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1. Introduction

Given an extension of groups as below, the conjugation in X determines an
action ofX onK, and consequently a homomorphism φ : Y → AutK

InnK = OutK,
called the abstract kernel of the extension:

0 // K
k //

��

X
f

//

��

Y //

φ

��

0

0 // InnK // AutK // OutK // 0

(1)

It is a classical problem to establish whether, given a morphism φ as above,
there exists an extension having φ as its abstract kernel. A first solution
to this problem was given by Schreier in [31, 32]: he associated with any
abstract kernel φ an obstruction, that vanishes if and only if there exists an
extension inducing φ.
Twenty years later, Eilenberg and Mac Lane in [17] described the obstruc-

tion in terms of cohomology (for a more detailed account see also [26]): with
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any abstract kernel φ it is possible to associate an element of the third coho-
mology group H3

φ
(Y, ZK), where ZK is the centre of K and φ is the (unique)

action of Y on ZK induced by φ. They proved that an extension with ab-
stract kernel φ exists if and only if the corresponding element in H3

φ
(Y, ZK)

is 0.
This result was then generalized to other algebraic structures, such as rings

[25], associative algebras [18] and Lie algebras [19]. Analogous results, ex-
pressing the obstruction in terms of triple cohomology, were obtained by
Barr for commutative associative algebras [1] and by Orzech for categories
of interest [28].
Then the natural question arose whether it is possible to unify the different

treatments of obstruction theory for all these algebraic examples. A first
answer in this direction was given by Bourn in [10]: in that paper the author
developed obstruction theory in Barr-exact action representative categories
[3] in terms of the cohomology theory expressed via n-groupoids [6]. In action
representative categories, actions over a fixed object K can be described as
morphisms into a representative object (such as AutK for groups), and there
exists a canonical exact sequence determined by K (as the bottom row of
diagram (1)). This is what happens, for example, in the categories of groups
and Lie algebras (explaining the strong analogies between the cohomology
theories of these two structures), but not in the other examples mentioned
above.
In fact, it turns out that the representability of actions is not necessary

in order to develop obstruction theory, provided we replace the canonical
exact sequence and the notion of abstract kernel with suitable ones. The
present article extends the results of [10] about obstruction theory to the
context of action accessible categories [13]. As showed in [27], this context
includes all the algebraic structures above (even those which are not covered
by the action representative case, such as rings and associative algebras) and
some new ones, such as Poisson algebras, Leibniz algebras [21], associative
dialgebras [22] and trialgebras [24]. As an example, we describe explicitly
obstruction theory for Leibniz algebras, comparing, in this context, Bourn
cohomology with the Leibniz algebras cohomology described by Loday and
Pirashvili in [23].

The paper is organized as follows. After recalling some background ma-
terial in Section 2, Section 3 is devoted to recalling the categorical theory
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of extensions, as developed in [14]. In Section 4 we describe the obstruction
to the existence of extensions with fixed abstract direction in the context of
action accessible categories. In section 5 we describe obstruction theory for
Leibniz algebras over a field.

2. Background material

2.1. Pretorsors. In this section we recall from [10] some definitions and
results that will be used in the subsequent sections.

Definition 2.1. A regular category C is said to be efficiently regular when
any equivalence relation T on an object X, with T a subobject of an effective
equivalence relation R on X by a regular monomorphism (i.e. an equalizer
in C), is itself effective.

This categorical setting was introduced by Bourn in [9], as an intermediate
notion between those of regular and Barr-exact category. Efficiently regular
categories are stable under formation of slice and coslice categories. As a
leading example, the category GpTop (resp. AbTop) of topological groups
(resp. topological abelian groups) is efficiently regular, but not Barr-exact.
The main point here is that when C is efficiently regular and when there
is a discrete fibration S → R between two equivalence relations, then S is
effective as soon as R is effective. Let us also observe that any Barr-exact
category is efficiently regular.
We recall here the notion of pretorsor, following [29], where they are called

pregroupoids (see also [10], Definition 1.3).

Definition 2.2 ([29]). A pretorsor in an efficiently regular category C is a

pair of regular epimorphisms X
f
և W

g
։ Y such that [R[f ], R[g]] = 0, i.e.

R[f ] and R[g] centralize each other in the sense of Smith (see also [12] for
details).

