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WHY CONTROLLABILITY OF ROLLING MAY FAIL:
A FEW ILLUSTRATIVE EXAMPLES

KRZYSZTOF ANDRZEJ KRAKOWSKI AND FÁTIMA SILVA LEITE

Abstract: We derive a distribution for a rolling map of a smooth surface in Rn
rolling, without slip and twist, on its affine tangent space at a point. Sufficient
conditions for local controllability are related to Gaussian curvature of the surface.
Examples in R3 illustrate where these conditions may fail. We also derive the
kinematic equations for an ellipsoid rolling on its affine tangent space at a point.

1. Introduction
It is well known that in Euclidean space a sphere rolling on its tangent

affine space is globally controllable, cf. [20]. A constructive proof of this fact
can be found in [6]. Recent studies consider rolling in Riemannian [7] and in
pseudo-Riemannian spaces. Notably, the case of rolling in a space endowed
with Lorentzian metric has been considered in [13]. It is shown there that
rolling a sphere in this space is controllable.

What about other surfaces than a sphere? What are the necessary condi-
tions a surface must satisfy so the rolling, without slip and twist, on its affine
tangent space (a hyperplane) is controllable? In this note we review two sim-
ple cases of 2-dimensional surfaces, the unit sphere and a cylinder, in R3 and
point out why the conditions for local controllability may fail. These two ex-
amples are easy to study because the two manifolds both have constant, yet
different, Gaussian curvatures. A calculation is guided by an intuition, and
the intuition is confirmed, the cylinder is not locally controllable, because
one direction of rolling is impossible to achieve. This is the case in general:
local controllability fails at the points where Gaussian curvature vanishes.

The paper is organised as follows. The definition of a rolling map appears
in Section 2. Here we also unravel some properties of rolling without slip
or twist and revisit the classical, simple, and intuitive example of the unit
sphere rolling on a hyperplane. To study rolling maps in more detail it may
be necessary to review a few geometric operations that are relevant in this
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paper. This is done in Section 3 where the first and the second fundamen-
tal forms, the Weingarten map, and Gaussian curvature are described. A
standard configuration space and a distribution on it, for the rolling map,
are presented in Section 4. The equations that define these spaces are then
used in Section 5 to compare rolling a sphere and a cylinder in R3. Impli-
cations to controllability are discussed in Section 6. In particular, we prove
sufficient conditions for local controllability of rolling a surface on its affine
tangent space in Section 7. In addition, the kinematic equations for rolling
an ellipsoid are presented in Section 8. Future directions of our research are
given in Section 9.

2. Rolling Maps
The operation of rolling a surface on another surface appeared in the liter-

ature as early as in 1919 (Paul Appell, “Traité de Mécanique Rationnelle”).
Later on a modern treatment of rolling without slip and twist was investi-
gated by Nomizu [15]. Geometric definition of a rolling map in Euclidean
space is given in [17] and its definition in a more general Riemannian frame-
work appeared in [7]. In the previous situations, the rolling manifolds are as-
sumed to be embedded in a bigger manifold. A somewhat different approach,
where the embedding is not assumed, is the intrinsic rolling of Riemannian
manifolds studied in [4].

The rolling map serves as an example of motions in classical mechanics.
Such motions have holonomic constraints imposed by rolling and also by
additional “no-slip” and “no-twist” conditions impose the non-holonomic
constraints. Another interesting approach is taken by Rojo and Bloch in
[16], who make use of the isomorphism between the rolling map of the unit
sphere and the precession of a 1/2 spin in the presence of a time dependant
magnetic field. Thus the results of quantum physics make their way to study
rolling!

To start our discussion we give the general definition of a rolling map now.
The definition is followed by its interpretation and properties. Throughout
this paper it is assumed that all manifolds are connected and orientable.

2.1. Definition

Let Isom(M) denote the group of isometries on M. It is known that
Isom(M) is a Lie group, whose maximal dimension is equal to m(m + 1)/2
whenever M is isometric to Rm, m-sphere Sm, real projective space RP(m)
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or a hyperbolic space Hm, cf. [11]. In other words, the four above spaces are
maximally symmetric.

M1
V ′

U ′
q

χ(t)(M1)

χ(t)(q) = p V

U
M0

σ0

χ(t)

χ∗(t)

Figure 1. Manifold M1 is rolling on M0 along the developing
curve σ0 and the pull-back χ∗ of the rolling map

Let I ⊂ R denote a closed interval.

Definition 1 (rolling map). Let M0 and M1 be two n-manifolds isometrically
embedded in an m-dimensional Riemannian manifold M and σ1: I → M1 a
piecewise smooth curve in M1. A rolling of M1 on M0 along the curve σ1,
without slipping or twisting, is a map χ: I → Isom(M) satisfying the following
conditions:

rolling: for all t ∈ I:
(a) χ(t)(σ1(t)) ∈M0, and
(b) Tχ(t)(σ1(t))(χ(t)(M1)) = Tχ(t)(σ1(t))M0;

the curve σ0: I → M0 defined by σ0(t)
def
= χ(t)(σ1(t)) is called the

development curve of σ1;
no-slip: σ̇0(t) = χ(t)∗(σ̇1(t)), for almost all t ∈ I, where χ∗ is the

push-forward of χ and χ(t)∗: TM→ TM;
no-twist: two complementary conditions, for almost all t ∈ I:

tangential : (χ̇(t) ◦ χ(t)−1)∗(Tσ0(t)M0) ⊂
(
Tσ0(t)M0

)⊥
;

normal : (χ̇(t) ◦ χ(t)−1)∗(Tσ0(t)M
⊥
0 ) ⊂ Tσ0(t)M0.
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Remark 2. The above “rolling” conditions imply that at each point of con-
tact, both manifolds, M0 and χ(t)(M1), have the same tangent space. This
is identified as a subspace of the tangent space of M at the specified point. f

Remark 3. The “no-slip” condition in Definition 1 is equivalent to

χ̇(t)(σ1(t)) = (χ̇(t) ◦ χ−1(t))(σ0(t)) = 0. (1)

That is, the infinitesimal transformation χ̇(t)◦χ−1(t): M→ TM maps σ0(t)
to the zero vector (the origin of the tangent space Tσ0(t)M). f

Remark 4. It is not apparent from the definition of rolling that operation
(χ̇(t) ◦ χ(t)−1)∗ is well defined. It turns out that (χ̇(t) ◦ χ(t)−1)∗ is equal
to the covariant derivative along curve χ(t)(σ1(t0)) in the ambient space M,
cf. [7]. Therefore, its image is confined to the tangent bundle TM. f

Remark 5. If the “non-twist” conditions are satisfied, then in suitable coor-
dinates in a neighbourhood of p ∈ σ0(I) ⊂M0 we may choose an orthonormal

basis in TpM = TpM0⊕ (TpM0)
⊥ so that the operator

(
χ̇ ◦ χ−1

)
∗ has a ma-

trix representation of the following form(
χ̇(t) ◦ χ(t)−1

)
∗ (p) =

[
0 Xn×r

Yr×n 0

]
, where n+ r = m. (2)

f

In the Euclidean case, when the ambient space M = Rm, the group of
orientation preserving isometries Isom(Rm) is the Euclidean group of motions
SE(m) = SO(m) n Rm, the semi-direct product of the special orthogonal
group SO(m) and Rm. An element χ(t) of SE(m) will be denoted by the
pair (R(t), s(t)), where R(t) ∈ SO(m) is an orthogonal matrix describing
rotations and s(t) ∈ Rm is a vector describing translations. SE(m) acts on
Rm in the usual way

(R, s):Rm → Rm,
p 7→ Rp+ s.

