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ROBUST COMBINATORIAL OPTIMIZATION WITH
VARIABLE BUDGETED UNCERTAINTY

MICHAEL POSS

Abstract: We introduce a new model for robust combinatorial optimization where
the uncertain parameters belong to the image of multifunctions of the problem vari-
ables. In particular, we study the variable budgeted uncertainty, an extension of
the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted un-
certainty can provide the same probabilistic guarantee as the budgeted uncertainty
while being less conservative for vectors with few non-zero components. The fea-
sibility set of the resulting optimization problem is in general non-convex so that
we propose a mixed-integer programming reformulation for the problem, based on
the dualization technique often used in robust linear programming. We seek how
to extend these results to non-binary variables and to more general multifunctions
involving uncertainty set defined by conic constraints that are affine in the problem
variables. We present a computational comparison of the budgeted uncertainty and
the variable budgeted uncertainty on the robust knapsack problem. The experi-
ments show a reduction of the price of robustness by an average factor of 18%.

Keywords: Robust optimization; Multifunction; Combinatorial optimization; Vari-
able uncertainty; Chance constraint.

1. Introduction

For a large class of mathematical programs it is very hard or even impos-
sible to compute exactly the parameters. Two main frameworks have been
introduced to address this difficulty: stochastic programming and robust
programming. Stochastic programming supposes that the unknown parame-
ters are described by known random variables and replaces the deterministic
constraints by chance constraints that must be satisfied with a given proba-
bility. Robust programming supposes that the unknown parameters belong
to known uncertainty sets and imposes that the constraints be feasible for all
values of the parameters in the uncertainty sets. The two frameworks have
also been considered in a dynamic context, where subsets of the decision vari-
ables must be fixed only after part of the uncertainty has been revealed. This

Received June 14, 2012.
Michael Poss is supported by CMUC and FCT (Portugal), through European program COM-

PETE/FEDER within project PEst-C/MAT/UI0324/2011 and under the postdoctoral scholarship
SFRH/BPD/76331/2011.

1



2 M. POSS

is usually known as multi-stage stochastic programming [7] and adjustable
robust optimization [2], respectively. In this paper, we are interested by the
static situation where all decisions must be taken before the uncertainty is
revealed.
Chance constraints suffer from two main drawbacks: (i) the probability

distributions of the random parameters are often impossible to describe with
precision and (ii) the resulting optimization problems are very hard to solve
exactly. In contrast, computing uncertainty sets for robust constraints re-
quires less information on the parameters and, as long as these sets can be
described by a conic system of constraints, the resulting optimization prob-
lems are essentially of the same difficulty as their deterministic counterparts.
The tractability of robust optimization has motivated the large interest on
the topic for the last ten years, see Ben-Tal et al. [2]. Between these two
extremes, ambiguous chance constraints models constraints where the pa-
rameters are described by random variables which are not known exactly.
Namely, the constraint must be satisfied with a given probability for all
probability distributions in a given set [9].
Among the large literature on robust optimization, researchers have pro-

posed uncertainty sets that allow a robust constraint to approximate a chance
constraint or an ambiguous chance constraints in the following sense: any
solution to the robust constraint will be feasible for the original chance
constraint or ambiguous chance constraint. For instance, Ben-Tal and Ne-
mirovski [4] and Berstimas and Sim [6] have introduced uncertainty sets
for which a robust constraint approximates an ambiguous chance constraint
where the coefficients are described by bounded random perturbations that
are only assumed to be symmetrically and independently distributed around
their means.
In this paper, we introduce a novel model for combinatorial optimization

under uncertainty. Given a linear constraint
∑n

i=1 aixi ≤ b, its robust coun-
terpart is defined as

n
∑

i=1

aixi ≤ b, a ∈ U, (1)
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where U ⊂ R
n is the uncertainty set. Herein, we extend inequality (1) by

considering the constraint
n
∑

i=1

aixi ≤ b, a ∈ U(x), (2)

where U : Rn ⇉ R
n is a multifunction of x. We recall in Section 2.1 the

uncertainty polytope UΓ introduced in [6] and introduce in Section 2.2 a
multifunction Uγ that generalizes UΓ. Model Uγ is motivated by the prob-
abilistic bounds discussed in Section 3. We see that Uγ is less conservative
than UΓ while protecting the associated ambiguous chance constraint with
the same probability. We provide an example showing that the feasibility set
delimited by (2) is in general non-convex, which contrasts with the convexity
of robust linear programs. We show in Section 4 how the classical dualiza-
tion technique can be generalized to Uγ. Section 5 extends our results to
non-binary variables and considers the case of multifunctions described by
conic constraints that are affine in the problem variables. Section 6 provides
a numerical evaluation of model Uγ on the robust knapsack problem. We
conclude the paper in Section 7.
In the rest of this paper, ‖x‖ =

∑n
i=1 |xi| denotes the L

1 norm and
∑

refers
to the summation over the set {1, . . . , n} unless stated otherwise.