From now on in this section, let us suppose that C is efficiently regular and
Mal’tsev.
Pretorsors owe their name to the fact that they canonically determine cate-

gorical bitorsors. Bourn showed in [11] that these can be described in terms of

regularly fully faithful profunctors. Actually, given a pretorsorX
f
և W

g
։ Y ,

we can consider the following diagram, where the upper left-hand side part
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is the centralizing double equivalence relation of the pair ([R[f ], R[g]]):

R[g]×W R[f ]
p1 //

π0

//

π1

��

p0

��

R[f ]oo

d1

��

d0

��

g1 // //____ Y1

y1

��

y0

��
R[g]

d1 //

d0

//

f1
�����
�

�

�

OO

Woo

f

����

g
// //

OO

Y

OO

X1

x1 //

x0

// X.oo

(2)

One can show that the upper horizontal equivalence relation and the vertical
one on the left-hand side are effective and admit quotients g1 and f1. This
construction produces two groupoids δ0(f, g) = X1 and δ1(f, g) = Y 1, which
are called the domain and the codomain of the pretorsor. They are in fact the
domain and codomain of a (regularly fully faithful) profunctor (f, g) : X1 #

Y 1. By abuse of notation, we indicate with the same symbol the pretorsor
and the corresponding profunctor.
Actually, as shown in [11], pretorsors (or, to be more precise, their coun-

terpart: regularly fully faithful profunctors) can be seen as morphisms of a
bigroupoid RF(C) whose objects are internal groupoids. Let us denote by
RF(C) its classifying groupoid, in the sense of Bénabou [2].
Let Z1 be any internal groupoid. The canonical (regular epi, mono) factor-

ization of the map 〈z0, z1〉 : Z1 → Z0×Z0 gives rise to an equivalence relation
ΣZ1:

Z1 ։ ΣZ1 ֌ Z0 × Z0

which is called the support of the object Z1 in the fibre GpdZ0
(C) with respect

to the fibration ()0 : Gpd(C) → C. Following [10], we say that the groupoid
Z1 has effective support when the equivalence relation ΣZ1 is effective.
When the Mal’tsev category C is not only efficiently regular, but also Barr-

exact, any groupoid has effective support. When Z1 is a groupoid with effec-
tive support, we denote by qZ

1
: Z0 ։ π0Z1 the coequalizer of this effective

support.

Proposition 2.3 ([10], Proposition 1.5). Suppose C is Mal’tsev and effi-
ciently regular. Let (f, g) : X1 # Y 1 be a pretorsor. Then X1 has effective
support if and only if Y 1 has effective support. If Y 1 has effective support,
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there is a unique dashed arrow which makes the following square commuta-
tive:

W
g

// //

f

����

Y

qY 1

����

X qX1

// //____ π0X1 = π0Y 1

It is the quotient map qX
1
, and it produces a regular pushout (i.e. such that

the factorization of the pair (f, g) through the pullback is a regular epimor-
phism).

In [7], Bourn observed that, given a finitely complete Barr-exact category E
(but the same considerations hold if E is efficiently regular), it is possible to
define a direction functor d : AutM(Eg) → Ab(E) from the category of objects
in E with global support endowed with an autonomous Mal’tsev operation to
the category of abelian group objects in E. The fibers of d are endowed with
a closed symmetric monoidal structure. In [8] the same author showed that,
if C is finitely complete and Barr-exact, then the category E = GpdX0

(C) of
internal groupoids in C with fixed object of objects X0 is finitely complete
and Barr-exact, too. Moreover, if C is Mal’tsev, then any internal groupoid
in C is endowed with an autonomous Mal’tsev operation. Therefore, the
direction functor d : AutM(GpdX0

(C)g) → Ab(GpdX0
(C)) associates with any

connected groupoid X1 (i.e. an object with global support in GpdX0
(C)) an

abelian group object d(X1) in GpdX0
(C). Furthermore, if the object of objects

X0 of X1 has global support (and in this case X1 is said to be aspherical),
then there is an equivalence of categories (see Theorem 9 in [8]):