(3)

The group operations on SE(m) are defined as follows

(R1, s1) ◦ (R2, s2) = (R1 ·R2, R1s2 + s1) and

(R, s)−1 = (R−1,−R−1 s).

Note that in Euclidean case the push-forward
(
χ̇ ◦ χ−1

)
∗ can be represented

by a skew-symmetric matrix

(χ̇(t) ◦ χ(t)−1)∗ = χ̇∗(t) ◦ χ∗(t)−1 = Ṙ(t)RT(t) ∈ so(m),
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where so(m) is the Lie algebra of SO(m). Because this operation plays an

essential role in our approach we denote it by the matrix A(t)
def
= Ṙ(t)RT(t).

Now equation (1) reads

0 = (Ṙ, ṡ) ◦ (RT,−RT s)(σ0) = (ṘRT,−ṘRT s+ ṡ)(σ0)

= (A,−A s+ ṡ)(σ0) = Aσ0 −A s+ ṡ = A (σ0 − s) + ṡ.

The above calculations show that the “no-slip” condition has an equivalent
formulation as

A(t)(σ0(t)− s(t)) = −ṡ(t). (4)

Also, the tangential and normal parts of the “no-twist” condition may be
now rewritten, respectively, as

A(t)(Tσ0(t)M0) ⊂
(
Tσ0(t)M0

)⊥
; (5)

A(t)(Tσ0(t)M0)
⊥ ⊂ Tσ0(t)M0. (6)

Remark 6. From Remark 5, it follows that if
(
Tσ0(t)M0

)⊥
is one dimen-

sional, then the normal part of the “no-twist” condition is always satisfied,
cf. [18]. It also follows from (5) that the normal part of the no-twist condition
always holds for 1-dimensional manifolds. f

2.2. Interpretation

If M = R3, we can give a simple interpretation of Definition 1 of the
rolling map. Notice first, that the matrix A = (χ̇ ◦ χ−1)∗ = χ̇∗ ◦ χ−1

∗ =

ṘRT is the “spatial angular velocity” written in matrix form bellow, or the
equivalent vector ω ∈ R3 defined through a cross product, with the standard
identification A⇔ w:

A =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 , where A v = ω × v, for any v ∈ R3.

Hence, for a two dimensional compact surface the “no-slip” condition (4)
becomes ω × (σ0 − s) = −ṡ and the “no-twist” condition (5) means that ω
has no component normal to Tσ0(t)M0, i.e., it is tangent to M0 at the point
of contact.
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ω

M0

S2

Figure 2. The unit sphere S2 rolling on its affine tangent plane
in R3; the “no-twist” condition implies that spatial angular ve-
locity ω is parallel to the plane M0

Example 7. Consider the unit sphere Sn rolling on its affine tangent space
at a point p0 ∈ Sn, cf [8]. Here, M1 = Sn ⊂ Rn+1 and M0 can be defined
by

M0
def
=
{
x ∈ Rn+1 : x = p0 + Ω p0 and Ω ∈ so(n+ 1)

}
.

Let χ = (RT, s) be a rolling map satisfying χ(0) = (I, 0) and σ1 be the
rolling curve starting at point p0, i.e., σ1(0) = p0. It can be shown (cf. [8])
that the rolling map satisfies the following set of differential equations{

ṡ(t) = u(t),

Ṙ(t) = R(t) (u(t) pT
0 − p0 u

T(t)),
(7)

with initial conditions s(0) = 0, R(0) = I, for some control function t 7→
u(t) ∈ Rn+1, that satisfies 〈p0, u(t)〉 = 0, for all t ≥ 0. Moreover, the rolling
and development curves are given by t 7→ σ1(t) = R(t) p0 and t 7→ σ0(t) =
s(t)+p0, respectively. Equations (7) are the kinetic equations for the rolling
sphere.

Before we have a closer look at the case of rolling a surface on another
surface in Euclidean space we shall make a connection between rolling and
the Gaussian curvature. In order to study geometry of rolling maps it is
necessary to recall some fundamental operations on submanifolds.

3. Differential Geometric Operators
We shall give a brief account on covariant differentiation on a Riemannian

submanifold, second fundamental form and Weingarten map [2].
Let (M, g) be a Riemannian structure with metric g and (N, g) be a Rie-

mannian submanifold isometrically embedded in M , endowed with Riemann-
ian metric g inherited from g. That is, the metric g agrees with g on TN.
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Let γ: I → N be a smooth curve and Λ ∈ TN⊥ be a unit length vector
field normal to N along γ. The covariant derivative can be decomposed into
tangential and normal part∗ in the embedding manifold

∇̃XΛ = (∇̃XΛ)⊥ + (∇̃XΛ)>, for any X ∈ TN. (8)

Then, if |Λ| is constant and, consequently, (∇̃γ̇Λ)⊥ = 0, one has

dΛ

dt
= ∇̃γ̇Λ = (∇̃γ̇Λ)⊥ + (∇̃γ̇Λ)> = (∇̃γ̇Λ)>. (9)

Equation (9) gives rise to the operation Ξ(Λ, X)
def
= (∇̃XΛ)⊥ called the Wein-

garten map, where Ξ: (TN)⊥×TN→ TN is an endomorphism inducing two
linear transformations

ΞX : (TN)⊥ → TN, where ΞX(Λ)
def
= Ξ(Λ, X), and

ΞΛ : TN→ TN, where ΞΛ(X)
def
= Ξ(Λ, X).

Moreover, it is known that Ξ: (TN)⊥ × TN→ TN is a tensor field, cf. [12],
that has the following relationship with the second fundamental form

〈ΞΛ(X), Y 〉 = −〈II(X, Y ),Λ〉. (10)

The relationship (10) between the second fundamental form and the Wein-
garten map can be illustrated by the commutative diagram in Figure 3. The
two metric tensors g⊥: (TN)⊥ × (TN)⊥ → R and g>: TN × TN → R are
inherited from the metric g̃ of the ambient space M. The tangent metric
tensor (field) g = g> is sometimes called the first fundamental form.

