ R|A||K| such
that ext(T k) = Sk for each k ∈ K. There exists y ∈ R|N || ext(T )| such that
(x, y) is feasible for (ext(T )-RI) if and only if there exists y ∈ R|N ||S| such
that (x, y) is feasible for (S-RI).

Proof : Please see Appendix A.

The interest of Proposition 4 lies in the fact that S can be chosen in such
a way that |S| is much smaller than | ext(T )|. More precisely, it is easy to
see that any S that satisfies the assumption of Proposition 4 must have at
least maxk∈K | ext(T k)| elements, and we show below how to construct such
a set that contains exactly maxk∈K | ext(T k)| elements.
Consider the collection of discrete sets {ext(T 1), . . . , ext(T |K|)}. We ex-

amine first the case where | ext(T 1)| = . . . = | ext(T |K|)| and let m be the
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Figure 2. Polytope T and its projections T k1 and T k2.

k2

k1

T k2

T k1

t1

t2
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tk22

cardinality of each of these sets. Hence, ext(T k) = {tk1, . . . , t
k
m} for each

k ∈ K. We construct the diagonal subset of ×k∈K ext(T k):

diag(T ) = {(t1i , . . . , t
|K|
i ), i = 1, . . . ,m}.

It is easy to see that diag(T )k = ext(T k) for each k ∈ K. This construction
is illustrated in Example 2.

Example 2. Consider the polytope from Figure 2. Ordering the elements
in T k1 = {tk11 , t

k1
2 } and T k2 = {tk21 , t

k2
2 }, we obtain that diag(T ) = {t1, t2} =

{(tk11 , t
k2
1 ), (t

k1
2 , t

k2
2 )}. In particular, the elements of diag(T ) are not extreme

points of T , that is, diag(T ) * ext(T ). Then, applying the domination from
Proposition 2 to diag(T ), we obtain an even smaller uncertainty set that
contains only {t2}.

Consider now that the cardinalities of {ext(T 1), . . . , ext(T |K|)} are differ-
ent, and suppose without loss of generality that | ext(T 1)| ≤ . . . ≤ | ext(T |K|)|.
Then, we extend these sets by adding copies of their last elements so that
each of the extended sets has a cardinality equal to | ext(T |K|)|, and we define
the diagonal for the extended sets.
In the next subsection, we characterize explicitly ext(T ) and diag(T ) for

the budget uncertainty set used in our computational experiments.

4.1.2. Extreme points of the budget uncertainty polytope. Recall that TΓ =

×k∈KT
k
Γ where each T k

Γ is such that each tkij lies in [t
k
ij, t

k
ij + δkij t̂

k
ij] with

0 ≤ δkij ≤ 1,
∑

ij δ
k
ij ≤ Γ for some Γ ∈ Z with Γ < |A|. Below we characterize
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the extreme points of TΓ by providing the following two results. Their proofs
are straightforward.

Proposition 5. t is an extreme point of TΓ if and only if t = ×k∈Kt
k and tk

is an extreme point of T k
Γ .

Proposition 6. Let t = ×k∈Kt
k. For each k ∈ K, tk is an extreme point of

T k
Γ if and only if tkij = t

k
ij + δkij t̂

k
ij and δkij ∈ {0, 1}, ∀(i, j) ∈ A.

Proposition 6 provides a characterization of the extreme points of T k
Γ from

the values of δkij. Restricting ourselves to scenarios in ext(TΓ), the parameters

δkij can be assumed to be binary. In that case, δkij indicates whether there

is a delay of vehicle k in arc (i, j) ∈ A or not. Thus, parameters δkij permit
to define the combination of the extreme points as the set of arcs where the
delays occurs for each vehicle.
In the following, we apply the methods described in Section 4.1.1 to re-

duce the number of scenarios to consider. First, recall that we must only
consider non-dominated scenarios. Applying Proposition 2 to TΓ, we obtain
immediately the next result.

Proposition 7. Let t ∈ ext(TΓ). If t = ×k∈Kt
k and tk

′

ij = t
k′

ij + δk
′

ij t̂
k′

ij with
∑

(i,j)∈A δk
′

ij < Γ for some k′ ∈ K, then t is dominated by τ ∈ TΓ\{t}.

