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Introduction

A variety of universal algebras is called n-permutable when its congruence
relations satisfy the n-permutability condition: for congruences R and S on an
algebra X, the equality pR, Sqn � pS,Rqn holds, where pR, Sqn � RSRS � � �
denotes the composition of n alternating factors R and S. In a categorical
context, this notion was first considered by A. Carboni, G. M. Kelly and
M. C. Pedicchio in the article [3]. Here an n-permutable category is defined
as a regular category [1] in which the (effective) equivalence relations satisfy
the n-permutability condition.

For a variety of universal algebras V, it was shown by A. I. Mal’tsev in [9] that
the 2-permutability of congruences is equivalent to the fact that the theory of V
admits a ternary operation p such that ppx, y, yq � x and ppx, x, yq � y. ThenV is called a Mal’tsev variety and p a Mal’tsev operation. Similarly, for the
strictly weaker 3-permutability condition [11], the theory admits quaternary
operations p and q such that ppx, y, y, zq � x, ppx, x, y, yq � qpx, x, y, yq and
qpx, y, y, zq � z. Such varieties are called Goursat varieties and p and q are
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Goursat operations. More generally, following the results of [5, 12, 13], J. Ha-
gemann and A. Mitschke showed in [7] that n-permutability of congruences can
be characterised by the existence of pn � 1q-arity operations satisfying suita-
ble equations (see Theorem 1.3) or, equivalently, by the existence of ternary
operations (see Theorem 1.4).

The first aim of this work is to give a categorical version of such pn� 1q-ary
and ternary operations for n-permutable categories. We do this in the context
of regular categories with binary coproducts via approximate (co-)operations
with a certain approximation (Definition 4.1 and Figures 3 and 4). This method
extends D. Bourn and Z. Janelidze’s approach to Mal’tsev categories through
approximate Mal’tsev operations [2], which allows us to lift varietal techniques
to the categorical level and obtain general versions of the characterisation theo-
rems for n-permutable varieties mentioned above (Theorems 4.2 and 4.3). This
aspect of our work gives a good illustration of the strength and generality of
D. Bourn and Z. Janelidze’s technique.

The second aim of our paper—in fact, the problem which we originally set out
to solve—is answering the following question. In the article [7], J. Hagemann
and A. Mitschke also characterise n-permutable varieties in terms which are
purely categorical, as follows:

Theorem. For any equational class V, the following statements are equivalent:

(a) the congruence relations of every algebra of V are n-permutable;
(b) for A P V, every reflexive subalgebra R of A�A satisfies Rop ¤ Rn�1;
(c) for A P V, every reflexive subalgebra R of A�A satisfies Rn ¤ Rn�1.

These three conditions make sense in arbitrary regular categories; neverthe-
less, they are not mentioned in the article [3], which surprised us. Since for the
proof the authors refer to the unpublished work [6] we tried to find one oursel-
ves. We did indeed manage to find a proof valid in varieties of algebras (see [10]
for part of it) but failed to come up with a categorical argument. Somehow
this was to be expected, given that the equivalences are missing in [3]—but
then, what is it that makes the difference here between varieties of algebras
and regular categories?

The answer seems to be: binary coproducts. This is what allows us to mimic
the varietal arguments in terms of pn� 1q-arity operations, using approximate
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co-operations instead. Thus we finally obtain a version of the above characte-
risation theorem, valid in any regular category with binary coproducts (Theo-
rem 4.5). This, in turn, implies that in an n-permutable category with binary
coproducts, any reflexive and transitive relation is symmetric (Corollary 4.6).

We do, however, not have a counterexample to show that our results fail in the
absence of binary coproducts. Since in the statement of the above theorem they
do not appear, it remains an open question whether or not binary coproducts
are necessary for this result to be valid in a categorical setting.

Structure of the text. In Section 1 we give the background concerning n-
permutable varieties and categories needed for this work. We recall the main
points of the approach to Mal’tsev categories via approximate Mal’tsev ope-
rations in Section 2. We then extend this approach to Goursat categories in
Section 3. Finally, Section 4 gives the full approach to n-permutable categories
via approximate (co-)operations.

1. n-Permutability

We recall the main definitions and properties known for n-permutable varie-
ties from [7] and for n-permutable categories we follow [3].

1.1. Relations. A category C with finite limits is called a regular cate-
gory [1] when every kernel pair has a quotient and regular epimorphisms are
stable under pulling back. In a regular category any morphism f : A Ñ B

can be decomposed into f � mp, where p is a regular epimorphism and m

is a monomorphism. Regular categories give a suitable context for composing
relations.

A relation R from A to B is a subobject xr1, r2y : R  A�B. The opposite
relation, denoted Rop, is the relation from B to A determined by the subobjectxr2, r1y : R  B � A. Given another relation S from B to C, the composite
relation of R and S is a relation, denoted SR, from A to C.

Given morphisms a : X Ñ A and b : X Ñ B, we say that xa, by belongs
to R when there exists a morphism χ : X Ñ R such that r1χ � a and r2χ � b;
we write xa, by P R. For any morphism c : X Ñ C, we have xa, cy P SR if
and only if there exists a regular epimorphism ζ : Z ։ X and a morphism
x : Z Ñ B such that xaζ, xy P R and xx, cζy P S (see Proposition 2.1 in [3]).
This observation trivially extends to the composite of more than two relations.
Moreover, when R1 is another relation from A to B, then R ¤ R1 if and only
if any pair of morphisms xa, by that belongs to R also belongs to R1.
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A relation R from an object A to A is simply called a relation on A.
We say that R is reflexive when 1A ¤ R, symmetric when Rop � R and
transitive when RR � R. As usual, a relation R on A is an equivalence
relation when it is reflexive, symmetric and transitive. In particular, a kernel
pair xf1, f2y : Rrf s  A�A of a morphism f : A Ñ B is an effective equiv-
alence relation (also called a congruence).