Because the second fundamental form is symmetric, then by (10) the fol-
lowing symmetry of ΞΛ with respect to the metric holds

〈ΞΛ(X), Y 〉 = 〈ΞΛ(Y ), X〉.
This shows that ΞΛ is self-adjoin and so it is diagonalisable. Another im-
portant implication of the symmetries of the involved operators is that the
second fundamental form II and the Weingarten map Ξ, although defined in

∗Here we follow the notation and definition of the second fundamental according to modern
books like [2, 14] and [3]. In other texts, notably in [12] and [15], the authors use a slightly
different notation. Equation (8) is often written as

∇′Xξ = −Aξ(X) +DXξ, for any X ∈ TN and ξ ∈ (TN)⊥ .

where A (named there the second fundamental form) denotes the tangential part and D denotes
the normal part of the covariant differentiation.
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TN×TN× (TN)⊥

∼=
��

∼=
��

TN× (TN× (TN)⊥) (TN×TN)× (TN)⊥

R

g>◦(id⊗Ξ)

..

−g⊥◦(II⊗id)

pp

Figure 3. Commutative diagram illustrating the relation-
ship (10) between the second fundamental form and the Wein-
garten map

terms of the connection, which is a differential operator, both depend only
on values of the vector fields at the point of evaluation.

3.1. Euclidean Hypersurfaces

In this section we confine ourselves to the Euclidean case, where N is an
n-hypersurface of co-dimension one embedded in M = Rn+1. One considers
the scalar second fundamental form h, the symmetric 2-tensor on N, defined
by

h(X, Y ) = 〈II(X, Y ),Λ〉 or equivalently II(X, Y ) = h(X, Y )Λ,

where Λ is a unit normal vector field on N. Raising an index of the scalar
second fundamental form yields the shape operator s, which is a tensor field

〈X, sY 〉 def
= h(X, Y ).

Since Λ is a unit normal vector, the Weingarten equation for Euclidean hy-
persurfaces assumes the following form, cf. [14]:

∇̃XΛ = −sX.
Because h is a self-adjoint bilinear form on TpN, for any p ∈ N, there
are n real eigenvalues λi, and n pair-wise orthogonal eigenvectors ei, such
that sei = λiei or h(X, ei) = 〈X, sei〉 = λi〈X, ei〉. In the standard basis
{ e1, e2, . . . , en } the scalar second fundamental form is given by

h(X, Y ) = λ1X
1Y 1 + λ2X

2Y 2 + · · ·+ λnX
nY n =

n∑
i=1

λiX
iY i.



WHY CONTROLLABILITY OF ROLLING MAY FAIL 9

The eigenvalues λi are called the principal curvatures of N at p, and the
corresponding eigenspaces are called the principal directions. The Gaussian
curvature is defined as K = det(s) = λ1λ2 · · ·λn.

3.2. Connection to rolling

From (10), given unit length Λ ∈ (TN)⊥, we get the following relations.
By

〈ΞΛ(X), Y 〉 = −〈II(X, Y ),Λ〉 = −h(X, Y ) = −〈sX, Y 〉.
In this way we recover the Weingarten equation ΞΛ(X) = −sX.

Remark 8. Suppose that the Gaussian curvature K(p) is zero at p ∈ N.
From this, it follows that at least one eigenvalue λi is equal to zero. In other
words, the principal directions do not span the whole tangent space TpN and
both, the second fundamental form h and the Weingarten map ΞΛ fail to be
surjective.

The surjectivity of ΞΛ is a necessary condition for the rolling map according
to the definition in Nomizu [15]. In view of Definition 1 the curvature of
the manifolds involved does not enter in any of the conditions. However,
as far as controllability is concerned, one needs the Weingarten map to be
surjective. In Example 12, where we consider rolling a cylinder on the plane,
this relationship is illustrated.

4. Configuration Space and Distribution
To investigate rolling hypersurfaces in Euclidean space we start with gen-

eral results concerning configuration space, its tangent space and the distri-
bution defined by rolling. Given a piecewise smooth curve σ1 in M1, there
exists a unique rolling map with rolling curve σ1, cf. [17]. A somewhat sim-
ilar result was obtained earlier by Nomizu [15] with the difference that he
excluded points where the curvature of the two surfaces are the same. No-
mizu considered such points as singular, where rolling is not defined. But
Sharpe [17] defines rolling maps even when the rolling curve contains singular
points. For instance, there is a rolling map, according to Sharpe’s definition,
that rolls the cylinder over a tangent plane along the line of contact.

To represent isometries of M consider the space O(M) of orthonormal
frames on M and the group of automorphisms on O(M). Space O(M) is a
principal bundle with group O(m). Since we assume that M is orientable
then O(M) has two connected components, cf. [11, page 47].
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Let Op(M0) and Oq(M1) be the space of orthonormal frames on M0 at
p ∈ M0 and on M1 at q ∈ M1, respectively. Choose an orthogonal frame
u1 ∈ Oq(M1). Define a configuration space Z , i.e., the space of all positions
of M1 tangent to M0, as follows:

Z =
{

(p,R, q) ∈M0 × SO(m)×M1 : R̂(u1) ∈ Op(M0)
}
. (11)

Here R̂ is the bundle automorphism of O(M) induced by R. If χ = (R, s) ∈
Isom(Rm) is an isometry such that χ(q) = p and χ∗(TqM1) ⊂ TpM0 then
(p,R, q) ∈ Z . By the uniqueness of isometries, there is a well defined map
from the configuration space Z to Isom(Rm) given by

ψ: Z → Isom(Rm),
(p,R, q) 7→ χ = (R, p−Rq). (12)

We remark here that if χ: I → Isom(Rm) is a rolling map of M1 on M0, both
embedded in Rm, then there exists a unique induced curve γ: I → Z , such
that χ = ψ ◦ γ.

I
γ

++Z
ψ

** Isom(Rm)

χ

77

Let II0 and II1 be the second fundamental forms on M0 and M1, and Ξ0 and
Ξ1 be the Weingarten maps on M0 and M1, respectively, as they are defined
in Section 3. First, we identify the tangent bundle of the configuration space
and then we characterise the distribution of the rolling map. Both results
can be found in [17].

Given a curve (p,R, q): I → Z let (ṗ, Ṙ, q̇) denote the corresponding veloc-
ity vector. The tangent space T(p,R,q)Z is given by the set of triples (ṗ, Ṙ, q̇)
satisfying the following condition

Ṙ R−1V = II0(ṗ, V )−R II1(q̇, R−1V ) mod TpM0, for all V ∈ TpM0.

Let r = m− n be the co-dimension of the immersed manifolds M0 and M1.
The tangent space is a vector space with dimension

dim T(p,R,q)Z = 2n+
n (n− 1)

2
+
r (r − 1)

2
.

In the case of hypersurfaces r = 1 and then dim T(p,R,q)Z = n + n(n+1)
2 , the

sum of dim M0 and dim Isom(Rn+1).
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Lemma 9 (Sharpe [17]). The mapping ψ ◦ γ: I → Isom(Rm) is a rolling map
if and only if γ is tangent to the n-dimensional distribution D on Z given
by the following set of differential equations

(a) σ̇0 = Rσ̇1;
(b) Ṙ R−1V = II0(σ̇0, V )−R II1(R−1σ̇0, R

−1V ), for all V ∈ Tσ0(t)M0;

(c) Ṙ R−1Λ = Ξ0(σ̇0,Λ)−RΞ1(R−1σ̇0, R
−1Λ), for all Λ ∈

(
Tσ0(t)M0

)⊥
.

