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Abstract: This paper introduces the frame of partially defined real numbers and
the lattice-ordered ring of partial real functions on a frame. This is then used
to construct the order completion of rings of pointfree continuous real functions.
The bounded and integer-valued cases are also analysed. The application of this
pointfree approach to the classical case C(X) of the ring of continuous real-valued
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Introduction

Our main goal with this paper is to construct the Dedekind order comple-
tion of the ring C(X) in the most direct and transparent way, avoiding the
use of Hausdorff continuous functions in [1]. For that, we approach the prob-
lem from a pointfree viewpoint, replacing spaces by an abstraction of their
lattices of open sets. The lattices involved here are the frames (or locales),
which form the object of study of pointfree topology.

Let L(R) denote the frame of reals [2], that is, the frame generated by all
ordered pairs (p, q) of rationals, subject to the relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) | p < r < s < q},

(R4)
∨
{(p, q) | p, q ∈ Q} = 1.
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For any frame L the real continuous functions on L are the frame homomor-
phisms L(R)→ L. They form a lattice-ordered ring (`-ring) [2] that we shall
denote by C(L). The correspondence L 7→ C(L) extends that for spaces: if
L = OX (the frame of open sets of a space X) then the classical function
ring C(X) is naturally isomorphic to C(L) [2].

Order completeness of an `-ring [5], it may be recalled, means that each
non-void set of elements that is bounded from above has a supremum and
dually each non-void set of elements that is bounded from below has an
infimum. What can one say about the Dedekind order completion of C(L)
and, in particular, of C(X) for any space X? In general, due to axiom (R2)
above, C(L) fails to be order complete. The best known result is a theorem of
Banaschewski and Hong [5] that extends familiar facts concerning topological
spaces that go back to Nakano [12] and Stone [15]: for a completely regular
L, C(L) is order complete iff L is extremally disconnected iff L is zero-
dimensional and the Boolean part of L is complete.

Our aim is to construct the order completion of C(L). In order to achieve
it we must find in some way the smallest order complete lattice containing
C(L). A natural idea is to avoid the problem caused by (R2) by deleting it
from the list of axioms. So our main device will be the frame

L(IR)

of partially defined real numbers, presented by the same generators as L(R)
and by all relations except (R2). Of course, this is a bigger frame in which
L(R) embeds canonically. Then C(L) also embeds canonically in the class

IC(L) = Frm(L(IR), L)

of partial real functions on L. We prove that IC(L) is Dedekind order com-
plete (Section 2) and describe (in Section 3) the Dedekind order completion
C(L)# of C(L) inside IC(L) by

C(L)# = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g

(b) h(p,—)∗ ≤ h(—, q) and h(—, q)∗ ≤ h(p,—) for any p < q}.

We also show that, alternatively, the elements of C(L)# are precisely the max-
imal elements of IC(L) (with respect to a certain partial order v) that sat-
isfy condition (a). The bounded and integer-valued cases are then analysed
(Sections 4 and 5). In particular, the aforementioned result of Banaschewski-
Hong [5] follows as an immediate corollary from our construction. Finally,
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in Section 6, we show that the application of these ideas to the classical case
of the ring C(X) of continuous real-valued functions on a topological space
X provides a new construction for its order completion. In particular, the
results of Anguelov [1] and Danet [6] (see also [7]) follow easily from our
approach.

1. Preliminaries

1.1. Order completion. For any subset A of a partially ordered set (P,≤)
we denote by

P∨
A (resp.

P∧
A)

the supremum (resp. infimum) of A in P in case it exists (we shall omit the
superscript if it is clear from the context).

A partially ordered set (P,≤) is called Dedekind order complete if every
non-void subset A of P which is bounded from above has a supremum in P
and dually every non-void subset B of P which is bounded from below has
a infimum in P .

A Dedekind order completion of a poset P is a pair (P#,Φ) where P# is a
Dedekind order complete poset and Φ: P → P# is an order embedding that
preserves all suprema and infima that exist in P and satisfies

p̂ =
P#∨
{Φ(p) ∈ Φ(P ) | Φ(p) ≤ p̂} =

P#∧
{Φ(p) ∈ Φ(P ) | Φ(p) ≥ p̂}

for every p̂ ∈ P#.

1.2. Frames. A frame (or locale) L is a complete lattice such that

a ∧
∨
B =

∨
{a ∧ b | b ∈ B}

for all a ∈ L and B ⊆ L; equivalently, it is a complete Heyting algebra
with Heyting operation → satisfying the standard equivalence a ∧ b ≤ c if
and only if a ≤ b → c. The pseudocomplement of an a ∈ L is the element
a∗ = a → 0 =

∨
{b ∈ L | a ∧ b = 0}. An element a is regular if a∗∗ =

a (equivalently, if a = b∗ for some b). A frame homomorphism is a map
h : L→ M between frames which preserve finitary meets (including the top
element 1) and arbitrary joins (including the bottom element 0). Frm is then
the corresponding category of frames and their homomorphisms.

The most typical example of a frame is the lattice OX of open subsets of
a topological space X. The correspondence X 7→ OX is clearly functorial
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(by taking inverse images), and consequently we have a contravariant functor
O : Top→ Frm where Top is the category of topological spaces and continuous
maps. There is also a functor in the opposite direction, the spectrum functor
Σ: Frm→ Top which assigns to each frame L its spectrum ΣL, the space of
all homomorphisms ξ : L→ {0, 1} with open sets Σa = {ξ ∈ ΣL | ξ(a) = 1}
for any a ∈ L, and to each frame homomorphism h : L→M the continuous
map Σh : ΣM → ΣL such that Σh(ξ) = ξh. The spectrum functor is right
adjoint to O, with adjunction maps

ηL : L→ OΣL, ηL(a) = Σa

and

εX : X → ΣOX, εX(x) = x̂, x̂(U) = 1 iff x ∈ U

(the former is the spatial reflection of the frame L).
For general notions and results concerning frames we refer to Johnstone

[11] or the recent Picado-Pultr [13]. The particular notions we will need are
the following: a frame L is

completely regular if a =
∨
{b ∈ L | b≺≺a} for each a ∈ L, where b≺≺a

means that there is {cr | r ∈ Q ∩ [0, 1]} ⊆ L such that a ≤ c0, c1 ≤ b and
cr ≺ cs (i.e. c∗r ∨ cs = 1) whenever r < s;
extremally disconnected if a∗ ∨ a∗∗ = 1 for every a ∈ L; and
zero-dimensional if each element of L is a join of complemented elements.

1.3. Real functions. It will be useful here (as it has been also in [4])
to adopt the equivalent description of L(R) with the elements (r,—) =∨
s∈Q(r, s) and (—, s) =

∨
r∈Q(r, s) as primitive notions. Specifically, the

frame of reals L(R) is equivalently defined by generators (r,—) and (—, r) for
r ∈ Q and the following relations

(r1) (r,—) ∧ (—, s) = 0 whenever r ≥ s,
(r2) (r,—) ∨ (—, s) = 1 whenever r < s,
(r3) (r,—) =

∨
s>r(s,—), for every r ∈ Q,

(r4) (—, r) =
∨
s<r(—, s), for every r ∈ Q,

(r5)
∨
r∈Q(r,—) = 1,

(r6)
∨
r∈Q(—, r) = 1.

With (p, q) = (p,—) ∧ (—, q) one goes back to (R1)–(R4).
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Regarding the frame homomorphisms L(R)→ L, for a general frame L, as
the continuous real functions on L provides a natural extension of the classi-
cal notion since continuous real functions on a space X may be represented
as frame homomorphisms h : L(R)→ OX (see [2] for a detailed account).

There is a useful way of specifying continuous real functions on L with the
help of scales. A scale in L is a map σ : Q→L such that

(1) σ(r) ∨ σ(s)∗ = 1 whenever r < s;
(2)

∨
r∈Q σ(r) = 1 =

∨
r∈Q σ(r)∗.

For any scale σ the formulas

f(r,—) =
∨
{σ(s) | s > r} and f(—, r) =

∨
{σ(s)∗ | s < r} (r ∈ Q)

determine a continuous real function f : L (R)→ L.

Note. The meaning of the term scale used here differs from its use in [11]
where it refers to maps from the unit interval of Q (and not all of Q) into L.
In [2] the term descending trail is used instead.