1.2. n-Permutable varieties [7]. A Mal’tsev (or 2-permutable) variety of
universal algebras is such that the composition of congruences is 2-permutable,
i.e., RS � SR, for any pair of congruences R and S on the same object. Gour-
sat (or 3-permutable) varieties satisfy the strictly weaker 3-permutability
condition: RSR � SRS. More generally, n-permutable varieties satisfy the
n-permutability condition pR, Sqn � pS,Rqn, where pR, Sqn � RSRS � � � de-
notes the composite of n alternating factors R and S. We write Rn � pR,Rqn
for the n-th power of R.

It is well known that an n-permutable variety of universal algebras is charac-
terised by the fact that its theory contains n � 1 operations of arity n � 1 or,
equivalently, n� 1 ternary operations satisfying appropriate identities:

Theorem 1.3 (Theorem 1 of [7]). For any equational class V, the following
statements are equivalent:

(a) the congruence relations of every algebra of V are n-permutable;
(b) there exist pn�1q-ary algebraic operations v0, . . . , vn of V for which the

identities$'''&'''%v0px0, . . . , xnq � x0,

vi�1px0, x0, x2, x2, . . . q � vipx0, x0, x2, x2, . . . q, i even,

vi�1px0, x1, x1, x3, x3, . . . q � vipx0, x1, x1, x3, x3, . . . q, i odd,

vnpx0, . . . , xnq � xn

hold.

Theorem 1.4 (Theorem 2 of [7])). For any equational class V, the following
statements are equivalent:

(a) the congruence relations of every algebra of V are n-permutable;
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(b) there exist ternary algebraic operations w1, . . . , wn�1 of V for which the
identities$'&'%w1px, y, yq � x,

wipx, x, yq � wi�1px, y, yq, for i P t1, . . . , n� 2u,
wn�1px, x, yq � y

hold.

In particular, a Mal’tsev variety has a Mal’tsev ternary operation p such
that #

ppx, y, yq � x,

ppx, x, yq � y.
(A)

A Goursat variety can be characterised by the existence of two Goursat qua-
ternary operations, p and q, satisfying the identities$'&'%ppx, y, y, zq � x,

ppx, x, y, yq � qpx, x, y, yq,
qpx, y, y, zq � z

(B)

or, equivalently, by the existence of two Goursat ternary operations, r

and s, such that $'&'%rpx, y, yq � x,

rpx, x, yq � spx, y, yq,
spx, x, yq � y.

(C)

Remark 1.5. The equivalence between the Goursat quaternary and ternary
operations is given by the identities

ppx, y, z, wq � rpx, y, zq and qpx, y, z, wq � spy, z, wq
on the one hand,

rpx, y, zq � ppx, y, z, zq and spx, y, zq � qpx, x, y, zq
on the other.

Remark 1.6. [7] More generally, the equivalence between pn � 1q-ary and
ternary operations for n-permutable varieties is given by the identities$'&'%v0px0, . . . , xnq � x0,

vipx0, . . . , xnq � wipxi�1, xi, xi�1q, for i P t1, . . . , n� 1u,
vnpx0, . . . , xnq � xn
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and wipx, y, zq � vipx, . . . , xlooomooon
i

, y, z, . . . , zloomoon
n�i

q for i P t1, . . . , n� 1u.
J. Hagemann and A. Mitschke also claim alternative characterisations which

involve certain conditions on reflexive relations:

Theorem 1.7 ([7], see also [10]). For any equational class V, the following
statements are equivalent:

(a) the congruence relations of every algebra of V are n-permutable;
(b) for A P V, every reflexive subalgebra R of A�A satisfies Rop ¤ Rn�1;
(c) for A P V, every reflexive subalgebra R of A�A satisfies Rn ¤ Rn�1.

1.8. n-Permutable categories [3]. The notion of n-permutable variety has
been made categorical. We say that a regular category is an n-permutable
category when the composition of (effective) equivalence relations on a given
object is n-permutable: for two (effective) equivalence relations R and S on
the same object, we have pR, Sqn � pS,Rqn. In fact, it suffices to have one of
the inequalities, say pR, Sqn ¤ pS,Rqn. Equivalently, these categories can be
characterised by the fact that, for every reflexive relation E, pE,Eopqn�1 is an
equivalence relation or, simply, pE,Eopqn�1 is a transitive relation.

2. Mal’tsev categories with binary coproducts

We gather some basic ideas concerning approximate Mal’tsev operations in-
troduced in [2] by D. Bourn and Z. Janelidze.

Given a category with binary products, we denote the powers of an object X
by X2 � X � X, X3 � X � X � X, . . . , and the projections by π1, π2, π3,
etc. We denote the diagonal by x1X , 1Xy � ∆X : X Ñ X2. Dually, we write
2X � X�X, 3X � X�X�X, . . . , ι1, ι2, ι3, . . . , for the coproduct inclusions
and

�
1X
1X

D � ∇X : 2X Ñ X for the codiagonal.

Definition 2.1. Let C be a category with binary products. We say that a
morphism p : X3 Ñ A in C is an approximate Mal’tsev operation (on X)



VARIETAL TECHNIQUES FOR n-PERMUTABLE CATEGORIES 7

with approximation α : X Ñ A when the diagram

X

α

��

X2

π1

:D�����������

1X�∆X �$?
??

??
??

??
?

A X2

π2

Zd???????????

∆X�1Xz���
��

��
��

��

X3

p

LR (D)

commutes. We call p a universal approximate Mal’tsev operation with appro-
ximation α when A is the colimit of the outer solid square in diagram (D).

Note that the morphism α is uniquely determined by p since we have α �
px1X, 1X , 1X, 1Xy. Furthermore, p is an approximate Mal’tsev operation with
approximation α if and only if, for any object W and any two morphisms x,
y : W Ñ X, the identities

pxx, y, yy � αx and pxx, x, yy � αy

hold (cf. (A)).
When C is a category with binary products and finite colimits, then there

always exists a universal approximate Mal’tsev operation given by the colimit
of the outer diagram of (D).

If A � X then p represents a “real” Mal’tsev operation on X: it equips X

with an internal Mal’tsev structure. In the particular case where C � Set this
means that pX, pq is a Mal’tsev algebra.