We shall illustrate consequences of Lemma 9 in the following Example 10,
which is a continuation of Example 7.

Example 10. Consider the unit sphere Sn rolling on its affine tangent
space at a point p0 ∈ Sn, as was introduced in Example 7. In this case M0

is a hyperplane whose curvature is equal to zero. Therefore, both the second
fundamental form II0 and the Weingarten map Ξ0 are identically equal to
zero. In the standard coordinates in Rn+1, the n-sphere is defined by

M1 = Sn =

{(
x1, x2, . . . , xn+1

)
∈ Rn+1 :

n+1∑
i=1

(
xi
)2

= 1

}
.

Take the manifold M0 to be its affine tangent space at the south pole, i.e.,

M0 =
{ (
x1, x2, . . . , xn+1

)
∈ Rn+1 : xn+1 = −1

}
.

Equations (b) and (c) of Lemma 9, defining the distribution D become, in
this case,

AV = −R II1(R−1σ̇0, R
−1V ) and AΛ = −RΞ1(R−1σ̇0, R

−1Λ), (13)

respectively. Note that both II1 and Ξ1 are tensors, therefore the right-hand
sides of (13) are the push-forwards χ∗II

1 and χ∗Ξ
1 (with negative sign)

calculated at the point of contact p = σ0(t). These operations are well
defined since, by the rolling condition (b) of Definition 1, the tangent spaces
are identified at this point. Therefore, the normal spaces are also identified
and we conclude, without calculations, that AV = −(χ∗II

1)(σ̇0, V ) lies in
the normal space of M0. In matrix notation, equations (13) become[

Ãn×n Xn×1

−XT
1×n 0

]
·
[
Ṽn×1

0

]
=

[
Ãn×n · Ṽn×1

−XT
1×n · Ṽn×1

]
=

[
0n×1

∗

]
and [

Ãn×n Xn×1

−XT
1×n 0

]
·
[
0n×1

Λ̃

]
= Λ̃

[
Xn×1

0

]
=

[
∗n×1

0

]
.

As we pointed out in Remark 5, the latter of the above equalities, correspond-
ing to the normal part of the “no-twist” condition, is always satisfied and

the former equality implies that Ãn×n = 0. We shall explore the structure
of the matrix A further in Section 6.1.
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Table 1. Comparison of the scalar second fundamental form h
and Weingarten map Ξ for the two surfaces S2 and Cyl in R3

S2 Cyl

TxM {V ∈ R3 : 〈V, x〉 = 0 } {V ∈ R3 : 〈V, πe2x〉 = 0 }

(TxM)⊥ span(x) span(πe2x)

h id3 πe2 ◦ id3

ΞΛ −id3 −πe2 ◦ id3

x0, V,Λ (0, 0,−1), (v1, v2, 0), (0, 0, v1) (0, x2,−1), (v1, v2x2, 0), (0, 0, v1)

Here πe2 : (x1, x2, x3) 7→ (x1, 0, x3) denotes the projection in the e2 direction.

5. Examples of Rolling in R3

Here we give a short account of two simple cases of rolling. This is to
illustrate the relationship between curvature of rolling manifolds and the
structure of the matrix A.

5.1. A Comparison Between the 2-Sphere and a Cylinder in R3

As a simple illustration of the differences between rolling the sphere and a
cylinder we show what constraints the two “non-twist” conditions (5) and (6)
impose on the matrix A in these two cases.

We use the standard definition of the 2-sphere

S2 =
{(

x1, x2, x3
)
∈ R3 :

(
x1
)2

+
(
x2
)2

+
(
x3
)2

= 1
}

and a cylinder

Cyl =
{(

x1, x2, x3
)
∈ R3 :

(
x1
)2

+
(
x3
)2

= 1
}
.

In the sequel we make use of (13), and vectors and tensors summarised in
Table 1.

Example 11 (The unit sphere). The matrix A = ṘRT is skew-symmetric,
therefore at x0 II(U, V ) = 〈U, V 〉 x0 and, consequently, 0 s3 s1

−s3 0 s2

−s1 −s2 0

 ·
v1

v2

0

 =

 s3v
2

−s3v
1

−s1v
1 − s2v

2

 =

0
0
∗

 ,
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hence s3 = 0. For a normal vector Λ one has Ξ(Λ, V ) = −V and, conse-
quently,  0 0 s1

0 0 s2

−s1 −s2 0

 ·
 0

0
v1

 =

s1v
1

s2v
1

0

 =

∗∗
0

 .
Example 12 (The cylinder). For any two tangent vectors U, V at x0 one
has II(U, V ) = 〈U, πe2V 〉 x0. So, 0 s3 s1

−s3 0 s2

−s1 −s2 0

 ·
 v1

v2x2

0

 =

 s3v
2x2

−s3v
1

−s1v
1 − s2v

2x2

 =

0
0
∗


hence s3 = 0. For a normal vector Λ one has Ξ(Λ, V ) = −πe2V , therefore 0 0 s1

0 0 s2

−s1 −s2 0

 ·
 0

0
v1

 =

s1v
1

s2v
1

0

 =

∗0
0

 ,
hence s2 = 0.

The properties of the geometric tensors determine the structure of the
matrix A. The matrix A for S2 and Cyl has the two different structures

AS2 =

 0 0 s1

0 0 s2

−s1 −s2 0

 and ACyl =

 0 0 s1

0 0 0
−s1 0 0

 ,
respectively. The two examples illustrate how singularity of the Weingarten
map may put some constraints on the rolling of the cylinder.

6. Control Systems
Let U ⊂ Rm and M be a Riemannian manifold. Consider a control system

ẋ(t) = f(x(t), u(t)), x(0) = x0, where x: I →M and u: I → U.

If f is smooth in x and continuous in u, and control u is piecewise continuous,
then the trajectory x is uniquely defined on I. We are concerned here with
a more specific system, called control-affine system, which has the form

ẋ(t) = H0(x(t)) +
n∑
i=1

ui(t) Hi(x(t)),

where Hi are vector fields on M and the functions ui: I → R are controls.
H0 is called the drift and a system without it is called driftless. We shall
now reformulate the rolling equations as a control-affine system.
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The formulation of the “no-slip” condition (4) leads to the following pair
of kinematic equations on R ∈ SO(m) and s ∈ Rm{

ṡ = −ARσ1 and

Ṙ = AR.
(14)

Remark 13. It is worth noticing that system (14) implies that ṡ is orthogonal
to Rσ1, because A is skew-symmetric. Therefore the distribution determined
by (14) is restricted to a subspace V ⊂ so(m) nRm, namely

(Ṙ, ṡ) ∈ V ∼= so(m) nRm−1,

whose dimension is dimV = m (m− 1) / 2 + m − 1 = (m+ 2) (m− 1) / 2.
In the case of co-dimension 1, when m = n + 1, the dimV = n (n+ 3) / 2
coincides with the dimension of dim T(p,R,q)Z , the tangent space of the con-
figuration space of the rolling map given in Section 4.