Proposition 7 establishes that only scenarios where
∑

(i,j)∈A δkij = Γ need

to be considered in (18) and (19). Those scenarios correspond to the most
adverse situations in our application. In view of Proposition 7, we shall define

a smaller uncertainty set T Γ = ×k∈KT
k

Γ where each T
k

Γ is such that each tkij
lies in [t

k
ij, t

k
ij + δkij t̂

k
ij] with 0 ≤ δkij ≤ 1,

∑

ij δ
k
ij = Γ for some Γ ∈ Z. In doing

so, we reduce the number of extreme points from

| ext(TΓ)| = | ext(T 1
Γ )|

|K|
=

[

Γ
∑

i=0

(

|A|

i

)

]|K|

to

| ext(T Γ)| = | ext(T
1
Γ)|

|K|
=

(

|A|

Γ

)|K|

. (24)

Then, it is easy to apply Proposition 4 to T Γ = ×k∈KT
k

Γ because all sets

ext(T
k

Γ) contain the same number of elements, so that the construction of
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diag(T Γ) does not require to use extended sets. Namely, each element of
diag(T Γ) can be related to a set of exactly Γ arcs that take their maximum
travel time:

diag(T Γ) = {(t
1
ij + δij t̂

1
ij, . . . , t

|K|
ij + δij t̂

|K|
ij ), (i, j) ∈ A, s.t. δij ∈ {0, 1} and

∑

(i,j)∈A

δij = Γ}.

Applying Proposition 4 reduces the number of extreme points from (24) to

| diag(T Γ)| = | ext(T
1
Γ)| =

(

|A|

Γ

)

.

Finally, using the more general domination concept from Proposition 3, we

can reduce the number of elements of each ext(T
k

Γ) that must be considered

to construct diag(T Γ). Namely, we can withdraw from ext(T
k

Γ), and therefore
from diag(T Γ), all vectors where the delay occurs on two arcs that enter or
leave the same node. Hence the number of scenarios that we must consider
is a number comprised between

(

|V |
Γ

)

and
(

|A|
Γ

)

that depends on the topology
of G. In the rest of this paper, we use the following abuse of language.
We denote by (T -RI) the formulation (diag(T Γ)-RI) from which dominated
scenarios have been withdrawn by using Proposition 3.

4.1.3.Column-and-row generation. For Γ = 1, the reduction techniques from
the previous section enable us to solve our maritime transportation instances
in limited time. However, when Γ > 1, the reduced numbers of scenarios are
still very large. Hence, we implement a column-and-row generation algorithm
to solve (T -RI) by generating the required scenarios on the flow. First, we
choose arbitrarily a non-dominated scenario t0 from diag(T Γ) and solve the
resulting problem (T 0-RI) where T 0 := {t0}. Then, we check whether the op-
timal solution to (T 0-RI) satisfies the time windows for each non-dominated
t ∈ diag(T Γ), which can be performed in polynomial time (see Section 4.2.2).
If the solution violates the time windows for some t1 ∈ diag(T Γ), we define
T 1 := {t0, t1} and repeat the procedure with (T 1-RI). This approach ends
whenever the solution satisfies the time windows for each t ∈ diag(T Γ).

4.2. Path inequalities. In this section, we first explain how to modify (PI)
to handle uncertain travel times in a general uncertainty polytope T . Then,
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we show that the efficiency of the separation procedure can be improved
significantly whenever we consider the budget uncertainty polytope T Γ.

4.2.1.General uncertainty polytope. Let Pk
T be the set of non-feasible paths

in G from o to d for the uncertainty polytope T , that is, the set of paths in
G for which it is not possible to define arrival times yi that satisfy (18) and
(19). The robust version of (PI) is as follows:

min
∑

k∈K

∑

(i,j)∈Ak

ckijx
k
ij

(T -PI) s.t. (2), (3), (8)
∑

(i,j)∈p

xkij ≤ |p| − 1, p ∈ Pk
T , k ∈ K, (25)

xkij ∈ {0, 1}, (i, j) ∈ Ak, k ∈ K,

where the uncertainty polytope appears implicitly in the description of Pk
T .

