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SPHERE ROLLING ON SPHERE -
ALTERNATIVE APPROACH TO KINEMATICS

AND CONSTRUCTIVE PROOF OF CONTROLLABILITY

FERNANDO LOURO AND FÁTIMA SILVA LEITE

Abstract: We present an alternative approach to derive the kinematic equations
for a system consisting of an Euclidean sphere rolling over another Euclidean sphere,
subject to nonholonomic constraints of non-slip and non-twist, based on properties
of rolling maps. This approach is suitable for the rolling of more general manifolds
embedded in Euclidean space. It is well known that the sphere rolling on sphere
system is controllable, except when the two spheres have equal radii. We also present
a constructive proof of the controllability property, by showing how the forbidden
motions can be performed by rolling without slip and twist. This is also illustrated
for 2-dimensional spheres.

Keywords: Rolling maps, spheres, kinematics, non-twist, non-slip, geodesic rolls,
tumbles, controllability.

1. Introduction
The most classical of all nonholonomic systems is the rolling sphere, rolling

without slip or twist on its tangent plane at a point. Another interesting
example of a system subject to nonholonomic constraints is that of a sphere
rolling over another sphere of the same dimension. Rolling motions of manifolds
embedded in Euclidean space Rn can be described by curves in the Lie group
SEn of orientation preserving isometries of the ambient space, as explained in
Sharpe [12]. We take the definition in [12] and consequent properties of rolling
maps to derive the kinematic equations for the rolling spheres. We also show
how the forbidden motions, twists and slips, can be produced using rolling
without slip/twist. This is a constructive proof of the complete controllability
of the system, when the spheres have unequal radius.
The organization of the paper is as follows. The formal definition of rolling

and properties of rolling maps appear in Section 2. The particular case of a
sphere rolling on another sphere and the derivation of the corresponding kine-
matics are presented in Section 4. Finally, in Section 5 we include a constructive
proof of controllability.
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In the final stage of preparation of this paper, we learned of the PhD thesis
of Frenkel [2], which addresses the problem of controlling a 2-sphere rolling
on another 2-sphere by means of motion along a minimal number of geodesic
arcs. This is a generalization of the analogous problem for a 2-sphere rolling
on a plane, posed by Kendall in the 1950’s and solved by Hammersley [4], who
has shown that three arcs are sufficient and necessary to steer any state to
any other state. Frenkel’s result is that four moves are sufficient for the former
case. It is open whether three moves are sufficient in that situation. As progress
towards solving these types of problems, the results for the 2-dimensional case
in the second part of our paper lost originality, though our approach is different,
and we believe more suitable towards obtaining explicit controllability of other
rolling systems, a goal we are pursuing.

2. Rolling maps
We refer to Sharpe [12] and Lee [11] for details concerning differential and

Riemannian geometry.
Let M and N be two smooth manifolds, with the same dimension, both

isometrically embedded in the Euclidean space Rn. Rolling maps describe how
M rolls upon N , without slip or twist, along a curve α on M . Rolling is a
rigid motion in the embedding space, subject to holonomic and nonholonomic
constraints. A rolling motion is then described by the action of the isometry
group on Rn, preserving orientations. This is the special Euclidean group
SEn = SOnnRn = {X = (R, s), R ∈ SOn, s ∈ Rn}, with group operations

(R1, s1) ◦ (R2, s2) = (R1R2, R1s2 + s1),

(R, s)−1 = (R−1,−R−1s),

and the action in Rn is defined as
SEnnRn → Rn

(X, p) 7→ X(p) = Rp+ s.

We adopt the definition of a rolling map given in Sharpe [12] and write some
of the constraints in terms of R and s.

Definition 2.1. A rolling map of M upon N , without slip or twist, along a
(piecewise) smooth curve α : [0, t1]→M is a mapping

X : [0, t1] → SEn=SOnnRn

t 7→ X(t)=(R(t), s(t))
(2.1)
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satisfying the following conditions, for all but finitely many t ∈ [0, t1]:
• Rolling conditions

• X(t)(α(t)) := α(t) ∈ N .
• TX(t)(α(t))(X(t)(M)) = Tα(t)N .

• No-slip condition
α̇(t) = R(t)(α̇(t))

• No-twist conditions:
• Tangential part: Ṙ(t)R>(t) (Tα(t)N) ⊂ (Tα(t)N)⊥.

• Normal part: Ṙ(t)R>(t) (Tα(t)N)⊥ ⊂ Tα(t)N.

The curve α on M is called the rolling curve and α is called the develop-
ment of α on N . The rolling conditions in the definition above are holonomic
constraints, they correspond to admissible configurations of the two manifolds,
while the non-slip and non-twist conditions are nonholonomic constraints. The
second normal part of the no-twist conditions is always satisfied for manifolds
of co-dimension 1. For the most classical of all rolling motions: the 2-sphere
rolling on the tangent space at the south pole, the admissible configurations
are all positions of the sphere in which it is tangent to the plane, while the non-
holonomic constraints forbid any pure translation and any rotation around an
axis orthogonal to the plane.

Remark 2.1. It has been proven in Sharpe [12] that for each piecewise smooth
curve α on M there exists a unique rolling map having α as its rolling curve.
In the situation when M ≡ N , the rolling map reduces to the identity map
and the development curve coincides with the rolling curve. Also, if the rolling
curve α belongs to the intersection of the two manifolds, then the corresponding
rolling map reduces to the identity (X(t) = (I, 0) satisfies all the conditions
trivially) and α ≡ α.

In what follows, if X is defined as in (2.1), X(t)∗ stands for the tangent map
of X(t) and X−1 stands for the mapping

X−1 : [0, t1] → SEn=SOnnRn

t 7→ X−1(t)=(R−1(t),−R−1(t)s(t))
,

2.1. Properties of rolling motions. The following properties can easily
be proven using the definition 2.1 and are of particular importance for our
proposes. The first two have been derived in Sharpe [12]. Assume that three
manifolds M1, M2 and M3, embedded in Euclidean space, are tangent to each
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other at a point p ∈ M1 ∩ M2 ∩ M3 and that t 7→ α1(t) is a curve in M1

satisfying α1(0) = p.

(1) Rolling motions are transitive
Suppose that M1 rolls on M2 with rolling map X1, rolling curve α1,

and development curve α2. Also suppose that M2 rolls on M3 with
rolling map X2, rolling curve α2, and development curve α3. Then M1

rolls onM3 with rolling map X2 ◦X1, rolling curve α1, and development
curve α3.

(2) Rolling motions are symmetric
Suppose that M1 rolls on M2 with rolling map X1, rolling curve α1,

and development curve α2. ThenM2 rolls onM1 with rolling map X1
−1,

rolling curve α2, and development curve α1.
(3) Rolling under a change of coordinates

If M1 rolls on M2 with rolling map X1, rolling curve α1, and devel-
opment curve α1 and Xc ∈ SEn is a fixed isometry, then Xc(M1) rolls
on Xc(M2) with rolling map Xc ◦ X1 ◦ Xc

−1, rolling curve Xc(α) and
development curve Xc(α).