2. Variable budgeted uncertainty

2.1. Static model. Combinatorial optimization problems that feature ro-
bust constraints of the type (1) have witnessed an increasing attention in
recent years, see for instance [1, 13]. This success can be explained by two
main reasons. First, Ben-Tal and Nemirovski [3] have shown how the infinite
set of constraints (1) can be reformulated as a finite set of constraints by
introducing a new set of real variables. Given a linear description of U, this
reformulation adds n linear constraints to the problem as well as a number
of variables equal to the number of linear constraints that define U; we come
back to this technique in Section 4. Second, Berstimas and Sim [6] have in-
troduced a rich class of uncertainty polytopes with a conservatism that can
be regulated by parameter Γ:

UΓ :=
{

a ∈ R
n : ai = ai + δiâi, 0 ≤ δi ≤ 1,

∑

δi ≤ Γ
}

. (3)

Clearly, increasing Γ increases the size of UΓ and thus, the conservatism
of the approach. For instance, if Γ ≥ n, then all components of a can take
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simultaneously their peak values and the robust constraint become
∑

(ai +
âi)xi ≤ b. On the opposite side, if Γ = 0, all components of a are equal to
their non-peak values and the robust constraint becomes

∑

aixi ≤ b. Varying
Γ between 0 and n enables Berstimas and Sim [6] to define a wide variety of
uncertainty polytopes.

2.2. Variable model. The uncertainty sets proposed in [6] suffer from a
practical drawback: they are independent from the value of x. Because of
this, binary vectors with few non-zero components are more protected than
binary vectors with larger numbers of non-zero components. For instance,
consider two binary vectors x1 and x2 feasible for constraint (1) and suppose
that ‖x1‖ = Γ while ‖x2‖ = 2Γ. The robust constraints associated to x1 and
x2 are

∑

i:x1

i
=1

ai ≤ b, a ∈ UΓ, (4)

and
∑

i:x2

i
=1

ai ≤ b, a ∈ UΓ, (5)

respectively. In a relative point of view, vector x1 is more protected than
vector x2 since it is ensured that constraint (4) is feasible against the simul-
taneous perturbation of all of its terms while constraint (5) is only protected
against the simultaneous perturbation of half of its terms. This relative
point of view has a natural probabilistic interpretation. If ãi are random
variables distributed between ai − âi and ai + âi, then the probability that
constraint

∑

i:x1

i
=1 ãi ≤ b be violated is always zero while the probability that

∑

i:x2

i
=1 ãi ≤ b be violated can be strictly positive for particular choices of b

and probability distributions.
To avoid this conservatism, we introduce in this paper a novel model of

uncertainty. Instead of considering an uncertainty set U ⊆ R
n independent

of x, we introduce a multifunction of x (point-to-set mapping) U : Rn ⇉ R
n.

For each value of x, uncertainty set U(x) ⊆ R
n contains all feasible values

for the uncertain parameters a. We consider in particular multifunctions
that are generalizations of the budgeted uncertainty. Given a non-negative
function γ : Rn → R+, we define the variable budgeted uncertainty as

Uγ(x) :=
{

a ∈ R
n : ai = ai + δiâi, 0 ≤ δi ≤ 1,

∑

δi ≤ γ(x)
}

. (6)
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If γ is constantly equal to Γ, then Uγ(x) coincide with UΓ for any x. In
general however, Uγ enables us to avoid to overprotect vectors with few
components, yielding a less conservative model than UΓ. The pendant of (1)
for the variable budgeted uncertainty is

∑

aixi ≤ b, a ∈ Uγ(x). (7)

3. Probabilistic bounds

Using the probabilistic bounds derived in [6], we show in this section how
Uγ enables us to guarantee exactly the same protection level for every x ∈
{0, 1}n. The following notation is used throughout: ãi = ai + ηiâi denotes
the random variable associated with parameter ai and ηi, i = 1, . . . , n, are
arbitrary random variables independently and symmetrically distributed in
[−1, 1]. Given any vector x∗ that satisfies the robust constraint (1) for UΓ,
Berstimas and Sim [6] prove that

P
(

∑

ãix
∗
i > b

)

≤ exp

(

−
Γ2

2n

)

. (8)

We adapt below their bound to variable budgeted uncertainty. First we need
to make bound (8) dependent on x.