In what follows, we study a cutting plane algorithm where constraints (25)
are generated iteratively by solving an associated separation problem [19]. Of
course, an efficient separation method is essential to the success of the cutting
plane algorithm. Hence, we address below how to separate constraints (25).
Consider a path p = (o = i0, . . . , in+1 = d) described by a binary vector xk

for vehicle k ∈ K. We show below that we can find whether p ∈ Pk
T in

pseudo-polynomial time. Recall that the time windows along p are satisfied
if and only if constraints (17) are satisfied. Therefore, p ∈ Pk

T if there exist
0 ≤ l1 < l2 ≤ n such that

ail1 +max
t∈T k

∑

l=l1,...,l2−1

tilil+1
> bil2 ,

that is, one of the inequalities in (17) is violated for some t ∈ T k. Hence,
the question whether p ∈ Pk

T amounts to solve at most n(n − 1)/2 linear
programs.

Proposition 8. Let p be a path in G from o to d for vehicle k. The question
whether p ∈ Pk

T can be answered in pseudo-polynomial time.

4.2.2.Budget uncertainty polytope. Whenever each T k has a particular struc-
ture, it may be used to devise more efficient algorithms than solving O(n2)
linear programs. Consider again the non-dominated budget uncertainty set
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T Γ = ×k∈KT
k

Γ defined in the first paragraph of Section 4 and consider the
general robust constraints

T kx ≤ dk, k ∈ K, T k ∈ T
k

Γ (26)

where Γ is integer.

Proposition 9. Consider a robust program under the uncertainty set T Γ and
a vector x ∈ Rn. Then, checking whether x satisfies the robust inequalities
(26) can be done in polynomial time, more specifically, by applying a sorting
algorithm |K| times.

Proof : Please see Appendix B.1.

In the proposition below, we refine Proposition 9 for the T -V RPTW by
using the fact that we separate path inequalities, whose structure is defined
on paths from o to d.

Proposition 10. Let p = (o = i0, . . . , in+1 = d) be a path in G from o to
d for vehicle k ∈ K. The question whether p ∈ Pk

T
k

Γ

can be answered in

(n− Γ′ + 1)Γ′ steps where Γ′ = min(Γ, n).

Proof : Please see Appendix B.2.

One observes that if Γ′ = Γ, the separation problem for constraints (25)
is solved in O(nΓ). On the other hand, if Γ′ = n, the problem is solved in
O(n).
Separating path inequalities (25) when x is fractional is more complicated

because the arcs on which xk takes positive values do not define a single path
from o to d. However, as explained by [16], we can use the fact that there is
only a polynomial number of paths for which the associated path inequality
(25) is violated. Moreover, since paths inequalities are weak, works address-
ing V RPTW or the asymmetric traveling salesman problem with time win-
dows rather use a lifted version of the path inequalities called tournament
inequalities [2].
In this paper, we also separate tournament inequalities rather then paths

inequalities whether x is fractional or not. The only difference between our
separation heuristic and the one from [16] is that we need to apply the dy-
namic programming procedure from Proposition 10 to check whether the
time windows are satisfied along a candidate path. Also, in the case where
xk is binary, that is, xk defines a unique path p from o to d, the tournament



THE ROBUST VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 21

inequality defined for p is generated as soon as xk violates the path inequality
(25) for p.

5. Computational experiments

In this section, we present a numerical assessment of the two formulations
introduced in this paper as well as the extended formulation from [1] on a
maritime transportation problem. Section 5.1 motivates and explain the real-
world application. The instances composing our test bed are then presented
in Section 5.2 while the numerical results are discussed in Section 5.3.

5.1. Application to the ship routing and scheduling problem. Mar-
itime transportation is an area that gives rise to a wide variety of routing
problems, and [11] give a thorough introduction to many of the important
issues. In the following we will consider industrial shipping, where a company
is using its own fleet to transport its own cargoes. In this setting the goal
will be to minimize the total transportation costs, while making sure that all
cargoes are transported.
For some shipping segments, it is a natural restriction that a ship can only