3. Kinematic equations of rolling
In this section we derived the kinematic equations for the motion of a smooth

manifold rolling on the affine tangent space at a point. At first glance this
may seem to be very restrictive. However, due to the definition of rolling and
consequent properties, the results for this particular situation are the key to
study more general rolling problems, as will be illustrated later for a sphere
rolling on another sphere.
Assume that M is rolling on the affine tangent space at a point, i.e. N =

T aff
p0
M , where p0 = α(0) = α(0). The kinematic equations describe the

translational and the rotational velocities of the rolling motion, starting from
rest (R(0), s(0)) = (I, 0) and so, they have the form{

ṡ(t) = u(t)

Ṙ(t) = A(t)R(t)
,

for some vector valued function u taking values in Rn and A taking values in
son (the Lie algebra of SOn, consisting of the skewsymmetric matrices). Condi-
tions on these functions are determined from the holonomic and nonholonomic
constraints.
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When SOn leaves M invariant, the rolling curve is always of the form α(t) =
R(t)>p0, for some R(t) ∈ SOn. Under this assumption, the first rolling con-
dition implies that s(t) = α(t) − p0 ∈ Tp0M and, consequently, the no-slip
condition becomes

ṡ(t) = −A(t) p0.

On the other hand, the structure of A(t) = Ṙ(t)R>(t) ∈ son is determined
from the no-twist conditions

A(t) Tα(t)N ⊂
(
Tα(t)N

) ⊥,
A(t)

(
Tα(t)N

) ⊥ ⊂ Tα(t)N.

Consequently, for an appropriate choice of coordinates, the matrix function A
has the following structure

A(t) =

[
0 A1(t)

−A>1 (t) 0

]
, (3.1)

where A1(t) ∈ Rm×(n−m). We can now write the kinematic equations for rolling
the manifold M upon N = T aff

p0
M :{

ṡ(t) = −A(t) p0

Ṙ(t) = A(t)R(t)
, (3.2)

where A(t) has the structure (3.1).

Remark 3.1. When M is the (n − 1)-sphere S centered at the origin, with
radius ρ, and p0 is its south or north pole, then

A1(t) =

 u1(t)
...

un−1(t)

 , A(t) =
∑n−1

i=1 ui(t)Ai,n,

and the equations (3.2) for rolling S on its affine tangent space at p0 reduce to
the well know (see, for instance, [7]) kinematic equations{

ṡ(t) = ερu(t)

Ṙ(t) =
(∑n−1

i=1 ui(t)Ai,n

)
R(t)

,

where Ai,j = eie
>
j − eje>i are elementary skewsymmetric matrices, ε = 1 if p0

is the south pole and ε = −1 if p0 is the north pole. In this case, the rolling
condition X(t)(α(t)) = α(t), where X = (R, s), reduces to

R(t)α(t) = p0. (3.3)
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Remark 3.2. If the sphere is not centered at the origin, the kinematic equations
can be easily derived from the above, using a convenient change of coordinates.
For instance, consider the following case which will be useful later. Let M
be a sphere of radius ρ, centered at the point (0, · · · , 0, a)>. We can obtain
the rolling map for the rolling motion of M on its affine tangent space at the
north pole p0 = (0, · · · , 0, a + ρ)> from the rolling map X = (R, s) of the
sphere S in previous remark and the isometry Xτ = (I, τ) ∈ SEn, where
τ = (0, · · · , 0, a)>. In this case, Xτ is a pure translation and the translation
vector τ sends S to M = S + τ . In this situation,

Xτ ◦X ◦X−1
τ = (R,−Rτ + s+ τ)

is the rolling map for the rolling motion of M upon its affine tangent space at
the point p0, with rolling curve α + τ and development α + τ .

4. A sphere rolling on another sphere
The most classical of all nonholonomic problems is that of a sphere rolling on

its tangent plane at a point. Other rolling spheres problems have been studied
(see, for instance, Montgomery [10], Jurdjevic [7] and more recently Jurdjevic
and Zimmerman [8], Bloch and Rojo [1]). The kinematic equations for rolling
a sphere on another sphere are known, but we present here an alternative
approach which uses the transitive and symmetric properties of rolling and
the kinematic equations of a sphere rolling on its affine tangent space. This
approach is simple and may be used with great success for other manifolds. We
first analyze the case of a sphere rolling over the outside of another sphere (no
restrictions on the size of their radius is necessary). We then make the obvious
changes and comment on the situation when a sphere rolls over the inside of
a sphere with larger radius. We will also make connections with results in the
existing literature on the subject.

4.1. A sphere rolling over the outside of another sphere. In this section
we consider two spheres of the same dimension m, embedded in the Euclidean
space Rn: S1 with radius ρ1 and S2 with radius ρ2. Suppose that the sphere S2

is centered at the origin and is stationary. Assume that S1 is centered at the
point c = (0, · · · , 0,−(ρ1 + ρ2))

>, so that at time t = 0 it is tangent to S2 at
the south pole of S2, p0 = (0, · · · , 0,−ρ2)

>. Assume now that S1 starts rolling
over S2, along a piecewise smooth curve α, satisfying α(0) = p0.
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Our objective is to derive the kinematic equations for the rolling motion of
S1 on the outside of the stationary sphere S2. This will be accomplished by
using the kinematic equations derived in Section 3, for rolling a manifold on
the affine tangent space at a point, together with the symmetric and transitive
properties and remarks contained in Section 2.

Let N denote the affine tangent space to S2 at p0, which also coincides with
the affine tangent space to S1 at the same point. We know how to roll the
spheres S1 and S2 on N . Consequently, we know how to roll S1 on N and N
on S2. Thus, by transitivity, we can achieve our goal.

• Rolling S1 over N = T aff
p0
S1:

For a sphere with radius ρ1 centered at the origin and rolling on the affine
tangent space at the north pole q0, the kinematic equations are{

ṡ = −A(t) q0

Ṙ = A(t)R
, (4.1)

where A(t) =
∑n−1

i=1 ui(t)Ai,n, for some scalar functions u1, · · · , un−1. Also,
from (3.3), the rolling curve α satisfies

R(t)α(t) = q0. (4.2)

So, according to Remark 3.2, the rolling map for S1 over N is defined by X1 =
(R1, s1) = (R,−Rτ+s+τ), where τ is the translation vector (0, · · · , 0,−(ρ1 +
ρ2))

> with kinematic equations{
ṡ1 = −A1(t) (q0 +R1τ)

Ṙ1 = A1(t)R1
, (4.3)

where A1 ≡ A, having rolling curve α1 = α + τ and development curve α1 =
α + τ . It follows from (4.2) that

Rα + τ = p0. (4.4)

• Rolling S2 over N = Taffp0 S2:
The sphere S2 is centered at the origin and has radius ρ2. So, (X2 = (R2, s2)

is the rolling map for rolling S2 over the affine tangent space at the south pole
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p0, and the corresponding kinematic equations are given by:

{
ṡ2 = −A2(t) p0

Ṙ2 = A2(t)R2
, (4.5)

with A2(t) =
∑n−1

i=1 vi(t)Ai,n, for some scalar functions v1, · · · , vm. Moreover,
the rolling curve α2 satisfies

R2α2 = p0. (4.6)

For our purpose, we assume that the development curve α2 coincides with α1.
According to the symmetric property of rolling in Section 2, N rolls upon S2

with rolling map X2 = (R2,−R2
>s2), rolling curve α1 ∈ N and development

curve α2 ∈ S2.