Remark 2.2. Let C be the functor category C � DE, where D is a category
with binary products.

1. A natural transformation p : X3 ñ A is an approximate Mal’tsev opera-
tion on X in DE with approximation α : X ñ A if and only if, for every
object E in E, the E-component pE : pXpEqq3 Ñ ApEq is an approxi-
mate Mal’tsev operation on XpEq in the category D with approximation
αE : XpEq Ñ ApEq, the E-component of α. Clearly, p is universal if and
only if every E-component pE is universal.

2. Let D be a category with binary colimits. Given a functor X : EÑ D,
then, for each E in E, taking the universal approximate Mal’tsev ope-
ration pE : pXpEqq3 Ñ ApEq on XpEq in D gives a unique universal
approximate Mal’tsev operation p : X3 ñ A on X in DE.
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We now consider a category X with finite limits and binary coproducts
and take C � XXop

. We shall work in the dual category Cop � XX. So,
a (universal) approximate Mal’tsev operation p : X3 Ñ A with approxima-
tion α : X Ñ A in C is, in fact, a (universal) approximate Mal’tsev co-
operation p : A Ñ 3X with approximation α : A Ñ X in Cop. We consider
the particular case when X � 1X.

In this setting, the universal approximate Mal’tsev co-operation always exists:
p and α are natural transformations defined, for each object X in X, by the
limit of the outer solid square

X

ι1

z���
��

��
��

��
�

ι2

�$?
??

??
??

??
??

2X ApXqαX

LR

pX

��

2X.

3X

1X�∇X

Zd??????????? ∇X�1X

:D�����������

The existence of a (universal) approximate Mal’tsev co-operation whose ap-
proximation is “special”, gives a characterisation for regular Mal’tsev categories
with binary coproducts.

Theorem 2.3 (Theorem 4.2 of [2]). Let X be a regular category with binary
coproducts. The following statements are equivalent:

(a) the approximation α : A ñ 1X of the universal approximate Mal’tsev
co-operation on 1X is a natural transformation, all of whose components
are regular epimorphisms in X;

(b) there exists an approximate Mal’tsev co-operation on 1X such that the
approximation α : A ñ 1X is a natural transformation, all of whose
components are regular epimorphisms in X;

(c) X is a Mal’tsev category.

Following [8] we may consider a morphism ApXq Ñ Y as an imaginary
morphism X ù Y from X to Y . It is said to be real when it factors
through αX : ApXq Ñ X . As soon as X is Mal’tsev such factorisations are
uniquely determined, and furthermore any object X comes equipped with a
canonical imaginary Mal’tsev co-operation pX : Xù 3X. This point
of view also makes sense for the approximate co-operations considered in the
following sections.
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3. Goursat categories with binary coproducts

We adapt D. Bourn and Z. Janelidze’s approach for Mal’tsev categories via
approximate Mal’tsev operations recalled in Section 2 to the context of Goursat
categories. In our proof of Theorem 3.2—a Goursat version of Theorem 2.3—
we shall, however, use purely varietal techniques rather than a modification of
the arguments of [2].

Definition 3.1. Let C be a category with binary products. We say that
morphisms p, q : X4 Ñ A are approximate Goursat operations (on X)
with approximation α : X Ñ A if the diagram

X

α

��

X3

π1

3;oooooooooooooo

1X�∆X�1X

��

X3

π3

ckOOOOOOOOOOOOOO

1X�∆X�1X

��

A

X4

p
3;

X4

q
ck

X2
∆X�∆X

ckOOOOOOOOOOOOO ∆X�∆X

3;ooooooooooooo

(E)

commutes. If A is the colimit of the outer solid diagram, then p and q are
called universal approximate Goursat operations with approximation α.

The approximation α is uniquely determined by p (or by q) since we have
α � px1X , 1X, 1X , 1Xy (or α � qx1X , 1X, 1X , 1Xy). Moreover, to say that p

and q are approximate Goursat operations with approximation α is equivalent
to having, for every object W and any three morphisms x, y, z : W Ñ X, the
identities

pxx, y, y, zy � αx, pxx, x, y, yy � qxx, x, y, yy and qxx, y, y, zy � αz

similarly to (B).
When C is a category with binary products and finite colimits, then there

always exist universal approximate Goursat operations given by the colimit of
the outer solid hexagon in (E).

If A � X then p and q are “real” Goursat operations on X. For instance, in
Set this means that pX, p, qq is a Goursat algebra.
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The statements of Remark 2.2 obviously extend to the Goursat context.
Again, we work in the dual category Cop � XX, where X is a category with finite
limits and binary coproducts. So, (universal) approximate Goursat operations
p, q : X4 Ñ A with approximation α : X Ñ A in C are, in fact, (universal)
approximate Goursat co-operations p, q : A Ñ 4X with approximation
α : A Ñ X in Cop. We consider the particular case when X � 1X. As before,
universal approximate Goursat co-operations always exist: p, q and α are na-
tural transformations defined, for each object X in X, by the limit of the outer
solid hexagon

X
ι1

s{ooooooooooooo
ι3

#+OOOOOOOOOOOOO

3X 3X

ApXqαX

LR

pX

s{

qX

#+
4X

1X�∇X�1X

LR

∇X�∇X #+OOOOOOOOOOOOO 4X.

1X�∇X�1X

LR

∇X�∇Xs{oooooooooooo

2X

(F)

We now extend Theorem 2.3 to the context of Goursat categories. However,
our proof is based on the one for varieties, where the role of the quaternary
operations (B) is now played by the approximate Goursat co-operations. This
gives a categorical version of Theorem 1.3 for n � 3.

Theorem 3.2. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) the approximation α : A ñ 1X of the universal approximate Goursat co-
operations on 1X is a natural transformation, all of whose components
are regular epimorphisms in X;

(b) there exist approximate Goursat co-operations on 1X such that the ap-
proximation α : A ñ 1X is a natural transformation, all of whose com-
ponents are regular epimorphisms in X;

(c) X is a Goursat category.

