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1. Introduction

Bourbaki [2] emphasized the importance of proper maps of topological
spaces, defined as the stably closed continuous maps. Point-set topologists
prefer to introduce them as the closed continuous maps with compact fibres
and to call them perfect ([8]), give or take Hausdorff separation conditions
which, however, we will disregard in this paper. The statement that perfect
maps are proper generalizes Kuratowski’s Theorem which asserts thatX → 1
is proper when X is compact. Mrówka [16] showed that compactness of X
is not only sufficient but also necessary for propriety of X → 1, which then
gives that proper maps are perfect.
Extrapolating from the Manes-Barr presentation (see [1]) of topological

spaces as the relational algebras of the ultrafilter monad (induced by the
underlying Set-functor of compact Hausdorff spaces [15]), in this paper we
consider the question of to which extent the equivalence of the notions of
proper and perfect may be transferable to the context of (T, V )-algebras, as
considered with slight variations in [3, 6, 17, 9] and other papers, where the

Received May 9, 2012.
The authors acknowledge partial financial assistance by Centro de Matemática da Universi-
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quantale V replaces the two-element chain (so that V -relations replace ordi-
nary relations) and the Set-monad T replaces the ultrafilter monad. In order
not to lose the V -categorical intuition [13], we prefer to call (T, V )-algebras
and their lax homomorphisms (T, V )-categories and (T, V )-functors, respec-
tively. With no obvious candidate for a notion of closedness at hand in the
general context, we define proper (T, V )-functors as in [4, 11] equationally, as
the strict homomorphisms amongst lax, and call an object X compact when
X → 1 is proper, with 1 denoting the terminal object. The terminal struc-
ture on a singleton set will generally be distinct from its discrete structure,
which is being used when forming fibres. Keeping this distinction in mind,
with the known and easily-established pullback stability of proper morphisms
one obtains that their fibres are proper as maps, and then compact as objects
whenever the terminal structure is discrete.
We prove two versions of the proper=perfect paradigm in the general con-

text, using two distinct approaches to a notion of “closed morphism”. The
first one was already used in [11] in some key examples and relies on assign-
ing to every (T, V )-category structure on X a V -category structure on TX

in a functorial manner, such that in the example V = 2 and T the ultrafilter
monad, closedness of a continuous map f : X → Y is equivalently described
as propriety of the monotone map Tf : TX → TY . This leads us to the gen-
eral characterization of proper (T, V )-functors as those f with proper fibres
for which Tf is proper (Theorem 3.2), as presented by the second author at
CT2011. The second version uses a family of closure operators and works well
when V is constructively completely distributive. It requires us, however, to
mimic Mrówska’s result in the general context, which as in the topological
role model relies on the provision of suitable “test objects” (Theorem 5.2).
With that at hand, proper (T, V )-functors can be characterized entirely in
terms of closure (Theorem 6.1) which, however, has in this general context
features not apparent at the level of the role model Top, and we illustrate
them by non-standard examples that leave the realm of categories consid-
ered in [11], like the categories of metric and of topological spaces and their
natural hybrid, the category of approach spaces [14].

The authors are indebted to Dirk Hofmann who advised them about his
proof of Lemma 7.1 in the cases that the quantale V is the two-element chain
or the extended non-negative real half line. The proof given here is an easy
adaptation of his argumentation to our more general context.
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2. The setting

Throughout the paper V is a cartesian closed, unital, associative and com-
mutative quantale. Hence, V is a frame endowed with an associative and
commutative binary operation ⊗ which, like the binary meet ∧, preserves
arbitrary joins in each variable; in addition, we assume that the top element
⊤ serves as the ⊗-neutral element.
We consider a monad T = (T,m, e) of the category Set and, for simplicity,

assume that T is taut, so that T preserves inverse images (i.e., pullbacks
of monomorphisms along arbitrary maps). In particular then, T preserves
monomorphisms, and for i : A →֒ X and x ∈ TX we will often write x ∈ TA

when x ∈ T i(TA).

Furthermore, we assume that T comes with a fixed lax extension T̂ to the
category V -Rel of V -relations, that is: to the category with objects sets and
morphisms r : X−→7 Y given by functions r : X × Y → V whose composite
with s : Y−→7 Z is defined by

(s · r)(x, z) =
∨

y∈Y

r(x, y)⊗ s(y, z)

for all x ∈ X, z ∈ Z. Note that V -Rel has an involution r 7→ r◦ : Y−→7 X

with r◦(y, x) = r(x, y), and that every map f : X → Y may be considered
a V -relation f◦ : X−→7 Y with f◦(x, y) = ⊤ when f(x) = y, and f◦(x, y) =
⊥ (the bottom element) otherwise. Unless |V | = 1 there is no danger in
identifying f◦ with f ; its converse, f ◦ : Y−→7 X, serves as the right adjoint
to f◦ in the 2-category V -Rel, the 2-cells of which are given by pointwise
order: r ≤ r′ if and only if r(x, y) ≤ r′(x, y) for all x ∈ X, y ∈ Y .

We must clarify what we mean by lax extension: T̂ assigns to every V -
relation r the V -relation T̂ r : TX−→7 TY subject to the axioms (A)-(F)
below.