• Rolling S1 over S2:
Applying now the transitive property of rolling in Section 2, with M1 = S1,

M2 = N and M3 = S2, we conclude the following: S1 rolls upon S2 with
rolling map X3 = X2

−1 ◦X1 = (R2
>R1, R2

>(s1 − s2)), rolling curve α1 ∈ S1

and development curve α2 ∈ S2, so that

X3(α1) = α2. (4.7)

We now show that, under the assumption

α2 = α1, (4.8)

the matrices A1 and A2 in (4.3) and (4.5) respectively, are related through

A2 = −ρ1

ρ2
A1. (4.9)



SPHERE ROLLING ON SPHERE - KINEMATICS AND CONTROLLABILITY 9

This is a consequence of the following simple calculations, where the conditions
(4.4) and (4.6) are used.

X3(α1) = α2

⇔ R2
>R1α1 +R2

>(s1 − s2) = α2

⇔ R2
>R1α1 +R2

>(s1 − s2) = R2
>p0

⇔ R1α1 + s1 − s2 = p0

⇔ R1α +R1τ + s1 − s2 = p0

⇔ p0 − τ +R1τ + s1 − s2 = p0

⇔ s1 − s2 = τ −R1τ.

Consequently,

ṡ2 − ṡ1 = Ṙ1τ = A1R1τ. (4.10)

On the other hand, using the kinematic equations (4.3) and (4.5), we have

ṡ2 − ṡ1 = −A2p0 + A1q0 + A1R1τ, (4.11)

and by comparison of (4.10) and (4.11), it follows that

A1q0 = A2p0. (4.12)

Finally, the relationship A2 = ρ1
ρ2
A1 follows from here, taking into account

the particular structure of the matrices A1 and A2 and the fact that p0 =
(0 · · · , 0,−ρ2)

> and q0 = (0 · · · , 0, ρ1)
>. In conclusion, we may state the

following.

Theorem 4.1. Suppose that S1 starts rolling over S2 without slip or twist along
a curve α1 satisfying α1(0) = p0. Then, the corresponding rolling map is given
by

X3 = (R2
>R1, R2

>(s1 − s2)),
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where s1, s2, R1 and R2 are the solutions of the following differential equations
ṡ1 = −U(t)(p0 − τ +R1τ)
ṡ2 = −U(t)q0

Ṙ1 = +U(t)R1

Ṙ2 = −ρ1
ρ2
U(t)R2

, (4.13)

where

U(t) =

[
0 u(t)

−u>(t) 0

]
, (4.14)

for some vector function u depending on the rolling curve α1. Moreover, along
the rolling motion, the point of contact p0 traces out the curve α2 = R2

>p0 on
S2.

It is straight forward to conclude from the above relations that u(t) = − 1
ρ1
α̇1.

Clearly u is a constant function if and only if α1 is a geodesic on N . It is well
known (Sharpe [12]) that the development of a geodesic curve is a geodesic.
So, the case when u is constant corresponds to the situation when the rolling
curve α1 is a geodesic on S1 and, consequently, its development α2 is also a
geodesic on S2.
With appropriate changes in notation, the equations (4.13) are in accordance

with Proposition 2.3 in [8].

4.2. A sphere rolling on the inside of another sphere. Now consider
two spheres of the same dimension n − 1, embedded in the Euclidean space
Rn, S1 with radius ρ1 and S2 with radius ρ2 > ρ1. Suppose that the sphere
S2 is centered at the origin and is stationary. Assume that S1 is centered at
the point c = (0, · · · , 0,−(ρ2 − ρ1))

>, so that at time t = 0 it is tangent to
S2 at the south pole of S2, p0 = (0, · · · , 0,−ρ2)

>, (which also coincides with
the south pole of S1). Assume now that S1 starts rolling inside S2, along a
piecewise smooth curve α, satisfying α(0) = p0.
This situation is similar to the previous. It is enough to replace q0 by

(0, · · · , 0,−ρ1)
> and τ by (0, · · · , 0,−(ρ2 − ρ1))

>.

5. Constructive proof of controllability
Consider again a sphere rolling on the outside of another sphere, as in Sec-

tion 4.1. As before, the initial point of contact is p0.
When n = 3, the spheres are two-dimensional and when S1 rolls over S2 with-

out twisting or slipping, the no-twist condition prevents rotations of S1 about
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the axis 0p0 (twists at p0), while the no-slip condition forbids slipping motions
which may be thought of as transport of S1 over a geodesic or as rotations of
S1 about an axis through the center of S2 (the origin) and perpendicular to
0p0 (these we term slips from p0).
It is well known that the system is controllable when the spheres have unequal

radii. We prove that result by constructing motions that achieve the effects of
twists and slips by means of rolling, in the spirit of [9]. This is first done for
the case n = 3, in Section 5.2. In Section 5.3, we define the higher-dimensional
analogues of twists and slips, show how to synthesize them using rolling motions
and finally establish that those constructions suffice for controllabilty.
An Euclidean transformation (R, s) ∈ SEn is constructible if we can exhibit

a rolling motion X (t) such that X (T ) = (R, s) at some T > 0. Our goal is
to show that all twists and all slips are constructible. We will do so using only
piecewise constant control functions.
It will also be convenient to re-parametrize system (4.13) so that t is arclength

of the rolling and development curves. For ease of notation, we will henceforth
assume ρ2 = 1. There is also no loss in assuming ρ1 < 1, and we put γ = ρ1.
Then 

d
dt (s1 − s2) = − 1

γU(t)R1τ
dR1

dt = + 1
γU(t)R1

dR2

dt = −U(t)R2

. (5.1)

5.1. Piecewise constant controls. As remarked at the end of Section 4.1,
the control function U (t) is piecewise constant iff both the rolling and the de-
velopment are piecewise geodesics of their respective spheres. We now describe
such rolling motions by integrating (5.1) from (R1, s1) = (R2, s2) = (I, 0) at
t = 0.