carry at most one cargo at any time. This is the case for some type of
bulk transportation where the ship is always loaded to its capacity or where
different cargoes cannot be mixed. Then, one does not need to explicitly
model both the pickup and the delivery. Instead, one can use each node
to represent both the pickup and the subsequent delivery. Such a problem
is already expressed through the models presented in this paper: an arc
(i, j) ∈ Ak represents that a ship k starts in the pickup port of cargo i,
moves to the delivery port of cargo i and then sails to the pickup port of
cargo j. The cost and time to perform these two legs can vary by ship,
and are denoted ckij and tkij respectively. Since a ship always sails directly
from a pickup port to the corresponding delivery port, it makes sense to
include time windows for the pickup port only, and yi will correspond to
the time when a ship starts service of cargo i at the pickup port of that
cargo. In maritime transportation there is no central depot and ships operate
continuously. Hence, the ships may start at different positions (usually in
the port where their previous delivery was made), and they may end at any
position when completing their route. Thus, o represents the actual origin
of a ship, and d is an artificial node representing that a ship has completed
its schedule.
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Travel times are highly stochastic in maritime transportation. A study
by [17] reported on probability distributions for sailing times between se-
lected ports in Europe, and showed that sailing times may vary significantly.
Since the satisfaction of the end consumer usually requires on time deliveries
throughout the supply chain, avoiding unnecessary delays in transportation
has an economic consequence. In the case of port congestion, shipping com-
panies will usually receive demurrages from the ports, but if the congestion
leads to delays that propagate through the route of the ship, the shipping
company may in turn end up paying penalties to many customers due to late
deliveries. It is therefore essential to make robust schedules that are able to
absorb some delays, which is exactly the purpose of the models presented in
this paper.

5.2. Details of the instances. This section describes how the instances
have been created for the maritime ship routing and scheduling problem de-
scribed above. A random instance generator is used, but where the instances
are made as realistic as possible. The instance generator takes as input the
number of ships, the number of cargoes to generate and a distance matrix.
The distance matrix used here contains 56 ports from around the world, with
actual sailing distances between each pair of ports.
Two non-overlapping subsets of ports are selected as pickup ports and

delivery ports respectively, to represent the structure of a company operating
within deep sea industrial shipping. Cargo requests are generated between
two ports based on a simple inventory model for the delivery port. Time
windows are associated with each cargo based on when the request would be
generated and an acceptable time before the delivery should be made.
Vessel attributes are generated so that the fleet is typically heterogeneous.

That is, ships have different capacities, speeds and cost structures. The
capacity is relevant in that some cargoes may be too big to be handled by
smaller ships (if so, the smaller ship cannot service the cargo). In addition,
some ports may be inaccessible by larger ships due to draft limits and port
capacity (if so, the larger ship cannot service the cargo). In the instances
generated, ship speeds vary between 13 and 20 knots, giving sailing times of
more than one month between distant ports when using the slowest ships.
The instance generator also specifies the possible delay in sailing time for

each arc in the network. This delay is calculated based on the time normally
required to perform the transportation represented by the arc. The delay
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also depends on the specific pickup port and delivery port involved, where
some ports are associated with more delay than others. Such a structure is
reasonable since bad weather affects the schedule more severely in some areas.
Since the planning horizon is long, there is a significant risk of a ship being
delayed at some point during its route, but the probability of experiencing
longer travel times for all legs would be small. Hence it makes sense to make
routes that can handle some delays, with Γ equal to some small number.
The computational testing contains instances with 20, 30, 40, and 50 dif-

ferent cargoes. For each number of cargoes, we consider four values of Γ:
0 (deterministic case), 1 (low uncertainty), 3 + (|N | − 20)/10 (middle un-
certainty), and 5 + (|N | − 20)/5 (high uncertainty). For each number of
cargoes, we also consider three number of ships: 1, 3 + (|N | − 20)/10, and
5 + (|N | − 20)/5. Finally, we generate five instances for each combination of
values for the number of cargoes and number of ships.

5.3. Numerical results. All models and algorithms have been coded using
the modeling language Xpress Mosel 3.2.3 and solved by Xpress Optimizer
22.01.09 [26]. A time limit of 1800 seconds has been set for each instance.
They were run on a computer equipped with a processor Intel Core i5 at
2.53 GHz and 4 GB of RAM memory. The objectives of this section are (i)
assessing the computational cost of solving the robust models as compared
to their deterministic counterparts, and (ii) comparing formulations (T -RI)
and (T -PI) as well as the layered formulation (T -LF ) described in [1].
Next we illustrate the reduction techniques described in Section 4.2 on an