Lemma 1. Let x∗ be a binary vector that satisfies the robust constraint (1)
for UΓ. It holds that

P
(

∑

ãix
∗
i > b

)

≤ exp

(

−
Γ2

2‖x∗‖

)

.

Proof : If ‖x∗‖ ≤ Γ then P (
∑

ãix
∗
i > b) = 0. Hence, suppose that ‖x∗‖ > Γ,

so that x∗ satisfies the robust constraint
∑

i:x∗

1
=1

aixi ≤ b, a ∈ UΓ. (9)

Then,

P

(

n
∑

i=1

ãix
∗
i > b

)

= P





∑

i:x∗

1
=1

ãix
∗
i > b





≤ exp

(

−
Γ2

2‖x∗‖

)

, (10)
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where (10) follows from Proposition 2 and Theorem 2 from [6] applied to
vector x∗ that satisfies robust constraint (9), which contains with ‖x∗‖ terms.

Define the non-negative function αǫ(x) = (−2 ln(ǫ)‖x‖)1/2. The bound
from Lemma 1 implies that any binary vector x∗ that satisfies a robust con-
straint for uncertainty set Uαǫ(x

∗) will also satisfy the chance constraint with
probability 1 − ǫ. Because Uαǫ(x

∗) = Uαǫ(x∗), this result can be applied to
variable budgeted uncertainty.

Corollary 1. Let x∗ be a binary vector and consider ǫ ∈ (0, 1). If x∗ satisfies
constraint (7) with γ(x∗) = αǫ(x

∗), then P (
∑

ãix
∗
i > b) ≤ ǫ.

The interest of Corollary 1 lies in the fact that αǫ(x) is an increasing func-
tion of ‖x‖. Then, taking x1 and x2 such that ‖x1‖ ≤ ‖x2‖, we have that
Uαǫ(x1) ⊆ Uαǫ(x2). Hence, Uαǫ enables us to impose that x1 be protected
against a smaller uncertainty set than x2, and the uncertainty sets are tai-
lored in such a way that the probability of violating the constraint is at most
ǫ for both x1 and x2. In contrast, the classical budgeted uncertainty would
have to protect both x1 and x2 against the variations of a in the uncertainty
set Uαǫ(n).
Berstimas and Sim [6] mention that bound (8) is not very tight. For this

reason, they introduce more complex bounds that provide tighter approxima-
tions of the probability P (

∑

ãix
∗
i > b). The strongest of these bounds states

that any vector x∗ that satisfies the robust constraint (1) for UΓ satisfies

P
(

∑

ãix
∗
i > b

)

≤ B(n,Γ) =
1

2n



(1− µ)

(

n

⌊ν⌋

)

+

n
∑

l=⌊ν⌋+1

(

n

l

)



 , (11)

where ν = (Γ + n)/2, µ = ν − ⌊ν⌋. Their experiments show that the bound
provided by B(n,Γ) is one order of magnitude smaller than bound (8) for
n = 100 and n = 2000.
Using the same reasoning as the one used for Lemma 1, we can make this

bound dependent of ‖x∗‖ by considering the subconstraint that contains only
terms where x∗ is different from zero.

Lemma 2. Let x∗ be a binary vector that satisfies the robust constraint (1)
for UΓ. It holds that P (

∑

ãix
∗
i > b) ≤ B(‖x∗‖,Γ).
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To use this bound in the context of Uγ, we need to solve the following
equation in variable Γ

B(‖x∗‖,Γ)− ǫ = 0. (12)

The unicity of solutions to equation (12) follows from the following property
of B(n,Γ).

Lemma 3. Function B(n,Γ) is strictly decreasing in Γ.

Proof : Let δ > 0 be small enough so that
⌊

n+Γ+δ
2

⌋

=
⌊

n+Γ
2

⌋

. Then,

B(n,Γ + δ)−B(n,Γ) = −
δ

2n

(

n

⌊ν⌋

)

< 0.