Let α2 : [0, T ] 7→ S2 be a piecewise geodesic development curve starting at
p0. Given a partition t0 = 0 < t1 < · · · < tN = T of [0, T ], let Ii = (ti−1, ti),
τi = ti − ti−1. Choose a partition so that,

α2 (t) = e(t−ti−1)Vieτi−1Vi−1 · · · eτ1V1p0, ∀t ∈ Ii, 1 ≤ i ≤ N. (5.2)

Suppose t ∈ Ii for the remainder of the Subsection. From α2 = R>2 p0,

R2

(
t
)

=
(
eτi−1Vi−1 · · · eτ1V1

)−1
e−(t−ti−1)Vi,
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whence, from Ṙ2 = −UR2, the functions U (t) and V (t) are related by

U
(
t
)

= Ui =
(
eτi−1Vi−1 · · · eτ1V1

)−1
Vi
(
eτi−1Vi−1 · · · eτ1V1

)
. (5.3)

We note that, for each k = 1, . . . , N ,

eτkVk · · · eτ1V1 = eτ1U1 · · · eτkUk. (5.4)
We make explicit the induction step in checking the previous formula

eτk+1Vk+1
(
eτkVk · · · eτ1V1

)
=
((
eτkVk · · · eτ1V1

)
eτk+1Uk+1

(
eτkVk · · · eτ1V1

)−1
) (
eτkVk · · · eτ1V1

)
=
(
eτ1U1 · · · eτkUk

)
eτk+1Uk+1.

Combining (5.3) followed by (5.4), we get

Vi =
(
eτi−1Vi−1 · · · eτ1V1

)
Ui
(
eτi−1Vi−1 · · · eτ1V1

)−1
.

=
(
eτ1U1 · · · eτi−1Ui−1

)
Ui
(
eτ1U1 · · · eτi−1Ui−1

)−1
.

From Ṙ1 = 1
γUR1 and the fact that U (t) is piecewise constant,

R1

(
t
)

= e
1
γ(t−ti−1)Uie

τi−1
γ Ui−1 · · · e

τ1
γ U1.

Finally, from d
dt (s1 − s2) = − 1

γUR1τ = − d
dt (R1) τ we have

(s1 − s2) (t) = (I −R1 (t)) τ.

Remark 1. Uip0 is the pullback of Viα2 along α2.

5.2. The case n=3, main results. Choose coordinates so that the initial
point of contact of the spheres is p0 = (0, 0, 1). Then q0 = (0, 0,−ρ1), and
τ = p0 − q0 = (0, 0, 1 + ρ1).
Letting, as in Section 3, Aij = eie

>
j − eje>i , we now define the 3× 3 matrices

Ay := A13, Ax := A23, Az := A12

and also
A (θ) := Ay cos θ + Ax sin θ. (5.5)

Note that d
dt

∣∣
t=0

(
etA(θ)p0

)
= (cos θ, sin θ, 0), so that geometrically the rotation

matrix etA(θ) moves the north pole p0 in the direction with angle θ in the tangent
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space to S2 at p0, identified with the the xy-plane. With the above choices, a
twist at p0 is

(
eαAz , 0

)
and a slip from p0 is

(
etA(θ), 0

)
.

If a constant control

U =

 0 0 u1

0 0 u2

−u1 −u2 0


has norm one (u2

1 + u2
2 = 1), then U = A (θ) for some θ. Moreover, e2πU = I,

as can be seen from (5.18) in the Auxiliary results.

Remark 5.1. Let α2 be a piecewise constant development as in (5.2), with
Ui = A (θi) for each i. Then α2 takes a left turn (as seen from the outside of
S2) with internal angle ∆θ at α2 (ti) iff

θi+1 = π + θi −∆θ. (5.6)

The analogous formula for a right turn at the same point is θi+1 = π+θi+∆θ.

A half-tumble is a rolling motion of S1 over S2 corresponding to a geodesic
development with length πγ.
The development of a sequence of two half-tumbles is

α2 (t) =

{
etV1p0, t ∈ (0, γπ)

e(t−πγ)V2eπγV1p0, t ∈ (πγ, 2γπ)
.

Letting Ui = A (θi), i = 1, 2, relation (5.3) reads U1 = A (θ1) = V1

U2 = A (θ2) = e−πγV1V2e
πγV1.

Noting that τ1 = τ2 = πγ, the resulting rolling motions satisfy

R2 (2πγ) =
(
eπγV2eπγV1

)−1

=
(
eπγA(θ1)eπγA(θ2)

)−1

=e−πγA(θ2)e−πγA(θ1),

R1 (2πγ) =eπA(θ2)eπA(θ1),
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and so

R (2πγ) = eπγA(θ1)eπγA(θ2)eπA(θ2)eπA(θ1), (5.7)
(s1 − s2) (2πγ) = (I −R1 (2πγ)) τ,

=
(
I − eπA(θ2)eπA(θ1)

)
τ = 0,

s (2πγ) = RT
2 (s1 − s2) = 0. (5.8)

A tumble is a rolling motion of S1 over S2 corresponding to a geodesic develop-
ment of length 2πγ. This is a sequence of two half-tumbles with U = A (θ1) =
A (θ2). From the preceding discussion, R1 (2πγ) = I, R2 (2πγ) = e−2πγA(θ), so
that, at t = 2πγ,

(R, s) =
(
e2πγU , 0

)
.

A concatenation of n tumbles from p0 has development (5.2) with τi = 2πγ for
each i and thus satisfies (R (2πγn) , s (2πγn)) = (R, 0) where

R =
(
e2πγVn · · · e2πγV1, 0

)
=
(
e2πγU1 · · · e2πγUn, 0

)
. (5.9)

Proposition 5.1. When 0 < γ < 1
4 or 3

4 < γ < 1, any twist is constructible and
can be realized with finitely many sequences of four tumbles.

Proof : We first prove the Proposition for 0 < γ < 1
4 . Given α ∈ (0, π/2),

consider a spherical quadrangle [p0, A,B,C] on S2 with interior angle 2α at p0

and at the opposite vertex B and each of whose four arcs has length T = 2πγ.
Note that 0 < T < π/2. For definiteness, the vertices are labeled counter-
clockwise, as seen from the outside of S2 (See Figure 5.1).
We compute the angle β at A and C. The spherical triangle [p0, A,B] has

interior angles α, β, and again α at those vertices. Let W be the arc-angle of
p0B. By the law of sines of spherical trigonometry,

sinα

sinT
=

sin β

sinW
(5.10)

and by the law of cosines,

cosW = cos2 T + sin2 T cos β. (5.11)
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For convenience, put Γ = cos (T ), so that 0 < Γ < 1. Then cosW = Γ2 +(
1− Γ2

)
cos β. The previous relations imply

cos β =
Γ2 sin2 α− cos2 α

Γ2 sin2 α + cos2 α
, (5.12)

which uniquely defines β ∈ [0, π]. For later use, we rewrite these relations in
terms of η = 2α. Relation (5.12) becomes

cos β =
Γ2
(

1−cos η
2

)
−
(

1+cos η
2

)
Γ2
(

1−cos η
2

)
+
(

1+cos η
2

) =

(
Γ2 − 1

)
−
(
Γ2 + 1

)
cos η

(Γ2 + 1)− (Γ2 − 1) cos η
. (5.13)

and, because β, η ∈ (0, π),

sin β =
2Γ sin η

(Γ2 + 1)− (Γ2 − 1) cos η
. (5.14)

Note that, for fixed Γ, β (α,Γ) decreases from π to 0 as α increases from 0
to π/2. This is easily seen by considering

f (x) =
Γ2 −

(
Γ2 + 1

)
x

Γ2 − (Γ2 − 1)x
,

so that cos β = f
(
cos2 α

)
, and noting that f (1) = −1, f (0) = 1 and that

d
dα

(
f
(
cos2 α

))
< 0.