(A) Tf ≤ T̂ f , (Tf)◦ ≤ T̂ (f ◦),

(B) r ≤ r′ ⇒ T̂ r ≤ T̂ r′,

(C) T̂ s · T̂ r ≤ T̂ (s · r),
(D) T̂ T̂ r ·m◦

X = m◦
Y · T̂ r,

(E) r · e◦X ≤ e◦Y · T̂ r,

for all r, r′ : X−→7 Y , s : Y−→7 Z and f : X → Y . (A)-(E) mean equivalently

that T̂ : V -Rel → V -Rel is a lax functor, m◦ : T̂ → T̂ T̂ a natural transfor-
mation, and e◦ : T̂ → 1 a lax natural transformation, extending T laxly (in
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the sense of (A)). They imply in particular the identities

T̂ (s · f) = T̂ s · Tf, T̂ (g◦ · r) = (Tg)◦ · T̂ r, T̂1X = T̂ (e◦X) ·m
◦
X

(with g : Z → Y ), see [17, 18]. We require in addition:

(F) T̂ (h · r) = Th · T̂ r

(with h : Y → Z). We do not assume a priori that T̂ is flat, i.e., that

T̂1X = 1TX, which forces the inequalities (A) to become identities.
A (T, V )-category (X, a) is a set X with a V -relation a : TX−→7 X with

1X ≤ a · eX and a · T̂ a ≤ a ·mX . A (T, V )-functor f : (X, a) → (Y, b) is a
map f : X → Y with f · a ≤ b · Tf . This defines the (ordinary) category
(T, V )-Cat. For T = I the identity monad (identically extended to V -Rel),
(T, V )-Cat is the category V -Cat, i.e. the category of (small) categories
enriched over the monoidal-closed category V .
The forgetful functor

(T, V )-Cat // Set, (X, a) � // X, f � // f

is topological, hence (T, V )-Cat is complete and cocomplete. In particular,
(1,⊤), with 1 = {∗} and ⊤(w, ∗) = ⊤ for every w ∈ T1, is the terminal
object, and the structure d on the pullback of f : (X, a) → (Z, c) and g :
(Y, b) → (Z, c)

X ×Z Y
q

//

p
��

Y

g
��

X
f

// Z

is given by

d(w, (x, y)) = a(Tp(w), x) ∧ b(Tq(w), y),

for any w ∈ T (X ×Z Y ), (x, y) ∈ X ×Z Y . The left adjoint to the forgetful
functor assigns to each set X the discrete structure

1♯X = e◦X · T̂1X .

The monad T may be extended to become a monad of V -Cat which we
again denote by T = (T,m, e): for a V -category (X, a0), let T (X, a0) =

(TX, T̂a0). There is a comparison functor

K : (V -Cat)T // (T, V )-Cat
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which commutes with the underlying-set functors; it sends (X, a0 : X−→7 X,α :
TX → X) to (X, a0 · α : TX−→7 X) (see [19]). It is less trivial and requires
the full extent of hypothesis (D) to show that K has a left adjoint, which
sends a (T, V )-category (X, a) to (TX, â,mX) and a (T, V )-functor f to Tf ,
where

â := T̂ a ·m◦
X

(see [10]). We will make use of the composite of this left adjoint with the
forgetful functor (V -Cat)T → V -Cat:

(T, V )-Cat // V -Cat, (X, a) � // (TX, â), f � // Tf.

Examples 2.1. 1. For V = 2 = {false ≤ true}, with ⊗ = &, an (I, 2)-
category (X, a) is a set X equipped with a pre-order, that is a relation ≤
on X with

x ≤ x, (x ≤ y & y ≤ z) ⇒ x ≤ z,

for all x, y, z ∈ X (no anti-symmetry assumed), while (I, 2)-functors are
exactly monotone maps. We write Ord for (I, 2)-Cat=2-Cat.
If V = [0,∞] is the real half-line, ordered by the relation ≥, and ⊗ =

+ (with v + ∞ = ∞ for every v ∈ [0,∞]), then an (I, [0,∞])-category
(X, a) is a set X equipped with a (generalized) metric a, that is a map
a : X ×X → [0,∞] such that

0 ≥ a(x, x), a(x, y) + a(y, z) ≥ a(x, z),

for all x, y, z ∈ X, and (I, [0,∞])-functors are non-expansive maps ([13]).
We write Met for (I, [0,∞])-Cat = [0,∞]-Cat.

2. Let V = 2 and P = (P,m, e) be the power-set monad in Set, extended to
Rel by

A(P̂ r)B ⇔ ∀x ∈ A ∃y ∈ B : x r y,

for r : X−→7 Y , A ⊆ X and B ⊆ Y . (Note that P̂ is a non-flat extension of
P .) Then, as shown in [17], (P, 2)-Cat is isomorphic toOrd. In particular,
every ordered set (X,≤) defines a (P, 2)-category (X,�) via

A � y :⇔ ∀x ∈ A (x ≤ y),

and vice-versa.
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For every (X, a) ∈ (P, 2)-Cat, â : PX−→7 PX is defined by

A âB ⇔ ∃A ∈ PX : mX(A) = A & A (P̂ a)B

⇔ ∃A ∈ PX :
⋃

A = A & ∀A′ ∈ A ∃y ∈ B : A′ � y

⇔ ∀x ∈ A ∃y ∈ B : x ≤ y.