Because B(n,Γ) is strictly decreasing in Γ, equation (12) has at most one
solution for all B(n,Γ), which we denote βǫ(x). However, the equation does
not always have a solution, that is, βǫ(x) is not defined for all x ∈ {0, 1}n

and ǫ > 0. Taking for instance x∗ with only one component equal to one
(i.e. ‖x‖ = 1), the minimum of B(‖x∗‖,Γ) is equal to 0.5 and is obtained for
Γ = 1. Hence, βǫ(x

∗) is not defined for ǫ < 0.5.
In practice, βǫ(x) is defined for relatively small values of ‖x‖. Because

B(n,Γ) is decreasing in Γ, we can solve equation (12) to the required preci-
sion by using a dichotomic search. Namely, we first evaluate B(n, n/2). If
B(n, n/2) > ǫ, then we know that βǫ(x) ∈ [0, n/2]. Otherwise, this means
that βǫ(x) ∈ [n/2, n]. We can proceed this way up to the required precision
on Γ. We have computed β0.01 and β0.05 numerically up to a precision of 0.01.
These computations have shown that equation (12) has a solution for ǫ equal
to 0.01 and 0.05 when ‖x∗‖ is greater than or equal to 8 and 5, respectively.
Whenever βǫ(x) is defined, it can be used to ensure that the probabilistic

constraint is satisfied.

Corollary 2. Let x∗ be a binary vector and consider ǫ ∈ (0, 1) so that βǫ(x
∗)

is well-defined. If x∗ satisfies the robust constraint (7) with γ(x∗) = βǫ(x
∗)

then P (
∑

ãix
∗
i > b) ≤ ǫ.

We compare in Figure 1 the values of the two bounds discussed previously
for ǫ equal to 0.01 and 0.05. We see that β0.01 ≤ α0.01 and β0.05 ≤ α0.05 for all
values of ‖x‖ depicted in the figure. This was expected because in [6], it was
observed that B(n,Γ) is tighter than bound (8). For this reason, we focus
on βǫ in the rest of the paper.
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Figure 1. Comparison of the two bounds.
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We present in Section 6 numerical results for the knapsack problem showing
that the use of Uβǫ reduces the cost of protecting the solution with probability
0.99 or 0.95 by 18% on average. More complex problems may witness more
important cost reductions. For instance, the protection cost is reduced to
zero for the problem described in Example 1.

Example 1. Let ai be random variables independently and symmetrically
distributed in [−1, 1] and let m and n be any integers such that (i) m ≤
β0.01(n) and (ii) β0.01(m) ≤ m−1. Consider then the following combinatorial
optimization problem:

max c xm

s.t. xi+1 ≤ xi, i = 1, . . . , n− 1
n
∑

i=1

aixi ≤ m− 1,

x ∈ {0, 1}n.

The deterministic version of the problem replaces the random variables ai
by their mean values, 0, yielding the solution x∗

i = 1 for 1 ≤ i ≤ m and
x∗
i = 0 otherwise, with objective value c. Using uncertainty models Uβ0.01(n)

and Uβ0.01, we can ensure that constraint
∑n

i=1 ãixi ≤ m− 1 is satisfied with
probability 0.99 by any solution to the robust models. The optimal solution
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costs to models Uβ0.01(n) and Uβ0.01 are 0 and c, respectively. Therefore, the
protection cost for model Uβ0.01(n) is equal to c while there is no protection
cost for model Uβ0.01.

In this section, we have motivated the introduction of our new model, Uγ.
Given a function γ properly chosen, the model can be less conservative than
UΓ while ensuring the required level of protection. In spite of this good
news, using model Uγ is more complex than using model UΓ. This arises
from the following observation. A robust constraint subject to a non-empty
uncertainty polytope, such as UΓ, can always be rewritten as a finite set of
linear constraints. This reformulation makes possible to solve a large class
of robust combinatorial optimization problems efficiently. The situation is
more complex in the case of budgeted variable uncertainty Uγ. We show in
the example below that the feasible region of the vectors that satisfy (7) is
in general non-convex.

Example 2. Consider the feasibility set of a linear constraint in two variables

X := {x ∈ R
2 s.t. a1x1 + a2x2 ≤ 1 for all a ∈ Uγ(x)}.

where

Uγ(x) :=
{

a ∈ R
2 : a = (1, 1) + (2, 0)δ, 0 ≤ δ ≤ 1, δ1 + δ2 ≤ x1 + x2

}

,

Set X is non-convex because x1 = (0.5, 0) ∈ X, x2 = (0, 1) ∈ X and 0.5x1 +
0.5x2 /∈ X.