We consider the rolling motion with [p0,A,B,C, p0] as its development. We
describe this development in the form (5.2) for suitable A (θi) by repeatedly
applying (5.6). Let θ1 = α+ β. At vertex A, the internal angle must be β and
thus θ2 = π+ (α + β)− β = π+α. Likewise, the internal angle at B must be
2α, so θ3 = π + (π + α) − 2α = −α and the internal angle at C is β and so
θ4 = π + (−α)− β = π − α− β.
Recalling (5.9), at t = 4T the rolling motion is (R (4T ) , s (4T )) = (R, 0),

where

R =eTA(θ1)eTA(θ2)eTA(θ2)eTA(θ4)

=eTA(α+β)eTA(π+α)eTA(−α)eTA(π−α−β)

Using (5.20),
R = eTA(α+β)e−TA(α)eTA(−α)e−TA(−α−β).

We show in Lemma 5.5 that this last expression equals e−(4α+2β)Az , a twist at
p0, as required.



16 F. LOURO AND F. SILVA LEITE

x

y

Figure 5.1. Two instances of maneuvers described in Proposi-
tions 5.1 and 5.2, for 0 < γ < 1

4 , and then for 1
4 < γ < 1

2 . In either
case, the rolling is counter-clockwise from the north pole.

Lemma 5.9 ensures that, for Γ 6= 1, the range I of 4α+2β is never a singleton,
as α takes values in [0, π/2]. This establishes that finitely many tumbles suffice
to achieve any twist at p0. (The number of tumbles required may be computed
from I, which is made explicit in that Lemma.) We also remark that, as γ ↗ 1

4 ,
I does narrow to a singleton.

If 3
4 < γ < 1, we define a similar quadrangle as before, but now with T =

2π (1− γ). Consider a rolling motion (R, s) that traverses the same sequence
of points

(p0, A,B,C, p0)

but now moving from p0 to A along the larger portion (of length T̃ = 2π −
T ) of the great circle containing those points, and so on. Since eT̃A(θ+π) =
e−TA(θ+π) = eTA(θ), we have again

R
(

4T̃
)

= e−(4α+2β)Az .

Proposition 5.2. When 1
4 < γ < 1

2 or 1
2 < γ < 3

4 , any twist is constructible and
can be realized with finitely many sequences of four half-tumbles.

Proof : First we consider the case 1
4 < γ < 1

2 . Let γ̃ = γ
2 and define the same

quadrangle as in the previous Proposition, now with four arcs of length T =
2πγ̃ = πγ. The two left arcs are a development with θ1 = −α, θ2 = π−α+β.
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Using (5.8) and (5.7), the rolling motion from p0 along the two left arcs results
at t = 2T in (R12, 0), with

R12 = eTA(θ1)e(π+T )A(θ2)eπA(θ1)

= eTA(−α)e(π+T )A(π−α+β)eπA(−α).

Analogously, the two right arcs are a development with θ3 = α, θ4 = π+α−β
and at t = 2T , the rolling motion from p0 is (R34, 0)

R34 = eTA(θ3)e(π+T )A(θ4)eπA(θ3)

= eTA(α)e(π+T )A(π+α−β)eπA(α).

Therefore, the rolling motion around the closed curve is, at t = 4T ,

(R1234, s) =
(
R−1

34 , 0
)

(R12, 0) .

Using Lemma 5.8,

R1234 =
(
eπA(α)e−(π+T )A(π+α+β)e−TA(α)

)(
eTA(−α)e(π+T )A(π−α−β)eπA(−α)

)
= e(−4α+2β)Az .

The case 1
2 < γ < 3

4 may be handled in a way similar to the case 3
4 < γ < 1

at the end of proof of the previous Proposition.

Miming twists in the remaining cases is trivial. When γ = 1
4 or γ = 3

4 , it
is enough to consider a spherical triangle with a segment along the equator of
S2. When γ = 1

2 , it is enough to consider a spherical lune with the poles as
endpoints. Thus, we have:

Corollary 5.1. Any twist is constructible with finitely many half-tumbles.

Proposition 5.3. Any slip eWA(θ) from p0 = (0, 0, 1) with 0 < W < 2πγ is
constructible as a twist followed by two half-tumbles or two tumbles.

Proof : We may take θ = 0.
First we consider 0 < γ < 1

2 . We exhibit a slip as a twist followed by a
sequence of two tumbles. Consider a spherical triangle as in Figure 5.2 with
vertices p0, A, B, so that the arcs [p0, A] and [A,B] have length T = 2πγ
and the arc [B, p0] has length W . (In this construction, one may take any
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0 < W < 4πγ.) Let α be the common angle at p0 and B and let β the angle at
A. Again, from the laws of sines and cosines (5.10) and (5.11), but now solving
for α, β, and using F = sinT > 0, we get

cos β =
Γ2 − cos ξ

Γ2 − 1
and

cosα = ± Γ√
1− Γ2

√
1− cosW

1 + cosW
.

Again recalling Remark 5.1, [p0, A,B] is a piecewise geodesic development arc
with θ1 = −α, θ2 = π − α − β. The Proposition follows from equation (5.9)
and then Lemma 5.6:

R = eTA(−α)eTA(π−(α+β)) = eWAye(π−(2α+β))Az .

In the case 1
2 < γ < 1, we may proceed again by rolling along the same

sequence points, but using the larger portion of the great circles, as in the
previous Propositions.
If γ = 1

2 we show that a slip eWA(0) with 0 < W < π is achieved as a
twist e−WAz followed by two half-tumbles. Consider the same spherical triangle
as before, but now with two sides of equal length T = πγ = π/2. Then
Γ = cosT = 0, cos β = cosW , β=W, cosα=0, α = π

2 . The motion after two
half-tumbles is, according to (5.7), (R, 0) with

R = eTA(θ1)e(T+π)A(θ2)eπA(θ1).

Choosing θ1 = −α, θ2 = π − α− β = π − α−W , Lemma 5.8 provides

R = eβAye(π−2α+β)Az = eWAyeWAz ,

so that eWAy = Re−WAz , as required.