Proof : (a) ñ (b) is obvious.
(b) ñ (c) Let R and S be equivalence relations on a given object Y . We must

prove that RSR ¤ SRS. Let a, b : X Ñ Y be morphisms such that xa, by P
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RSR. Then there exist a regular epimorphism ζ : Z ։ X and morphisms x,
y : Z Ñ Y such that xaζ, xy P R, xx, yy P S and xy, bζy P R (see Subsec-
tion 1.1). Since S is an equivalence relation, we have xaζ, aζy, xx, xy, xx, yy,xbζ, bζy P S. Thus BB

aζ
x
x
bζ

F
,

B
aζ
x
y
bζ

FF P S

implies $''''&''''%
BB

aζ
x
x
bζ

F
pZ ,

B
aζ
x
y
bζ

F
pZ

F � BaζαZ ,

B
aζ
x
y
bζ

F
pZ

F P SBB
aζ
x
x
bζ

F
qZ ,

B
aζ
x
y
bζ

F
qZ

F � BbζαZ ,

B
aζ
x
y
bζ

F
qZ

F P S.

Similarly, R is an equivalence relation so xaζ, aζy, xx, aζy, xy, bζy, xbζ, bζy P R,
which gives CB

aζ
x
y
bζ

F
,

C
aζ
aζ
bζ
bζ

GG P R

and thusCB
aζ
x
y
bζ

F
pZ ,

C
aζ
aζ
bζ
bζ

G
pZ

G P R and

CB
aζ
x
y
bζ

F
qZ,

C
aζ
aζ
bζ
bζ

G
qZ

G P R.

We see that BB
aζ
x
y
bζ

F
pZ ,

B
aζ
x
y
bζ

F
qZ

F P RopR � R

since C
aζ
aζ
bζ
bζ

G
pZ � � aζ

bζ

Dp∇Z �∇ZqpZ � � aζ
bζ

Dp∇Z �∇ZqqZ �C aζ
aζ
bζ
bζ

G
qZ .

FromB
aζαZ ,

B
aζ
x
y
bζ

F
pZ

F P S,

BB
aζ
x
y
bζ

F
pZ,

B
aζ
x
y
bζ

F
qZ

F P R,

BB
aζ
x
y
bζ

F
qZ, bζαZ

F P S

we get xaζαZ , bζαZy P SRS. Since ζ and αZ are regular epimorphisms, via
the argument from Subsection 1.1 we can conclude that xa, by P SRS.

(c) ñ (a) We must prove that αX in the limit diagram (F) is a regular
epimorphism for every object X in X. Consider R � Rr∇X � ∇Xs and S �
Rr1X � ∇X � 1Xs. For the coproduct inclusions ι1, ι2, ι3, ι4 : X Ñ 4X, we
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have xι1, ι2y P R, xι2, ι3y P S and xι3, ι4y P R, so that xι1, ι4y P RSR � SRS.
So there exists a regular epimorphism ζ : Z ։ X together with morphisms x,
y : Z Ñ 4X such that xι1ζ, xy P S, xx, yy P R, xy, ι4ζy P S (Subsection 1.1).
It is easy to see that ζ, x and y give a cone for the outer diagram (F) and,
consequently, there exists a unique morphism λ : Z Ñ ApXq such that ζ �
αXλ, x � pXλ and y � qXλ. We conclude that αX is a regular epimorphism
since ζ is.

As for varieties, we also have a correspondence between quaternary co-op-
erations and ternary co-operations (see Subsection 1.2; in particular equati-
ons (B), (C) and Remark 1.5). Similarly, (universal) approximate ternary
Goursat co-operations r, s with approximation β are natural transformations
defined, for each object X in X, by the (limit of the outer solid) commutative
diagram

X
ι1

s{ooooooooooooo
ι2

#+OOOOOOOOOOOOO

2X 2X

BpXqβX

LR

rX

s{

sX

#+
3X

1X�∇X

LR

∇X�1X #+OOOOOOOOOOOOO 3X.

∇X�1X

LR

1X�∇Xs{oooooooooooo

2X

(G)

Theorem 1.4, for n � 3, translates to:

Theorem 3.3. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) the approximation β : B ñ 1X of the universal approximate ternary
Goursat co-operations on 1X is a natural transformation, all of whose
components are regular epimorphisms in X;

(b) there exist approximate ternary Goursat co-operations on 1X such that
the approximation β : B ñ 1X is a natural transformation, all of whose
components are regular epimorphisms in X;

(c) X is a Goursat category.

Proof : (a) ñ (b) is obvious.
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(b) ñ (c) This proof is similar to the one given in Theorem 3.2. However,
here we takexaζ, aζy, xx, xy, xx, yy P S ñ AA

aζ
x
x

E
rZ ,
A

aζ
x
y

E
rZ

E � AaζαZ ,
A

aζ
x
y

E
rZ

E P Sxx, xy, xy, xy, xbζ, bζy P S ñ AA
x
y
bζ

E
sZ ,

A
x
x
bζ

E
sZ

E � AA x
y
bζ

E
sZ, bζαZ

E P S.

and xaζ, aζy, xx, aζy, xy, bζy P R ñ BA
aζ
x
y

E
rZ ,

B
aζ
aζ
bζ

F
rZ

F P Rxaζ, xy, xbζ, yy, xbζ, bζy P R ñ BB
aζ
bζ
bζ

F
sZ ,

A x
y
bζ

E
sZ

F P Rñ AA
aζ
x
y

E
rZ,
A

x
y
bζ

E
sZ

E P RR � R.

(c) ñ (a) We already know that (c) implies condition (a) from Theorem 3.2.
So, we just need to show that condition (a) of Theorem 3.2 implies (a). We
suppose that diagram (F) represents a limit where αX is a regular epimorphism.
For the limit of the outer diagram (G), we want to prove that βX is a regular
epimorphism. The morphismsB

ι1
ι2
ι3
ι3

F
pX : ApXq Ñ 3X and

B
ι1
ι1
ι2
ι3

F
qX : ApXq Ñ 3X

(see Remark 1.5) together with the regular epimorphism αX : ApXq ։ X give
another cone of the outer diagram (G). So, there exists a unique morphism
λ : ApXq Ñ BpXq such that, in particular, αX � βXλ. Hence βX is a regular
epimorphism.