In view of Example 2, combinatorial optimization problems that present
robust variable constraints (7) belong to the general class of non-convex
Mixed-Integer Non-Linear Programming. Although some progress has been
made for that type of problems [8], they remain very hard to solve to op-
timality in general, especially when the constraints do not define a known
structure. Nevertheless, we show in the next section how the dualization
technique can be applied to Uγ. To simplify the notations, we often omit the
index ǫ in the rest of the paper.

4. Dualization

We recall in this section the classical dualization technique used in robust
linear programming and show how it extends to the case of variable uncer-
tainty. The method described below requires that function γ involved in the
definition of Uγ be an affine function of x. Recall, however, that neither α
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nor β are affine functions so that we can not apply our method directly to
Uβ. Therefore, we define below another class of multifunctions that enables
us to approximate Uβ by using only affine functions of x.
Let γ1, . . . , γm be affine functions of x defined by γj(x) = γj

0 +
∑

γj
i xi.

For each x ∈ {0, 1}n, the set Uγ1...γm

(x) contains vectors a ∈ R
n such that

ai = ai + δiâi and

0 ≤ δi ≤ 1, i = 1, . . . , n (13)
∑

δi ≤ γj(x), j = 1 . . . , m. (14)

In what follows, we will use multifunction Uγ1...γm

as an approximation of
Uβ. To ensure that Uγ1...γm

yields the same probabilistic guarantee as Uβ,
functions γj, j = 1, . . . , m, must be greater than or equal to β for all x ∈
{0, 1}n.

Lemma 4. Let γ1, . . . , γm be affine functions of x such that γj(x) ≥ β(x)
for all x ∈ {0, 1}n. If x∗ ∈ {0, 1}n satisfies the robust constraint

∑

aix
∗
i ≤ b,

for all a ∈ Uγ1...γm

(x), then P (
∑

ãix
∗
i > b) ≤ ǫ.

Proof : Since γj(x∗) ≥ β(x∗) for each j = 1, . . . , m, it holds that Uγ1...γm

(x∗) ⊆
Uβ(x∗). Hence, the constraint

∑

aix
∗
i ≤ b is satisfied for all a ∈ Uβ(x∗) and

Corollary 2 implies the result.

The next result shows to handle the upper approximation provided by
γ1, . . . , γm.

Theorem 1. Consider robust constraint

aTx ≤ b, a ∈ Uγ1...γm

(x),
x ∈ {0, 1}n,

(15)
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and suppose that γ1, . . . , γm are affine functions of x, non-negative for x ∈
{0, 1}n. Then, (15) is equivalent to

n
∑

i=1

aixi +
m
∑

j=1

(

γj
0zj +

n
∑

i=1

γj
iwji

)

+
n
∑

i=1

pi ≤ b (16)

m
∑

j=1

zj + pi ≥ âixi, i = 1, . . . , n,

(17)

wji − zj ≥ −max
j

(âj)(1− xi), i = 1, . . . , n,

j = 1, . . . , m,
(18)

p, w, z ≥ 0. (19)

x ∈ {0, 1}n. (20)

Proof : The proof works in two steps. The first step applies the dualiza-
tion technique from [3]. Let p and z be the dual multipliers associated to
constraints (13) and (14), respectively. For any x ∈ {0, 1}n, γj(x) ≥ 0 so
that Uγ1...γm

(x) is non-empty and bounded. Hence, strong duality in linear
programming implies that (15) is equivalent to

n
∑

i=1

aixi +

m
∑

j=1

γj(x)zj +

n
∑

i=1

pi ≤ b (21)

m
∑

j=1

zj + pi ≥ âixi, i = 1, . . . , n, (22)

p, z ≥ 0, (23)

x ∈ {0, 1}n. (24)

We are left to linearize the bilinear terms in (21): γ(x)jzj = (γj
0 +
∑

γj
i xi)zj.

Introducing nm real variables wji to represent products xizj, constraint (21)
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for x binary can be rewritten as

n
∑

i=1

aixi +
m
∑

j=1

(

γ0zj +
n
∑

i=1

γiwji

)

+
n
∑

i=1

pi ≤ b (25)

wji − zj ≥ −M(1− xi), i = 1, . . . , n,

j = 1, . . . , m,
(26)

w ≥ 0,
(27)

where M is a constant large enough. Because each zj must satisfies con-
straints (22), M may be as large as maxi âi. Constraint (25) does not impose
additional restriction on the minimal value of zj, so that we can choose M
equal to maxi âi. Regrouping constraints (22)–(27) yields the result.

