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1. Introduction
The regularity of infinity harmonic functions is an outstanding issue in the

theory of nonlinear partial differential equations. The belief that viscosity
solutions of ∆∞u = 0 are of class C1, 13 has hitherto remained unproven despite
some recent exciting developments. The flatland example of Aronsson

u(x, y) = |x|
4
3 − |y|

4
3

sets the framework to what can be expected: the first derivatives of u are
Hölder continuous with exponent 1/3, whereas its second derivatives do not
exist on the lines x = 0 and y = 0. The sharpest results to date are due
to Evans and Savin, who prove in [8] that infinity harmonic functions in
the plane are of class C1,α, building upon Savin’s breakthrough in [17] (the
optimal α remains unknown even in 2-D), and to Evans and Smart, who
recently obtained in [9] the everywhere differentiability, irrespective of the
dimension.

This paper addresses the obstacle problem for the infinity Laplacian and
its most striking results concern the behaviour at the free boundary. We
prove, under natural assumptions on the obstacle, that the solution leaves
the obstacle as a C1, 13 –function and that this regularity is optimal. The sharp
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estimates we derive are yet another conspicuous hint towards the optimal
regularity for infinity harmonic functions.

Obstacle problems in infinite dimensional spaces, where operators are nat-
urally degenerate, are studied in [18]. A prototype example is given by
F (D2u) = Trace(AD2u), for A ∈ S(H) in the trace class, i.e.,

∑
|λj| < ∞,

where λj are the eigenvalues of A. The main result in [18] is that the solution
of the obstacle problem satisfies the bounds

|λj||Djju| < C, ∀j,

provided the obstacle is semi-concave. It is a perfect generalization of the
optimal C1,1–regularity for the obstacle problem in finite dimensional spaces.
For problems governed by the infinity Laplacian, a naive inference indicates
that |Du∞|2|D2u∞| should remain bounded for points at the free boundary.
Such observation brings us to the recent work [1], where it is proven that

|D2v| . |Dv|−δ =⇒ v ∈ C1, 1
1+δ .

Taking δ = 2 discloses the optimal regularity at the free boundary for the
infinity obstacle problem, ultimately proven in this paper.

The heuristics behind the proof is the following: showing that a given
function v is of class C1, 13 at a point x0 amounts to finding an affine function
` for which

|v(x)− `(x)| = O(|x− x0|4/3).
As mentioned above, such a task remains unaccomplished for an arbitrary
infinity harmonic function; however, for a solution u∞ of the infinity obstacle
problem, it is expected that at a free boundary point x0 ∈ ∂{u∞ > Ψ},

∇(u∞ −Ψ)(x0) = 0.

In such a geometric scenario, establishing the C1, 13 –regularity of u∞ − Ψ
reduces to proving

(u∞ −Ψ)(x) = O(|x− x0|4/3).

Thus, a scaling-sharp flatness improvement, in the same spirit as in [20],
gives the full optimal regularity for u∞ −Ψ; this, in turn, implies

u∞ ∈ C1, 13

along the free boundary, provided the obstacle Ψ is smooth enough.
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The obstacle problem for elliptic operators has been extensively studied.
The classical setting amounts at minimizing the energy

E(u) =

∫
Ω
|Du|2

among the functions that coincide with a given function F at the boundary
of Ω ⊂ Rd and remain above a prescribed obstacle Ψ. Such a problem is
motivated by the description of the equilibrium position of a membrane (the
graph of the solution) attached at level F along the boundary of Ω and
that is forced to remain above the obstacle in the interior of Ω. The same
mathematical framework appears in many other contexts: fluid filtration in
porous media, elasto-plasticity, optimal control or financial mathematics, to
name just a few.

On the other hand, if we pass to the limit, as p→∞, in a sequence (up) of
p−harmonic functions, that is, solutions of ∆pup = 0, with given boundary
values, the limit exists (in the uniform topology) and is a solution of the
infinity Laplace equation (see [3])

∆∞u =
d∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.