C(L) = Frm(L (R) , L) is partially ordered by

f ≤ g iff f(r,—) ≤ g(r,—) for all r ∈ Q
iff g(—, r) ≤ f(—, r) for all r ∈ Q. (1.3.1)

Examples. (1) For each r ∈ Q, the constant function r determined by r is
defined by

r(s,—) =

{
0 if s ≥ r

1 if s < r
and r(—, s) =

{
1 if s > r

0 if s ≤ r

for every s ∈ Q.

(2) For each complemented a ∈ L, the characteristic function χa determined
by a is given by

χa(s,—) =


0 if s ≥ 1

a if 0 ≤ s < 1

1 if s < 0

and χa(—, s) =


1 if s > 1

a∗ if 0 < s ≤ 1

0 if s ≤ 0

for every s ∈ Q.
An f ∈ C(L) is said to be bounded if there exist p, q ∈ Q such that

p ≤ f ≤ q. Equivalently, f is bounded iff there is some rational r such that
f ((—,−r) ∨ (r,—)) = 0, that is, f(−r, r) = 1. We shall denote by C∗(L) the
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set of all bounded members of C(L). Obviously, all constant functions and
all characteristic functions are in C∗(L).

As it is well known, in general neither C(L) nor C∗(L) are Dedekind order
complete [5].

The operations on the algebra C(L) are determined by the operations of
Q as lattice-ordered ring as follows (see [2] and [10] for more details):

(1) For � = +, ·,∧,∨:

(f � g)(p, q) =
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 � 〈t, u〉 ⊆ 〈p, q〉}

where 〈·, ·〉 stands for open interval in Q and the inclusion on the right
means that x � y ∈ 〈p, q〉 whenever x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

(2) (−f)(p, q) = f(−q,−p).
(3) For each r ∈ Q, the nullary operation r is defined as in Example 1.3 (1)

above.
(4) For each 0 < λ ∈ Q, (λ · f)(p, q) = f

(
p
λ ,

q
λ

)
.

These operations satisfy all the identities which hold for their counterparts
in Q and hence they determine an f -ring structure in C(L).

2. Partial real functions
Let IR denote the set of compact intervals a = [a, a] of the real line ordered

by reverse inclusion (which we denote by v):

a v b iff [a, a] ⊇
[
b, b
]

iff a ≤ b ≤ b ≤ a.

The pair (IR,v) is a domain, referred to as the partial real line (also interval-
domain). The interval domain was proposed by Dana Scott in [14] as a
domain-theoretic model for the real numbers. It is a successful idea that has
inspired a number of computational models for real numbers.

The way-below relation of IR is given by

a� b iff a < b ≤ b < a

and we denote the set {b ∈ IR | a� b} by ↑↑a. The family

{↑↑a | a ∈ IR, a, a ∈ Q}

forms a countable basis of the Scott topology OIR on (IR,v).
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Remarks 2.1. (1) Let π1, π2 : IR→ R denote the projections defined for each
a ∈ IR by π1(a) = a and π2(a) = a. Then for each r ∈ Q

π−1
1 (r,+∞) = {a ∈ IR | r < a}

=
⋃

β∈R,β>r
{a ∈ IR | r < a ≤ a < β} =

⋃
β∈R,β>r

↑↑ [r, β]

and

π−1
2 (−∞, r) = {a ∈ IR | a < r}

=
⋃

α∈R,α<r
{a ∈ IR | α < a ≤ a < r} =

⋃
α∈R,α<r

↑↑ [α, r] .

It follows that for the upper τu and lower τl topologies in R, π1 : IR →
(R, τu) is continuous, (i.e. π1 is lower semicontinuous) and π2 : IR → (R, τl)
is continuous, (i.e. π2 is upper semicontinuous). Hence, for any f ∈ C(X, IR),
π1 ◦ f ∈ LSC(X,R), π2 ◦ f ∈ USC(X,R) and π1 ◦ f ≤ π2 ◦ f .

Note further that for each a ∈ IR,

↑↑a = π−1
1 (a,+∞) ∩ π−1

2 (−∞, a).

Consequently, the Scott topology on IR is the initial topology w.r.t. π1 : IR→
(R, τu) and π2 : IR→ (R, τl).
(2) Let e : R→ IR be given by e(a) = [a, a] for each a ∈ R. It is easy to check
that e is an embedding of R endowed with the usual topology into (IR,OIR).
Sometimes we shall identify R with its homeomorphic copy e(R) ⊆ IR. Sim-
ilarly, a real-valued function f : X → R will be identified with the function
e ◦ f : X → IR.

When investigating the existence of suprema of families of continuous real
functions on a frame one immediately realizes that the problem lies on the
defining relation (r2) (or (R2)). This urged us to consider the partial variant
of L(R) defined by generators (r,—) and (—, r) for r ∈ Q and relations (r1),
(r3)–(r6). We call it the frame of partial reals

L(IR).

There is of course a basic homomorphism

% : L(IR)→ L(R)

defined on generators by (r,—) 7→ (r,—) and (—, r) 7→ (—, r).
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Proposition 2.2. The space of partial reals with the Scott topology is home-
omorphic to ΣL (IR). The homeomorphism τ : ΣL (IR)→ IR is such that

τ(ξ) =
∨
{r ∈ Q | ξ(r,—) = 1} and τ(ξ) =

∧
{s ∈ Q | ξ(—, s) = 1}

for each ξ ∈ ΣL (IR).

Proof : Let ξ ∈ ΣL (IR). We first note that by (r1), (r5) and (r6) there exists
a pair of rationals r1 < r2 such that

ξ(—, r1) = ξ(r2,—) = 0 and ξ(r1,—) = ξ(—, r2) = 1.

Indeed, if ξ(r,—) = 0 for every r ∈ Q, then ξ(
∨
r∈Q(r,—)) =

∨
r∈Q ξ(r,—) = 0,

contradicting (r5) by the compactness of {0, 1}. Therefore there exists some
r1 ∈ Q such that ξ(r1,—) = 1 and then, by (r1), 0 = ξ(0) = ξ((r1,—) ∧
(—, r1)) = ξ(—, r1). By a similar argument, using (r1) and (r6), we may
conclude that ξ(—, r2) = 1 and ξ(r2,—) = 1 for some r2 ∈ Q. Finally,
1 = ξ(r1,—) ∧ ξ(—, r2) = ξ((r1,—) ∧ (—, r2)) implies r1 < r2, by (r1).

It now follows that we have

τ(ξ) =
∨
{r ∈ Q | ξ(r,—) = 1} ∈ R and τ(ξ) =

∧
{s ∈ Q | ξ(—, s) = 1} ∈ R.

For any such r, s, ξ((r,—) ∧ (—, s)) = ξ(r,—) ∧ ξ(—, s) = 1 and thus, by (r1),
r < s. Hence

τ(ξ) ≤ τ(ξ)

and τ(ξ) =
[
τ(ξ), τ(ξ)

]
belongs in fact to IR.

In order to show that τ is one-one, let ξ1 6= ξ2. Then there exists r ∈ Q
such that, say, ξ1(r,—) = 1 and ξ2(r,—) = 0. Then, by (r3), 1 = ξ1(r,—) =
ξ1(
∨
p>r(p,—)). Thus there exists p > r such that ξ1(p,—) = 1, and hence

r < p ≤ τ(ξ1). On the other hand, since ξ2(q,—) = 0 for each q ≥ r, it
follows that

τ(ξ2) =
∨
{q ∈ Q | ξ2(q,—) = 1} ≤ r.

Hence τ(ξ2) ≤ r < p ≤ τ(ξ1). The arguments for the other cases are analo-
gous.
τ is also surjective. Indeed, given a ∈ IR, let ξa : L (IR)→ {0, 1} be given

by ξa(r,—) = 1 iff r < a and ξa(—, r) = 1 iff a < r for every r ∈ Q. It is easy
to check that this correspondence turns the defining relations (r1), (r3)–(r6)
into identities in {0, 1} and so each ξa is a frame homomorphism. Moreover

τ(ξa) =
∨
{r ∈ Q | ξa(r,—) = 1} =

∨
{r ∈ Q | r < a} = a
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and

τ(ξa) =
∧
{r ∈ Q | ξa(—, r) = 1} =

∧
{r ∈ Q | a < r} = a.