instance with 20 nodes and 3 ships. With no reduction at all, the numbers of
extreme points of TΓ for this instance are equal to 1.70 107 and 2.85 1014 for Γ
equal to 1 and 2, respectively. Using the diagonal space from Proposition 4,
these numbers are reduced to 2.57 102 and 6.62 104, respectively. Then,
using the dominations from Proposition 2 and Proposition 3, the number of
extreme points for Γ = 2 is further reduced to 2.96 104.
In view of these very large numbers of extreme points, we cannot expect

to solve the complete formulation of (T -RI) in once when Γ > 1. Hence, we
solve (T -RI) by the column-and-row generation algorithm presented in Sec-
tion 4.1.3 and report the results of that algorithm in the following.In Table 1,
we present the average number of extreme points generated to solve (T -RI)
for each number of cargoes and uncertainty level. We see that these num-
bers are very small compared to the total number of reduced extreme points.
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Then, Table ?? reports the average numbers of cuts generated by (T -PI) for
each number of cargoes and uncertainty level. We see that (T -PI) generates
significantly more cuts than (T -RI) generates extreme points. This can be
explained by the fact that the cuts generated by (T -PI) are tournament in-
equalities, which, as well as ensure that the time windows are respected, also
increases the linear programming relaxation. Hence, their violation is checked
in every node in the branch-and-cut tree solving (T -PI). In opposition to
this, the extreme points generated by (T -RI) only enforce the satisfaction of
the time windows. In addition, their necessity is checked only after an opti-
mal integer solution has been found for the previous set of extreme points.

Table 1. Average numbers of extreme points generated by (T -RI).

Uncertainty level (Γ)
|N | low mid high
20 2.93 7.2 7.67
30 3.1 9.33 9.13
40 6.67 20.7 21.7
50 7.93 22.8 23.2

Table 2. Average numbers of cuts generated by (T -PI).

Uncertainty level (Γ)
|N | det low mid high
20 120 251 346 762
30 1210 313 867 795
40 25097 9501 17997 17870
50 17919 10364 24547 25072

Average solution times are presented in Tables 3 and 4 for each group
of 5 instances. Rows entitled “av” compute the average of the three rows
above them. Table 3 provides average solution times for instances with 20
nodes for the three formulations. Notice that solutions times for (T -LF )
assume that the instances have already been pre-processed by computing
longest paths [1]. We see that (T -RI) and (T -PI) are about two orders of
magnitude faster than (T -LF ). Then, while (T -RI) is faster than (T -PI) for
the deterministic instances (Γ = 0), it is slower than (T -PI) for the instances
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where Γ > 0. Table 4 presents average solution times for the larger instances
for formulations (T -RI) and (T -PI). The numbers of unsolved instances
within the 1800 seconds are given in parentheses and their values have been
set to 1800 seconds when computing the averages. We see from Table 4 that
the performance of (T -RI) and (T -PI) are comparable, although (T -RI)
seems to be more efficient for the larger instances. The results for both
approaches present, however, important differences. The solution times for
(T -RI) are highly impacted by the value of Γ. Deterministic instances are
always solved faster than robust instances. Moreover, the number of extreme
points of the uncertainty sets also influences the solution times since instances
with uncertainty sets defined by few extreme points (low) are solved faster
than instances with uncertainty sets defined by larger number of extreme
points (mid and high). In opposition to this, the presence of uncertainty
does not seem to influence the solution times of (T -PI).

Table 3. Average solution times in seconds for the three formu-
lations for instances with 20 nodes.

(T -LF ) (T -RI) (T -PI)
Γ det low mid high det low mid high det low mid high
|K|
1 21 244 255 162 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
3 39.9 289 330 242 0.1 2.5 15.2 15.5 1.2 1.7 2.2 3.8
5 13.6 53 406 177 0.1 0.2 1.6 1.3 0.8 0.4 0.5 0.6
av 24.8 195 330 194 0.1 0.9 5.6 5.6 0.7 0.7 0.9 1.4

6. Conclusion

This research addresses the vehicle routing problem with time windows and
travel times that belong to an uncertainty polytope T . We present two new
formulations for the problem that are based on resource inequalities ((T -RI))
and path inequalities ((T -PI)), respectively, and extend well-known formu-
lations for the deterministic version of the problem.
Each formulation uses different robust optimization tools to handle the

uncertainty. We propose for (T -PI) a new method to handle the uncer-
tainty implicitly with the help of canonical cuts, which does not increase
the complexity of the formulation itself. Instead, this approach sends the
additional complexity to the separation routine. Then, formulation (T -RI)
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Table 4. Average solution times in seconds for (T -RI) and
(T -PI) for larger instances.