Remark 14. The first equality in (14) may be also written in a more con-
ventional but equivalent way, to give

ṡ = A (s− σ0) .

However, from the viewpoint of Definition 1 of a rolling map, the curve σ1 is
assumed to be given. Therefore we always refer to (14).

We now write kinematic equations (14) as a control system, where the
non-zero entries in matrix A are the controls.

6.1. The case of co-dimension one

Let us consider the case of a hypersurface rolling on a hyperplane. Here
the embedding space is Rn+1, the n-manifold M1 is a hypersurface, and M0

is the affine tangent space at a point TaffM0
∼= Rn, isomorphic to Rn. In

any neighbourhood U ⊂ M of x ∈ U we denote a system of coordinates by
(U , x). Local coordinates of a point p ∈ U denoted by (p1, p2, . . . , pn+1) give

rise to a basis of the tangent space TpM ∂i
def
= ∂
∂xi

. Let p = σ0(t0) be a point

on the development curve at t = t0. Choose system of coordinates {U , p }
and the basis { ∂i } in such a way, that the first n coordinates correspond to
the tangent space TpM0 and the last n + 1-th to the normal space. More
concisely

span(∂1, ∂2, . . . , ∂n) = TpM0 and span(∂n+1) = (TpM0)
⊥ . (15)
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As pointed out in Remark 5, the “no-twist” conditions (5) and (6) impose
the following structure on the skew-symmetric matrix A = ṘRT

A =


0 . . . 0 u1

0 . . . 0 u2
... . . . ...

...
0 . . . 0 un
−u1 . . . −un 0


 TpM0

(TpM0)
⊥

(16)

This structure appears already in Example 10. Additional conditions follow
from the equations (b)–(c) of Lemma 9 describing the distribution D of
the rolling map. For M0 = Rn the second fundamental form II0 and the
Weingarten map Ξ0 are both trivial and equal to zero. Then, the matrix A
is governed by the two conditions, expressed with the push-forwards of the
two tensors,{

AV = −(χ∗II
1)(σ̇0, V ), for V ∈ TpM0 and

AΛ = −(χ∗Ξ
1)(σ̇0,Λ), for Λ ∈ (TpM0)

⊥,

where σ̇0, V and Λ are meant to belong to the tangent (normal) space of
χ(M1) at the point of contact, as noted in Remark 2. Examples of Section 5
illustrated that singularity of the Weingarten map may put some additional
constraints on the entries of A.

7. Controllability in Co-dimension One
To start our discussion on controllability of rolling it will be convenient to

introduce the standard basis in the Lie algebra so(n+1) in the following way

∆i,j = ∂j ∧ ∂i = ∂i ⊗ ∂j − ∂j ⊗ ∂i, for 1 ≤ i < j ≤ n+ 1, (17)

where ‘⊗’ denotes the outer (Kronecker) product of two vectors. In these
basis the skew-symmetric matrix A = ṘRT, given by (16), can be expressed
as

A =
n∑
i=1

ui ∆i,n+1.
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The kinematic equations (14) in the basis (15) & (17) assume the following
form 

Ṙ =
n∑
i=1

ui ∆i,n+1R

ṡi = −ui
n+1∑
j=1

Rn+1
j σ

j
1, for 1 ≤ i ≤ n,

ṡn+1 =
n∑
i=1

n+1∑
j=1

uiR
i
j σ

j
1

. (18)

Equations (18), written as a control system, can further be written as

Ṙ(t) =
n∑
i=1

ui(t) Fi(R), where Fi(R) = ∆i,n+1R and

ṡ(t) =
n∑
i=1

ui(t) Gi(R), where Gi(R) =
(n+1∑
j=1

Ri
j σ

j
1

)
∂n+1

−
(n+1∑
j=1

Rn+1
j σ

j
1

)
∂i.

(19)

Here, the functions ui: I → R are independent controls and Ri
j denotes the

component in i-th row and j-th column of matrix R. The pair of equa-
tions (19) defines a control system on SO(n+ 1)× Rn+1 and can be written
in condensed form as

(Ṙ(t), ṡ(t)) =
n∑
i=1

ui(t) (Fi ⊕ Gi), (20)

where the vector fields Fi and Gi are given in (19). Equation (20) also defines
a distribution D over SO(n+ 1)× Rn+1. Let Hi = Fi ⊕ Gi. At the identity
idSO(n+1)×Rn+1 = (idSO(n+1),0Rn+1), the vector field Hi is equal to

Hi(id) = (∆i,n+1)⊕ (σi1 ∂n+1 − σn+1
1 ∂i).

7.1. Bracket-generating property

In the sequel, we will show that the distribution defined by the kinematic
equation (20) D is bracket-generating.



WHY CONTROLLABILITY OF ROLLING MAY FAIL 17

The Euclidean group SE(n+ 1) is a semi-direct product SO(n+ 1)nRn+1.
However, for the controllability of the kinematic equations we restrict to the
situation when they evolve on the connected Lie group G = SO(n+1)×Rn+1,
the Cartesian product of the multiplicative group SO(n+ 1) by the additive
group Rn+1. Its Lie algebra TidG is the direct sum g = so(n + 1) ⊕ Rn+1,
with Lie bracket defined by:

[A1 ⊕ f1, A2 ⊕ f2]g = [A1, A2]so(n) ⊕ [f1, f2]Rn+1. (21)

(From now on, we write [ , ] for any of these Lie brackets. This simplifies nota-
tions without compromising clarity.) The kinematic equation (20) defines the
distribution D(ζ) = span({Fi(ζ)⊕ Gi(ζ) }1≤i≤n), for any ζ ∈ G. Although
TζG 6= D(ζ) we shall show that D is bracket-generating, i.e., LieD(ζ) = TζG,
for all ζ ∈ G. Note that by (14) the space spanned by {Gi }1≤i≤n is orthogonal
to Rσ1, because the matrix A is skew-symmetric.

Lemma 15. For n > 1, the distribution D = D(id) ⊂ Tid(SO(n + 1) ×
Rn+1), given by (20), generates a subspace isometric to so(n+1)⊕Rn. More
specifically, the following holds

D + [D ,D ] + [D , [D ,D ]] = so(n+ 1)× (σ1)
⊥ ∼= so(n+ 1)⊕ Rn.

Proof : We show first that

[D ,D ] = span({∆i,j ⊕ 0 }1≤i<j≤n).

This easily follows from (21) since

[Hi,Hj] = [Fi ⊕ Gi,Fj ⊕ Gj] = [Fi,Fj]⊕ [Gi,Gj]

and [Fi,Fj] = [∆i,n+1,∆j,n+1] = ∆j,i because, by (17), [∆i,n+1,∆j,n+1] =
[∂i ⊗ ∂n+1 − ∂n+1 ⊗ ∂i, ∂j ⊗ ∂n+1 − ∂n+1 ⊗ ∂j] = −∂i ⊗ ∂j + ∂j ⊗ ∂i = −∆i,j.
The vector fields { ∂i } are commutative therefore

[Gi,Gj] = [σi1 ∂n+1 − σn+1
1 ∂i, σ

j
1 ∂n+1 − σn+1

1 ∂j] = 0.