Ab(GpdX0
(C)) ∼= Ab(C) ,

and then the direction functor gives rise to a functor

d1 : AsphGpd(C) → Ab(C)

from the category of aspherical groupoids in C to the category of abelian
groups in C.
This construction can be applied to groupoids with effective support. In-

deed any such groupoid Z1 is aspherical when considered as an internal
groupoid in the slice category C ↓ π0Z1. The above functor d1, applied to this
situation, yields a groupoid which is called global direction in [10], Definition
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1.5. The global direction of Z1 is the totally disconnected groupoid d1Z1

produced on the right hand side by the following pushout of solid arrows:

R[〈z0, z1〉] // //

p1

���
�

�

�

p0

���
�

�

�
d1Z1

���
�

�

�

Z1

〈z0,z1〉

��

OO

// // π0Z1

OO

Z0 × Z0

(3)

Notice that the maps p0 and p1 provide the same retraction of π0Z1 → d1Z1

since they are coequalized by the lower horizontal map. The following strong
property relates the domain and the codomain of a pretorsor:

Proposition 2.4 ([10], Proposition 1.6). Suppose C is Mal’tsev and effi-
ciently regular. Let (f, g) be a pretorsor such that Y 1 (or, equivalently, X1)
has effective support. Then the global directions of X1 and Y 1 are the same.

2.2. Action accessible categories. Most of the notions and the results of
this section are borrowed from [13].
Let C be a pointed protomodular category. Fixed an object K ∈ C, a split

extension with kernel K is a diagram

0 // K
k // A

p
//
B //

s
oo 0

such that ps = 1B and k = ker(p). We denote such a split extension by
(B,A, p, s, k). Given another split extension (D,C, q, t, l) with the same ker-
nel K, a morphism of split extensions

(g, f) : (B,A, p, s, k) −→ (D,C, q, t, l) (4)

is a pair (g, f) of morphisms:

0 // K
k //

1K

��

A

f

��

p
//
B //

g

��

s
oo 0

0 // K
l // C

q
//
D //

t
oo 0

(5)
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such that l = fk, qf = gp and fs = tg. Let us notice that, since the category
C is protomodular, the pair (k, s) is jointly (strongly) epimorphic, and then
the morphism f in (5) is uniquely determined by g.
Split extensions with fixed kernelK form a category, denoted by SplExtC(K),

or simply by SplExt(K).
In many algebraic contexts, a split extension as above induces an action

of B on K. By considering the faithful actions one can obtain a notion of
faithful extension, as introduced in [13]:

Definition 2.5 ([13]).
• An object in SplExt(K) is said to be faithful if any object in SplExt(K)
admits at most one morphism into it.

• Split extensions with a morphism into a faithful one are called acces-
sible.

• If, for any K ∈ C, every object in SplExt(K) is accessible, we say that
the category C is action accessible.

Example 2.6. In the case of groups, faithful extensions are those inducing
a group action of B on K (via conjugation in A) which is faithful. Every
split extension in Gp is accessible and a morphism into a faithful one can be
performed by taking the quotients of B and A over the centralizer C(K,B),
i.e. the (normal) subobject of A given by those elements of B that commute
in A with every element of K.

The notion of action accessible category generalizes that of action repre-
sentative category ([4]). In fact, in an action representative category every
category SplExt(K) has a terminal object:

0 // K // K ⋊ [K] // [K]oo // 0 ,

where the object [K] is called the actor of K. Examples of this situation are
the categories Gp of groups (where the actor is AutK) and R-Lie of R-Lie
algebras, with R a commutative ring (where the actor is the Lie algebra DerK
of derivations). The category Rng of (not necessarily unitary) rings is action
accessible [13] but not action representative, as shown in [4]. In [27] it is
shown that every category of interest, in the sense of [28], is action accessible.
This family of examples includes Poisson algebras, Leibniz algebras [21],
associative dialgebras [22] and trialgebras [24].
A variation of the notion of action accessible category is that of groupoid

accessible category. We recall that, in a Mal’tsev category, a reflexive graph
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(B,A, d0, s0, d1) is a groupoid if and only if [R[d0], R[d1]] = 0, i.e. R[d0] and
R[d1] centralize each other in the sense of Smith (see [12]).
Fixed K ∈ C, by a groupoid structure on an object (B,A, p, s, k) in

SplExt(K) we mean a morphism u : A −→ B such that us = 1B and [R[p], R[u]] =
0; the system (B,A, p, s, k, u) is then called a K-groupoid. K-groupoids form
a category Gpd(K), in which a morphism

(g, f) : (B,A, p, s, k, u) −→ (D,C, q, t, l, v)

is a morphism (g, f) : (B,A, p, s, k) −→ (D,C, q, t, l) in SplExt(K) such that
vf = gu.
As for the corresponding notions concerning split extensions, we introduce

the following ones for internal groupoids.