As a consequence of the preceding results, we have:

Corollary 5.2. Any slip is constructible.

5.3. The general case n ≥ 3. As in Section 4.1, let S1 and S2 be a (n− 1)-
spheres in Rn, of raddi 0 < ρ1 = γ < 1 and ρ2 = 1, centered at c and the
origin, respectively, and having p0 ∈ S1 ∩ S2 as the unique point of contact, so
that c = (1 + γ) p0.
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Figure 5.2. Achieving a slip.

Let L = span {p0}. A twist at p0 is (exp (M) , 0) ∈ SEn, whereM ∈ son and
Mp0 = 0. A slip from p0 is (exp (N) , 0) ∈ SEn with N ∈ son, N (L) ⊂ L⊥,
and N

(
L>
)
⊂ L.

In an orthogonal basis so that p0 = (0, . . . , 0, 1) ∈ Rn, the requirements are
simply that

M =

[
M̃ 0
0 0

]
, N =

[
0 b
−b> 0

]
, (5.15)

with M̃(n−1)×(n−1) skew-symmetric. (Having fixed a basis, we identify son with
a matrix subspace.)
We now show that these general twists and slips are constructible, in the

sense defined in the introduction to this Section.

Proposition 5.4. If X = (expM, 0) is a twist at p0, then there is a rolling
motion X : [0, T ]→ SEn such that X (T ) = X.

Proof : A Givens rotation is a matrix of the form exp (tAij), where the Aij are
elementary skew-symmetric matrices, as defined in Section 3. Let M̃ be the
block of M indicated in (5.15). It is well known that there is a constructive
procedure to write exp M̃ as a finite product of Givens rotations [3]. In order
to obtain each twist

(
etAij , 0

)
, it is enough to perform the maneuvers of the

previous Section using only the control input entries ui and uj.

Proposition 5.5. If X = (exp (N) , 0) is a slip from p0, then there is a rolling
motion X : [0, T ]→ SEn such that X (T ) = X.
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Proof : We use the same basis as in the preceding proof, and let b be defined by
the second equality in (5.15). We claim that there are n−1 twists (exp (Mi) , 0)
at p0, 2 ≤ i ≤ n, for which, putting

Kn = exp (Mn) · · · exp (M2) , (5.16)

and p = (0, . . . , 0, t) ∈ Rn−1, one can write

N =

[
0 b
−b> 0

]
= Kn

[
0 p
−p> 0

]
K−1
n .

We check this claim by induction on the dimension n ≥ 2. The base case

N =

[
0 b
−b 0

]
= exp (M2)

[
0 p
−p> 0

]
exp (−M2)

holds with M2 = 0 and t = b. For the step, suppose the dimension is n + 1.
Given b ∈ Rn, choose a twist (expMn+1, 0),

Mn+1 =

[
M̃n+1 0

0 0

]
,

such that
exp

(
M̃n+1

)
b = c = [0, c2, . . . , cn]

> = [0|c̃]> .

By the induction hypothesis, there is a finite product Kn as in (5.16) for which[
0 c
−c> 0

]
= Sn

[
0 p
−p> 0

]
S−1
n

and now we check

exp (Mn+1)Kn

[
0 p
−p> 0

]
K−1
n exp (−Mn+1)

=

[
exp M̃n+1 0

0 1

] [
0 c
−c> 0

][
exp

(
−M̃n+1

)
0

0 1

]

=

[
0 b
−c> 0

] [
exp

(
−M̃n+1

)
0

0 1

]
=

[
0 b
−b> 0

]
,

as required.
The slip (

exp

[
0 p
−p> 0

]
, 0

)
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corresponds to the slip
(
etAx, 0

)
with respect to the last three variables and is

therefore constructible, as shown in Section 5.2. From Proposition 5.4, all of
the twists (exp (Mi) , 0) are constructible and therefore so is the slip (expN, 0).

Now we recover the well-known result that the system consisting of S1 rolling
outside S2 is fully controllable whenever the radii of those spheres are not equal.
If M1 and M2 are m-dimensional submanifolds of Euclidean space Rn, then,
following Sharpe [12], we may take for the space of configurations as M1 rolls
over M2 the space

Ω (M1,M2) = {(x1, A, x2) ⊂M1 × SOn×M2 : ATx1M1 = Tx2M2} .

Remark 5.2. Alternatively, the space of configurations can be defined by iden-
tifying points of {(R1, s1, R2, s2) ∈ SOn×Rn × SOn×Rn} in an obvious way.

Let I = [0, T ] and ω0 = (x1, A, x2) ∈ Ω (M1,M2). A piecewise smooth
rolling curve α1 : I → M1 with α1 (0) = x1 defines a rolling motion X =
(R, s) : I → SEn with X (0) = (A, x1 − x2) and thus also a development curve
α2 : I → M2 by α2 (t) = R (t)α1 (t) + s (t). In this way, each such α1 lifts to
a path ω : I → Ω (M1,M2) by ω (t) = (α1 (t) , R (t) , α2 (t)) and we say that
ω (T ) is reachable from ω (0) = ω0 in Ω (M1,M2).

Remark 5.3. For each ξ ∈ SEn there is an obvious bijection φξ : Ω (ξM1,M2)→
Ω (M1,M2), namely φξ (x1, A, x2) =

(
ξ−1x1, A ◦ ξ, x2

)
, and it is clear that ω1 is

reachable from ω0 in Ω (ξM1,M2) iff φξω1 is reachable from φξω0 in Ω (M1,M2).

WhenM1 andM2 are oriented hypersurfaces of the ambient space, Ω (M1,M2)
is partitioned into two subsets, corresponding to M1 rolling on one of the sides
of M2. Since

Tx1S1 = {w ∈ Rn : 〈w, x1 − c〉 = 0} and Tx2S2 = {w ∈ Rn : 〈w, x2〉 = 0} ,
we conclude that Ω (S1, S2) = Ω−1 ∪ Ω1, where

Ωσ = {(q, A, p) ⊂ S1 × SOn × S2 : A (q − c) = σγp} .
The configurations in Ω−1 correspond to S1 rolling on the outside of S2, and
we write Ω := Ω−1. With these definitions, ω0 = (p0, I, p0) ∈ Ω, as may easily
be checked:

A (p0 − c) = A (p0 − (1 + γ) p0) = A (−γp0) = −γp0.
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Proposition 5.6. Given ω0, ω1 ∈ Ω (S1, S2), ω1 is reachable from ω0.

Proof : Since the rolling system is reversible, it is enough to show that ω0 =
(p0, I, p0) is reachable from any ω1 = (p1, A, p2) ∈ Ω (S1, S2). Remark 5.3
is implicitly invoked at each step. Let p0 = eTU for some T > 0, U ∈ son.
By rolling with constant input U , we reach a state (p̂1, ∗, p0). By a slip at
p̂1, a configuration

(
p0, Â, p0

)
is reached with Â (p0 − c) = −γp0, that is

Â (p0) = p0. Finally, a twist at p0 allows us to reach (p0, I, p0).