The infinity Laplacian is connected with the optimal Lipschitz extension
problem [11], and arises also in the context of certain random tug-of-war
games [2, 16], mass transportation problems [10] and several other applica-
tions, such as image reconstruction and enhancement [6]. See also the recent
approach of [14] to a two-phase problem of mixed type.

In the next section, we introduce the infinity obstacle problem and obtain
a solution u∞, passing to the limit, as p → ∞, in a sequence of solutions
up to the obstacle problem for the p-Laplacian. We gather a few elementary
properties of the solution and study a radially symmetric explicit example.
Let us remark that the limit obtained here does not necessarily coincide with
the solution of the infinity obstacle problem obtained by direct methods in
[4].

Section 3 of the paper deals with characterizations of the limit. We first
show that u∞ is the smallest infinity superharmonic function in Ω that is
above the obstacle and equals F on the boundary, a result that implies its
uniqueness. Then we establish a sort of comparison with cones that lie above
the obstacle. This characterization is interesting in its own right but it also
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implies a regularity result at the free boundary, a warm-up for what will
come later. The section closes with the analysis of the behaviour at infinity
of the coincidence sets for the p-obstacle problem and its relation with the
coincidence set of the limiting problem.

The heart of the paper is Section 4, where the behaviour of the solution at
the free boundary is analyzed. We establish the optimal asymptotic profile
near the free boundary, showing u∞ behaves as a C1, 13 –function. We use
this sharp information to deduce the uniform positive density of the region
{u∞ > Ψ}. In particular, the free boundary does not develop cusps pointing
inwards to the coincidence set.

2. The limit as p→∞ for the p–obstacle problem
Let Ω ⊂ Rd be a bounded smooth domain, F a Lipschitz function on ∂Ω

and 1 < p <∞. Given an obstacle Ψ: Ω→ R, with

sup
∂Ω

Ψ < inf
∂Ω
F, (2.1)

the p-degenerate obstacle problem for Ψ refers to the minimization problem

Min

{∫
Ω
|Dv(x)|pdx

∣∣ v ∈ W 1,p
F and v ≥ Ψ

}
. (2.2)

Here W 1,p
F means the set of functions in W 1,p(Ω) with trace F on ∂Ω.

Simple soft functional analysis arguments assure that (2.2) has a unique
solution up. Let z be a Lipschitz extension of F such that z ≥ Ψ (for the
proof of the existence of such z see Proposition 3.3). Since z competes in the
minimization problem (2.2) for every p, if L denotes the Lipschitz norm of
z, we have (∫

Ω
|Dup|p

)1/p

≤ L|Ω|1/p.

For a fixed q, we can write(∫
Ω
|Dup|q

)1/q

≤
(∫

Ω
|Dup|p

)1/p

|Ω|
p−q
pq ≤ L|Ω|1/p|Ω|

p−q
pq .

Hence, we have a uniform bound for the sequence (up) in every W 1,q(Ω).
Taking the limit as p→∞, we conclude that there exists a function u∞ such
that, up to a subsequence, up → u∞, locally uniformly in Ω and weakly in
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every W 1,q(Ω). Clearly, u∞ ≥ Ψ pointwise. Also,(∫
Ω
|Du∞|q

)1/q

≤ L|Ω|
1
q ∀q > 1.

We then conclude that u∞ is a Lipschitz function, with

‖Du∞‖L∞(Ω) ≤ L.

Since this holds being L the Lipschitz constant of any extension of F that is
above Ψ, we conclude that u∞ is a solution of the minimization problem

min
w|∂Ω=F ; w≥Ψ in Ω

Lip(w). (2.3)

The minimizers up are weak, and hence viscosity, solutions (see [10]) of the
following obstacle problem:

up(x) = F (x) on ∂Ω,
up(x) ≥ Ψ(x) in Ω,
−∆pup = 0 in Ω \ Ap := {up > Ψ},
−∆pup ≥ 0 in Ω.