Definition 2.7. Let K be an object in C. We denote by K-Gpd(C) (or
simply K-Gpd) the category of K-groupoids in C, morphisms in K-Gpd(C)
are called K-morphisms.

• A K-groupoid is said to be faithful if any K-groupoid admits at most
one K-morphism into it.

• A K-groupoid is said to be accessible if it admits a K-morphism into
a faithful K-groupoid.

• If, for any K ∈ C, every K-groupoid is accessible, then we say that C
is groupoid accessible.

In [13] it is shown that if C is homological, then it is action accessible if
and only if it is groupoid accessible.
Moreover, when C is a homological action accessible category, given a mor-

phism
(g, f) : (B,R, r0, s, k, r1) −→ (D,C, q, t, l, v)

in K-Gpd(C), where the domain is an equivalence relation and the codomain
is faithful, then the kernel pair R[g] of g is the centralizer of the relation R,
i.e. the largest equivalence relation S on B such that [R, S] = 0 (see [13],
Theorem 4.1). The normalization of R[g] is the centralizer C(K,B) of K in
B. In particular, the normalization of the centralizer of the total relation
∇K is the centre ZK of K.

3. Extensions in action accessible categories

In this section we recall the categorical theory of extensions, as developed
in [14]. The reader can refer to that paper and to the references therein for
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a more detailed account. Throughout this section, C will be a Barr-exact
action accessible category, which is then also groupoid accessible.
In this setting there exists a canonical faithful groupoid associated with any

equivalence relation. More precisely, it is possible to show that given a K-
morphism with faithful codomain and an equivalence relation as domain, then
it factors through a specified regular epimorphism with faithful codomain.
Consider now any extension

0 // K
k // X

f
// Y // 0 .

Denoting by T 1f the canonical faithfulK-groupoid associated with the kernel
relation R[f ], let (qf , Qf) = (qT

1
f , π0T 1f) and consider the diagram:

R[f ]
k1f

// //

f0

��

f1

��

T1f

τ0

��

τ1

��

X

OO

f

����

kf
// // T0f

OO

qf

����

Y
φ

// //_____ Qf

(6)

Since qfkff0 = qfkff1, there exists a unique arrow φ : Y → Qf making the
lower square commutative. It is immediate to show that this square is a
pushout.

Definition 3.1. We call the pair (T 1f ,φ) the abstract direction of the ex-
tension f (an indexation in [14]), and we denote by

Ext(T
1
f, φ)(Y,K)

the set of (isomorphism classes of) extensions of Y by K inducing the abstract
direction (T 1f ,φ).

Remark 3.2. For the reader who is not familiar with the categorical theory
of extensions, it may be useful to briefly examine the situation in the action
representative category of groups. In fact, the discussion below is element
free, so that it applies to any Barr-exact action representative category.
In the case of groups, diagram (6) above can be obtained as a factorization

of the one involving the automorphisms group.
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Actually, the normal subgroup K determines a (conjugation) action

X // AutK ,

that is the object component of the internal functor into the action groupoid
of K, i.e. the groupoid with group of objects AutK, and with group of arrows
the semidirect product K⋊AutK (the holomorph group of K). This induces
a homomorphism Φ into the connected components of that groupoid, the
group OutK of outer homomorphisms, i.e. Φ is the classical abstract kernel
of [26]. Hence diagram (6) above takes part in the following factorization:

R[f ]
k1f

// //

f0

��

f1

��

T1f // //

τ0

��

τ1

��

K ⋊ AutK

�� ��

X

OO

f

����

kf
// // T0f

OO

// //

qf

����

AutK

qK

����

OO

Y

Φ

22
φ

// //_____ Qf
// OutK

When K is abelian, the map qK is an isomorphism, so that the abstract
kernel gives an actual action of Y on K. The totally disconnected groupoid
given by this action is called the direction of the extension (see [10]). From
this comes the name abstract direction of Definition 3.1.