To finish this section, for n � 3 we generalise the first equivalence of Theo-
rem 1.7 to a categorical context. The corresponding generalisation of the other
equivalences in their full generality is given in Theorem 4.5.

Theorem 3.4. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) X is a Goursat category;
(b) for every reflexive relation R we have Rop ¤ RR.

Proof : (a) ñ (b) Let R be a reflexive relation on Y and consider morphisms
x, y : X Ñ Y such that xx, yy P Rop; hence xy, xy P R. Since X is a Goursat
category, there exist approximate ternary Goursat co-operations r and s with
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approximation β defined, for each object X in X, as in (G), where βX is a
regular epimorphism. Since R is a reflexive relation, we have xx, xy, xy, xy,xy, yy P R, so that also AA

x
y
y

E
,
A

x
x
y

EE P R,

which gives$''&''%AA x
y
y

E
rX ,

A
x
x
y

E
rX

E � �xβX , � x
y

Dp∇X � 1XqrXD P RAA
x
y
y

E
sX ,

A
x
x
y

E
sX

E � �� x
y

Dp1X �∇XqsX , yβXD P R.

We can conclude thatxxβX , yβXy � xx, yyβX P RR ñ xx, yy P RR

because βX is a regular epimorphism (Subsection 1.1).
(b) ñ (a) For any object X in X, consider the following reflexive graph

and the reflexive relation R on 2X which arises from the (regular epi, mono)
factorisation in

3X

∇X�1X ,2

1X�∇X

,2

π

�$�$
??

??
??

??
??

??
??

2X.lr

z���
��

��
��

��
��

��
�

R

r1

:D���������������
r2

:D���������������

From xι1, ι2y P R we get xι2, ι1y P Rop ¤ RR. So, there exists a regu-
lar epimorphism ζ : Z ։ X and a morphism x : Z Ñ 2X such that xι2ζ, xy,xx, ι1ζy P R. Let i, j : Z Ñ R be the morphisms such that xr1, r2yi � xι2ζ, xy
and xr1, r2yj � xx, ι1ζy. From the pullback

BpXq xsX ,rXy
,2

π1
����

3X � 3X

π�π

����

Z xi,jy ,2 R �R

we get morphisms rX , sX and a regular epimorphism defined by βX � ζπ1 such
that (G) commutes. Then X is a Goursat category by Theorem 3.3.
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X

α

��

Xk�1

π1

07hhhhhhhhhhhhhhhhhhhhhhhhh

1X�∆k�1
X

�1X

��

Xk�1

πk�1

gnVVVVVVVVVVVVVVVVVVVVVVVVV

1X�∆k�1
X

�1X

��

A

X2k�n�1

v1
07

X2k�n�1

vn�1

gn

Xk

∆k

X

LR

∆k

X

,2 X2k

v2

9C

X2k

vn�2

[e

Xk

∆k

X

LR

∆k

X

lr

Xk�1

LR

,2 X2k

v3

GN

� � �
Figure 1. Approximate operation, case n � 2k � 1 for k ¥ 2

4. n-Permutable categories with binary coproducts

In this last section we fully generalise the approach to Mal’tsev and Goursat
categories via approximate operations to the context of n-permutable catego-
ries. We extend the arguments used in Section 3 to an arbitrary n.

In the proofs of this section we shall repeatedly use the technique from Sub-
section 1.1 without further mention.

Definition 4.1. Let C be a category with binary products. We say that
morphisms v1, . . . , vn�1 : X

n�1 Ñ A are approximate operations (on X)
with approximation α : X Ñ A if either the diagram in Figure 1 commutes
(when n is odd) or the diagram in Figure 2 (n even).

If A is the colimit of the outer solid diagram, then the v1, . . . , vn�1 are called
universal approximate operations with approximation α.

The approximation α is uniquely determined by any of its operations vi since
we have α � vix1X , 1X , 1X, 1Xy. To say that v1, . . . , vn�1 are approximate
operations with approximation α is equivalent to having, for every object W

and any morphisms x0, . . . , xn : W Ñ X, identities which correspond to those
given in Theorem 1.3.
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X

α

��

Xk�1

π1

07hhhhhhhhhhhhhhhhhhhhhhhhh

1X�∆k

X

��

Xk�1

πk�1

gnVVVVVVVVVVVVVVVVVVVVVVVVV

∆k

X
�1X

��

A

X2k�1�n�1

v1
07

X2k�1�n�1

vn�1

gn

Xk�1

∆k

X
�1X

LR

∆k

X
�1X

,2 X2k�1

v2

9C

X2k�1

vn�2

[e

Xk�1

1X�∆k

X

LR

1X�∆k

X

lr

Xk�1

LR

,2 X2k�1

v3

GN

� � �
Figure 2. Approximate operation, case n � 2k for k ¥ 2

When C is a category with binary products and finite colimits, then there
always exist universal approximate operations given by the colimit of the outer
diagram of Figure 1, when n is odd, or of Figure 2, when n is even.

If A � X then the v1, . . . , vn�1 are “real” operations on X which provide X

with a structure of internal n-permutable object. For instance, in Set this means
that pX, v1, . . . , vnq is an n-permutable algebra, a kind of generalised Mal’tsev
algebra.

As before, the statements of Remark 2.2 also extend to the n-permutable
context. Again, we work in the dual category Cop � XX, where X is a category
with finite limits and binary coproducts. So, (universal) approximate ope-
rations v1, . . . , vn�1 : X

n�1 Ñ A with approximation α : X Ñ A in C are, in
fact, (universal) approximate co-operations v1, . . . , vn�1 : A Ñ pn� 1qX
with approximation α : A Ñ X in Cop. We consider the particular case when
X � 1X. Again, universal approximate co-operations always exist: v1, . . . , vn�1

and α are natural transformations defined, for each object X in X, by the limit
of one of the outer solid diagrams in Figure 3 and Figure 4.