Hence τ(ξa) = a.
It remains to show τ is a homeomorphism. Now, for each basic Scott open

set ↑↑a (with a ∈ IR and a, a ∈ Q) we have that,

τ−1 (↑↑a) = {ξb ∈ ΣL (IR) | a� b} =
{
ξb ∈ ΣL (IR) | a < b ≤ b < a

}
= {ξb ∈ ΣL (IR) | ξb(a,—) = 1 and ξb(—, a) = 1} = Σ(a,—) ∩ Σ(—,a).

Hence τ is continuous. On the other hand, for any opens Σ(r,—) or Σ(—,r) of
ΣL (IR),

τ
(
Σ(r,—)

)
= {τ(ξ) | ξ ∈ ΣL (IR) and ξ(r,—) = 1}
= {τ(ξa) | a ∈ IR and ξa(r,—) = 1} = {a ∈ IR | r < a}
=

⋃
β∈R,β>r

{a ∈ IR | r < a ≤ a < β} =
⋃

β∈R,β>r
↑↑ [r, β] .

and

τ
(
Σ(—,r)

)
= {τ(ξ) | ξ ∈ ΣL (IR) and ξ(—, r) = 1}
= {τ(ξa) | a ∈ IR and ξa(—, r) = 1} = {a ∈ IR | a < r}
=

⋃
α∈R,α<r

{a ∈ IR | α < a ≤ a < r} =
⋃

α∈R,α<r
↑↑ [α, r]

are Scott open sets.

Remark 2.3. The homeomorphism τ−1 : IR → ΣL (IR) induces an isomor-
phism

OΣL (IR)→ OIR, Σ(r,—) 7→ π−1
1 (r,+∞), Σ(—,r) 7→ π−1

2 (−∞, r).

Thus the homomorphism L (IR) → OIR taking (r,—) to π−1
1 (r,+∞) and

(—, r) to π−1
2 (−∞, r) is the spatial reflection map ηL(IR) of the frame of partial

real numbers. Note that this homomorphism is an isomorphism. Indeed,
ηL(IR) is onto, since for each a ∈ IR with a, a ∈ Q,

ηL(IR)

(
(a,—) ∧ (—, a)

)
= {b ∈ IR | a < b and b < a} = ↑↑a,

and Ψ: OIR→ L(IR), given by

Ψ (↑↑a) = (a,—) ∧ (—, a) for each a ∈ IR such that a, a ∈ Q,
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is a left inverse of ηL(IR):

Ψ ◦ ηL(IR)(r,—) = Ψ
(
{a ∈ IR | r < a}

)
= Ψ

(⋃{↑↑b | b = r, b ∈ Q
})

=
∨{

(r,—) ∧ (—, b) | b ∈ Q
}

= (r,—) ∧
∨{

(—, b) | b ∈ Q
}

= (r,—),

Ψ ◦ ηL(IR)(—, r) = Ψ
(
{a ∈ IR | a < r}

)
= Ψ

(⋃{↑↑b | b ∈ Q, b < r
})

=
∨{

(b,—) ∧ (—, r) | b ∈ Q
}

= (—, r) ∧
∨{

(b,—) | b ∈ Q
}

= (—, r).

Definition 2.4. A continuous partial real function on a frame L is a frame
homomorphism h : L(IR)→ L.

As in the case of continuous real functions on a space X, one can eas-
ily show that continuous functions X → IR may be represented as frame
homomorphisms h : L(IR)→ OX, which justifies the preceding definition:

Corollary 2.5. For each topological space (X,OX) there is a natural iso-
morphism

Φ: Frm(L (IR) ,OX)
∼→ Top(X, IR).

Proof : By the (dual) adjunction between contravariant functors O : Top →
Frm and Σ: Frm→ Top there is a natural isomorphism

Frm(L,OX)
∼→ Top(X,ΣL)

for all L and X. Combining this for L = L (IR) with the homeomorphism
τ : Σ(L (IR))→ IR from Proposition 2.2 one obtains the isomorphism.

Specifically, Φ is given by the correspondence h 7→ h̃ where

h̃(x) = [
∨
{r ∈ Q | x ∈ h(r,—)},

∧
{r ∈ Q | x ∈ h(—, r)}] for every x ∈ X.

In the opposite direction, given f ∈ C(X, IR) the corresponding h is defined
by

h(r,—) = (π1◦f)−1(r,+∞) and h(—, r) = (π2◦f)−1(−∞, r) for every r ∈ Q.

We shall denote by IC(L) the set Frm(L (IR) , L), partially ordered by

f ≤ g iff f(r,—) ≤ g(r,—) and g(—, r) ≤ f(—, r) for all r ∈ Q. (2.5.1)
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Remarks 2.6. (1) Note that using the basic homomorphism % : L(IR)→ L(R),
continuous real maps h ∈ C(L) are in a one-to-one correspondence with the

ĥ ∈ IC(L) such that ĥ(r,—)∨ĥ(—, s) = 1 whenever r < s (just take ĥ = h·%).
So in what follows we will keep the notation C(L) to denote also the class
inside IC(L) of the h’s such that h(r,—) ∨ h(—, s) = 1 whenever r < s.

(2) In case f ∈ C(L), as in (1.3.1), the second condition on f and g in (2.5.1)
is needless because it is equivalent to the first one:

g(—, r) = g(
∨
s<r

(—, s)) =
∨
s<r

g(—, s) ≤
∨
s<r

g(s,—)∗ ≤
∨
s<r

f(s,—)∗ ≤ f(—, r),

the last inequality because f being in C(L) then, by (r2), f(s,—)∨f(—, r) = 1
(the argument for the converse is analogous).

A continuous partial real function h ∈ IC(L) is said to be bounded if there
exist p, q ∈ Q such that p ≤ h ≤ q. Equivalently,

h is bounded iff ∃r ∈ Q such that h(−r, r) = 1.

We shall denote by IC∗(L) the set of bounded functions in IC(L).

Example 2.7. For each a, b ∈ L such that a ∧ b = 0 let χa,b denote the
bounded continuous partial real function given by

χa,b(r,—) =


0 if r ≥ 1

a if 0 ≤ r < 1

1 if r < 0

and χa,b(—, r) =


1 if r > 1

b if 0 < r ≤ 1

0 if r ≤ 0

for each r ∈ Q. Clearly, χa,b ∈ C∗(L) iff a ∨ b = 1, i.e. iff a is complemented
with complement b.

Remark 2.8. There is an order reversing isomorphism −(·) : IC(L) → IC(L)
defined by

(−h)(—, r) = h(−r,—) and (−h)(r,—) = h(—,−r) for all r ∈ Q.

When restricted to C(L) it yields an isomorphism C(L)→ C(L).

Using these isomorphisms, the study of the Dedekind order completeness
of IC(L) and C(L) boils down to the discussion of the existence of non-void
bounded suprema. We start with IC(L).

Proposition 2.9. IC(L) is closed under non-void bounded suprema.
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Proof : Let {hi}i∈I ⊆ IC(L) and h ∈ IC(L) such that hi ≤ h for all i ∈ I. For
each r, s ∈ Q we define h∨ : L (IR)→ L on generators by

h∨(r,—) =
∨
i∈I
hi(r,—) and h∨(—, s) =

∨
q<s

∧
i∈I
hi(—, q).

This is a frame homomorphism since it turns the defining relations (r1) and
(r3)–(r6) of L (IR) into identities in L:

(r1) h∨(r,—) ∧ h∨(—, s) ≤
∨
i∈I
∨
q<s hi(r,—) ∧ hi(—, q) ≤

∨
i∈I hi(r,—) ∧

hi(—, s) = 0, whenever r ≥ s.
(r3)

∨
s>r h∨(s,—) =

∨
i∈I
∨
s>r hi(s,—) =

∨
i∈I hi(r,—) = h∨(r,—) for each

r ∈ Q.
(r4)

∨
s<r h∨(—, s) =

∨
s<r

∨
q<s

∧
i∈I hi(—, q) =

∨
q<r

∧
i∈I hi(—, q) = h∨(—, r)

for each r ∈ Q.
(r5)

∨
r∈Q h∨(r,—) =

∨
r∈Q
∨
i∈I hi(r,—) =

∨
i∈I
∨
r∈Q hi(r,—) = 1.

(r6)
∨
s∈Q h∨(—, s) =

∨
s∈Q
∨
q<s

∧
i∈I hi(—, q) ≥

∨
q∈Q h(—, q) = 1.