3. Let V = 2 and F = (F,m, e) be the filter monad on Set, extended to Rel

by putting

x (F̂ r) y :⇔ ∀B ∈ y ∃A ∈ x ∀x ∈ A ∃y ∈ Y : x r y,

for a relation r : X−→7 Y , x ∈ FX, y ∈ FY . As shown in [17], (F, 2)-Cat

is isomorphic to Top.
4. When restricted to ultrafilters, F̂ gives the lax extension Û of the ultrafilter

Set-monad U = (U,m, e) to Rel which may be described by:

x (Ûr) y ⇔ ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B : x r y,

for a relation r : X−→7 Y and x ∈ UX, y ∈ UY . As shown by Barr [1],
the category (U, 2)-Cat is isomorphic to the category Top of topological
spaces and continuous maps (see [3, 6] for details).
If (X, a) is an (U, 2)-category, then the ordered set (UX, â) has the

following structure:

x â y ⇔ ∀A ⊆ X A closed (A ∈ y ⇒ A ∈ x)
⇔ ∀A ⊆ X A open (A ∈ x ⇒ A ∈ y),

for all x, y ∈ UX.
In fact, for any V , U has a flat extension to V -Rel given by:

(Ûr)(x, y) :=
∧

A∈x, B∈y

∨

x∈A, y∈B

r(x, y),

for a relation r : X−→7 Y , x ∈ UX, y ∈ UY .
When V = [0,∞] is the real half-line, it was shown in [3] that (U, [0,∞])-

Cat is isomorphic to the category App of approach spaces and non-
expansive maps [14]. The structure â, for a given approach space (X, a),
will be studied in Section 7.

5. Consider now the free-monoid monad L = (L,m, e) on Set, (flatly) ex-
tended to Rel by putting

〈x1, · · · , xn〉 (L̂r) 〈y1, · · · , ym〉 ⇔ n = m & xi r yi, for all i = 1, · · · , n,
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for r : X−→7 Y , 〈x1, · · · , xn〉 ∈ LX, 〈y1, · · · , ym〉 ∈ LY . Then an (L, 2)-
category (X, a) is a multi-ordered set, that is, the relation a : LX−→7 X is
such that

〈x〉 a x,

〈〈x1
1, · · · , x

1
n1
〉, · · · , 〈xl

1, · · · , x
l
nl
〉〉 (L̂a) 〈y1, · · · , ym〉 a z ⇒ 〈x1

1, · · · , x
l
nl
〉 a z.

6. For a monoid (H, µ, η), we consider the Set-monad H = (H × −, m, e),
with mX = µ× 1X and eX = 〈η, 1X〉. H has a flat extension to Rel given
by

(α, x) (Ĥr) (β, y) ⇔ α = β & x r y,

for any r : X−→7 Y , (α, x) ∈ H×X and (β, y) ∈ H×Y . Writing x
α

// y

instead of (α, x) a y for a relation a : H×X−→7 X, an (H, 2)-category (X, a)
can be seen as an H-labeled graph such that

x
η

// x , x
α

// y
β

// z ⇒ x
α·β

// z ,

for all x, y, z ∈ X and α, β ∈ H. An (H, 2)-functor f : (X, a) → (Y, b) is a
map f : X → Y satisfying the condition:

x
α

// y ⇒ f(x)
α

// f(y) .

For each H-labeled graph (X, a), the order â induced on H × X by a is
given by:

(α, x) â (β, y) ⇔ ∃γ ∈ H (α = β · γ & x
γ

// y ).

3. Proper (T, V )-functors
A (T, V )-functor f : (X, a) → (Y, b) is proper if f ·a = b ·Tf . In order to be

able to talk about fibres of f , we should first clarify that very term. For each
y ∈ Y , the assignment ∗ 7→ y defines a (T, V )-functor y : (1, 1♯) → (Y, b),

where 1♯ = e◦1 ·T̂11 is the discrete structure on 1 = {∗}; explicitly, for w ∈ T1,

1♯(w, ∗) = T̂11(w, e1(∗)).

By fibre of f on y we mean the pullback (f−1y, ã) → (1, 1♯) of f along the
(T, V )-functor y : (1, 1♯) → (Y, b). We note that (f−1y, ã) → (X, a) is a
monomorphism, but in general not regular, i.e., ã does not need to be the
restriction of a : TX ×X → V to T (f−1y)× f−1y:

ã(x, x) = a(x, x) ∧ 1♯(T !(x), ∗) (where ! : f−1y → 1)

= a(x, x) ∧ T̂1X(T !(x), e1(∗)),
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for every x ∈ T (f−1y) and x ∈ f−1y.
Proper (T, V )-functors have proper fibres, since:

Proposition 3.1 (See [4]). Proper maps are stable under pullback in (T, V )-Cat.