We now extend Theorem 2.3 and Theorem 3.2 to the context of n-permutable
categories. Again, our proof is based on the one for varieties, where the pn�1q-
ary operations from Theorem 1.3 are replaced by approximate co-operations.
This leads to the following categorical version of Theorem 1.3.
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X
ι1

oueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
ιk�1

)/YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYpk � 1qX pk � 1qX
ApXqαX

LR

pv1qX
ou pv2qX

u�
pv3qX

�

pvn�2qX
�)

pvn�1qX
)/pn� 1 � 2kqX1X�pk�1q∇X�1X

LR

k∇X
��

pn� 1 � 2kqX1X�pk�1q∇X�1X

LR

k∇X
��

kX 2kX
k∇X

lr

��

2kX
k∇X

,2 kXpk � 1qX 2kXlr

� � �
Figure 3. Approximate co-operation, case n � 2k � 1 for k ¥ 2

X
ι1

oueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
ιk�1

)/YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYpk � 1qX pk � 1qX
ApXqαX

LR

pv1qX
ou pv2qX

u�
pv3qX

�

pvn�2qX
�)

pvn�1qX
)/pn�1�2k�1qX1X�k∇X

LR

k∇X�1X ��

pn�1�2k�1qXk∇X�1X

LR

1X�k∇X��pk�1qX p2k�1qX
k∇X�1X

lr

��

p2k�1qX
1X�k∇X

,2 pk � 1qXpk�1qX p2k�1qXlr

� � �
Figure 4. Approximate co-operation, case n � 2k for k ¥ 2

Theorem 4.2. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) the approximation α : A ñ 1X of the universal approximate co-operations
on 1X is a natural transformation, all of whose components are regular
epimorphisms in X;
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(b) there exist approximate co-operations on 1X such that the approximation
α : A ñ 1X is a natural transformation, all of whose components are
regular epimorphisms in X;

(c) X is an n-permutable category.

Proof : (a) ñ (b) is obvious.
(b) ñ (c) We follow the proof of the same implication in Theorem 3.2 and

give just the main points. Let R and S be equivalence relations on an object Y .
We must prove that pR, Sqn ¤ pS,Rqn. Let a, b : X Ñ Y be morphisms such
that xa, by P pR, Sqn.

We first consider the case that n is odd. Then there exists a regular epi-
morphism ζ : Z ։ X together with morphisms x1, . . . , xn�1 : Z Ñ Y such
that xaζ, x1y P R, xx1, x2y P S, . . . , xxn�2, xn�1y P S and xxn�1, bζy P R.

Since S is an equivalence relation, we have xaζ, aζy, xx1, x1y, xx1, x2y, . . . ,xxn�2, xn�2y, xxn�2, xn�1y, xbζ, bζy P S. This givesBB
aζ
xodd
xodd

bζ

F
,
A

aζ
x
bζ

EF P S,

where we writeB
aζ
xodd
xodd

bζ

F � xaζ, x1, x1, x3, x3, . . . , xn�2, xn�2, bζyT
and A

aζ
x
bζ

E � xaζ, x1, x2 . . . , xn�2, xn�1, bζyT
to simplify notation. By precomposing with each of the approximate co-
operations, we getA

aζαZ ,
A

aζ
x
bζ

Epv1qZE P S,
A
bζαZ ,

A
aζ
x
bζ

Epvn�1qZE P S

and $''&''%AA aζ
x
bζ

Epv2qZ ,A aζ
x
bζ

Epv3qZE P SSop � S

...AA
aζ
x
bζ

Epvn�3qZ ,A aζ
x
bζ

Epvn�2qZE P SSop � S
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since p1Z � pk � 1q∇Z � 1Zq pvjqZ � p1Z � pk � 1q∇Z � 1Zq pvj�1qZ for j even
in t2, . . . , n� 3u. Similarly, R is an equivalence relation and we havexaζ, aζy, xx1, aζy, xx2, x3y, xx3, x3y, . . . ,xxn�3, xn�2y, xxn�2, xn�2y, xxn�1, bζy, xbζ, bζy P R.

This gives CA
aζ
x
bζ

E
,

C aζ
aζ
xodd
xodd

bζ
bζ

GG P R,

where we writeC aζ
aζ
xodd
xodd

bζ
bζ

G � xaζ, aζ, x3, x3, . . . , xn�2, xn�2, bζ, bζyT
to simplify notation. By precomposing with each of the approximate co-
operations, we get$'''''&'''''%

AA
aζ
x
bζ

Epv1qZ ,A aζ
x
bζ

Epv2qZE P RopR � RAA
aζ
x
bζ

Epv3qZ ,A aζ
x
bζ

Epv4qZE P RopR � R

...AA
aζ
x
bζ

Epvn�2qZ ,A aζ
x
bζ

Epvn�1qZE P RopR � R

since pk∇Zq pvjqZ � pk∇Zq pvj�1qZ , for j odd, j P t1, . . . , n � 2u. We can
now conclude that xaζαZ , bζαZy P pS,Rqn, which implies that xa, by P pS,Rqn,
since ζ and αZ are regular epimorphisms.

For n even the proof is similar. Now we have xaζ, x1y P S, xx1, x2y P R, . . . ,xxn�2, xn�1y P S and xxn�1, bζy P R and should considerxaζ, aζy, xx1, x1y, xx1, x2y, . . . ,xxn�3, xn�3y, xxn�3, xn�2y, xxn�1, xn�1y, xxn�1, bζy P R

and xaζ, aζy, xx1, aζy, xx2, x3y, xx3, x3y, . . . ,xxn�3, xn�3y, xxn�2, xn�1y, xxn�1, xn�1y, xbζ, bζy P S.