Some care must be taken when choosing functions γ1, . . . , γm. If β were a
concave and differentiable function defined for all x ∈ [0, 1]n, its differentials
would provide the best over-approximating affine functions. Unfortunately,
β is defined only for x ∈ {0, 1}n so that no differential is available. Moreover,
the finite differences of step equal to 1 may not be sufficient because there
exists x∗, x′ ∈ {0, 1}n with ‖x∗ − x′‖ = 1 such that

β(x′) > β(x∗) + (x′ − x∗)(β(x′)− β(x∗)).

Therefore, we define the angular coefficient of each function γj by using
x∗, x′ ∈ {0, 1}n with ‖x∗ − x′‖ > s for some step s. In our experiments, we
use s equal to 5. Notice that because β(x) only depends ‖x‖, we only use
affine functions where the coefficients of all variables are equal. Then, to
ensure that for each x ∈ {0, 1}n, γj(x) is greater than or equal to β(x), we
add the constant term

max
x∈{0,1}n

|β(x)− γj(x)|. (28)

Problem (28) is solved by enumeration over ‖x‖ ∈ {1, . . . , n}. We present in
Figure 2 examples of piece-wise affine over-approximations of β for ǫ = 0.01.

5. Extensions

5.1. Non-binary variables. We show in this subsection how to extends
the results developed in Sections 3 and 4 to a robust constraint that contains
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Figure 2. Approximating β.
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bounded real or integer variables, in addition to the binary variables con-
sidered so far. Recall that our motivation for introducing multifunctions Uα

and Uβ arise from the probabilistic bounds computed in [6]: these bounds
depend on the number of non-zero elements in a robust constraint, which
we adapt to variable uncertainty with binary variables by using the L1 norm
‖ ∗ ‖.
To count the number of non-zeroes for real or integer variables, we need

to use a function different from ‖ ∗ ‖. Given an arbitrary vector x∗ ∈ R
n, let

1x∗

be the binary vector whose i-ith coordinate is equal to 0 if x∗
i is equal to
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0 and equal to 1 otherwise. We define ‖x∗‖0 := ‖1x∗

‖, sometimes abusively
called the L0 norm. This function enables us to extend αǫ and βǫ to values of

x∗ different from zero and one: α0
ǫ(x

∗) = (−2 ln(ǫ)‖x∗‖0)
1/2 and β0

ǫ (x
∗) is the

unique solution to equation B(‖x∗‖0,Γ)− ǫ = 0 in variable Γ (if the solution
exists). The values of ‖x‖0 and ‖x‖ coincide for any binary vector x so that
functions αǫ and α0

ǫ (resp. βǫ and β0
ǫ ) coincide on {0, 1}n. We see immediately

that the results from Section 3 extend to α0
ǫ and β0

ǫ . Namely, Corollary 2
becomes the proposition below, and we can similarly adapt Corollary 1.

Proposition 1. Let x∗ be a vector in R
n and consider ǫ ∈ (0, 1) so that β0

ǫ (x
∗)

is well-defined. If x∗ satisfies the robust constraint (7) with γ(x∗) = β0
ǫ (x

∗)
then P (

∑

ãix
∗
i > b) ≤ ǫ.

The reformulation from Section 4 can also be extended to bounded real
or integer variables. By assumption, we know that there exists a positive
real M large enough so that any vector x∗ feasible for our problem belongs
to BM(0), the ball centered at the origin of radius M . Hence, ‖x‖0 can be
expressed by introducing an auxiliary binary vector y, equal to 1x∗

:

xi ≤ Myi, i = 1, . . . , n, (29)

y ∈ {0, 1}n. (30)

To extend Theorem 1 to non-binary variables and avoid products of real
variables, we need to restrict ourselves to affine functions γj that depend
only on r := ‖x‖0: γj(x) = γj

0 + γj
1‖x‖0. We present below an extension

of Theorem 1 where it is supposed that the affine functions depend on a
unique variable r. This restricted version of the result does not prevent us
from approximating α0 and β0 with affine functions because α0 and β0 can
be expressed as functions of r := ‖x‖0. Similarly, we mentioned already that
α and β can be expressed as functions of r := ‖x‖. The proof of the next
result is essentially the same as the proof of Theorem 1.