Let us return to the general case. The pullback along φ clearly induces a
change of base. This yields the groupoid D1φ := φ∗(T 1f) and the factoriza-
tion k1f = d1φ · f 1φ

of K-discrete fibrations:

R[f ]

f0

��

f1

��

k1f

++

f1φ

//____ D1φ

d0

��

d1

��

d1φ

// // T1f

τ0

��

τ1

��

X

kf
++

fφ

//_____

f
"" ""EE

EE
EE

EE
EE

EE
EE

Dφ

qφ

����

dφ

// // T0f

qf

����

Y
φ

// // Qf
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The map fφ is a regular epimorphism whose kernel is the centre ZK of K,
and the kernel pair of f1φ is a centralizing double relation for R[f ] and R[fφ],
so that [R[f ], R[fφ]] = 0. Hence the extension we started with determines a
pretorsor (fφ, f). This can be identified with a profunctor

D1φ # E1φ ,

where E1φ is the direction of D1φ in C ↓ Y (notice that the groupoid D1φ

is aspherical in C ↓ Y ).
The codomain of the profunctor can be constructed as follows. First we

observe that K is a subobject of the centralizer C(ZK,X), which is, by con-
truction, the kernel of kfφ. This implies that there is a regular epimorphism

cf : Y =
X

K
// //

X

C(ZK,X)
= T0fφ

such that cf ·f = kfφ. Then the pullback of the totally disconnected groupoid
T 1fφ gives E1φ, and then the desired discrete fibration, as shown in the
following diagram:

R[fφ]

�� ��

k1fφ

++

λ
//____ E1φ

eφ

��

// T1fφ

��

X
f

// //

kfφ

33

OO

Y

sφ

OO

cf
// T0fφ

OO

As a matter of fact the profunctor

D

�� ��

//
//
R[fφ]oo

�� ��

λ // E1φ

eφ

��
R[f ]

OO

//
//

f1φ
����

X

OO

oo
f

// //

fφ
����

Y

sφ

OO

D1φ //
//
Dφ,oo

determined by the pretorsor (fφ, f) is characteristic of the isomorphism class
of the extension.
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Moreover one can verify that profunctor composition induces a simply tran-
sitive action

RF(C)(D1φ,E1φ)× RF(C)(E1φ,E1φ) → RF(C)(D1φ,E1φ)

of the abelian group RF(C)(E1φ,E1φ) onto the set RF(C)(D1φ,E1φ).
Finally, the connection with the classical theory of extensions is given by

the fact that the kernel of eφ is (isomorphic to) ZK, and that one can iden-

tify RF(C)(E1φ,E1φ) with the abelian group Extφ(Y, ZK), where φ is the
abstract direction determined by the split extension (eφ, sφ), and the group
operation is the usual Baer sum. This gives the following result (see [14],
Theorem 4.1, and [11], Theorem 4.11).

Theorem 3.3 (Schreier-Mac Lane extension Theorem). Let C be a semi-
abelian action accessible category. Given an abstract direction (T 1f, φ), on
the set Ext(T

1
f, φ)(Y,K) there is a simply transitive action of the abelian group

Extφ(Y, ZK).

4. Obstruction to extensions in action accessible cate-

gories

Given any faithful K-groupoid

K // T1

τ1 //

τ0
// T0

oo

and any morphism φ : Y → Q, where Q is the coequalizer of τ0 and τ1,
we want to characterize the situations where the set Ext(T

1
, φ)(Y,K) is not

empty. In the case of groups, with any such morphism φ is associated a
cohomology class in H3

φ
(Y, ZK), φ being the action on ZK induced by the

abstract kernel.
Intrinsically, H3

φ
(Y, ZK) corresponds to a second cohomology group in the

sense of Bourn, as explained below.
In a finitely complete Barr-exact category E, Bourn cohomology is con-

structed using n-groupoids (following [6]). In particular, given an abelian
group object A in E, we are interested in the group H2

E
A, which is given by

the component classes of aspherical groupoidsX1 with global directionK1(A)
(aspherical means a connected groupoids such that X0 has global support,
while K1(A) is the groupoid A //