Concerning the PDE problem satisfied by u∞, we verify that it is a viscosity
solution to the obstacle problem for the infinity Laplacian:

u∞(x) = F (x) on ∂Ω,
u∞(x) ≥ Ψ(x) in Ω,
−∆∞u∞ = 0 in Ω \ A∞ = {u∞ > Ψ},
−∆∞u∞ ≥ 0 in Ω.

Indeed, fix a point y in the set {u∞ > Ψ}. From the uniform convergence,
up > Ψ in a neighbourhood of y, provided p� 1. Hence, taking the limit as
p→∞ in the viscosity sense, we obtain

−∆∞u∞ = 0 in {u∞ > Ψ}.

On the other hand, a uniform limit of up verifies

−∆∞u∞ ≥ 0, in Ω,

since for every p, up verifies

−∆pup ≥ 0, in Ω

in the viscosity sense.
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To gain some insight on the problem, we next construct a radially sym-
metric explicit example. Let us consider the p-obstacle problem in B2 ⊂ Rd,
with zero boundary data and the spherical cap

ψ(x) = 1− |x|2

as the obstacle. It is formulated as the following minimization problem:

Min

{∫
B2

|Dv(x)|pdx
∣∣ v ∈ W 1,p

0 (B2) and v(x) ≥ ψ(x)

}
.

As mentioned before, the above minimization problem has a unique mini-
mizer up. By symmetry, we conclude up is radially symmetric, i.e., up(x) =
up(|x|). By the geometry of the obstacle problem, as well as its regularity
theory, we know that there exists an h = h(p, d), that depends on p and
dimension, such that

up(x) = ψ(x) in |x| ≤ h
∆up = 0 in 2 > |x| > h
up ∈ C1,αp in B2
‖Dup‖L∞(Bρ) ≤ C(ρ, d),

(2.4)

for a constant C(ρ, d) independent of p. Such an estimate has been obtained
in the previous section. In particular, as observed before, up to a subse-
quence, up converges locally uniformly to a function u∞. Furthermore, u∞
solves ∆∞u∞ = 0 within {u∞ > ψ} in the viscosity sense.

Our goal is to solve the p-obstacle problem explicitly and then analyze the
limiting function u∞. In view of the properties listed in (2.4), we are initially
led to search for p-harmonic radially symmetric functions. If g(x) = f(r),
then

∆pg = |f ′(r)|p−2
{

(p− 1)f ′′(r) +
d− 1

r
f ′(r)

}
. (2.5)

Solving the homogeneous ODE, we obtain

f(r) =

{
a+ b · r

1−d
p−1+1 if p 6= d

a+ b · ln r if p = d,
(2.6)

for any constants a, b ∈ R. Returning to the obstacle problem (we will only
deal with the case, p 6= d > 1, as we are interested in the limiting problem as
p → ∞), by regularity considerations, we end up with the following system
of equations:

a+ b · h−α+1 = 1− h2 and b · (−α + 1)hα = −2h, (2.7)
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where the exponent α = α(p) is given by

α(p) =
d− 1

p− 1

and verifies
lim
p→∞

α(p) = 0. (2.8)

The first equation in (2.7) comes from continuity and the second from C1–
estimates. By the boundary condition, we have

a+ b · 2−α+1 = 0.

Subtracting the first equality from the above equation, we obtain

b · (2−α+1 − h−α+1) = −1 + h2,

which simplifies out to

(−α + 1)b · h−α = −2h.

Combining the above with the second equation in (2.7), we end up with

2

1− α
(2−α+1h1+α − h2) = 1− h2,

that is, (
2

1− α
− 1

)
h2 − 4

(
2−α

1− α

)
h1+α + 1 = 0.

Now, we observe that, from (2.8), this equation converges to

h2 − 4h+ 1 = 0,

which has as solution in (0, 1) (the free boundary must lie in this interval)

h∞ = 2−
√

3.