(c) ñ (a) We must prove that αX in the limit diagram in Figure 3, if n is
odd, or in Figure 4, if n is even, is a regular epimorphism for every object X
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in X. If n is odd, we consider R � Rrk∇Xs and S � Rr1X �pk� 1q∇X � 1Xs,
and if n is even, we consider R � Rr1X � k∇Xs and S � Rrk∇X � 1Xs. For
the coproduct inclusions ι1, . . . , ιn�1 : X Ñ pn� 1qX we havexι1, ιn�1y P pR, Sqn � pS,Rqn.
So there exist a regular epimorphism ζ : Z ։ X as well as morphisms x1, . . . ,
xn�1 : Z Ñ pn� 1qX such that$''''''&''''''%

xι1ζ, x1y P S, xx1, x2y P R, xx2, x3y P S, . . . ,xxn�2, xn�1y P R, xxn�1, ιn�1ζy P S, n oddxι1ζ, x1y P R, xx1, x2y P S, xx2, x3y P R, . . . ,xxn�2, xn�1y P R, xxn�1, ιn�1ζy P S, n even.

It is easy to see that ζ, x1, . . . , xn�1 give a cone for the outer diagram in Figure 3
or in Figure 4. Consequently, there exists a unique morphism λ : Z Ñ ApXq
such that, in particular, ζ � αXλ. Now αX is a regular epimorphism since ζ

is.

As for n-permutable varieties, we also have a correspondence between appro-
ximate pn� 1q-ary co-operations and approximate ternary co-operations (Re-
mark 1.6). Similarly, (universal) approximate ternary co-operations w1, . . . ,
wn�1 with approximation β are natural transformations defined, for each ob-
ject X in X, by the (limit of the outer solid) commutative diagram in Figure 5.

Now we obtain the claimed categorical version of Theorem 1.4:

Theorem 4.3. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) the approximation β : B ñ 1X of the universal approximate ternary co-
operations on 1X is a natural transformation, all of whose components
are regular epimorphisms in X;

(b) there exist approximate ternary co-operations on 1X such that the appro-
ximation β : B ñ 1X is a natural transformation, all of whose compo-
nents are regular epimorphisms in X;

(c) X is an n-permutable category.

Proof : (a) ñ (b) is obvious.
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X
ι1

pwhhhhhhhhhhhhhhhhhhhhhhhhhhh

ι2

'.VVVVVVVVVVVVVVVVVVVVVVVVVVV

2X 2X

BpXqβX

LR

pw1qX
pw pw2qX

y�
pw3qX

��

pwn�2qX
�%

pwn�1qX
'.

3X

1X�∇X

LR

∇X�1X
��

3X

∇X�1X

LR

1X�∇X

��

2X 3X
1X�∇X

lr

��

3X
∇X�1X

,2 2X

2X 3Xlr

� � �
Figure 5. Approximate ternary co-operations

(b) ñ (c) This proof is similar to the same implication in Theorem 4.3, thus
we give just the main points. If n is odd, then xaζ, aζy, xx1, x1y, xx1, x2y,
. . . , xxn�2, xn�2y, xxn�2, xn�1y, xbζ, bζy P S. By precomposing each triple
successively with the approximate ternary co-operations, this gives$'''''''''&'''''''''%

A
aζαZ ,

A
aζ
x1
x2

Epw1qZE P SAA
x1
x2
x3

Epw2qZ ,A x2
x3
x4

Epw3qZE P SSop � S

...AA
xn�4
xn�3
xn�2

Epwn�3qZ ,A xn�3
xn�2
xn�1

Epwn�2qZE P SSop � SA
bζβZ ,

A xn�2
xn�1

bζ

Epwn�1qZE P S

since p∇Z � 1Zq pwjqZ � p1Z �∇Zq pwj�1qZ , for j even, j P t2, . . . , n � 3u.
Similarly, asxaζ, aζy, xx1, aζy, xx2, x3y, xx3, x3y, . . . , xxn�2, xn�2y, xxn�1, bζy and xbζ, bζy
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are all in R, we get$'''&'''%
AA

aζ
x1
x2

Epw1qZ,A x1
x2
x3

Epw2qZE P RopR � R

...AA
xn�3
xn�2
xn�1

Epwn�2qZ ,A xn�2
xn�1

bζ

Epwn�1qZE P RopR � R.

If n is even, then we start fromxaζ, aζy, xx1, x1y, xx1, x2y, . . . , xxn�3, xn�2y, xxn�1, xn�1y, xxn�1, bζy P R

and xaζ, aζy, xx1, aζy, xx2, x3y, xx3, x3y, . . . ,xxn�2, xn�1y, xxn�1, xn�1y, xbζ, bζy P S

and proceed as above.
(c) ñ (a) We already know that (c) implies condition (a) from Theorem 4.2.

So, we just need to show that condition (a) of Theorem 4.2 implies (a). We
suppose that Figure 3, for n odd, or Figure 4, for n even, represents a limit
where αX is a regular epimorphism. For the limit of the outer diagram in
Figure 5, we want to prove that βX is a regular epimorphism. The regular
epimorphism αX : ApXq ։ X and the morphismsp∇iX � 1X �∇n�iXq pviqX : ApXq Ñ 3X, i P t1, . . . , n� 1u,
where p∇iqX � x1X, . . . , 1XyT : iX Ñ X (see Remark 1.6), give another cone
of the outer diagram (5); in particular, p∇1qX � 1X and p∇2qX � ∇X . This
guarantees the existence of a unique morphism λ : ApXq Ñ BpXq such that,
in particular, αX � βXλ. Hence βX is a regular epimorphism.

We finish this work with the full generalisation of Theorem 1.7.

Lemma 4.4. Let X be a regular category such that, for some natural number
n ¥ 2, we have En ¤ En�1 for every reflexive relation E. Then X is p2n� 2q-
permutable.

Proof : (n � 2) By assumption, every reflexive relation E is transitive. Hence X
is a Mal’tsev category, so it is 2-permutable—see Subsection 1.8.

(n � 3) Let R and S be equivalence relations on a given object Y . Then
E � SR is a reflexive relation, since 1Y ¤ R, S. By assumption we have
SRSRSR ¤ SRSR. But RSRS ¤ SpRSRSqR ¤ SRSR, which shows that
the category X is 4-permutable.