//
1oo ). In this way, any internal groupoid

necessarily determines an element in the second cohomology group with co-
efficients in its global direction. It turns out that H3

φ
(Y, ZK) corresponds to
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H2
C↓Y (A), where A is the abelian group in C ↓ Y given by the split extension

ZK ⋊φ Y
//Yoo . Now we can make more precise Proposition 2.4:

Proposition 4.1 ([10], Proposition 3.5). Suppose C is Mal’tsev and effi-
ciently regular. Let (f, g) be a pretorsor such that Y 1 has effective support.
Then not only the global directions of X1 and Y 1 are the same (let us say

(v, u), with V1
v // V = π0Y 1u

oo ), but also the two groupoids X1 and Y 1 de-

termine the same element in the cohomology group H2
C↓V V1.

The groupoid D1φ appears then as an element of the cohomology group
H2

C↓YE1φ, where E1φ is its global direction. We can now state our result,
which transfers to action accessible categories the “obstruction part” of the
classical Schreier-Mac Lane theorem on extensions with non-abelian kernel.

Theorem 4.2. Let C be a Barr-exact action accessible category. Given any
faithful groupoid

K // T1

τ1 //

τ0
// T0

oo

and any morphism φ : Y → Q, where Q is the coequalizer of τ0 and τ1, the
set Ext(T

1
, φ)(Y,K) is not empty if and only if the groupoid D1φ, seen as an

element of the cohomology group H2
C↓YE1φ, is 0.

Proof : The following proof is inspired by the one given in [10] for action
representative categories. Suppose first that there exists an extension f of
Y by K with abstract direction (T 1, φ). Then we know that with f it is
associated a pretorsor (fφ, f), whose domain is D1φ and whose codomain is
its global direction E1φ, as proved in Proposition 2.4. Moreover, thanks to
Proposition 4.1, we know that D1φ and E1φ determine the same element in
the cohomology group H2

C↓YE1φ. Clearly E1φ represents the zero element of
this group, and then the thesis follows.
Conversely, suppose that D1φ is the zero element in H2

C↓YE1φ. According
to Theorem 12 in [8], in a Barr-exact category E an aspherical groupoid Z1

with direction A is zero in H2
E
A if and only if there is an object H with global

support and a ()0-cartesian functor from∇H×K1(A) to Z1. This is the same
thing as the existence of a functor from ∇H to Z1. In our context, where

E = C ↓ Y , an aspherical groupoid amounts to a groupoid H1

d //

c
// Hoo in

C, together with a regular epimorphism h : H → Y , such that hd = hc and
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〈d, c〉 : H1 → R[h] is a regular epimorphism. The ()0-cartesian functor above
is a functor l1 : R[h] → D1φ between groupoids in C ↓ Y .
Since the category C ↓ Y is Barr-exact, we can construct, according to

Theorem 4 in [5], a factorization

l1 = m1n1 : R[h] → X1 → D1φ

such that m1 is a discrete fibration and n1 is a final functor. Since R[h] is
an equivalence relation, the groupoid X1 is actually an equivalence relation
S on X = X0 (see Proposition 1.4 in [10]). Moreover, since n1 is final, the
quotients of R[h] and S are isomorphic. Accordingly, we get S = R[f ] for
some regular epimorphism f such that fn = h. Consider now the following
diagram:

R[h]

h0

��

h1

��

n1 // R[f ]

f0

��

f1

��

m1 // // D1φ

d0

��

d1

��

d1φ
// // T1

τ0

��

τ1

��

H
n //

h

)) ))RRRRRRRRRRRRRRRRRRRRRRRRRRR X
m // //

f

"" ""EE
EE

EE
EE

EE
EE

EE
Dφ

qφ

����

dφ
// // T0

q

����

Y
φ

// // Q

Since the functors m1 and d1φ are discrete fibration, also their composition
is. Moreover, dφm and d1φm1 are regular epimorphisms. This means that T 1

is the canonical faithful groupoid associated with R[f ]. Hence we have an
extension:

0 // K
k // X

f
// Y // 0

whose abstract direction is (T 1, φ), since the morphism dφm clearly induces
the factorization φ : Y → Q.