With this limit, we can also compute the limit of

fp(r) = ap + bpr
−d−1
p−1+1 = ap + bpr

−α(p)+1

that is given by
f∞(r) = a∞ + b∞r,

with
a∞ = 4h∞

and
b∞ = −2h∞.
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Note that f∞(r) is infinity harmonic in B2 \Bh∞ and verifies

f∞(h∞) = 1− h2
∞

and

f ′∞(h∞) = −2h∞.

It is the solution of the limit obstacle problem.

3. Characterizations of the limit
A crucial issue, with striking implications, is to characterize the limit u∞.

We give two characterizations, one involving supersolutions of the infinity
Laplacian, the other making use of appropriately defined cones. From both
we will derive important properties of the limit.

Theorem 3.1. The limit u∞ is the smallest infinity superharmonic function
in Ω that is above the obstacle and equals F on the boundary.

Proof : Let F be the set of all functions v that are infinity superharmonic in
Ω and satisfy v ≥ Ψ in Ω and v = F on ∂Ω. This set is not empty because
u∞ ∈ F . Let

v∞ := inf
v∈F

v,

which is upper semicontinuous (as it is the infimum of continuous functions)
and infinity superharmonic in Ω. Since u∞ ∈ F , it is obvious that

u∞ ≥ v∞ in Ω.

Now, define the open set

W = {x ∈ Ω : u∞(x) > v∞(x)} .

On ∂W ⊂ Ω, we have v∞ = u∞. Moreover,

u∞ > v∞ ≥ Ψ in W

so W ⊂ {u∞ > Ψ} and u∞ is infinity harmonic in W . Thus, by the compar-
ison principle,

u∞ ≤ v∞ in W,

a contradiction that shows that W = ∅. Consequently, u∞ ≡ v∞.

Corollary 3.2. The limit u∞ is unique.
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Proof : Suppose we have two limits, say u1,∞ and u2,∞. Then

v = u1,∞ ∧ u2,∞

is also an infinity superharmonic function in Ω that is above the obstacle and
equals F on the boundary. By the theorem, we have

ui,∞ ≤ v, i = 1, 2

and since, trivially, v ≤ ui,∞, i = 1, 2, we conclude that

u1,∞ = v = u2,∞.

Let’s now turn to our second characterization of the limit. For this, consider
the family of cones with vertex at a boundary point and positive opening,
which lie above both the obstacle and the boundary data. For more on
comparison with cones and the characterization of infinity harmonic functions
see [7].

To be concrete, for y ∈ ∂Ω and b = (b1, b2), with b1 ≥ 0, we consider the
cones

Kb
y(x) = b1|x− y|+ b2

such that
Kb
y(x) ≥ F (x), x ∈ ∂Ω

and
Kb
y(x) ≥ Ψ(x), x ∈ Ω.

Note that, since the vertex of the cone is at the boundary of Ω, these cones
are infinity harmonic in Ω, that is, −∆∞K

b
y = 0 in Ω. We denote by K the

family of all such cones.
Now, we define

K∞(x) := inf
K
Kb
y(x), x ∈ Ω.

It is obvious that
K∞(x) ≥ F (x), x ∈ ∂Ω

and
K∞(x) ≥ Ψ(x), x ∈ Ω.

Proposition 3.3. The function K∞ is Lipschitz continuous in Ω and infinity
superharmonic in Ω. Moreover,

K∞(y) = F (y), y ∈ ∂Ω.
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Proof : Since we assume that F is Lipschitz, we have that for every point
y ∈ ∂Ω, there exists a constant L such that, for every b1 > L and every
b2 > L,

Kb
y(x) ≥ F (x) and Kb

y(x) ≥ Ψ(x).

Hence, when computing the infimum that defines K∞(x), we can restrict to
cones with b = (b1, b2) in a compact set and since y ∈ ∂Ω (which is also
compact), we conclude that the infimum is in fact a minimum. This means
that, for every x ∈ Ω, there exists a y ∈ ∂Ω and a b = (b1, b2), with |bi| ≤ L,
depending on x, such that

K∞(x) = K
b(x)
y(x)(x).