Theorem 2. Consider robust constraint

aTx ≤ b, a ∈ Uγ1...γm

(x),
x ∈ BM(0),

(31)
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and suppose that γ1, . . . , γm are affine functions of r := ‖x‖0, non-negative
for all x ∈ BM(0). Then, (31) is equivalent to

n
∑

i=1

aixi +
m
∑

j=1

(

γj
0zj + γj

1

n
∑

i=1

wji

)

+
n
∑

i=1

pi ≤ b

wji − zj ≥ −max
j

(âj)(1− yi), i = 1, . . . , n,

j = 1, . . . , m,

x ∈ BM(0),

(17), (19), (29), (30).

5.2. Conic uncertainty sets. So far we have only considered a very partic-
ular multifunction, Uγ, which can be seen as a generalization of the budgeted
uncertainty set from [6], UΓ. This is motivated by the probabilistic bounds
that Berstimas and Sim [6] have provided for UΓ, and the fact that these
bounds extend to Uγ for proper choices of γ. However, the concept of vari-
able uncertainty could by applied to more general multifunctions U . For
instance, the specific knowledge of a practical problem could motivate the
use of a multifunction different from Uγ, justified by the application.
The aim of this subsection is to show that Theorem 1 can be generalized

to multifunctions whose images are sets defined by conic inequalities that
depend affinely on x. More precisely, we consider again a robust constraint

aTx ≤ b, (a, b) ∈ U(x), (32)

and we suppose that the uncertainty set is defined by

U(x) := {(a, b) = (a0, b0) +

L
∑

ℓ=1

(aℓ, bℓ)ζℓ : ζ ∈ Z(x)},

where the perturbation set Z(x) is given by the conic representation

Z(x) := {ζ ∈ R
L : ∃u ∈ R

K : P (x)ζ +Q(x)u+ p(x) ∈ K}, (33)

where K is closed convex pointed cone in R
N with nonempty interior, and

for all x, P (x), Q(x) are given matrices and p(x) is a given vector. In the
case where K is not a polyhedral cone, we assume that the Slater’s condition
holds for all x ∈ {0, 1}n, see for instance [2]. As in the classical case, where
P (x), Q(x) and p(x) are constant, we can apply the strong duality of conic
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programming and replace (32) by a finite set of conic constraints, see for
instance [5] for a proof.

Proposition 2. The robust constraint (32) can be represented by the follow-
ing system of conic inequalities in variables x ∈ R

n, y ∈ R
N :

pT (x)y + (a0)T ≤ b0 (34)

QT (x)y = 0 (35)

(P T (x)y)ℓ + (aℓ)Tx = bℓ, ℓ = 1, . . . , L, (36)

y ∈ K∗,

where K∗ = {y : yT z ≥ 0 ∀ z ∈ K} is the cone dual to K.

If p(x), P (x), and Q(x) are affine functions of x, the products of variables
that appear in constraints (34)–(36) can be linearized with the help of big-M
coefficients, yielding a mixed-integer conic reformulation for constraint (32)
that generalizes the reformulation of Theorem 1.

6. Computational experiments

This section studies two numerical aspects of the robust knapsack problem
under uncertainty model Uγ. First, we compare the prices of robustness of
Uγ and UΓ: we show that the cost of protecting the capacity constraint with
a probability of 0.99 or 0.95 is strictly less for Uγ than for UΓ. Second,
we study the computational complexity of Uγ. We perform this comparison
for the binary knapsack problem as well as for its linear relaxation. We
performed our experiments on a computer equiped with a processor Intel
Core i5 at 2.53 GHz and 4 GB of RAM memory and calling CPLEX 12.1 in
JAVA via Concert Technology [11].
Given a set of n items, each with profit pi and weight ai, the knapsack

problem aims at choosing a subset of these items not exceeding the available
capacity b and maximizing the profit:

max

n
∑

i=1

pixi

s.t.
n
∑

i=1

aixi ≤ b, (37)

x ∈ {0, 1}n. (38)
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Although NP-hard to solve exactly, state of the art MIP solvers can easily
solve instances of the knapsack problem with thousands of variables. This
problem is central to integer programming because many complicate integer
programs feature capacity constraints like (37). For this reason, the problem
is often used to benchmark new approaches for integer linear programs in
the uncertain context. In stochastic programming, [12] use the knapsack
problem to test their sample average approximation algorithm and [10] use
the problem to test their simple-recourse reformulations and evaluate its
complexity. In robust programming, [6] use the problem to evaluate the cost
of protecting the capacity constraint for various probability guarantees.
To evaluate our new model Uβ, we generate our instances similarly to [6].