5.4. Appendix - Auxiliary results.

Remark 5.4. We suppose throughout this Section that α, β are the angles and
T ,W are the arclengths of the sides of an isosceles spherical triangle in the unit
sphere of Euclidean 3-space and thus those quantities satisfy relations (5.10)
and (5.11).

The first Lemma concerns spherical trigonometry.

Lemma 5.1. If α, β, W ,T are related as above, then

cosT sinT (1− cos β) = sinW cosα.

Proof : Using (5.10) and then (5.13) and (5.14), we reduce the goal to

cosT sinT (2 + 2 cos (2α)) =
cosα sinT

sinα
· 2 cosT sin (2α) ,

which is readily verified.

In this Section, we use the notation A (θ) introduced earlier in (5.5) for
rotations in 3-space. Some of the results below may be geometrically obvious,
but their proofs are included for the sake of completeness.

Lemma 5.2. The general equality holds:

etA(θ) = e−σAzetA(θ−σ)eσAz , (5.17)

and thus also the special cases σ = θ

etA(θ) = e−θAzetAyeθAz , (5.18)

and the further particularization σ = θ = π

eπAze−tAy = etAyeπAz . (5.19)
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Proof : We prove (5.17). Fix σ and θ. Equality holds at t = 0. The left side
obeys Ẋ = A (θ)X. As for the right side,

d

dt

(
e−σAzetA(θ−σ)eσAz

)
=
(
e−σAzA (θ − σ) eσAz

) (
e−σAzetA(θ−σ)eσAz

)
,

so it remains only to verify e−σAzA (θ − σ) eσAz = A (θ) , that is

e−σAzA (θ − σ) = A (θ) e−σAz ,

which is  cosσ − sinσ 0
sinσ cosσ 0

0 0 1

 0 0 cos (θ − σ)
0 0 sin (θ − σ)

− cos (θ − σ) − sin (θ − σ) 1

 .
=

 0 0 cos θ
0 0 sin θ

− cos θ − sin θ 1

 cosσ − sinσ 0
sinσ cosσ 0

0 0 1

 .
Both sides equal  0 0 cos θ

0 0 sin θ
− cos (θ − σ) − sin (θ − σ) 1


and the Lemma is proved.

From (5.19), we derive the geometrically clear fact

etA(π+θ) = e−θAze−πAzetAyeπAzeθAz = e−tA(θ), (5.20)

Lemma 5.3. For every n ≥ 1 and numbers θi, ti, σ the following are equivalent:

et1A(θ1) · · · etnA(θn) = et0Az ,

and
et1A(θ1+σ) · · · etnA(θn+σ) = et0Az .

Proof : This is an easy consequence of (5.17).

The following is a core technical result.

Lemma 5.4. If α, β, T are related as in Remark 5.4, then

e2αAzeTAyeβAze−TAye2αAzeTAyeβAze−TAy = I. (5.21)
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Proof : PuttingM = e2αAzeTAy and N = eβAze−TAy , this last equation becomes

(MN)2 = I.

Since each of M,N,P = MN is orthogonal, it is enough to show that MN =
(MN)>. This we accomplish by straightforward, but tedious, computations.
For conciseness, write η = 2α. Then

M =

 cos η cosT sin η cos η sinT
− sin η cosT cos η − sin η sinT
− sinT 0 cosT

 ,
and

N =

 cos β cosT sin β − cos β sinT
− sin β cosT cos β sin β sinT

sinT 0 cosT

 ,
and P = MN is symmetric iff the following three equations hold: P12 = P21,
P13 = P31, P23 = P32, which are, in full,

cos η cosT sin β + sin η cos β + 0

= − sin η cos β cos2 T − cos η sin β cosT − sin η sin2 T, (5.22)

and

cos η cosT cos β sinT − sin η sin β sinT − cos η sinT cosT (5.23)
= sinT cos β cosT + 0− cosT sinT,

and

− sin η cosT cos β sinT − cos η sin β sinT + sin η sinT cosT (5.24)
= sinT sin β + 0 + 0.

Now, recalling that Γ = cosT and relations (5.13) and (5.14), the first equation
(5.22) becomes,

cos β sin η
(
1 + Γ2

)
+ 4Γ sin β cos η +

(
1− Γ2

)
sin η = 0.

After diving through by sin η, we obtain((
Γ2 − 1

)
−
(
Γ2 + 1

)
cos η

) (
1 + Γ2

)
+ 4Γ2 cos η

+
(
1− Γ2

) ((
Γ2 + 1

)
−
(
Γ2 − 1

)
cos η

)
= 0
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and thus (
−
(
Γ2 + 1

)2
+
(
Γ2 − 1

)2
)

cos η + 4Γ2 cos η = 0.

Similarly, the second equation (5.23), divided by sinT ,

Γ cos β cos η = sin β sin η + Γ cos η + Γ cos β − Γ

and again, dividing by Γ,((
Γ2 − 1

)
−
(
Γ2 + 1

)
cos η

)
(cos η − 1)

= 2 sin2 η + (cos η − 1)
((

Γ2 + 1
)
−
(
Γ2 − 1

)
cos η

)
and so

cos2 η
(
−
(
Γ2 + 1

)
+
(
Γ2 − 1

))
− 2 sin2 η

+ cos η
((

1 + Γ2
)

+
(
Γ2 − 1

)
−
(
Γ2 + 1

)
−
(
Γ2 − 1

))
=
(
Γ2 − 1

)
−
(
Γ2 + 1

)
.

Finally, for the third equation (5.24), dividing through by sinT ,

−Γ sin η cos β − cos η sin β + Γ sin η = sin β

and so

− Γ
((

Γ2 − 1
)
−
(
Γ2 + 1

)
cos η

)
sin η − 2Γ sin η cos η

+ Γ
((

Γ2 + 1
)
−
(
Γ2 − 1

)
cos η

)
sin η = 2Γ sin η.

The next result is used to compute a four-tumble sequence and will be used
as a stepping stone to obtain more general results.

Lemma 5.5. If α, β, T are related as in Remark 5.4, then

eTA(α+β)e−TA(α)eTA(−α)e−TA(−α−β) = e−(4α+2β)Az . (5.25)

Proof : Repeatedly use (5.18) to rewrite the left-hand side of (5.25) as

eTA(α+β)e−TA(α)eTA(−α)e−TA(−α−β)

=
(
e−(α+β)AzeTAye(α+β)Az

) (
e−αAze−TAyeαAz

)
(
eαAzeTAye−αAz

) (
e(α+β)Aze−TAye−(α+β)Az

)
= e−(α+β)Az

(
eTAyeβAze−TAye2αAzeTAyeβAze−TAy

)
e−(α+β)Az
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thus reducing (5.25) to

eTAyeβAze−TAye2αAzeTAyeβAze−TAy = e−2αAz ,

which is proved in Lemma 5.4.