Hence h∨ ∈ IC(L). In addition, for each i ∈ I and r, s ∈ Q,

hi(r,—) ≤ h∨(r,—) ≤ h(r,—) and

h(—, s) =
∨
q<s

h(—, q) ≤ h∨(—, s) ≤
∨
q<s

hi(—, q) = hi(—, s)

and thus hi ≤ h∨ ≤ h for every i ∈ I. Finally, if g ∈ IC(L) is such that hi ≤ g
for every i ∈ I, then we have, for each r, s ∈ Q,

g(r,—) ≥
∨
i∈I
hi(r,—) = h∨(r,—) and

g(—, s) =
∨
q<s

g(—, q) ≤
∨
q<s

∧
i∈I
hi(—, q) = h∨(—, s)

and so h∨ ≤ g. Hence h∨ is in fact the supremum of {hi}i∈I in IC(L).

Corollary 2.10. IC(L) is Dedekind order complete.

Proof : It follows easily from Proposition 2.9 and Remark 2.8. Indeed, let
{hi}i∈I ⊆ IC(L) and h ∈ IC(L) such that h ≤ hi for all i ∈ I. Then
{−hi}i∈I ⊆ IC(L), −h ∈ IC(L) and −hi ≤ −h for all i ∈ I. It follows that
IC(L)∨

i∈I(−hi) do exist. It is easy to check that
IC(L)∧

i∈Ihi = −
IC(L)∨

i∈I(−hi).
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3. The Dedekind order completion of C(L)
Now, since IC(L) is Dedekind order complete it follows that it contains

the Dedekind order completion of all its subposets, in particular C(L). Our
next task will be to determine the Dedekind order completion of C(L). As a
by-product we shall also determine the order completion of C(L) in the sense
of [5].

We first note that, as explained in ([5], Section 2), there is no essential
loss of generality if we restrict ourselves to completely regular frames. So,
in the sequel, all frames will be taken as completely regular. We start by
establishing a couple of lemmas:

Lemma 3.1. Let L be a completely regular frame and let h ∈ IC(L) be such
that

(1) {f ∈ C(L) | f ≤ h} 6= ∅ and
(2) h(p,—)∗ ≤ h(—, q) whenever p < q.

Then h =
IC(L)∨
{f ∈ C(L) | f ≤ h}.

Proof : Let F = {f ∈ C(L) | f ≤ h}. By (1), F 6= ∅. Since IC(L) is

Dedekind order complete, the supremum
IC(L)∨
F exists. We shall prove that

IC(L)∨
F = h.

We only need to show that, for any h′ ∈ IC(L) such that f ≤ h′ for all
f ∈ F , h ≤ h′ i.e.
(a) h(p,—) ≤ h′(p,—) for every p ∈ Q and
(b) h(—, q) ≥ h′(—, q) for every q ∈ Q.

(a): We fix p ∈ Q and consider p′ ∈ Q such that p < p′. Since L is completely
regular, then h(p′,—) =

∨
{a ∈ L | a≺≺ h(p′,—)}. Let a ∈ L such that

a≺≺ h(p′,—). Then there exists a family {cr : r ∈ Q ∩ [0, 1]} ⊆ L such that
a ≤ c0, c1 ≤ h(p′,—) and cr ≺ cs whenever r < s. Hence the map σa,p′ : Q→L
given by

σa,p′(r) =


0 if r > 1

c1−r if 0 ≤ r ≤ 1

1 if r < 0
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is a scale and generates a ga,p′ ∈ C(L) given by

ga,p′(r,—) =


0 if r ≤ 1∨
r′>r

c1−r′ if 0 ≤ r < 1

1 if r < 0

and

ga,p′(—, s) =


1 if s > 1∨
s′<s

c∗1−s′ if 0 < s ≤ 1

0 if s ≤ 0.

Evidently 0 ≤ ga,p′ ≤ 1. Let

fa,p′ = f + (((p′ − f) ∨ 0) · ga,p′) ∈ C(L).

We have fa,p′ ≤ h; indeed, for each r ∈ Q,

fa,p′(r,—) =
∨
r′∈Q

f(r − r′,—) ∧ (((p′ − f) ∨ 0) · ga,p′) (r′,—)

=
∨
r′<0

f(r − r′,—) ∨
∨
r′≥0

f(r − r′,—) ∧ (((p′ − f) ∨ 0) · ga,p′) (r′,—)

= f(r,—) ∨
∨
r′≥0

∨
r′′>0

f(r − r′,—) ∧ ((p′ − f) ∨ 0) (r′′,—) ∧ ga,p′
(
r′

r′′
,—

)
= f(r,—) ∨

∨
r′≥0

∨
r′′>0

f(r − r′, p′ − r′′) ∧ ga,p′
(
r′

r′′
,—

)
= f(r,—) ∨

∨
r′≥0

∨
r′<r′′<p′−r+r′

f(r − r′, p′ − r′′) ∧ ga,p′
(
r′

r′′
,—

)
= f(r,—) ∨

∨
r′≥0

∨
r′<r′′<p′−r+r′

∨
r′′′> r′

r′′

f(r − r′, p′ − r′′) ∧ c1−r′′′.
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Now, if r ≥ p′ then p′ − r + r′ ≤ r′ for each r′ ≥ 0 and thus fa,p′(r,—) =
f(r,—) ≤ h(r,—). Otherwise, if r < p′ then

fa,p′(r,—) ≤ f(r,—) ∨
∨
r′≥0

∨
r′<r′′<p′−r+r′

f(r − r′, p′ − r′′) ∧ c1

= f(r,—) ∨
∨
r′≥0

f(r − r′, p′ − r′) ∧ c1

= f(r,—) ∨ (f(—, p′) ∧ c1)

= (f(r,—) ∨ f(—, p′)) ∧ (f(r,—) ∨ c1)

= f(r,—) ∨ c1

≤ h(r,—) ∨ h (p′,—) = h(r,—).

Hence fa,p′(r,—) ≤ h(r,—) for every r ∈ Q and since fa,p′ ∈ C(L), it follows
that fa,p′ ≤ h, by Remark 2 of 2.6, and we may conclude that fa,p′ ∈ F .

Finally, since p < p′ it follows that

fa,p′(p,—) = f(p,—) ∨
∨
r′≥0

∨
r′<r′′<p′−p+r′

∨
r′′′> r′

r′′

f(p− r′, p′ − r′′) ∧ c1−r′′′

≥ f(p,—) ∨
∨
r′≥0

∨
r′<r′′<p′−p+r′

f(p− r′, p′ − r′′) ∧ c0

= f(p,—) ∨
∨
r′≥0

f(p− r′, p′ − r′) ∧ c0

= f(p,—) ∨ (f(—, p′) ∧ c0)

= (f(p,—) ∨ f(—, p′)) ∧ (f(r,—) ∨ c0)

= f(p,—) ∨ c0 ≥ c0

and thus a ≤ c0 ≤ fa,p′(p,—) ≤ h′(p,—). Hence

h(p,—) =
∨
p′>p

h(p′,—) =
∨
p′>p

∨
a≺≺ h(p′,—)

a ≤ h′(p,—).

(b): Using (2) it follows that

h(—, q) =
∨
s′<s

∨
s<q

h(—, s′) ≥
∨
s<q

h(s,—)∗

≥
∨
s<q

h′(s,—)∗ ≥
∨
s<q

h′(—, s) = h′(—, q).

Then, it follows from Lemma 3.1 and Remark 2.8 that:

Lemma 3.2. Let L be a completely regular frame and let h ∈ IC(L) be such
that
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(1) {g ∈ C(L) | h ≤ g} 6= ∅ and
(2) h(—, q)∗ ≤ h(p,—) whenever p < q.

Then h =
IC(L)∧
{g ∈ C(L) | h ≤ g}.

We introduce now the following classes:

C(L)∨ = {h ∈ IC(L) | ∃f, g ∈ C(L) : f ≤ h ≤ g and h(p,—)∗ ≤ h(—, q) if p < q},
C(L)∧ = {h ∈ IC(L) | ∃f, g ∈ C(L) : f ≤ h ≤ g and h(—, q)∗ ≤ h(p,—) if p < q},
C(L)∨∧ = C(L)∨ ∩ C(L)∧.

Next result is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3. Let L be a completely regular frame and let h ∈ C(L)∨∧.
Then

h =
IC(L)∨
{f ∈ C(L) | f ≤ h} =

IC(L)∧
{g ∈ C(L) | h ≤ g}.