We consider different item numbers n ∈ {100, 200, . . . , 1000} and set the
capacity to b = 20n for each value of n. For each value of n, we generate ran-
domly five instances as follows. For each i = 1, . . . , n, the average weight ai
is chosen uniformly from the set {20, 21, . . . , 29}, the deviation âi is equal to
10% of ai, and the profit pi is chosen uniformly from the set {16, 17, . . . , 77}.
We compare in Figure 3 the optimal protection costs of the different models

with binary variables. For each value of n, we compute Γǫ = βǫ(n). Then, we
compute the affine function γǫ that overestimate βǫ as described in Section 4.
Let p(det), p(UΓǫ), and p(Uγǫ) denote the optimal solution costs to, respec-
tively, the deterministic model and the robust models where constraint (37)
must be satisfied for all values of a inUΓǫ or Uγǫ. We compute the cost c(∗) of

protecting a solution with a given probability for model ∗ as c(∗) = p(∗)−p(det)
p(det) .

We present in Figure 3 the geometric means of these protection costs for each
value of n. On average, c(Uγǫ) is 18% less than c(UΓǫ).
We compare then the computational complexity of models Uγǫ and UΓǫ.

Let t(∗) be the solution time in seconds to solve model ∗ to optimality. The
solution time was less than 10 second for any of our instances. For ǫ = 0.01,
the geometric mean of the ratios t(Uγ0.01)/t(UΓ0.01) is equal to 1.7, with a
maximum value of 7.68. For ǫ = 0.05, these values increase to 2.5 and 10,
respectively. The ratios do not increase with the problem size. In addition to
the solution times, we investigate the bound provided by the linear relaxation
of the problem. In particular, we want to understand whether the bound
proposed in Theorem 1 for the big-M coefficients is tight. Our results show
that the gap between the linear relaxation and the solution of the problem
are very close for both models. In fact, the gap of model Uγǫ is 10% better
in average than the one of UΓǫ. However, replacing maxj(âj) by very large
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Figure 3. Cost of protecting the solution for the knapsack problem.
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numbers reduce significantly the bound provided by the linear relaxation.
For instance, setting M to 10000 multiplies the gap by an average factor of
four.
We have also tested more refined linearizations, using two and three linear

over-approximations. Unreported results have shown that the solution times
tend to increase more than linearly with the number of linear functions used
while decreasing the protecting cost by less than 1%.
We turn then to the linear relaxation of the knapsack problem, where

the binary restriction (37) is replaced by x ∈ [0, 1]n. For this model, the
robust counterpart using model UΓǫ is a linear program, while the robust
counterpart of model Uγǫ requires the introduction of binary variables to
describe ‖ ∗ ‖0, see Theorem 2. Similarly to the case of the binary knapsack
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Figure 4. Cost of protecting the solution for the fractional
knapsack problem.
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problem, we compute the optimal protection costs of the two models and
compare the geometric means of their ratios in Figure 4. On average, model
Uγǫ is 18% cheaper than UΓǫ, as in the case of the binary knapsack problem.
Without surprise, the solution times of Uγǫ are higher than those of UΓǫ,
but the average ratio t(Uγ0.01)/t(UΓ0.01) are hard to compute exactly because
a large part of the solutions times for Uγ0.01 are to small to be measured.
For both models, most instances are solved in less than 0.05 seconds, and
the ratio t(Uγ0.01)/t(UΓ0.01) can be as large as 60 for the instances with 1000
items.
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7. Conclusion

We have presented a new model for combinatorial optimization under un-
certainty where the uncertain parameters are allowed to vary in uncertainty
sets defined by multifunctions of the problem variables. We have motivated
this general model by proposing a particular example of multifunction Uγ

that extends the budgeted uncertainty set UΓ studied by Berstimas and
Sim [6]. Using multifunction Uγ, one can obtain less conservative solutions
than using UΓ, while ensuring the same probabilistic satisfaction of the con-
straint.
We have then shown how the robust counterpart of linear constraints can be

computed in the new model, assuming that the uncertainty sets are delimited
by conic inequalities that depend affinely on the variables of the problem. If
the variables of the original problem are all binary, the dualization of the new
model introduces a polynomial number of real variables and constraints, in
addition to those added by the classical model. In that case, the new model
can be almost as easy to solve as the classical robust model. However, if
the original problem contains fractional or integer variables, the dualization
requires to introduce additional binary variables and big-M coefficients.
We have provided computational experiments for the robust knapsack

problem. The experiments show that using model Uγ reduces the cost of
protecting the constraint of model UΓ by 18% on average both for the bi-
nary and the fractional versions of the problem.
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