Now, since

[Hi,∆i,j ⊕ 0] = [∆i,n+1,∆i,j]⊕ 0 = ∆j,n+1 ⊕ 0,

it follows that

[D , [D ,D ]] = span({∆i,n+1 ⊕ 0 }1≤i≤n).

Therefore we may now write

se(n+ 1)⊕ 0 = [D ,D ] + [D , [D ,D ]].
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Finally, because

∆i,n+1 ⊕ Gi −∆i,n+1 ⊕ 0 = 0⊕ (σi1 ∂n+1 − σn+1
1 ∂i)

and span(
{
σi1 ∂n+1 − σn+1

1 ∂i
}

1≤i≤n) is an n-dimensional subspace of Rn+1

orthogonal to σ1,

G (σ1) =
n∑
i=1

Gi(σ1) =
n∑
i=1

(σi1 σ
n+1
1 − σn+1

1 σi1) = 0, where σ1 =
n+1∑
i=1

σi1 x
i.

We conclude that

D + [D ,D ] + [D , [D ,D ]] ∼= so(n+ 1)⊕ Rn.

If one vector field Hi is missing, then the distribution D would not be
bracket generating. In this sense, the distribution D is minimal.

Remark 16. If one of the fields Hi is missing, then the ∆i,j 6∈ LieD , for
all 1 ≤ i < j ≤ n+ 1. Indeed, if Hi 6∈ D then ∆i,n+1 6∈ D , because Fi 6∈ D .
Further, since for any 1 ≤ a, b, c, d ≤ n + 1 the Lie bracket [∆a,b,∆c,d] is
equal to

[∆a,b,∆c,d] = δbc∆a,d + δad∆b,c − δbd∆a,c − δac∆b,d,

it is clear that ∆i,j 6∈ [D ,D ], where 1 ≤ j ≤ n + 1, for otherwise one of a,
b, c or d would need to be equal to i. This is contrary to the assumption that
∆i,j 6∈ D . The property that ∆i,j 6∈ LieD , for all 1 ≤ i < j ≤ n + 1, is now
easily seen by induction.

We are finally ready to present our main result. In the sequel, the term
“free controls” is meant that functions {ui }1≤i≤n are not linearly dependent.
More precisely, let the n-tuple u = (u1, u2, . . . , un) denote a control function
with values in Rn, then the affine hull of the image u(I) is equal to the whole
vector space, i.e., aff(U) = Rn, where the control set U is the set of allowable
values of u(I), cf. [1].

Theorem 17. If the last column entries u1, u2, . . . , un of matrix A are free
then the rolling is locally controllable.

Proof : The result is an immediate consequence of Lemma 15. By Lemma 15
the distribution D associated to system (20) is bracket generating. Since the
controls ui are free, then by known results on controllability, the system is
locally controllable cf. [1, pp. 374–376].
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Corollary 18. Rolling of M1 upon its affine tangent space is locally control-
lable at p ∈M1 if and only if the Gaussian curvature K(p) at p is not equal
to zero.

Proof : Let { e1, e2, . . . , en, en+1 } be an orthonormal basis at TpM so that

en+1 ∈ (TpM0)
⊥ and e1, e2, . . . , en are the eigenvectors of the scalar second

fundamental form h, cf. Section 3.1. The entries of the matrix A are then
equal to Ai

j = 〈ei,A(ej)〉. By equation (c) of Lemma 9,

ui = Ai
n+1 = 〈ei,A(en+1)〉 = −〈ei,Ξen+1

σ̇0〉 = h(ei, σ̇0) = λi σ̇
i
0.

Hence ui are free if and only if all λi 6= 0, i.e.,
∏n

i=1 λi = K(p) 6= 0. The first
part of result now follows from Theorem 17. If K(p) = 0 then at least one
of the controls, say ui is equal to zero. This amounts to Hi missing from
D . By Proposition 16 distribution D generates a Lie sub-algebra and so the
system is not locally controllable because the system cannot be steered in
some directions at the point of contact p.

The two different situations are illustrated with our running examples of
the unit sphere S2 and the cylinder Cyl, Example 11 & 12. In the case of
S2 the K(p) = 1 and so the sphere is locally (of course it is known that it is
globally) controllable on SO(3)×R2. However, because the Gaussian curva-
ture K of Cyl is zero everywhere, rolling of the cylinder is not controllable.
Our intuition is confirmed as the flatness of the cylinder induces the rolling
distribution to generate a sub-algebra of SO(3)×R2. This simply means that
the cylinder can roll on its affine tangent plane in only one direction given
by the non-zero principal direction of the second fundamental form.

8. The Ellipsoid En
We conclude our discussion on controllability by reviewing one more ex-

ample of a hypersurface, an ellipsoid, rolling in Euclidean space. It will be
convenient to define ellipsoid En embedded in Rn+1 as follows, cf. [7]. For any
symmetric positive definite matrix B define an inner product with respect

to B by 〈U, V 〉B
def
= 〈U,B V 〉 and the norm |U |B

def
=
√
〈U,U〉B. Then

En =
{
p ∈ Rn+1 : |p|D−2 = 1

}
, where D = diag(d1, d2, . . . , dn+1) � 0.

(22)
Let γ: (−ε, ε) → En be any differentiable curve in the ellipsoid such that
γ(0) = p. Then |γ|D−2 = 1. Differentiating this equality with respect to t
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yields

0 =
d

dt
|γ|2D−2 =

d

dt
〈γ,D−2γ〉 = 〈γ̇, D−2γ〉 + 〈γ,D−2γ̇〉 = 2〈γ̇, γ〉D−2.

Therefore the tangent space TpEn is the subspace orthogonal to D−2p in

Rn+1. The unit normal vector Λ ∈ (TpEn)⊥ is given by Λ = D−2p/
∣∣D−2p

∣∣.
Hence the Weingarten map ΞΛ at p ∈ En is given by

ΞΛ(X) = −D−2

(
X

|D−2p|
− p

|D−2p|3
〈D−2X,D−2p〉

)
.

We can apply (10) to obtain the second fundamental form

II(X, Y ) =
〈D−1X,D−1Y 〉
|D−2p|2

D−2p.

8.1. The Gaussian curvature of the ellipsoid

Since we didn’t find in the literature any short method of deriving the
formula (23) giving the Gaussian curvature of E2 at a point p, we present
here an alternative proof, for the sake of completeness.

Proposition 19. The Gaussian curvature K(p) of E2 at a point p is given
by

K(p) =
det(D−2)

|D−2p|4
> 0. (23)

Proof : The Gaussian curvature of the ellipsoid will be derived without solving
the Eigensystem. From the properties of the Weingarten map ΞΛ we know
that

• ΞΛ: TpE2 → TpE2, therefore its image lies in the tangent space, and
• ΞΛ is symmetric.