The next result is used to compute a two-tumble sequence.

Lemma 5.6. If α, β, T,W are related as in Remark 5.4, then

eTA(α)e−TA(α+β) = eWAye(π+(2α+β))Az .

and
eTA(−α)e−TA(−(α+β)) = eWAye(π−(2α+β))Az

Proof : We check the first equation. First note that e−WAyeTA(α)e−TA(α+β)

leaves invariant the line spanned by (0, 0, 1). This is geometrically clear, and
may be shown by direct computation. Expand

e−WAyeTA(α)e−TA(α+β)

=e−WAy
(
e−αAzeTAyeαAz

) (
e−(α+β)Aze−TAye(α+β)Az

)
=e−WAye−αAzeTAye−βAze−TAye(α+β)Az ,

and then check that eTAye−βAze−TAye(α+β)Az and eαAzeWAy take (0, 0, 1)⊥ to,
respectively, − cosT sinT cos β + sinT cosT

− sin β sinT
sin2 T cos β + cos2 T

 and

 sinW cosα
− sinα sinW

cosW

,
which are equal by Lemma 5.1 and the laws of sines (5.10) and cosines (5.11).
Therefore,

e−WAyeTA(α)e−TA(α+β) = e−χAz (5.26)
for some χ, and thus

eTA(α+β)e−TA(α)eWAy = eχAz . (5.27)

By symmetry with respect to the yz−plane, equation (5.26) becomes

e−WAyeTA(−α)e−TA(−(α+β)) = eχAz . (5.28)
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Combining equations (5.27) and (5.28) we get(
eTA(α+β)e−TA(α)

)(
eTA(−α)e−TA(−(α+β))

)
= e2χAz .

By Lemma 5.5, 2χ = − (4α + 2β). When α = 0, β = π, W = 2T , we must
have χ = 0 and therefore, by continuity, χ = π−(2α + β). The second claimed
equation is obtained from the first by symmetry with respect to the yz−plane.

The following is used to achieve a slip under certain conditions.

Lemma 5.7. If β = W and α = T = π
2 , then

eTA(−α)e(π+T )A(π−α−β)eπA(−α) = eWAye(π−2α+β)Az .

Remark 5.5. More generally, the formula in the previous Lemma holds when-
ever α, β, T , W are related as in Remark 5.4, as does the analogous

eTA(α)e(π+T )A(π+α+β)eπA(α) = eWAye(π+2α−β)Az ,

though we make no use of these more general results.

Proof : We are to show that

e
π
2A(−π2 )e

3
2πA(π2−β)eπA(−π2 ) = eβAyeβAz .

The right-hand-side is cos β 0 sin β
0 1 0

− sin β 0 cos β

 cos β sin β 0
− sin β cos β 0

0 0 1

 =

 cos2 β sin β cos β sin β
− sin β cos β 0

− sin β cos β − sin2 β cos β

 .
Relation (5.17) with σ = −β results in

e−
π
2A(π2−β) = eβAze−

π
2A(π2 )e−βAz = eβAze−

π
2Axe−βAz

and, from (5.20),
e
π
2A(−π2 ) = e−

π
2A(π2 ) = e−

π
2Ax

and
eπA(−π2 ) = e−πA(π2 ) = eπAx.

Then the left-hand-side of the goal becomes

e−
π
2Ax
(
eβAze−

π
2Axe−βAz

)
eπAx.
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We compute this matrix explicitly: 1 0 0
0 0 −1
0 1 0

 cos β sin β 0
− sin β cos β 0

0 0 1

 1 0 0
0 0 −1
0 1 0

 cos β − sin β 0
sin β cos β 0

0 0 1

 1 0 0
0 −1 0
0 0 −1


=

 cos β sin β 0
0 0 −1

− sin β cos β 0

 cos β sin β 0
0 0 1

sin β − cos β 0

 =

 cos2 β sin β cos β sin β
− sin β cos β 0

− sin β cos β − sin2 β cos β

 .

The next result is used to compute a sequence of four half-tumbles.

Lemma 5.8. If α, β, T,W are related as in Remark 5.4, then

eπA(α)e−(π+T )A(π+α+β)e−TA(α)eTA(−α)e(π+T )A(π−α−β)eπA(−α) = e(−4α+2β)Az .

Proof : Relation (5.20) allows us to rewrite the goal as

eπA(α)e(π+T )A(α+β)e−TA(α)eTA(−α)e−(π+T )A(−α−β)eπA(−α) = e(−4α+2β)Az

and then Lemma 5.5 alllows the further reduction to

eπA(α)eπA(α+β)e−(4α+2β)Aze−πA(−α−β)eπA(−α) = e(−4α+2β)Az .

As in the proof of that Lemma, use repeatedly equality (5.18) to rewrite this
last equation as(

e−αAzeπAyeαAz
) (
e−(α+β)AzeπAye(α+β)Az

)
e−(4α+2β)Az

·
(
e(α+β)AzeπAye−(α+β)Az

) (
eαAzeπAye−αAz

)
= e(−4α+2β)Az ,

which simplifies to

eπAye−βAzeπAye−2αAzeπAye−βAz = e(−2α+2β)Az .

Finally, relation (5.19) easily shows this last equation to be true.

The final result gives bounds for the magnitude of certain twists.

Lemma 5.9. If α, β, T are related as in Remark 5.4, then for any fixed T ∈
(0, π/2), as α takes values in (0, π/2), the range of 2α+ β is the interval with
endpoints 2 arccos

(
cosT−1
cosT+1

)
and π.
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Proof : As in relations (5.13) and (5.14), let η = 2α and Γ = cosT . We are to
determine the range of

F (η) = η + β = η + arccos (f (cos η)) ,

with

f (x) =

(
Γ2 − 1

)
−
(
Γ2 + 1

)
x

(Γ2 + 1)− (Γ2 − 1)x
.

As noted before, F (0) = F (π) = π. Now compute the interior extrema of F
by straightforward differentiation,

F ′ (η) = 1− 1√
1− f 2 (cosx)

f ′ (cos η) (− sin η)

= 1 + f ′ (cos η)

= 1− 4Γ2

((Γ2 + 1)− (Γ2 − 1) cos η)2 = 0

iff (
Γ2 + 1

)
−
(
Γ2 − 1

)
cos η = 2Γ

and thus the unique interior extremum of F occurs at η∗ such that cos η∗ = Γ−1
Γ+1

with image

F (η∗) = η∗ + arccos

(
f

(
Γ− 1

Γ + 1

))
= .

= η∗ + arccos

(
Γ− 1

Γ + 1

)
= 2 arccos

(
Γ− 1

Γ + 1

)
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