From this fact, it follows that K∞ is Lipschitz continuous in Ω. Let’s show
why. Take any two points x̂, x̃ ∈ Ω; we have

K∞(x̂) = K
b(x̂)
y(x̂)(x̂) and K∞(x̃) = K

b(x̃)
y(x̃)(x̃).

From the definition, it is clear that K∞(x̂) ≤ K
b(x̃)
y(x̃)(x̂) and thus

K∞(x̂)−K∞(x̃) ≤ K
b(x̃)
y(x̃)(x̂)−Kb(x̃)

y(x̃)(x̃)

= b1(x̃) (|x̂− y(x̃)| − |x̃− y(x̃)|)
≤ L |x̂− x̃| .

Reversing the role of x̂ and x̃ gives the desired Lipschitz regularity.
Moreover, as the infimum of infinity harmonic functions, K∞ is infinity

superharmonic, i.e.,

−∆∞K∞ ≥ 0 in Ω. (3.1)

Finally, by taking b1 large enough and b2 = F (y), we also have, recalling
(2.1),

F (y) ≤ K∞(y) ≤ Kb
y(y) = F (y)

and, hence, K∞(y) = F (y), for y ∈ ∂Ω.

Theorem 3.4. The limit u∞ is such that

u∞(x) ≤ K∞(x), x ∈ Ω. (3.2)

Equality holds if, and only if, K∞(x) is infinity harmonic outside of its co-
incidence set {K∞ = Ψ}.
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Proof : Inequality (3.2) follows immediately from Proposition 3.3 and Theo-
rem 3.1. If we have an equality it is also immediate that K∞(x) is infinity
harmonic outside of its coincidence set {K∞ = Ψ} So we are left to prove
the other implication.

Arguing by contradiction, assume that

W = {x ∈ Ω : K∞(x) > u∞(x)} 6= ∅.
Note that W is open because u∞ and K∞ are continuous functions. Since
W ⊂ {K∞ > Ψ}, we deduce that −∆∞K∞ = 0 in W . But −∆∞u∞ ≥ 0 in
Ω (thus in W ) and u∞ = K∞ on ∂W so, by the comparison principle for the
infinity Laplacian, we conclude that

u∞ ≥ K∞ in W,

a contradiction that shows that W = ∅ and completes the proof.

Remark 3.5. The condition that K∞(x) is infinity harmonic outside of its
coincidence set {K∞ = Ψ} strongly depends on the geometry of the problem.
In the radial example explicitly computed in Section 2, the condition holds.
However, in general, this is not the case, as the following example shows.
Consider Ω to be the union of two disjoints balls connected by a narrow tube
of width δ, an obstacle placed in one of the balls and boundary data F = 0.
It can be readily checked that, as δ → 0, u∞ → 0 in the ball without obstacle.
But K∞ is uniformly bounded below inside this ball since the opening of the
corresponding cones is uniformly bounded below (as these cones have to be
above the obstacle).

Corollary 3.6. Assume the obstacle Ψ is differentiable and equality holds in
(3.2). Then u∞ is differentiable at the free boundary and

Du∞(x0) = DΨ(x0), ∀x0 ∈ ∂{u∞ = Ψ}.

Proof : Let x0 ∈ ∂{u∞ = Ψ}. It follows from the previous results that there
exists a cone Kb

y0
such that

Kb
y0

(x0) = K∞(x0) = u∞(x0) = Ψ(x0) (3.3)

and
Kb
y0

(x) ≥ K∞(x) = u∞(x) ≥ Ψ(x), ∀x ∈ Ω. (3.4)

Hence, Kb
y0

(x)−Ψ(x) attains a minimum at x0 and, since it is differentiable,

DKb
y0

(x0) = DΨ(x0).



12 ROSSI, TEIXEIRA AND URBANO

From (3.3) and (3.4), we conclude that u∞ is also differentiable at x0, with

Du∞(x0) = DΨ(x0),

as claimed.