Proof : Consider the pullback diagram of Section 2, with f proper. Then

b · Tq = (b ∧ b) · Tq
≤ ((g◦ · c · Tg) ∧ b) · Tq
= (g◦ · c · Tg · Tq) ∧ b · Tq
= (g◦ · c · Tf · Tp) ∧ b · Tq (f proper)
= (q · p◦ · a · Tp) ∧ (b · Tq)
= q · ((p◦ · a · Tp) ∧ (q◦ · b · Tq)) (V cartesian closed)
= q · d.

We can now prove a first characterization theorem.

Theorem 3.2. A (T, V )-functor f : (X, a) → (Y, b) is proper if, and only

if, all of its fibres are proper, and the V -functor Tf : (TX, â) → (TY, b̂) is
proper.

Proof : If f is proper, from b · Tf = f · a one obtains

b̂ · Tf = T̂ b ·m◦
Y · Tf = T̂ b · T̂ T̂ f ·m◦

X (D)

≤ T̂ (b · T̂ f) ·m◦
X (C)

≤ T̂ (b · Tf) ·m◦
X (∗)

= T̂ (f · a) ·m◦
X

= Tf · T̂ a ·m◦
X = Tf · â; (F)

here (*) comes about since

b · T̂ f = b · T̂1X · Tf = b · T̂ (e◦X) ·m
◦
X · Tf ≤ b · T̂ b ·m◦

X · Tf
≤ b ·mX ·m◦

X · Tf ≤ b · Tf.

Conversely, assume all fibres of f to be proper in (T, V )-Cat and Tf to be
proper in V -Cat. Since

b = b · e◦TY ·m◦
Y ≤ e◦Y · T̂ b ·m◦

Y = e◦Y · b̂,
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for all x ∈ TX, y ∈ Y one obtains:

b · Tf(x, y) = b(Tf(x), y)

≤ b̂(Tf(x), eY (y))

=
∨

z∈(Tf)−1(eY (y))

â(x, z) (Tf proper)

=
∨

z∈(Tf)−1(eY (y))

(T̂ a ·m◦
X)(x, z)

=
∨

z∈(Tf)−1(eY (y))

∨

X∈m−1

X x

T̂ a(X, z)⊗⊤

Since tautness of T guarantees that the following diagram is a pullback,

T (f−1y)
T !

//

��

T1

Ty
��

TX
Tf

// TY

every z ∈ (Tf)−1(eY (y)) = (Tf)−1(Ty(e1(∗))) satisfies z ∈ T (f−1y) and
T !(z) = e1(∗). Using propriety of (f−1y, ã) → (1, 1♯) one gets:

∨

Tf(z)=eY (y)

∨

X∈m−1

X x

T̂ a(X, z)⊗⊤ ≤
∨

T !(z)=e1(∗)

∨

X∈m−1

X x

T̂ a(X, z)⊗
∨

x∈f−1y

ã(z, x)

≤
∨

T !(z)=e1(∗)

∨

X∈m−1

X x

∨

x∈f−1y

T̂ a(X, z)⊗ a(z, x)

≤
∨

X∈m−1

X x

∨

x∈f−1y

a(mX(X), x)

≤
∨

x∈f−1y

a(x, x)

= (f · a)(x, y).

Hence, f is proper.

Next we show that propriety of fibres trivializes whenever the lax natural
transformation e◦ : T̂ → 1 is strict.

Proposition 3.3. If e◦ : T̂ → 1 is a natural transformation, then any (T, V )-
functor has proper fibres.
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Proof : For a (T, V )-functor f : (X, a) → (Y, b) and y ∈ Y , we must show
that the diagram

T (f−1y)
T !

//

_ã
��

T1

_ 1♯

��

f−1y
!

// 1

commutes, and for that it suffices to consider x ∈ T (f−1y) with 1♯(T !(x), ∗) =
T̂1(T !(x), e1(∗)) > ⊥ and show ã(x, ∗) = ⊤. From the commutativity of the
diagram

T (f−1y)
T !

//

_e◦

��

T1
�̂

T1
//

_e◦
1

��

T1

_ e◦
1

��

f−1y
!

// 1
1

// 1

we first obtain

⊥ < e◦1 · T̂1 · T !(x, ∗) = e◦1 · T !(x, ∗) = ! · e◦(x, ∗) =
∨

x∈f−1y

e◦(x, x) = ⊤,

and then
! · ã(x, ∗) ≥ ! · e◦(x, x) = ⊤.

Corollary 3.4. If e◦ : T̂ → 1 is a natural transformation, then a (T, V )-
functor f : (X, a) → (Y, b) is proper if, and only if, the V -functor Tf is
proper.

Remark 3.5. This Corollary shows that, in Examples 2.1.4 and 2.1.5, propri-
ety of (T, V )-functors can be characterized at the V -categorical level. How-
ever our main example, the ultrafilter monad, shows that the hypothesis that
e◦ be a natural transformation is essential for the validity of the Corollary.