Let X, Y ∈ TpE2 be any two tangent vectors spanning the tangent space at

p ∈ E2. Denote q
def
= D−2p then 〈X, q〉 = 0 = 〈Y, q〉, and 〈p, q〉 = 1, where we

identify points in R3 with vectors and the inner product is the standard ‘dot’
product in Euclidean space. On one hand we know that the cross product
X × Y = α q, because the two vectors are orthogonal to q. On the other
hand

ΞΛ(X)× ΞΛ(Y ) = (aXXX + aXY Y )× (aY XX + aY Y Y )

= aXXaY YX × Y + aXY aY XY ×X
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= det(ΞΛ)X × Y.

From the way ΞΛ is defined, the left hand side of the above equality becomes

1

|q|6
(− |q|2 D−2X + 〈D−2X, q〉 q)× (− |q|2 D−2Y + 〈D−2Y , q〉 q).

Expanding the above product, gives three non vanishing terms and by taking
the inner product with q only the following non zero term remains

1

|q|6
〈(− |q|2 D−2X)× (− |q|2 D−2Y ), q〉 =

1

|q|2
〈(D−2X)× (D−2Y ), q〉

=
1

|q|2
〈det(D−2)D2(X × Y ), q〉 =

det(D−2)

|q|2
〈X × Y , p〉 = α

det(D−2)

|q|2
,

where we have used the symmetry of D and the following property of the
cross product in R3

(Mv1)× (Mv2) = det(M)M−T (v1 × v2), (24)

where M is an 3×3 non singular matrix, see Appendix A. Since 〈X × Y , q〉 =

α |q|2, comparing the two sides of this equality yields the desired expression
for the Gaussian curvature.

Remark 20. By Corollary 18, we conclude that rolling of E2 is locally con-
trollable.

8.2. The kinematic equations for rolling the ellipsoid

According to Corollary 18, this rolling system is locally controllable. We
will now establish kinematic equations for rolling the ellipsoid on its affine
tangent space at a given point. As far as we know this has not been done
before for n > 2. In the 2-dimensional case, what we derive here is an
alternative to what appeared in [7].

To describe the rolling curve σ1: I → En we use following construction.
Let R(En), where R ∈ SO(n + 1), be the image of the ellipsoid (22) by the
rotation R. There exists a unique point x ∈ R(En) whose n+1-th coordinate
xn+1 = minp∈R(En) p

n+1. Then, x + s is precisely the point of contact of En
rolling on its affine tangent plane under the rolling χ = (R, s). We assign the
point x to σ1. Because the above mapping R(t) 7→ σ1(t) is not a bijection,
σ1 is not necessarily smooth even if χ is. However, it is transitive by the
following reasoning. Let π: En → Sn be a projection from the ellipsoid onto
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the sphere, i.e., π:x 7→ x/ |x|. Then σ1 is an image of the composition of the
following mappings acting on a point p0 ∈ En

En D−1
//Sn

R−1
//Sn

D
//En π

//Sn
D
//En

where D ◦ π ◦D: Sn → En is a bijection whose inverse is given by π ◦D−1 ◦
D−1: En → Sn. Since SO(n + 1) acts transitively on Sn and D is bijective,
the above composition is also transitive.

Proposition 21. Let p0 = −dn+1 en+1 be the “south pole” of En and let
σ1(t) = D2R(t)TD−1 p0/

∣∣DR(t)TD−1 p0

∣∣ be a curve in En. Then the kine-
matic equations for rolling En on its affine tangent plane are given by ṡ(t) = −A(t)

R(t)D2RT(t)D−1 p0

|DRT(t)D−1 p0|
Ṙ(t) = A(t)R(t)

, (25)

where the skew-symmetric matrix A has the structure (16).

Proof : We first show that A has the correct structure. This structure is
determined by the constraints (b) and (c) in Lemma 9 for En. Choose a t0 ∈ I
and let p = σ0(t0) be the point of contact. Then q = σ1(t0) and χ(t0)(q) = p.

The tangent space TpM0 splits into TpM = TpM0 ⊕ (TpM0)
⊥. Choose the

basis in TpM0 as in Remark 5, so that en+1 ∈ (TpM0)
⊥. We will now write

explicitly

AΛ = −(χ∗Ξ
1)(σ̇0,Λ),

where we take Λ = en+1. From the rolling condition R(t)−1σ̇0(t) = σ̇1(t)
it follows that A(en+1)|p = −RΞ1

en+1
(σ̇1). We shall drop the parameter t

whenever it will not lead to a confusion. The Weingarten map ΞΛ at q ∈ En
is given by

Ξ1
en+1

(σ̇1) = −D−2

(
σ̇1

|D−2q|
− q

|D−2q|3
〈D−2σ̇1, D

−2q〉

)
,

where

σ̇1 =
D2ṘTD−1p0

|DRTD−1p0|
−D2RTD−1p0

〈DṘTD−1p0, DR
TD−1p0〉

|DRTD−1p0|3
.
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By the expression of σ1 there is D−2q = RTD−1p0/
∣∣DRTD−1p0

∣∣ hence∣∣D−2q
∣∣ =

∣∣RTD−1p0

∣∣
|DRTD−1p0|

=

∣∣D−1p0

∣∣
|DRTD−1p0|

.

Now

〈D−2σ̇1, D
−2q〉 =

〈ṘTD−1p0, R
TD−1p0〉

|DRTD−1p0|2

− 〈R
TD−1p0, R

TD−1p0〉
|DRTD−1p0|4

〈DṘTD−1p0, DR
TD−1p0〉

= −
∣∣D−1p0

∣∣2
|DRTD−1p0|4

〈DṘTD−1p0, DR
TD−1p0〉,

because RṘT is skew-symmetric. From the above equality it now follows that

D−2q
〈D−2σ̇1, D

−2q〉
|D−2q|3

= − RTD−1p0

|DRTD−1p0|

∣∣D−1p0

∣∣2
|DRTD−1p0|4

〈DṘTD−1p0, DR
TD−1p0〉

∣∣DRTD−1p0

∣∣3
|D−1p0|3

= − RTD−1p0

|D−1p0| |DRTD−1p0|2
〈DṘTD−1p0, DR

TD−1p0〉.

We will also need

−D−2 σ̇1

|D−2q|
= −

∣∣DRTD−1p0

∣∣
|D−1p0|(

ṘTD−1p0

|DRTD−1p0|
− RTD−1p0

|DRTD−1p0|3
〈DṘTD−1p0, DR

TD−1p0〉

)
.

Adding the two equalities above, brings

Ξ1
en+1

(σ̇1) = −Ṙ
TD−1p0

|D−1p0|
= −ṘTD−1p0.

Finally, putting D−1 p0 = −en+1, the above calculations yield

A(en+1)|p = −RΞ1
en+1

(σ̇1) = RṘTD−1p0 = −RṘTen+1, (26)
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what is in full agreement with the second kinematic equation Ṙ = AR.
Equation (26) gives values of the last column of matrix A. To find out the
remaining part of A it remains to calculate condition (b) of Lemma 9

AV = −(χ∗II
1)(σ̇0, V ),

where we take V = ei, for 1 ≤ i ≤ n.