Remark 3.7. As a consequence of this corollary, we conclude that u∞ is dif-
ferentiable everywhere in Ω. In fact, in the interior of the coincidence set,
it coincides with the differentiable obstacle and, in the interior of the non-
coincidence set, it is infinity harmonic, thus differentiable everywhere by the
results of [9]. Also note that the radial solution constructed in Section 2 is a
C1–solution that can be characterized by the equality in (3.2).

We close this section with the analysis of the behaviour at infinity of the
coincidence sets for the p-obstacle problem and relate it with the coincidence
set of the limiting problem. We recall that

lim sup
p→∞

Ap =
∞⋂
p=1

⋃
n≥p

An and lim inf
p→∞

Ap =
∞⋃
p=1

⋂
n≥p

An.

Theorem 3.8. Let Ap = {up = Ψ} be the coincidence sets of the p-obstacle
problems and A∞ = {u∞ = Ψ} be the coincidence set of the limiting problem.
Then

int(A∞) ⊂ lim inf
p→∞

Ap ⊂ lim sup
p→∞

Ap ⊂ A∞. (3.5)

Proof : Given a neighbourhood V of A∞, Ω \ V is a closed set contained
in {u∞ > Ψ}. Thus, the continuity of u∞ − Ψ gives us a η > 0 such that
u∞−Ψ > η in Ω\V . Using the uniform convergence of up to u∞, we conclude
that, for p large enough, we also have up − Ψ > η in Ω \ V . Therefore, we
conclude that Ω \ V ⊂ {up > Ψ} and, consequently, that

Ap ⊂ V,

for every large enough p. This shows that

lim sup
p→∞

Ap ⊂ V,

for any neighbourhood V of A∞, and since A∞ is compact, we also obtain

lim sup
p→∞

Ap ⊂ A∞.

Next, assume that Ψ is smooth and verifies

−∆∞Ψ > 0.
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Then, given x0 ∈ int(A∞), if we have

upj(x0) > Ψ(x0),

for a subsequence pj →∞, then

−∆pjupj(x0) = 0.

Passing to the limit as before, we conclude that

−∆∞Ψ(x0) = −∆∞u∞(x0) = 0,

a contradiction with −∆∞Ψ > 0. Therefore, we conclude that for every
x0 ∈ int(A∞), there exists p0 = p0(x0) such that

un(x0) = Ψ(x0),

for every n ≥ p0. This means that

x0 ∈
⋂
n≥p0

An

and consequently
int(A∞) ⊂ lim inf

p→∞
Ap.

Since the larger set is closed, we also obtain

int(A∞) ⊂ lim inf
p→∞

Ap

and the proof is complete.

4. C1,13–behaviour at the free boundary
In this section, we show that, along the free boundary, u∞ behaves as

a C1, 13 –function. This result is in connection with the celebrated optimal
regularity conjecture for infinity harmonic functions. The ultimate goal is to
show that u∞ −Ψ grows precisely as

[dist(x, ∂{u∞ −Ψ})]4/3

away from the free boundary. We shall use this sharp information to estab-
lish the uniform positive density of the region {u∞ > Ψ}. In particular, it
follows that the free boundary does not develop cusps pointing inwards to
the coincidence set.

The assumptions we shall impose on the obstacle in this section are the
following:

Ψ ∈ C1,1; (4.1)
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sup
Ω
|∆∞ (u∞ −Ψ)| ≤M ; (4.2)

inf
{u∞>Ψ}

∆∞ (u∞ −Ψ) =: ν > 0. (4.3)

Both (4.2) and (4.3) are to be understood in the viscosity sense.
Condition (4.2) is rather natural in the context of obstacle-type problems,

namely for
Lv = f(x)χ{v>0}, (4.4)

and it concerns the boundedness of the function f(x) (cf. [15]). In the
linear case, the physical obstacle problem is transformed into an obstacle-
type equation of the form (4.4) by defining v as the difference between the
membrane and the obstacle. In this case, f(x) is the negative of the operator
L applied to the obstacle; it is then bounded provided the obstacle is of class
C1,1.