The notion of proper morphism leads to a natural notion of compactness:
a (T, V )-category (X, a) is compact whenever !X : (X, a) → (1,⊤) is proper.
When T1 ∼= 1, so that the generator (1, 1♯) coincides with the terminal object
(1,⊤), (X, a) is compact if, and only if, the only fibre of !X : (X, a) → (1,⊤)
is proper. In general we can prove:

Proposition 3.6. If (X, a) is a compact (T, V )-category, then the fibre of
the (T, V )-functor !X : (X, a) → (1,⊤) is proper. Furthermore, when the two
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structures 1♯ and ⊤ on 1 coincide (in particular, when T1 ∼= 1), the converse
is true.

Proof : Let (X, a) be compact and t : (X, ã) → (1, 1♯) be the fibre of !X along
∗ ∈ 1. Then, for any x ∈ TX, since V is a frame,

t · ã(x, x) =
∨

x∈X

ã(x, x) =
∨

x∈X

(a(x, x) ∧ 1♯(T !(x), ∗))

= ⊤ ∧ 1♯(T !(x, ∗)) = 1♯(Tt(x), ∗),

so that t is proper.

Corollary 3.7. If ⊤ is the discrete structure on 1, then the following condi-
tions are equivalent, for a (T, V )-functor f :

(i) f is proper;
(ii) Tf is proper and f has compact fibres.

Corollary 3.8. If ⊤ is the discrete structure on 1 and e◦ a natural transfor-
mation, then every (T, V )-category is compact.

We point out that, when the lax extension T̂ is flat, ⊤ = 1♯ if and only if
T1 ∼= 1, since flatness of T̂ gives 1♯(x, ∗) = e◦1(x, ∗) = ⊤ only if x = e1(∗).

We will be able to demonstrate easily that Corollary 3.7 generalizes the
characterization of the proper maps in Top as the closed maps with compact
fibres once we have interpreted the condition that “Tf be proper” to mean
equivalently that “f be closed”. To this end, the next section introduces a
suitable notion of closedness.

4. Closed (T, V )-functors
Recall that an ordered set X is constructively completely distributive (ccd)

if there are adjunctions

⇓ ⊣
∨

⊣ ↓: X −→ DownX

where DownX is the lattice of down-closed sets in X, ordered by inclusion.
Writing x ≪ a instead of x ∈ ⇓ a, one then has

x ≪ a ⇔ ∀A ⊆ X (a ≤
∨

A ⇒ ∃y ∈ A : x ≤ y),

and a =
∨

{x ∈ X |x ≪ a}.
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Throughout the remainder of the paper, we assume V to be ccd. Fixing
v ∈ V , for a (T, V )-category (X, a) and A ⊆ X we let

A(v) := {x ∈ X |
∨

x∈TA

a(x, x) ≥ v}.

For a (T, V )-functor f : (X, a) → (Y, b) one then has
⋂

u≪v

f(A(u)) ⊆ f(A)(v).

Indeed, if y ∈ f(A(u)) for every u ≪ v in V , so that we can write y = f(x)
for some x ∈ A(u), we obtain

u ≤
∨

x∈TA

a(x, x) ≤
∨

x∈TA

b(Tf(x), y)

and, with Tf(TA) = T (f(A)) (Choice granted), v ≤
∨

y∈T (f(A))

b(y, y). We call

f : (X, a) → (Y, b) closed if
⋂

u≪v

f(A(u)) = f(A)(v)

for all v ∈ V , A ⊆ X.

Proposition 4.1. Every proper (T, V )-functor is closed, and the converse
statement holds in V -Cat (i.e., when T = I).

Proof : Let f : (X, a) → (Y, b) in (T, V )-Cat be proper, and y ∈ f(A)(v) for
v ∈ V , so that

v ≤
∨

y∈T (f(A))

b(y, y) =
∨

x∈TA

b(Tf(x), y) ≤
∨

x∈TA

∨

x∈f−1y

a(x, x).

For every u ≪ v one then obtains x ∈ TA, x ∈ f−1y with u ≤ a(x, x), and

y ∈
⋂

u≪v

f(A(u)) follows.

Let now T = I and f be closed. For all x ∈ X, y ∈ Y , with v := b(f(x), y)
and A := {x}, from

y ∈ f(A)(v) ⊆
⋂

u≪v

f(A(u))
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one obtains for every u ≪ v some z ∈ f−1y with a(x, z) ≥ u. Consequently,

v = b(f(x), y) ≤
∨

z∈f−1y

a(x, z),

as desired.

Corollary 4.2. For every (T, V )-functor f : (X, a) → (Y, b), the V -functor

Tf : (TX, â) → (TY, b̂) is proper if and only if it is closed.