〈D−2σ̇1, R
−1ei〉

|D−2q|2
D−2q =

〈ṘTD−1p0, R
−1ei〉

∣∣DRTD−1p0

∣∣2
|DRTD−1p0| |D−1p0|2

RTD−1p0

|DRTD−1p0|

− 〈RTD−1p0, R
−1ei〉

〈DṘTD−1p0, DR
TD−1p0〉

∣∣DRTD−1p0

∣∣2
|D−1p0|2 |DRTD−1p0|3

RTD−1p0.

Because 〈RTD−1p0, R
−1ei〉 = 〈D−1p0, ei〉 = −〈en+1, ei〉 = 0, the second term

in the above equality vanishes, and its right hand side simplifies to

〈D−2σ̇1, R
−1ei〉

|D−2q|2
D−2q = −〈Ṙ

Ten+1, R
Tei〉

|D−1p0|2
RTD−1p0

= −〈RṘTen+1, ei〉RTD−1p0.

It now follows that A(ei) = −RII1(R−1σ̇0, R
−1ei) = −en+1 〈RṘTen+1, ei〉

and the entries of A are given by

Aj
i = −〈ej, en+1〉 〈RṘTen+1, ei〉. (27)

We conclude therefore that equalities (26) and (27) verify that the structure
of A conforms with (16) and pose no further constraints on the n entries in
the last column (or equivalently in the last row) of A.

We are now ready to proceed with the proof that (25) are the kinematic
equations. The expressions are somewhat by noting that D−1 p0 = −en+1.
At first, we need to verify that σ1(t) ∈ En, for any t ∈ I. To do that it is
enough to check that the |σ1|2D−2 is equal to 1. Indeed

|σ1|2D−2 =
〈D2RT en+1, R

T en+1〉
|DRT en+1|2

=
〈DRT en+1, D RT en+1〉

|DRT en+1|2
= 1.

By transitivity arguments at the beginning of this section, it is clear that
any curve on the ellipsoid can be written in this way.

Now we check if the conditions of the definition of rolling are satisfied. In
fact we only need to check if the rolling conditions are satisfied. Since the
“non-slip” and “no-twist” conditions have been already used in the structure
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of A we only need to check that rolling condition are satisfied. For this it is
necessary that

R(Tσ1En) = (p0)
⊥, (28)

where (p0)
⊥ denotes the n-dimensional subspace orthogonal to p0 in Rn+1.

Because p0 = −dn+1 en+1, in order to verify (28) it is enough to check for

equality by pulling back (p0)
⊥ onto Tσ1En, i.e.,

〈RTei, D
−2σ1〉 =

〈RT ei, D
−2D2RT en+1〉

|DRT en+1|

=
〈RT ei, R

T en+1〉
|DRT en+1|

=
〈ei, en+1〉
|DRT en+1|

= 0,

for any 1 ≤ i ≤ n. Therefore, the tangent space TRσ1REn is equal to
span(e1, . . . , en), which clearly verifies (28).

We consider here a simple case of E2 embedded in R3. Since any curve on
this ellipsoid is given by

σ1 = −D
2RT e3

|DRT e3|
,

then, by Proposition 21, the first kinematic equation becomes

ṡ(t) = −ARσ1 = A
RD2RT e3

|DRT e3|
.

In the standard coordinates, this is given by
ṡi = ui

∣∣DRT e3

∣∣ , for i = 1, 2

ṡ3 = −
2∑
i=1

ui
〈DRT ei, D RT e3〉
|DRT e3|

. (29)

ṡ(t) =
2∑
i=1

ui(t) Gi, where Gi =
∣∣DRT e3

∣∣ ∂i − 〈DRT ei, DRT e3〉
|DRT e3|

∂3.

In this case the vector fields Gi = Gi(R) depend on R only, and thus are
time-invariant.

Remark 22. In the case of the unit sphere S2, all the axes are the same
length and the matrix D is equal to the identity. Then, the vector fields Gi,
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i = 1, 2, become

Gi =
∣∣RT e3

∣∣ ∂i − 〈RT ei, R
T e3〉

|RT e3|
∂3 = |e3| ∂i −

〈ei, e3〉
|e3|

∂3 = ∂i.

f

9. Future Work and Conclusion
In this paper we started the investigation on how the geometry of rolling

manifolds poses restrictions on rolling maps. For some particular cases we
have shown that singularities of the Gaussian curvature at the points of con-
tact impose constraints on the directions of rolling. More precisely, rolling
motions of Riemannian manifolds whose Gaussian curvature is zero at some
points, are not locally controllable at these points. This behaviour agrees
with our intuition in the case of a cylinder or a cone rolling on flat surfaces.
In these cases the Gaussian curvature is zero everywhere. The results pre-
sented in this paper continue the study of controllability of rolling manifolds
undertaken in [13, 6, 5]. Our aim, in the near future, is to find necessary and
sufficient conditions for controllability of rolling motions in a more general
Riemannian framework, as we setup in [7].
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Appendix A.Matrix Transformation of the Cross Prod-
uct

For the standard cross product in R3 the identity (24) is well known. A
more general cross product in Rn is defined in [19]. Here we derive an elegant
generalisation of (24) in Rn.

A.1. The general case

Let F :Rn → Rn be a linear map. The pull-back map F ∗ acts on tensors as
follows

(F ∗T ) (v1, v2, . . . , vn)
def
= T (Fv1, Fv2, . . . , Fvn).

We start with a generalised cross product, cf. [19]. Given v1, v2, . . . , vn−1 ∈
Rn, define a 1-form ϕ ∈ Λ1(Rn) by

ϕ(w) = det


v1

v2
...

vn−1

w

 , for any w ∈ Rn.

There exists a unique z ∈ Rn (a dual) such that 〈w, z〉 = ϕ(w). This z
denoted by v1 × v2 × · · · × vn−1 is called the cross product of v1, v2, . . . , vn−1.

Since ϕ is a tensor, then the pull-back F ∗ϕ(w) = ϕ(Fw). Applying F ∗ to
the determinant yields

F ∗ det


v1

v2
...

vn−1

w

 = det


Fv1

Fv2
...

Fvn−1

Fw

 = det(F ) · det


v1

v2
...

vn−1

w

 = det(F ) · ϕ(w).

Putting these together, we can write

F ∗ϕ(w) = ϕ(Fw) = det(F ) · ϕ(w) = det(F ) · 〈w, z〉,

yielding ϕ(Fw) = det(F ) · 〈F−1Fw, z〉 = det(F ) · 〈Fw, F−Tz〉, for any vector
w in Rn.
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A.2. The case of R3

When we restrict ourselves to R3, we get the ordinary cross product z =
v1× v2. Let M be a matrix associated with a linear transformation F :R3 →
R3. Then, it follows from the previous section that

(Mv1)× (Mv2) = det(M)M−T(v1 × v2).
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