VARIETAL TECHNIQUES FOR n-PERMUTABLE CATEGORIES 23

The proof for n � 3 is easily extended to an arbitrary n. Now we havepS,Rq2n ¤ pS,Rq2n�2 by assumption. ButpR, Sq2n�2 ¤ SpR, Sq2n�2R � pS,Rq2n ¤ pS,Rq2n�2,

which proves our claim.

Theorem 4.5. Let X be a regular category with binary coproducts. The fol-
lowing statements are equivalent:

(a) X is an n-permutable category;
(b) for every reflexive relation R, we have Rop ¤ Rn�1;
(c) for every reflexive relation R, we have Rn ¤ Rn�1.

Proof : (a) ñ (b) We extend the proof of the same implication from The-
orem 3.4. Let R be a reflexive relation on Y and consider morphisms x,
y : X Ñ Y such that xx, yy P Rop; hence xy, xy P R. Since X is an n-permutable
category, there exist approximate ternary co-operations w1, . . . , wn�1 with ap-
proximation β. These are defined, for each object X in X, as in Figure 5, where
βX is a regular epimorphism. Since R is a reflexive relation, we have xx, xy,xy, xy, xy, yy P R, so that alsoAA

x
y
y

E
,
A

x
x
y

EE P R.

Precomposing with each approximate ternary co-operation, we get$'''''''''&'''''''''%
A
xβX ,

A
x
x
y

Epw1qXE P RAA
x
y
y

Epw2qX ,A x
x
y

Epw2qXE P R

...AA
x
y
y

Epwn�2qX ,A x
x
y

Epwn�2qXE P RAA
x
y
y

Epwn�1qX , yβXE P R.

From p∇X � 1XqpwjqX � p1X � ∇Xqpwj�1qX , for j P t1, . . . , n � 2u, we can
conclude that xxβX , yβXy � xx, yyβX P Rn�1.

So xx, yy P Rn�1, since βX is a regular epimorphism.
(b) ñ (a) Again we extend the proof of the same implication from Theo-

rem 3.4. For any object X in X, consider the following reflexive graph and
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the reflexive relation R on 2X which results by taking the (regular epi, mono)
factorisation in

3X

∇X�1X ,2

1X�∇X

,2

π

�$�$
??

??
??

??
??

??
??

2X.lr

z���
��

��
��

��
��

��
�

R

r1

:D���������������
r2

:D���������������

From xι1, ι2y P R we get xι2, ι1y P Rop ¤ Rn�1. So, there exists a regular
epimorphism ζ : Z ։ X together with morphisms x1, . . . , xn�2 : Z Ñ 2X such
that xι2ζ, x1y, xx1, x2y , . . . , xxn�3, xn�2y, xxn�2, ι1ζy P R.

Let k1, . . . , kn�1 : Z Ñ R be the morphisms such that xr1, r2yk1 � xι2ζ, x1y,xr1, r2yki � xxi�1, xiy, i P t2, . . . , n� 2u, and xr1, r2ykn�1 � xxn�2, ι1ζy. From
the pullback

BpXq xpwn�1qX ,...,pw1qXy,2
π1

����

p3Xqn�1

πn�1

����

Z xk1,...,kn�1y ,2 Rn�1

we get morphisms pw1qX , . . . , pwn�1qX and a regular epimorphism defined
by βX � ζπ1 such that the diagram in Figure 5 commutes. Then X is an
n-permutable category by Theorem 4.3.

(a) ñ (c) Let R be a reflexive relation on Y and consider morphisms a,
b : X Ñ Y such that xa, by P Rn. Then there exists a regular epimorphism
ζ : Z ։ X and there exist morphisms x1, . . . , xn�1 : Z Ñ Y such that xaζ, x1y,xx1, x2y, . . . , xxn�2, xn�1y, xxn�1, bζy P R. Since X is an n-permutable cate-
gory, there are approximate ternary co-operations w1, . . . , wn�1 with approxi-
mation β defined, for each object X in X, as in Figure 5, where βX is a regular
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epimorphism. Since R is a reflexive relation, we havexaζ, x1y, xx1, x1y, xx1, x2y P R ñ A
aζβX ,

A
x1
x1
x2

Epw1qXE P R,xx1, x2y, xx2, x2y, xx2, x3y P R ñ AA
x1
x2
x2

Epw2qX ,A x2
x2
x3

Epw2qXE P R,

...xxn�3, xn�2y, xxn�2, xn�2y, xxn�2, xn�1y P R ñ AA
xn�3
xn�2
xn�2

Epwn�2qX ,A xn�2
xn�2
xn�1

Epwn�2qXE P R,xxn�2, xn�1y, xxn�1, xn�1y, xxn�1, bζy P R ñ AA
xn�2
xn�1
xn�1

Epwn�1qX , bζβXE P R.

Since p∇X�1XqpwjqX � p1X�∇Xqpwj�1qX for j P t1, . . . , n�2u, we concludexaζβX , bζβXy � xa, byζβX P Rn�1,

so xa, by P Rn�1 since ζ and βX are regular epimorphisms.
(c) ñ (b) By Lemma 4.4, we know that X is p2n� 2q-permutable. Let R be

a reflexive relation. Using the equivalence (a) � (b) for p2n�2q-permutability,
we have Rop ¤ R2n�3. Using our assumption Rn ¤ Rn�1 several (in fact, n�2)
times we obtain

Rop ¤ R2n�3 ¤ R2n�2 ¤ � � � ¤ Rn ¤ Rn�1.

This finishes the proof.

Corollary 4.6. In an n-permutable category with binary coproducts, any re-
flexive and transitive relation is symmetric.

Proof : It suffices to combine Rop ¤ Rn�1 for R reflexive with RR ¤ R for R

transitive to see that Rop ¤ R.

Remark 4.7. We do not now whether the converse (n-permutability follows
from any reflexive and transitive relation being symmetric) holds in categories;
for varieties this is true, see [4]. However, any regular category in which every
reflexive and symmetric relation is transitive has the Goursat property. In
fact, for any reflexive relation E, the relation EEop is reflexive and symmetric,
hence it is transitive by assumption. So the category is 3-permutable, and
consequently, n-permutable, by 1.8.
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