5. The Kuratowski-Mrówka Theorem

In order to be able to characterize compactness of a (T, V )-category (X, a)
by the condition

(KM) the projection X × Z → Z along any (T, V )-category (Z, c) is closed,

one needs to provide suitable test objects (Z, c) that can be used in the
sufficiency proof of the condition. Hence, using a particular instance of a
construction given in [5], for every set X and x ∈ TX we consider the set

Z := X ∪ {ω} (for some ω 6∈ X)

and the V -relation c : TZ−→7 Z with

c(z, z) =

{

⊤ if z = eZ(z) or (z = x and z = ω),

⊥ else,

for all z ∈ TZ, z ∈ Z, assuming TX ⊆ TZ (and TTX ⊆ TTZ) without loss
of generality. In order to determine when c will provide Z with the structure
of a (T, V )-category, we highlight two convenient properties of the V -relation
c:

1. With i denoting the inclusion map X →֒ Z, c satisfies i◦ · c = e◦X · (T i)◦.

Consequently, when T̂ is flat, (T i)◦ · T̂ c = (TeX)
◦ · (TT i)◦, in particular

T̂ c(Z, z) > ⊥ ⇒ Z = TeX(z) (1)

for all Z ∈ TTZ, z ∈ TX.
2. The V -relation c has finite fibres, that is:

c◦(z) = {z ∈ TZ | c(z, z) > ⊥}
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is finite for all z ∈ Z. Consequently, if the lax natural transformation
e◦ : T̂ → 1 is finitely strict, so that

TX
�̂

Tr
//

_e◦X
��

TY
_ e◦Y
��

X
�

r
// Y

commutes strictly whenever r has finite fibres, then e◦Z · T̂ c = c · e◦TZ, in
particular

T̂ c(Z, eZ(z)) > ⊥ ⇒ ∃w ∈ TZ (Z = eTZ(w) & c(w, z) = ⊤) (2)

for all Z ∈ TTZ, z ∈ Z.

Proposition 5.1. If T̂ is flat and e◦ finitely strict, then (Z, c) is a (T, V )-
category.

Proof : It suffices to show

T̂ c(Z, z)⊗ c(z, z) > ⊥ ⇒ c(mZ(Z), z) = ⊤

for all Z ∈ TTZ, z ∈ TZ, z ∈ Z. The premiss implies T̂ c(Z, z) > ⊥ and
c(z, z) = ⊤. If z ∈ TX, one obtains Z = TeX(z) = TeZ(z) from (1) and
therefore c(mZ(Z), z) = c(z, z) = ⊤. If z 6∈ TX, since c(z, z) = ⊤, we must
have z = ω and z = eZ(ω), and (2) gives w ∈ TZ with Z = eTZ(w), and we
may conclude again c(mZ(Z), z) = c(w, z) = ⊤.

Theorem 5.2. Let T̂ be flat and e◦ : T̂ → 1 be finitely strict. Then a
(T, V )-category (X, a) is compact if, and only if, (KM) holds.

Proof : As a pullback of X → 1, the second projection q : X × Z → Z is
proper for every (T, V )-category (Z, c) when (X, a) is compact, and therefore
closed. Conversely, let (X, a) be such that (KM) holds. We must now show

∨

x∈X

a(x, x) = ⊤,

for every x ∈ TX. For Z = X∪{ω} and c as defined above, one considers the
set ∆X = {(x, x) |x ∈ X} ⊆ X×Z. Since q(∆X) = X ⊆ Z, from c(x, ω) = ⊤
with x ∈ TX one obtains ω ∈ q(∆X)

(⊤), hence

ω ∈
⋂

u≪⊤

q(∆
(u)
X )
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by hypothesis. Consequently, for all u ≪ ⊤ one can find x ∈ X with (x, ω) ∈

∆
(u)
X , that is (using the product structure of X × Z):

∨

w∈T∆X

a(Tp(w), x) ∧ c(Tq(w), ω) ≥ u,

with p : X × Z → X the first projection. For any w ∈ T∆X one has
Tq(w) ∈ TX, so that when (without loss of generality) u > ⊥, we must have
c(Tq(w), ω) = ⊤ with Tq(w) = x, and then also Tp(w) = x. Hence, for all
⊥ < u ≪ ⊤ we have found an x ∈ X with a(x, x) ≥ u, which implies

∨

x∈X

a(x, x) = ⊤,

as desired.

6. Characterization of propriety via closure

We now have all the ingredients that allow for a characterization of pro-
priety of a (T, V )-functor f : (X, a) → (Y, b) in terms of closure, making

essential use of the V -functor Tf : (TX, â) → (TY, b̂) again. V continues to
be constructively completely distributive.

Theorem 6.1. Let T1 ∼= 1, T̂ be flat and e◦ be finitely strict. Then the
following conditions are equivalent for a (T, V )-functor f :

(i) f is proper;
(ii) every pullback of f is closed, and Tf is closed;
(iii) all fibres of f are compact, and Tf is closed.

Proof : (i) ⇒ (ii): From Theorem 3.2 and Propositions 3.1 and 4.1. (ii) ⇒
(iii): From Theorem 5.2. (iii) ⇒ (i): From Corollary 3.7.

Remark 6.2. (1) Without the hypothesis T1 ∼= 1, stably-closed maps need
not be proper (see 7.2), and proper maps may have non-compact fibres
(see 7.6).

(2) In Theorem 6.1 we do not know whether the condition that Tf be closed
may be removed from (ii) or be replaced in (iii) by the condition that f
be closed.