The following diagram depicts the inclusions between those classes (each
arrow represents a strict inclusion):

C(L)∨

$$IIIIIIIII

C(L) // C(L)∨∧

::ttttttttt

$$JJJJJJJJJ
IC(L)

C(L)∧

::uuuuuuuuu

The only non trivial inclusion, C(L) ⊆ C(L)∨∧, follows from the fact that
h(p,—) ∨ h(—, q) = 1 implies h(p,—)∗ ≤ h(—, q) and h(—, q)∗ ≤ h(p,—).
Further, the inclusions are strict. Indeed, for each a, b ∈ L such that a∧b = 0
recall the bounded χa,b from Example 2.7. Then:

(1) χa,b ∈ C(L)∨ if and only if a∗ = b;
(2) χa,b ∈ C(L)∧ if and only if b∗ = a;
(3) χa,b ∈ C(L)∨∧ if and only if a∗ = b and b∗ = a, i.e. if and only if a is

regular and b = a∗.

Consequently,

• if a is regular but not complemented then χa,a∗ ∈ C(L)∨∧ r C(L);
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• if a∗ = b but b∗ 6= a then χa,a∗ ∈ C(L)∨rC(L)∧ (for instance, take L = OR,
a = Rr {0} and b = ∅);
• if b∗ = a but a∗ 6= b then χb∗,b ∈ C(L)∧ r C(L)∨;
• if a∗ 6= b and b∗ 6= a then χa,b ∈ IC(L) r (C(L)∨ ∪ C(L)∧) (for instance,

take a = b = 0).

Remark 3.4. The order reversing isomorphism −(·) : IC(L) → IC(L) intro-
duced in Remark 2.8 induces an isomorphism from C(L)∨ onto C(L)∧ (and
hence an isomorphism from C(L)∨∧ onto C(L)∨∧).

We can consider on IC(L) a further partial order given by

f v g if f(r,—) ≤ g(r—) and f(—, r) ≤ g(—, r) for all r ∈ Q.
Now we shall see how the classes C(L)∨, C(L)∧ and C(L)∨∧ can be alterna-

tively described in terms of v:

Proposition 3.5. The following are equivalent for any h ∈ IC(L).

(i) h(p,—)∗ ≤ h(—, q) whenever p < q in Q.
(ii) g(—, r) = h(—, r) for all r ∈ Q and all g ∈ IC(L) such that h v g.

Proof : In order to check that (i) =⇒ (ii), let g ∈ IC(L) such that h v g. By
(i),

g(p,—)∗ ≤ h(p,—)∗ ≤ h(—, q) ≤ g(—, q)

for all p < q in Q. Consequently, g(—, q) =
∨
p<q g(p,—)∗ for all q ∈ Q. Thus

we get g(—, q) =
∨
p<q g(p,—)∗ ≤ h(—, q) ≤ g(—, q) and so g(—, q) = h(—, q).

For the reverse implication let g ∈ IC(L) be defined as follows:

g(r,—) =
∨
s>r

h(s,—)∗∗ and g(—, r) =
∨
s<r

h(s,—)∗.

It is straightforward to check that g is indeed a partial continuous functions
and that h v g. Therefore, by hypothesis, h(—, r) = g(—, r) for all r ∈ Q.
Consequently,

∨
s<r h(s,—)∗ = h(—, r) which implies h(s,—)∗ ≤ h(—, r) for

all s < r in Q.

Proposition 3.6. The following are equivalent for any h ∈ IC(L).

(i) h(—, q)∗ ≤ h(p,—) whenever p < q in Q;
(ii) g(r,—) = h(r,—) for all r ∈ Q and all g ∈ IC(L) such that h v g.

Proof : Clearly, h(—, q)∗ ≤ h(p,—) for all p < q if and only if (−h(−q,—))∗ ≤
−h(—,−p) for all −q < −p, which is equivalent to −g(—, r) = −h(—, r) for
all r ∈ Q and all g ∈ IC(L) such that −h v −g (by Proposition 3.5).
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Then we may conclude that the elements h of C(L)∨∧ are precisely the
maximal elements of (IC(L),v) for which there exist f, g ∈ C(L) satisfying
f ≤ h ≤ g:

Corollary 3.7. Let L be a frame. Then

C(L)∨∧ = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g

(b) h v h′ ∈ IC(L) =⇒ h = h′}.

We pick up now the thread of the narrative of the article by studying the
completeness properties of C(L)∨, C(L)∧ and C(L)∨∧.

Proposition 3.8. C(L)∨ is closed under non-void bounded suprema and
C(L)∧ is closed under non-void bounded infima.

Proof : Let {hi}i∈I ⊆ C(L)∨ and h ∈ C(L)∨ such that hi ≤ h for all i ∈ I.

On one hand, since IC(L) is Dedekind order complete, the supremum
IC(L)∨
i∈Ihi

exists and it is given by(
IC(L)∨
i∈I

hi

)
(p,—) =

∨
i∈I
hi(p,—) and

(
IC(L)∨
i∈I

hi

)
(—, q) =

∨
s<q

∧
i∈I
hi(—, s)

for every p, q ∈ Q. On the other hand, for each i ∈ I, since hi ∈ C(L)∨,
there exists fi ∈ C(L) such that fi ≤ hi, and since h ∈ C(L)∨, there exists

g ∈ C(L) such that h ≤ g. Consequently, fi ≤ hi ≤
IC(L)∨
i∈Ihi ≤ g. Further, let

p < q in Q and p < r < q. Then((
IC(L)∨
i∈I

hi

)
(p,—)

)∗
=
∧
i∈I
hi(p,—)∗ ≤

∧
i∈I
hi(—, r) ≤

(
IC(L)∨
i∈I

hi

)
(—, q),

which shows that
IC(L)∨
i∈Ihi ∈ C(L)∨.

The second assertion follows immediately by Remark 3.4.

Finally, we establish the main result of the paper.

Theorem 3.9. C(L)∨∧ is Dedekind order complete.

Proof : (a) Let {hi}i∈I ⊆ C(L)∨∧ and h ∈ C(L)∨∧ such that hi ≤ h for all i ∈ I.
For each r, s ∈ Q we define h∨ : L (IR)→ L on generators by

h∨(r,—) =
∨
p>r

(∧
i∈I
hi(p,—)∗

)∗
and h∨(—, s) =

∨
q<s

∧
i∈I
hi(q,—)∗.
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This is a frame homomorphism since it turns the defining relations (r1) and
(r3)–(r6) of L (IR) into identities in L:

(r1) h∨(r,—) ∧ h∨(—, s) ≤
(∧

i∈I hi(r,—)∗
)∗ ∧ ∧i∈I hi(r,—)∗ = 0 whenever

r ≥ s.
(r3)

∨
s>r h∨(s,—) =

∨
s>r

∨
p>s

(∧
i∈I hi(p,—)∗

)∗
= h∨(r,—) for each r ∈ Q.

(r4)
∨
s<r h∨(—, s) =

∨
s<r

∨
q<s

∧
i∈I hi(q,—)∗ =

∨
q<r

∧
i∈I hi(q,—)∗ = h∨(—, r)

for each r ∈ Q.
(r5)

∨
r∈Q h∨(r,—) =

∨
r∈Q
∨
p>r

(∧
i∈I hi(p,—)∗

)∗ ≥ ∨p∈Q
∨
i∈Ihi(p,—) = 1.

(r6)
∨
s∈Q h∨(—, s) =

∨
s∈Q
∨
q<s

∧
i∈I hi(q,—)∗ =

∨
q∈Q h(q,—)∗ ≥

∨
q∈Q h(—, q) =

1.

Moreover, for each r < s in Q and r < t < s,

h∨(r,—)∗ =
∧
p>r

(∧
i∈I
hi(p,—)∗

)∗∗
=
∧
p>r

(∨
i∈I
hi(p,—)

)∗∗∗
≤

≤
(∨
i∈I
hi(t,—)

)∗
≤ h∨(—, s) and

h∨(—, s)
∗ =

∧
q<s

(∧
i∈I
hi(q,—)∗

)∗
≤
(∧
i∈I
hi(t,—)∗

)∗
≤ h∨(r,—).