Condition (4.3), in turn, refers to the appropriate infinity concavity of the
obstacle. We recall it has been well established that in order to study geomet-
ric properties of the free boundary, a sort of concavity-type non-degeneracy
condition on the obstacle is needed. In fact, if no such assumption is imposed,
one could produce arbitrary contact sets, just by lifting up subregions of the
obstacle previously below the membrane, making them touch the original
solution.

Our first result in this section gives the optimal regularity estimate for
solutions of the infinity obstacle problem along the free boundary.

Theorem 4.1. Let x0 ∈ ∂{u∞ > Ψ} be a generic free boundary point. Then

sup
Br(x0)

|u∞ −Ψ| ≤ C r4/3, (4.5)

for a constant C that depends only upon the data of the problem.

Proof : For simplicity, and without loss of generality, assume x0 = 0, and
denote v := u∞ − Ψ. By combining discrete iterative techniques and a
continuous reasoning (see, for instance, [5]), it is well established that proving
estimate (4.5) is equivalent to verifying the existence of a constant C > 0,
such that

sj+1 ≤ max
{
C 2−4/3(j+1), 24/3sj

}
, ∀ j ∈ N, (4.6)

where
sj = sup

B2−j

|v|.
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Let us suppose, for the sake of contradiction, that (4.6) fails to hold, i.e.,
that for each k ∈ N, there exists jk ∈ N such that

sjk+1 > max
{
k 2−4/3(jk+1), 24/3sjk

}
. (4.7)

Now, for each k, define the rescaled function vk : B1 → R by

vk(x) :=
v(2−jkx)

sjk+1
.

One easily verifies that

0 ≤ vk(x) ≤ 2−4/3, ∀x ∈ B1; (4.8)

vk(0) = 0; (4.9)

sup
B 1

2

vk = 1. (4.10)

Moreover, we formally have

∆∞vk(x) =
2−jk

sjk+1
Dv(2−jkx) ·

(
2−2jk

sjk+1
D2v(2−jkx)

)
· 2−jk

sjk+1
Dv(2−jkx)

=
2−4jk

s3
jk+1

∆∞v(2−jkx) =: fk

and, using assumption (4.2) and (4.7), we conclude

|fk| ≤
2−4jk

2−4(jk+1) k3 M =
16M

k3 ≤ 16M. (4.11)

It is a matter of routine to rigorously justify the above calculations using the
language of viscosity solutions (see, e.g., [19, section 2]).

Combining the uniform bounds (4.8) and (4.11), and local Lipschitz regu-
larity results for the inhomogeneous infinity Laplace equation (cf., for exam-
ple, [12, Corollary 2]), we obtain both the equiboundedness and the equicon-
tinuity of the sequence (vk)k. By Ascoli’s theorem, and passing to a sub-
sequence if need be, we conclude that vk converges locally uniformly to a
infinity harmonic function v∞ in B1 such that

0 ≤ v∞ ≤ 2−4/3 and v∞(0) = 0.

We now use Harnack’s inequality for infinity harmonic functions (see [13,
Corollary 2]) to obtain the bound

v∞(x) ≤ e2|x| v∞(0) = 0, ∀x ∈ B1/2.
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It follows that v∞ ≡ 0 in B1/2, which contradicts (4.10). The theorem is
proven.

An immediate consequence of Theorem 4.1 is that u∞ is C1, 13 along the free
boundary, i.e., the membrane leaves the obstacle as a C1, 13 –function.

Corollary 4.2 (Sharp C1, 13 –regularity at the free boundary). The function

u∞ is C1, 13 at any point of the free boundary. That is, there exists a constant
Λ > 0, depending only upon the data of the problem, such that

|u∞(x)− [u∞(x0) +Du∞(x0) · (x− x0)]| ≤ Λ|x− x0|4/3,
for any point x0 ∈ ∂{u∞ > Ψ} and x ∈ Br(x0), for r � 1.