7. Examples

7.1. V -categories. (See [11].) By Corollary 3.8 every V -category is com-
pact, and by Corollary 4.2 closed V -functors are proper. In case V = 2, for
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a monotone map f : (X,≤) → (Y,≤),

f proper ⇔ ∀x ∈ X ↑Y f(x) ⊆ f(↑X x)

⇔ ∀A ⊆ X ↑Y f(A) ⊆ f(↑X A),

with ↑X A = {x′ ∈ X | ∃x ∈ A : x ≤ x′}.
When V = [0,∞], for a non-expansive map f : (X, a) → (Y, b),

f proper ⇔ ∀x ∈ X, y ∈ Y b(f(x), y) = inf{a(x, x′) |x′ ∈ X, f(x′) = y}

⇔ ∀A ⊆ X, y ∈ Y b(f(A), y) = inf{a(A, x′) |x′ ∈ X, f(x′) = y},

with a(A, x′) = inf
x∈A

a(x, x′).

7.2. Ordered sets as (P, 2)-categories. (See [11].) Consider the lax ex-

tension P̂ of the power-set monad introduced in Example 2.1.2. Then a
monotone map f : (X,�) → (Y,�) is proper if, and only if, for all A ⊆ X,

↑↑Y f(A) ⊆ f(↑↑XA), (3)

where ↑↑XA = {x ∈ X |A � x}. Taking A = ∅ in (3) one sees immediately
that proper maps are surjective, while putting A = {x} shows that they are
(I, 2)-proper. Here closedness of f is equivalent to surjectivity since, for any
A ⊆ X, A(⊤) = X. So, stably-closed (P, 2)-functors need not be proper.
Note, however, that neither of the hypotheses of Theorem 6.1 is satisfied
here.

7.3. Topological spaces as (F, 2)-categories. If F̂ is the lax (non-flat)
extension of F considered in Example 2.1.3, an (F, 2)-functor is proper if,
and only if, it is closed (in the ordinary topological sense) and every fibre has
a largest element with respect to the underlying order of X (that is, x ≤ x′

when eX(x) → x′): see [11]. In particular, proper (F, 2)-functors must be
surjective stably-closed maps.

7.4. Topological and approach spaces as (U, V )-categories. For an
(U, V )-category (X, a) and x, y ∈ UX one has, by definition,

â(x, y) =
∨

X∈m−1

X x

Ûa(X, y) =
∨

X∈m−1

X x

∧

A∈X, B∈y

∨

z∈A, y∈B

a(z, y).

Using the hypothesis that V is ccd, we first show that â(x, y) can be written
more conveniently, provided that V also satisfies the property

v ≤ w ∨ z ⇒ v ≤ w or v ≤ z. (∗)
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Lemma 7.1. Under hypothesis (*), â(x, y) =
∨

{u ∈ V | ∀A ∈ x : A(u) ∈ y}.

Proof : For “≤”, consider any X ∈ UUX with mX(X) = x. It suffices to show

that every u ≪
∧

A∈X, B∈y

∨

z∈A, y∈B

a(z, y) has the property that A(u) ∈ y for all

A ∈ x. But if for A ∈ x we assume A(u) 6∈ y, so that B := X \ A(u) ∈ y,
considering

A := A♯ = {z ∈ UX : A ∈ z} ∈ X (since A ∈ x)

we would conclude
u ≪

∨

z∈A, y∈B

a(z, y)

and therefore A(u) ∩B 6= ∅, a contradiction.

For “≥”, consider v ≪
∨

{u ∈ V | ∀A ∈ x : A(u) ∈ y} in V . For all A ∈ x,

B ∈ y, the ultrafilter y contains A(v) ∩ B 6= ∅, so that v ≤
∨

z∈A♯

a(z, y) for

some y ∈ B, and

v ≤
∧

B∈y

∨

z∈A♯, y∈B

a(z, y)

follows for every A ∈ x. Now,

F = {A ⊆ UX |A♯ ⊆ A for some A ∈ x}

is a filter on UX, and

J := {B ⊆ UX | v 6≤
∧

B∈y

∨

z∈B, y∈B

a(z, y)}

is an ideal on UX that is disjoint from F. (Closure of J under binary union
needs (*).) There is therefore an ultrafilter X ⊇ F on UX with X ∩ J = ∅.
By definition of F one has x = mX(X), and by definition of J

v ≤
∧

A∈X, B∈y

∨

z∈A, y∈B

a(z, y) ≤ â(x, y)

follows.

Proposition 7.2. Under hypothesis (*), for an (U, V )-functor f : (X, a) →
(Y, b) one has:

f closed ⇔ Uf closed.
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Proof : As a V -functor, Uf is closed if, and only if, it is proper. We must
show that propriety of Uf is equivalent to closedness of f . First let f be

closed. For x ∈ UX, y ∈ UY , we must show b̂(Uf(x), y) ≤
∨

z∈(Uf)−1y

â(x, z),

and for that, by Lemma 7.1, it suffices to show that, whenever u ≪ v in
V with B(v) ∈ y for all B ∈ Uf(x), one has some z ∈ UX with Uf(z) = y

and A(u) ∈ z for all A ∈ x. But since f is closed, for every A ∈ x one
has f(A)(v) ⊆ f(A(u)) ∈ y. Therefore, any ultrafilter z on X containing the
filterbase {A(u) |A ∈ x} disjoint from the ideal {C ⊆ X | f(C) 6∈ y} will be
as required.
Conversely, let Uf be proper and y ∈ f(A)(v) with A ⊆ X, v ∈ V . For

every u ≪ v we must show y ∈ f(A(u)). Since every ultrafilter y on Y

containing f(A) is the image of an ultrafilter x on X containing A, one has:

u ≪ v ≤
∨

y∈Uf(A)

b(y, y)

=
∨

y∈Uf(A)

b̂(y, eY (y))

=
∨

x∈UA

b̂(Uf(x), eY (y))

=
∨

x∈UA

∨

x′∈(Uf)−1(eY (y))

â(x, x′)

=
∨

x∈UA

∨

x′∈(Uf)−1(eY (y))

∨

{w ∈ V | ∀B ∈ x : B(w) ∈ x′}.