5. Obstruction to extensions for Leibniz algebras

In this section, as an example of action accessible category which is not
action representative, we consider the case of Leibniz algebras, introduced
by Loday in [21]. In this setting we develop obstruction theory by means of
Loday-Pirashvili cohomology (see [23]). We are led to Theorem 5.10, that
turns out to be an instance of the more general Theorem 4.2.
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5.1. Preliminaries. We will refer to the category of right k-Leibniz algebras
(k-Leib from now on), which are vector spaces on a fixed field k, endowed with
a bilinear operation [−,−] satisfying the following identity (Leibniz identity):

[[x, y], z] = [[x, z], y] + [x, [y, z]]

We recall here from [23] only the necessary tools in order to deal with ob-
struction theory.
Observe that the notion of action of a Leibniz algebra Y on another Leibniz

algebra K is a special case of those introduced by Orzech [28], in the context
of categories of interest, under the name of “derived actions”, i.e. actions
induced by split extensions:

0 // K // X
//
Y //oo 0 .

At a purely categorical level, via the semi-direct product construction which
is available in any semi-abelian category, they correspond to internal object
actions in the sense of Borceux, Janelidze and Kelly [4]. The notion of
crossed module of Leibniz algebras is again a special case of a more general
one, introduced by Porter [30] in the context of groups with operations; in
the same article, the author proved the equivalence between crossed modules
and internal categories in any category of groups with operations. Actually,
in [20] Janelidze introduced a categorical notion of crossed module, based on
internal actions, and proved that the same equivalence holds in the context
of semi-abelian categories. So, since the category k-Leib is semi-abelian,
Definitions 5.3 and 5.4 (borrowed from [23]) are in fact instances of the
corresponding internal ones.
In [23], Loday and Pirashvili defined cohomology groups for Leibniz alge-

bras over a commutative ring k. They proved that, given an abelian Leibniz
algebra A and another Leibniz algebra Y with a fixed action on A, their
second cohomology group HL2(Y,A) is isomorphic to the abelian group of
(isomorphism classes of) extensions of Y by A which are split extensions of
k-modules and induce the given action of Y on A. On the other hand, Bourn
first cohomology group H1(Y,A) is isomorphic to the abelian group of (iso-
morphism classes of) extensions of Y by A inducing the given action, which
are not necessarily split as k-linear maps. In the case where k is a field, as
in the present paper, the two cohomology groups are obviously isomorphic.
Moreover, the results of this section will show that also HL3(Y, ZK) and
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Bourn second cohomology group H2(Y, ZK) give the same classification of
obstructions to the existence of extensions with non-abelian kernel K.
Obstruction theory for Leibniz algebras over a field was already studied

by Casas in [15]. In that paper, the author defined an action of a Leibniz
algebra G on a Leibniz algebra M as a morphism of Leibniz algebras

σ : G → Bider(M),

where Bider(M) is the subalgebra of the Leibniz algebra Bider(M) of bideriva-
tions of M (see [21]) defined by:

Bider(M) = {(d,D) ∈ Bider(M) | Dd′ = DD′, for all (d′, D′) ∈ Bider(M)}.

We recall that a biderivation of a Leibniz algebraM is a pair (d,D) of k-linear
maps satisfying, for any x, y ∈ M , the following conditions:

i) d([x, y]) = [d(x), y] + [x, d(y)];
ii) D([x, y] = [D(x), y]− [D(y), x];
iii) [x, d(y)] = [x,D(y)].

However, Casas’s definition does not include all derived actions, as the
following example shows.

Example 5.1. Let k be any field. It is easy to see that the following operation
in L = k3:

[(x1, y1, z1), (x2, y2, z2)] = (0, (x1 + z1)(x2 + z2), 0)

satisfies the Leibniz identity, so (L,+, [ , ]) is a Leibniz algebra.
Let now A and B be the same Leibniz algebra, given by k as a vector

space, with bracket operation [x, y] = 0 for all x, y ∈ k. We can construct
two derived actions, of A and B respectively, on L in the following way:

[−,−] : A× L → L [a, (x, y, z)] = (−ax, 0, ax)
[−,−] : L× A → L [(x, y, z), a] = (ax, 0,−ax)

[−,−] : B × L → L [b, (x, y, z)] = (−b(x+ z), 0,−b(x+ z))
[−,−] : L× B → L [(x, y, z), b] = (2bx, 4by, 2bz)

These two actions induce biderivations that are not compatible with each
other, indeed it is not true that for all a ∈ A, b ∈ B and (x, y, z) ∈ L:

[a, [(x, y, z), b]] = −[a, [b, (x, y, z)]] ,

since
[a, [(x, y, z), b]] = (−2abx, 0, 2abx) ,
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−[a, [b, (x, y, z)]] = (−ab(x+ z), 0, ab(x+ z)) .