(T -RI) (T -PI)
Γ det low mid high det low mid high

|N | |K|

30
1 0.1 0.1 0.1 0.1 1 1.2 4.8 2.9
4 0.6 1.1 5.3 4.1 2.9 1.6 1.7 2.1
7 3.3 8.2 58.1 66.1 27.3 7.6 16.6 17
av 1.6 3.3 21.2 23.4 10.4 3.5 7.7 7.3

40
1 0.1 0.1 0.3 1.4 1.5 2.2 5.1 24
5 11.3 160 640 (2) 617 (2) 391 (1) 30 249 227
9 364 (1) 368 (1) 477 (1) 444 (1) 452 (1) 391 (1) 429 (1) 427 (1)
av 125 176 372 354 281 141 228 226

50
1 0.1 0.3 1.2 2.8 6.7 7.3 28.2 55.3
6 13.8 31.1 537 (1) 485 (1) 534 (1) 216 805 (2) 779 (2)
11 109 748 (2) 1070 (3) 962 (3) 1020 (3) 773 (2) 1160 (3) 1150 (3)
av 41 260 536 483 520 332 664 661

relies on robust programming with recourse and we present domination rules
that significantly reduce the number of extreme points needed to define the
uncertainty polytope. We propose efficient solution algorithms for both for-
mulations: (T -PI) is solved by a branch-and-cut algorithm while (T -RI)
is solved by a column-and-row generation algorithm in line of the approach
proposed by [8].
We present computational results performed on a set of instances that

model a maritime transportation problem using the budget uncertainty poly-
tope studied in [7]. The performances of (T -PI) and (T -RI) are comparable
for our instances. In addition, the results show that (T -PI) is almost as
easy to solve as its deterministic counterpart. We think that this is a very
interesting result since it can be generalized to other robust combinatorial
optimization problems. Hence, a side contribution of this work is the intro-
duction of an alternative approach to the dualization technique habitually
used for static robust programming.

Appendix A.Proof of Proposition 4

Proposition 4 1 (Proposition 4.). Consider x ∈ {0, 1}|A||K| and a finite
set S ⊂ R|A||K| such that ext(T k) = Sk for each k ∈ K. There exists
y ∈ R|N || ext(T )| such that (x, y) is feasible for (ext(T )-RI) if and only if there
exists y ∈ R|N ||S| such that (x, y) is feasible for (S-RI).
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Proof : Consider first the following simple property whose proof is straight-
forward.

Lemma 2. Let T be a polytope in R|K|. The following holds:

(1) ext(T k) ⊆ ext(T )k,
(2) ext(T )k ⊆ conv(ext(T k)).

Sufficiency: Let (x, y) ∈ {0, 1}|A||K|×R|A|| ext(T )| be feasible for (ext(T )-RI).
We construct next y ∈ R|A||S| such that (x, y) is feasible for (S-RI). First,
we introduce the following notation. Given τ ∈ S and k ∈ K, we define

t(τ, k) = {t ∈ ext(T ) s.t. tk = τ k}. (27)

Lemma 2.1 implies that t(τ, k) is non-empty for all τ ∈ S and k ∈ K. Then,
notice that constraints (2) and (3) force x to describe a set of |K| routes
that partition the nodes of the graph, N = N 1 ∪ . . . ∪ N |K|. This enables
us to define y ∈ R|A||S| as follows. For each k ∈ K and τ ∈ S, we choose
arbitrarily t ∈ t(τ, k) and set yi(τ) = yi(t) for each i ∈ N . One can easily
verify that (x, y) is feasible for (S-RI), that is, (x, y) satisfies (18) and (19)
where ext(T ) is replaced by S.
Necessity: We cannot extend directly (27) to this situation because ext(T )k\Sk

can be non-empty. For each t ∈ ext(T ), we define K(t) = {k ∈ K s.t. tk ∈
S}. The pendant of (27) is defined as τ(t, k) = {τ ∈ S s.t. τ k = tk}, for each
t ∈ ext(T ) and k ∈ K(t). Then, we extend τ(t, k) to the other couples (t, k)
by using Lemma 2.2. Namely, we define