Hence there exist x ∈ UA, x′ ∈ (Uf)−1(eY (y)) and w ≥ u such that B(w) ∈ x′

whenever B ∈ x. In particular, A(u) ∈ x′, and so f(A(u)) ∈ Uf(x′) = eY (y),
that is y ∈ f(A(u)).

Since U1 = 1, Û is flat and e◦ is finitely strict (although not strict in
general), Theorem 6.1 gives:

Corollary 7.3. Under hypothesis (*), for an (U, V )-functor f : (X, a) →
(Y, b) the following conditions are equivalent:

(i) f is proper;
(ii) f is stably closed;
(iii) f is closed with compact fibres.
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In case V = 2 this Theorem recovers the classical results for Top, while in
case V = [0,∞] it recovers the results obtained in [7].

7.5. Multi-ordered sets as (L, 2)-categories. The extension L̂ of the
free-monoid monad given in Example 2.1.5 is flat, with L1 6∼= 1, and e◦ a
strict natural transformation. Hence, by Corollary 3.4, an (L, 2)-functor
f : (X, a) → (Y, b) is proper whenever Lf is closed. As in Corollary
7.2, closedness of f does not imply propriety. In fact, an (L, 2)-functor
f : (X, a) → (Y, b) is:

(1) proper if, and only if, whenever 〈f(x1), · · · , f(xn)〉 b y, there exists
x ∈ f−1y such that 〈x1, · · · , xn〉 a x;

(2) closed if, and only if, whenever 〈f(x1), · · · , f(xn)〉 b y, there exist a
sublist 〈x′

1, · · · , x
′
m〉 of 〈f(x1), · · · , f(xn)〉 and x ∈ f−1y such that

〈x′
1, · · · , x

′
m〉 a x.

7.6. Labeled graphs as (H, 2)-categories. For the flat extension Ĥ of
H = (H ×−, m, e) (H a monoid) of Example 2.1.6, we have:

(1) Since e◦ is a natural transformation, every (H, 2)-functor f : (X, a) →
(Y, b) has proper fibres; hence,

f proper ⇔ Hf proper ⇔ Hf closed.

(2) Although propriety of fibres is trivial, compactness is not: for (X, a)
an H-labeled graph,

(X, a) compact ⇔ ∀α ∈ H, x ∈ X ∃x′ ∈ X x
α

// x′ .

(3) Closed (H, 2)-functors need not be proper: for an (H, 2)-functor f :
(X, a) → (Y, b),

f proper ⇔ ∀α ∈ H, x ∈ X, y ∈ Y f(x)
α

// y ⇒ ∃x′ ∈ f−1y : x
α

// x′,

f closed ⇔ ∀α ∈ H, x ∈ X, y ∈ Y f(x)
α

// y ⇒ ∃x′ ∈ f−1y, β ∈ H : x
β

// x′.

References
[1] M. Barr, Relational algebras, in: Reports of the Midwest Category Seminar, IV, Lecture Notes

in Mathematics 137 (Springer, Berlin 1970) pp. 39-55.
[2] N. Bourbaki, Topologie Générale (Herman, Paris 1961).
[3] M.M. Clementino, D. Hofmann, Topological features of lax algebras, Appl. Categ. Structures

11 (2003), 267–286.



20 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

[4] M.M. Clementino, D. Hofmann, Effective descent morphisms in categories of lax algebras,
Appl. Categ. Structures 12 (2004), 413–425.

[5] M.M. Clementino, D. Hofmann, Descent morphisms and a van Kampen Theorem in categories
of lax algebras, Topology Appl. (2012), doi: 10.1016/j.topol.2011.07.031.

[6] M.M. Clementino, W. Tholen, Metric, Topology and Multicategory – A Common Approach,
J. Pure Appl. Algebra 179 (2003), 13–47.

[7] E. Colebunders, R. Lowen, P. Wuyts, A Kuratowski-Mrówka theorem in approach theory,
Topology Appl. 153 (2005), 756–766.

[8] R. Engelking, General Topology, revised and completed edition (Heldermann Verlag, Berlin
1989).

[9] D. Hofmann, Topological theories and closed objects, Adv. Math. 215 (2007), 789-824.
[10] D. Hofmann, Dualities for distributive spaces, arxiv: math.CT/1009.3892.
[11] D. Hofmann, W. Tholen, Lax algebra meets topology, Topology Appl. (2012), doi:

10.1016/j.topol.2011.09.049
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