Proof : It readily follows from Theorem 4.1 that, for any free boundary point
x0 and x close to x0, there holds

(u∞ −Ψ)(x) ≤ sup
B2|x−x0|(x0)

(u∞ −Ψ) ≤ C 24/3 |x− x0|4/3.

In particular, we have

u∞(x0) = Ψ(x0) and Du∞(x0) = DΨ(x0).

Finally, using the C1,1 regularity of the obstacle, we conclude

|u∞(x)− [u∞(x0) +Du∞(x0) · (x− x0)]|

≤ |u∞(x)−Ψ(x)|+ |Ψ(x)− [Ψ(x0) +DΨ(x0) · (x− x0)]|
≤ C 24/3 |x− x0|4/3 + C ′ |x− x0|2
≤ Λ |x− x0|4/3

and the corollary is proven.

Our next theorem establishes a C1, 13 –estimate from below, which implies
that u∞ leaves the obstacle trapped by the graph of two functions of the
order dist4/3(x, ∂{u∞ > Ψ}).

Theorem 4.3. Assume the non-degeneracy hypothesis (4.3) is in force. Let

y0 ∈ {u∞ > Ψ} be a generic point in the closure of the non-coincidence set.
Then

sup
Br(y0)

|u∞ −Ψ| ≥ c r4/3,

for a constant c > 0 that depends only upon ν.
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Proof : By continuity arguments, if is enough to prove the result for points in
the non-coincidence set. For simplicity, and without loss of generality, take
y0 = 0. Define the barrier

B∞(x) :=
3

4
3
√

3ν |x|4/3,

which satisfies, by direct computation,

∆∞B∞ = ν.

Thus, by (4.3), there holds

∆∞ (u∞ −Ψ) ≥ ν = ∆∞B∞, in {u∞ > Ψ},

in the viscosity sense.
On the other hand,

u∞ −Ψ ≡ 0 < B∞ on ∂{u∞ > Ψ} ∩Br.

Therefore, for some point y? ∈ ∂Br ∩ {u∞ > Ψ}, there must hold

u∞(y?)−Ψ(y?) > B∞(y?); (4.12)

otherwise, by Jensen’s comparison principle for infinity harmonic functions
[11], we would have, in particular,

0 < u∞(0)−Ψ(0) ≤ B∞(0) = 0.

Estimate (4.12) implies the thesis of the theorem.

As usual, as soon as we establish the precise sharp asymptotic behaviour
for a given free boundary problem, it becomes possible to obtain certain weak
geometric properties of the phases. We conclude this section by proving that
the region where the membrane is above the obstacle has uniform positive
density along the free boundary, which is then inhibited to develop cusps
pointing inwards to the coincidence set.

Corollary 4.4. Let x0 ∈ ∂{u∞ > Ψ} be a free boundary point. Then

L n (Bρ(x0) ∩ {u∞ > Ψ}) ≥ δ?ρ
n,

for a constant δ? > 0 that depends only upon the data of the problem.

Proof : It follows from Theorem 4.3 that there exists a point

z ∈ ∂Bρ(x0) ∩ {u∞ > Ψ}
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such that (u∞ − Ψ)(z) ≥ c ρ4/3. By C1, 13 –bounds along the free boundary,
Theorem 4.1, it follows that

Bλρ(z) ⊂ {u∞ > Ψ},
where the constant

λ :=
4

√( c

2C

)3

depends only on the data of the problem. In fact, if this were not true, there
would exist a free boundary point y ∈ Bλρ(z). From (4.5), we reach the
absurd

c ρ4/3 ≤ (u∞ −Ψ)(z) ≤ sup
Bλρ(y)

|u∞ −Ψ| ≤ C (λρ)4/3 =
1

2
c ρ4/3.

Thus,
Bρ(x0) ∩Bλρ(z) ⊂ Bρ(x0) ∩ {u∞ > Ψ}

and, finally,

L n (Bρ(x0) ∩ {u∞ > Ψ}) ≥ L n (Bρ(x0) ∩Bλρ(z)) ≥ δ?ρ
n.
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