Further, for each r, s ∈ Q and i ∈ I, we have

hi(r,—) =
∨
p>r

hi(p,—) ≤
∨
p>r

hi(p,—)∗∗ ≤ h∨(r,—) ≤

≤
∨
p>r

h(p,—)∗∗ ≤ h(r,—) and

h(—, s) =
∨
q<s

h(—, q) ≤
∨
q<s

h(q,—)∗ ≤ h∨(—, s) ≤
∨
q<s

hi(—, q) = hi(—, s)

and thus hi ≤ h∨ ≤ h for all i ∈ I. Since hi ∈ C(L)∨, there exists fi ∈ C(L)
such that fi ≤ hi, and since h ∈ C(L)∧, there exists g ∈ C(L) such that
h ≤ g. Consequently h∨ ∈ C(L)∨∧. Finally, if g ∈ C(L)∨∧ is such that hi ≤ g
for every i ∈ I, then

g(r,—) ≥
∨
p>r

g(p,—)∗∗ ≥
∨
p>r

(∨
i∈I
hi(p,—)

)∗∗
= h∨(r,—) and

g(—, s) =
∨
q<s

g(—, q) ≤
∨
q<s

∧
i∈I
hi(—, q) ≤

∨
q<s

∧
i∈I
hi(q,—)∗ = h∨(—, s)

for every r, s ∈ Q and therefore h∨ ≤ g. Hence h∨ is the supremum of {hi}i∈I
in C(L)∨∧.
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(b) If {hi}i∈I ⊆ C(L)∨∧ and h ∈ C(L)∨∧ is such that h ≤ hi for all i ∈ I,
then {−hi}i∈I ⊆ C(L)∨∧ and −h ∈ C(L)∨∧ is such that −hi ≤ −h. By

(a), the supremum
C(L)∨∧∨
i∈I (−hi) exists. It is easy to check that

C(L)∨∧∧
i∈Ihi =

−
C(L)∨∧∨
i∈I (−hi).

Corollary 3.10. Let L be a frame. Then the Dedekind order completion
C(L)# of C(L) coincides with C(L)∨∧, i.e.

C(L)# = {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g

(b) h(p,—)∗ ≤ h(—, q) and h(—, q)∗ ≤ h(p,—) for any p < q}

= {h ∈ IC(L) | (a) there exist f, g ∈ C(L) such that f ≤ h ≤ g

(b) h v h′ ∈ IC(L) =⇒ h = h′}.

4. The bounded case

In this section we show that if we restrict the preceding statements to
bounded functions most results remain essentially the same.

Proposition 4.1. IC∗(L) is Dedekind order complete.

Proof : Let {hi}i∈I ⊆ IC∗(L) and h ∈ IC∗(L) such that hi ≤ h for all i ∈ I.

Since IC(L) is Dedekind order complete, there exists
IC(L)∨
i∈Ihi. Let j ∈ I. Then

both hj and h are bounded and so there are p, q ∈ Q such that p ≤ hj ≤
IC(L)∨
i∈Ihi ≤ h ≤ q. Consequently,

IC∗(L)∨
i∈Ihi =

IC(L)∨
i∈Ihi. Dually, if h ≤ hi for all

i ∈ I and some h ∈ IC∗(L), one has
IC∗(L)∧

i∈Ihi =
IC(L)∧

i∈Ihi.

Let

C∗(L)∨ = C(L)∨ ∩ IC∗(L), C∗(L)∧ = C(L)∧ ∩ IC∗(L)

and

C∗(L)∨∧ = C(L)∨∧ ∩ IC∗(L).

Proposition 4.2. For any completely regular frame L and h ∈ C∗(L)∨,

h =
IC(L)∨
{f ∈ C∗(L) | f ≤ h}.
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Proof : Since h is bounded, there exist p, q ∈ Q such that p ≤ h ≤ q. Note
that f ∨ p ∈ C∗(L) for any f ∈ C(L) such that f ≤ h, since p ≤ f ∨ p ≤ q.
Then, by Lemma 3.1, one has

h =
IC(L)∨
{f ∈ C(L) | f ≤ h} ≤

IC(L)∨
{f ∨ p | f ∈ C(L), f ≤ h} ≤

≤
IC(L)∨
{f ∈ C∗(L) | f ≤ h} ≤ h,

and, consequently, h =
IC(L)∨
{f ∈ C∗(L) | f ≤ h}.

Proposition 4.3. Let L be a completely regular frame and h ∈ C∗(L)∧. Then

h =
IC(L)∧
{g ∈ C∗(L) | h ≤ g}.

Proof : It follows from Lemma 3.2, in a similar way as the preceding propo-
sition follows from Lemma 3.1.

Corollary 4.4. Let L be a completely regular frame and h ∈ C∗(L)∨∧. Then

h =
IC∗(L)∨

{f ∈ C∗(L) | f ≤ h} =
IC∗(L)∧

{g ∈ C∗(L) | h ≤ g}.

Proposition 4.5. C∗(L)∨ is closed under non-void bounded suprema and
C∗(L)∧ is closed under non-void bounded infima.

Proof : Let {hi}i∈I ⊆ C∗(L)∨ and h ∈ C∗(L)∨ such that hi ≤ h for all i ∈ I.

Since C(L)∨ is closed under non-void bounded suprema, there exists
C(L)∨∨
i∈Ihi.

As h is bounded from above and each hi is bounded from below, then

C(L)∨∨
i∈I

hi ∈ C∗(L)∨

and thus C∗(L)∨ is closed under non-void bounded suprema.

Proposition 4.6. For any completely regular frame L, C∗(L)∨∧ is Dedekind
order complete.

Proof : Let {hi}i∈I ⊆ C∗(L)∨∧ and h ∈ C∗(L)∨∧ such that hi ≤ h for all i ∈ I.

Then, since C(L)∨∧ is Dedekind order complete,
C(L)∨∧∨
i∈Ihi exists. As each hi

is bounded from below and h is bounded from above,
C(L)∨∧∨
i∈Ihi is bounded.
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Consequently,
C∗(L)∨∧∨

i∈I hi =
C(L)∨∧∨
i∈Ihi. The second assertion follows in a similar

way.

Corollary 4.7. For any completely regular frame L, C∗(L)∨∧ is the Dedekind
order completion of C∗(L).

We close this section with a corollary that augments a characterization of
Banaschewski-Hong [5, Proposition 1].

Corollary 4.8. For any completely regular frame L, the following are equiv-
alent:

(1) L is extremally disconnected.
(2) C(L) = C(L)∨∧.
(3) C(L) is Dedekind order complete.
(4) C(L) is closed under non-void bounded suprema.
(5) C∗(L) = C∗(L)∨∧.
(6) C∗(L) is Dedekind order complete.
(7) C∗(L) is closed under non-void bounded suprema.

Proof : (1) =⇒ (2): Let L be extremally disconnected, h ∈ C(L)∨∧ and p <
r < q. Then h(r,—)∗ ≤ h(—, q) and h(r,—)∗∗ ≤ h(—, r)∗ ≤ h(p,—). Hence
h(p,—) ∨ h(—, q) ≥ h(r,—)∗∗ ∨ h(r,—)∗ = 1. Consequently, C(L) = C(L)∨∧.

(3) =⇒ (1): For each a ∈ L, let Fa = {f ∈ C(L) | f ≤ χa∗,a∗∗} and
Ga = {g ∈ C(L) | χa∗,a∗∗ ≤ g}. By Lemmas 3.1 and 3.2,

χa∗,a∗∗ =
IC(L)∨
Fa =

IC(L)∧
Ga.

On the other hand, since 0 ∈ Fa, 1 ∈ Ga, f ≤ 1 for all f ∈ Fa and 0 ≤ g

for all g ∈ Ga,
C(L)∨
Fa and

C(L)∧
Ga do exist. Therefore

χa∗,a∗∗ =
IC(L)∨
Fa ≤

C(L)∨
Fa≤

C(L)∧
Ga ≤

IC(L)∧
Ga = χa∗,a∗∗

and we may conclude that χa∗,a∗∗ ∈ C(L), that is, a∗ ∨ a∗∗ = 1.

Finally, the implication (2) =⇒ (3) follows from Theorem 3.9, (3)⇐⇒ (4)
is obvious and the equivalences (1) ⇐⇒ (5) ⇐⇒ (6) ⇐⇒ (7) can be proved
in a similar way.
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5. The integer-valued case

Recall from [3] and [5] that the ring ZL of integer-valued continuous func-
tions on a frame L has as its elements the maps α, β, γ, . . . : Z → L such
that

α(n) ∧ α(m) = 0 for n 6= m and
∨
{α(n) |n ∈ Z} = 1.