λ(t, k) = {λ ∈ [0, 1]|S
k| s.t.

|Sk|
∑

j=1

λj = 1 and

|Sk|
∑

j=1

λjτ
k
j = tk},

for each t ∈ ext(T ) and k ∈ K\K(t).
We can now set up y ∈ R|A|| ext(T )| as follows. For each t ∈ ext(T ) and

k ∈ K(t), we choose arbitrarily τ ∈ τ(t, k) and set yi(t) = yi(τ) for each
i ∈ N . Then, for each t ∈ ext(T ) and k ∈ K(t), we choose arbitrarily

λ ∈ λ(t, k) and set yi(t) =
∑|Sk|

j=1 λjyi(τj) for each i ∈ N . One can easily
check that (x, y) satisfies (18) and (19).

Appendix B.Dynamic programming approaches

B.1. Proof of Proposition 9.
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Proposition 4 2 (Proposition 9.). Consider a robust program under the
uncertainty set T Γ and a vector x ∈ Rn. Then, checking whether x satisfies
the robust inequalities (26) can be done in polynomial time, more specifically,
by applying a sorting algorithm |K| times.

Proof : The left-hand side of each equation k in (26) can be rewritten for T
k

Γ

as

max
δk∈{0,1}n,

∑

δk=Γ

n
∑

i=1

(T
k

i +δki T̂
k
i )xi =

n
∑

i=1

T
k

i xi+ max
δk∈{0,1}n,

∑

δk=Γ

n
∑

i=1

δki T̂
k
i xi. (28)

The maximum in the right-hand side of (28) can be obtained by using a

sorting algorithm that returns the Γ highest values among the elements T̂ k
i xi,

i = 1, . . . , n.

B.2. Proof of Proposition 10.

Proposition 4 3 (Proposition 10.). Let p = (o = i0, . . . , in+1 = d) be a path
in G from o to d for vehicle k ∈ K. The question whether p ∈ Pk

T
k

Γ

can be

answered in (n− Γ′ + 1)Γ′ steps where Γ′ = min(Γ, n).

Proof : Let α(ij) be the earliest arrival time at node ij ∈ p when the travel
times are deterministic, which is formally defined by

α(ij) = max(aij , α(ij−1) + tij−1ij).

In that case, the question whether p ∈ Pk would be answered by checking
that

α(ij) ≤ bij 1 ≤ j ≤ n,

which can be done in O(n).
Let α(ij, γ) be the earliest arrival time at ij when at most γ arcs are using

their maximum time in subpath i0, . . . , ij. The robust version of the earliest
arrival at ij becomes the following recursive function

α(ij, γ) =























α(i0, γ) = ai0 0 ≤ γ ≤ Γ′

α(ij, 0) = max(aij , α(ij−1, 0) + tij−1ij) 1 ≤ j ≤ n
α(ij, γ) = max(aij , α(ij−1, γ − 1) + tij−1ij

+t̂ij−1ij , α(ij−1, γ) + tij−1ij) 1 ≤ γ ≤ j
α(ij, γ) = −∞ j < γ
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The question whether p ∈ Pk

T
k

Γ

is answered by checking if

α(in+1,Γ
′) ≤ bin+1

,

which can be done in (n− Γ′ + 1)Γ′ steps.
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27. I. Sungur, F. Ordónez, and M. Dessouky, A robust optimization approach for the capacitated

vehicle routing, IIE Transactions 40 (2008), no. 5, 509–523.

Agostinho Agra

CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

E-mail address: aagra@ua.pt

Marielle Christiansen

Department of Industrial Economics and Technology Management, Norwegian Univer-

sity of Science and Technology, NO-7491 Trondheim, Norway

E-mail address: marielle.christiansen@iot.ntnu.no

Rosa Figueiredo

CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

E-mail address: rosa.figueiredo@ua.pt

Lars Magnus Hvattum

Department of Industrial Economics and Technology Management, Norwegian Univer-

sity of Science and Technology, NO-7491 Trondheim, Norway

E-mail address: lars.m.hvattum@iot.ntnu.no

Michael Poss

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portu-

gal,, GOM, Department of Computer Science, Faculté des Sciences, Université Libre de
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