The elements of ZL can be easily identified with those elements of f ∈ C(L)
such that

f(p,—) = f (bpc,—) and f(—, q) = f (—, dqe) for all p, q ∈ Q, (Z-valued)

(where bpc denotes the biggest integer ≤ p and dqe the smallest integer
≥ q). Denoting the subclass of C(L) of all Z-valued functions by C(L,Z),
the correspondence ZL ' C(L,Z) is given by

α ∈ ZL 7−→ fα(p,—) =
∨
{α(n) | p < n}, fα(—, q) =

∨
{α(n) |n < q}

f ∈ C(L,Z) 7−→ αf(n) = f(n− 1,—) ∧ f(—, n+ 1).

From this it follows that the Dedekind order completion of ZL is isomorphic
to the Dedekind order completion of C(L,Z), which is included in C(L)∨∧.

In the same vein, we shall also denote by IC(L,Z), C(L,Z)∨, C(L,Z)∧ and
C(L,Z)∨∧ the Z-valued subsets of IC(L), C(L)∨, C(L)∧ and C(L)∨∧, respec-
tively.

Example 5.1. The bounded continuous partial real function χa,b (a, b ∈ L,
a ∧ b = 0) from Example 2.7 is clearly Z-valued. Moreover:

(1) χa,b ∈ IC(L,Z).
(2) χa,b ∈ C(L,Z)∨ if and only if a∗ = b.
(3) χa,b ∈ C(L,Z)∧ if and only if b∗ = a.
(4) χa,b ∈ C(L,Z)∨∧ if and only if a∗ = b and b∗ = a, i.e. if and only if a is

regular and b = a∗.
(5) χa,b ∈ C(L,Z) iff a is complemented with complement b.

Proposition 5.2. IC(L,Z) is Dedekind order complete.

Proof : Let {hi}i∈I ⊆ IC(L,Z), h ∈ IC(L,Z), hi ≤ h for all i ∈ I. Since

IC(L) is Dedekind order complete, there exists
IC(L)∨
i∈Ihi in IC(L). In addition,
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for each r, s ∈ Q,

IC(L)∨
i∈I

hi(r,—) =
∨
i∈I
hi(r,—) =

∨
i∈I
hi(brc,—) = h∨(brc,—) and

IC(L)∨
i∈I

hi(—, s) =
∨
q<s

∧
i∈I
hi(—, q) =

∨
q<s

∧
i∈I
hi(—, dqe) =

=
∨

q<dse

∧
i∈I
hi(—, dqe) = h∨(—, dse)

which ensures that
IC(L)∨
i∈Ihi is Z-valued. Dually, if h ≤ hi for all i ∈ I, one

gets that
IC(L)∧
i∈Ihi is Z-valued.

Proposition 5.3. Let L be a zero-dimensional frame and let h ∈ C(L,Z)∨.

Then h =
IC(L,Z)∨

{f ∈ C(L,Z) | f ≤ h}.

Proof : Let F = {f ∈ C(L,Z) | f ≤ h}. Since IC(L,Z) is Dedekind order

complete,
IC(L,Z)∨

F exists. We shall prove that

IC(L,Z)∨
F = h.

For that we only need to check that h ≤ h′ for any h′ ∈ IC(L,Z) such that
f ≤ h′ for all f ∈ F , i.e.
(a) h(p,—) ≤ h′(p,—) for every p ∈ Q and
(b) h(—, q) ≥ h′(—, q) for every q ∈ Q.

(a): Fix p ∈ Q, let n = bpc and f ∈ C(L,Z) such that f ≤ h. Since L is
zero-dimensional, then

h(p,—) = h(n,—) =
∨
{a ∈ L | a is complemented and a ≤ h(n,—)}.

For each such complemented a, define σa,n : Q→L by

σa,n(r) =

{
f(r,—) if r ≥ n+ 1

f(r,—) ∨ a if r < n+ 1.
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This is a scale in L. Indeed,
∨
r∈Q σa,n(r) ≥

∨
r∈Q f(r,—) = 1,

∨
r∈Q σa,n(r)

∗ ≥∨
r≥n+1 f(r,—)∗ = 1 and if r, s ∈ Q are such that r < s, then

σa,n(r) ∨ σa,n(s)∗ =


f(r,—) ∨ f(s,—)∗ = 1 if r, s ≥ n+ 1

f(r,—) ∨ a ∨ f(s,—)∗ = 1 if s ≥ n+ 1 > r

f(r,—) ∨ a ∨ (f(s,—)∗ ∧ a∗)
≥ (f(r,—) ∨ f(s,—)∗) ∧ (a ∨ a∗) = 1 if r, s < n+ 1.

Consequently, it defines an fa,n ∈ C(L) by

fa,n(r,—) =

{
f(r,—) if r ≥ n+ 1

f(r,—) ∨ a if r < n+ 1

and

fa,n(—, s) =

{
f(—, s) if s > n+ 1

f(—, s) ∧ a∗ if s ≤ n+ 1.

It is easy to check that fa,n is Z-valued. Moreover, fa,n ≤ h:

• If r ≥ n+ 1 then fa,n(r,—) = f(r,—) ≤ h(r,—).
• If r < n+1 then brc ≤ n and so fa,n(r,—) = f(r,—)∨a ≤ h(r,—)∨h(n,—) =
h(brc,—) ∨ h(n,—) = h(brc,—) = h(r,—).

Hence fa,n(r,—) ≤ h(r,—) for each r ∈ Q and since fa,n ∈ C(L), it follows
that fa,n ≤ h. We conclude that fa,n ∈ F .

Finally, we have also that

a ≤ f(n,—) ∨ a = fa,n(n,—) ≤ h′(n,—) = h′(p,—).

Hence

h(p,—) = h(n,—) =
∨
{a ∈ L | a is complemented and a ≤ h(n,—)} ≤ h′(p,—).

(b): Since h ∈ C(L,Z)∨, we have

h(—, q) =
∨
s′<s

∨
s<q

h(—, s′) ≥
∨
s<q

h(s,—)∗ ≥
∨
s<q

h′(s,—)∗ ≥
∨
s<q

h′(—, s) = h′(—, q).

Then
IC(L,Z)∨

F = h.

Similarly, we have:

Proposition 5.4. Let L be a zero-dimensional frame and let h ∈ C(L,Z)∧.

Then h =
IC(L,Z)∧

{g ∈ C(L,Z) | h ≤ g}.
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Corollary 5.5. Let L be a zero-dimensional frame and let h ∈ C(L,Z)(L)∨∧.
Then

h =
IC(L,Z)∨

{f ∈ IC(L,Z) | f ≤ h} =
IC(L,Z)∧

{g ∈ IC(L,Z) | h ≤ g}.

Now we have the following analogues of Propositions 4.5 and 4.6 in the
integer-valued case, which can be proved in a similar way.

Proposition 5.6. C(L,Z)∨ is closed under non-void bounded suprema and
C(L,Z)∧ is closed under non-void bounded infima.

Proposition 5.7. For any zero-dimensional frame L, C(L,Z)∨∧ is Dedekind
order complete.

Corollary 5.8. For any zero-dimensional frame L, C(L,Z)∨∧ is the Dedekind
order completion of C(L,Z).

Finally, we have a corollary that augments Proposition 3 of [5] (the proof
goes very similar to that of Corollary 4.8 so we omit it).

Corollary 5.9. For any zero-dimensional frame L, the following are equiv-
alent:

(1) L is extremally disconnected.
(2) C(L,Z) = C(L,Z)∨∧.
(3) C(L,Z) is Dedekind order complete.
(4) C(L,Z) is is closed under non-void bounded suprema.

It is quite evident now that we could also consider the case of bounded
integer-valued continuous function. We omit the details.

6. The classical case

In this final section we show that the pointfree approach pursued in this
paper sheds new light on the classical case of C(X) (for a space X) and
provides a new construction that we believe is more natural than that given
by Anguelov in [1]. The construction in [1] works with Hausdorff continuous
functions, whereas our construction hinges only on a direct lattice-theoretical
approach to the problem.

To begin with, recall from Corollary 2.5 the natural isomorphism

Φ: IC(OX) −→ C(X, IR)
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given, for each h ∈ IC(OX), by

Φ(h)(x) = [
∨
{r ∈ Q | x ∈ h(r,—)},

∧
{r ∈ Q | x ∈ h(—, r)}] for all x ∈ X.

Composing Φ(h) with projections π1 and π2 we get a couple of real-valued
functions π1 ◦ Φ(h), π2 ◦ Φ(h) : X → R such that

(1) π1 ◦ Φ(h) ≤ π2 ◦ Φ(h),
(2) π1 ◦ Φ(h) ∈ LSC (X,R), and
(3) π2 ◦ Φ(h) ∈ USC (X,R) (recall Remark 1 of 2.1).

Lemma 6.1. Let f, g ∈ IC(OX). Then:

(1) π1 ◦ Φ(f) ≤ π1 ◦ Φ(g) iff f(r,—) ≤ g(r,—) for all r ∈ Q.
(2) π2 ◦ Φ(f) ≥ π2 ◦ Φ(g) iff f(—, r) ≤ g(—, r) for all r ∈ Q.

Proof : To check (1), first consider f, g ∈ IC(OX) such that π1 ◦ Φ(f) ≤
π1 ◦ Φ(g) and let r ∈ Q. Then, for any s > r in Q and x ∈ f(s,—) one has

r < s ≤
∨
{p ∈ Q | x ∈ f(p,—)} ≤

∨
{p ∈ Q | x ∈ g(p,—)}

and thus there exists a p > r in Q such that x ∈ g(p,—) ≤ g(r,—). Conse-
quently, f(r,—) =

∨
s>r f(s,—) ≤ g(r,—). The reverse implication is straight-

forward.
Finally, in order to check (2) note first that Φ(−f) = −Φ(f), π1(−f) =
−π2(f) and π2(−f) = −π1(f). Thus f(—, r) ≤ g(—, r) for any r ∈ Q if and
only if −f(r,—) ≤ −g(r,—) for any r ∈ Q. Then, by (1), this is equivalent
to π1 ◦ Φ(−f) ≤ π1 ◦ Φ(−g), that is, −(π2 ◦ Φ(f)) ≤ −(π2 ◦ Φ(g)).

In particular, this implies that Φ is an order isomorphism for both ≤ and
v. Furthermore, its restriction to C(OX) and C(X) is also an order isomor-
phism. Then, using Lemma 6.1, the following facts follow immediately.

Fact 6.2. Let h ∈ IC(OX) and let f, g ∈ C(OX) such that f ≤ h ≤ g.
Then:

(1) h ∈ C(OX)∨ if and only if

Φ(h) v h′ =⇒ π2 ◦ Φ(h) = π2(h
′) in C(X, IR). (P∨)

(2) h ∈ C(OX)∧ if and only if

Φ(h) v h′ =⇒ π1 ◦ Φ(h) = π1(h
′) in C(X, IR). (P∧)

(3) h ∈ C(OX)∨∧ if and only if

Φ(h) v h′ =⇒ Φ(h) = h′ in C(X, IR).
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This ensures that Φ yields order isomorphisms between C(OX)∨, C(OX)∧

and C(OX)∨∧ (ordered by ≤), respectively, and classes

C(X)∨ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g

(b) h v h′ =⇒ π2(h) = π2(h
′)}.

C(X)∧ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g

(b) h v h′ =⇒ π1(h) = π1(h
′)}.

C(X)∨∧ = {h ∈ C(X, IR) | (a) there exist f, g ∈ C(X) such that f ≤ h ≤ g

(b) h v h′ =⇒ h = h′}.

Additionally, notice that h ∈ IC(OX) is constant if and only if Φ(h) is
constant in C(X, IR) and that h ∈ IC(OX) is Z-valued if and only if both
π1 ◦ Φ(h) and π2 ◦ Φ(h) take values in Z.

For the sake of completeness, let us also introduce the following classes:

C∗(X)∨ = {h ∈ C(X)∨ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},
C∗(X)∧ = {h ∈ C(X)∨ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},
C∗(X)∨∧ = {h ∈ C(X)∨∧ | ∃p, q ∈ Q such that h(x) ⊆ [p, q] for all x ∈ X},

C(X,Z)∨ = {h ∈ C(X)∨ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ X},
C(X,Z)∧ = {h ∈ C(X)∨ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ X},
C(X,Z)∨∧ = {h ∈ C(X)∨∧ | π1(h(x)), π2(h(x)) ∈ Z for all x ∈ XZ}.

Analogously, they are order isomorphic to C∗(OX)∨, C∗(OX)∧, C∗(OX)∨∧,
C(OX,Z)∨, C(OX,Z)∧ and C(OX,Z)∨∧ (ordered by ≤), respectively.

Finally, recall that OX is completely regular (resp. extremally discon-
nected, zero-dimensional) as a frame if and only if the space X is completely
regular (resp. extremally disconnected, zero-dimensional). Then, from Corol-
laries 3.10, 4.7, 4.8, 5.8 and 5.9 it follows immediately that:

Proposition 6.3. For any completely regular topological space (X,OX),

(1) C(X)∨∧ is the Dedekind order completion of C(X).
(2) C∗(X)∨∧ is the Dedekind order completion of C∗(X).
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Corollary 6.4. For any completely regular topological space (X,OX), the
following are equivalent:

(1) X is extremally disconnected.
(2) C(X) = C(X)∨∧.
(3) C(X) is Dedekind order complete.
(4) C(X) is is closed under non-void bounded suprema.
(5) C∗(X) = C∗(X)∨∧.
(6) C∗(X) is Dedekind order complete;.
(7) C∗(X) is is closed under non-void bounded suprema.

Proposition 6.5. For each zero-dimensional topological space (X,OX),

C(X,Z)∨∧

is the Dedekind order completion of C(X,Z).

Corollary 6.6. For any zero-dimensional topological space (X,OX), the fol-
lowing are equivalent:

(1) X is extremally disconnected.
(2) C(X,Z) = C(X,Z)∨∧.
(3) C(X,Z) is Dedekind order complete.
(4) C(X,Z) is is closed under non-void bounded suprema.

We close with a comment regarding the relation of our results above to
the construction of Anguelov [1]. For that we need to recall the well known
fact that each real-valued function f : X → R on a space X admits an upper
regularization f− ∈ USC(X,R), where R = R ∪ {−∞,+∞}, defined by

f−(x) =
∧
{
∨
f(U) | x ∈ U ∈ OX} for all x ∈ X.

This is the smallest upper semicontinuous majorant of f , i.e.,

f− =
∧{

g ∈ USC(X,R) | f ≤ g
}
.

Dually, f admits a lower regularization f ◦ ∈ LSC(X,R) defined by

f ◦(x) =
∨
{
∧
f(U) | x ∈ U ∈ OX} for all x ∈ X,

and f ◦ is the biggest lower semicontinuous minorant of f , i.e.,

f ◦ =
∨{

g ∈ LSC(X,R) | g ≤ f
}
.
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It is then not hard to check that

C(X)∨ = {h ∈ C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g and π1(h)− = π2(h)},
C(X)∧ = {h ∈ C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g and π2(h) = π1(h)◦}

and

C(X)∨∧ =

{h ∈C(X, IR) | ∃f, g ∈ C(X) : f ≤ h ≤ g, π1(h) = π1(h)◦, π1(h) = π1(h)◦}.

For instance, for the first, given h ∈ IC(X) and f, g ∈ C(X) such that
f ≤ h ≤ g and π2(h) = π2(j) whenever h v j, since h v [π1(h), π1(h)−]
it follows that π2(h) = π1(h)−. Conversely, let h ∈ IC(X) be such that
π2(h) = π1(h)− and h v j, i.e. π1(h) ≤ π1(j) ≤ π2(j) ≤ π2(h), then
π2(h) = π1(h)− ≤ π1(j)

− ≤ π2(j) ≤ π2(h) and so π2(h) = π2(j). The other
identities follow similarly.

This description of the Dedekind order completion of C(X) is precisely the
one given by the construction of Anguelov in terms of Hausdorff continuous
functions presented in [1].
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6. N. Dăneţ, The Dedekind Completion of C(X): An interval-valued functions approach, Quaest.

Math. 34 (2011), 213–223. MR 2823148
7. Z. Ercan and S. Onal, A new representation of the Dedekind completion of C(K)-spaces, Proc.

Amer. Math. Soc. 133 (2005), 3317–3321. MR 2161155 (2006f:46003)
8. G. Gierz, K. H. Hofmann, K Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous

Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge
University Press, Cambridge, 2003. MR 1975381 (2004h:06001)
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