Hence, denoting

[−, a] = −da , [a,−] = Da ,

[−, b] = −d′b , [b,−] = D′
b ,

we have that Dad
′
b 6= DaD

′
b if a or b are not 0.

This means that the action of A on L defined above is a derived action
that cannot be expressed as a morphism into Bider(L).

This example shows that there are extensions of Leibniz algebras with
which it is impossible to associate an abstract kernel in the sense of [15].
Indeed, considering the semi-direct product L⋊A of L and A defined by the
action of A on L above, we obtain an extension of Leibniz algebras

0 // L // L⋊ A // A // 0 ,

actually a split extension, such that the conjugation action of L ⋊ A on L

does not give rise to a morphism L⋊ A → Bider(L).
On the other hand, every derived action of a Leibniz algebra G on a Leibniz

algebra M can be seen as a morphism G → Bider(M). However, there are
in general morphisms into Bider(M) that do not give rise to derived actions
(see Example 5.2 below). This implies that Bider(M) is not an actor, as
observed in [16], where the authors give necessary and sufficient conditions
for a Leibniz algebra to have an actor.

Example 5.2. Given a field k with characteristic different from 2, consider
the Leibniz algebra K, whose underlying k-vector space is k itself, and whose
bracket is the trivial one: [x1, x2] = 0 for all x1, x2 ∈ K. Define a morphism
ϕ : K → Bider(K) in the following way:

ϕ(a) = (da, Da), where da(x) = −ax, Da(x) = ax.

This defines an action of K on itself which is not derived: indeed, denoting

[−, a] = −da, [a,−] = Da,

we have:

[a, [b, x]] = abx 6= −abx = −[a, [x, b]].

Hence, according to Theorem 5.5 in [16], K does not admit an actor.
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This example also shows that, if we define the actions of G on M as mor-
phisms G → Bider(M), we can construct crossed modules which are not
crossed modules in the sense of [23], hence their equivalence classes do not
correspond to elements of the third cohomology group. For example, if K
is the Leibniz algebra defined above, the zero morphism K → K, with the
non-derived action defined above, gives rise to a crossed module which is not
a crossed module in the sense of Definition 5.4 below and it cannot be seen
as an element of Loday-Pirashvili third cohomology group.
In conclusion, for a Leibniz algebra M , the linear subspace S of Bider(M)

that classifies derived actions is not a subalgebra in general, as shown in
Example 5.1. In fact, it satisfies the following chain of inclusions:

Bider(M) ⊆ S ⊆ Bider(M),

which are all proper in general. It follows from Theorem 5.5 in [16] that S is
a subalgebra if and only if Bider(M) = Bider(M), and in this case Bider(M)
is an actor for M .
Our approach permits to define abstract kernels without using actors, and

it fixes the problems highlighted by Examples 5.1 and 5.2, because it allows
to associate an abstract kernel with any extension, and to prove that an
abstract kernel has trivial obstruction class if and only if there is an extension
associated with it.

5.2. Obstruction theory.

Definition 5.3 ([23], Definition (1.6)). An action of a Leibniz algebra B on
another Leibniz algebra A is given by a pair of bilinear maps:

[−,−] : B ×A → A

[−,−] : A×B → A

satisfying the following identities (for all a, a1, a2 ∈ A and b, b1, b2 ∈ B):

[[a1, a2], b] = [[a1, b], a2] + [a1, [a2, b]] [[a, b1], b2] = [[a, b2], b1] + [a, [b1, b2]]
[[a1, b], a2] = [[a1, a2], b] + [a1, [b, a2]] [[b1, a], b2] = [[b1, b2], a] + [b1, [a, b2]]
[[b, a1], a2] = [[b, a2], a1] + [b, [a1, a2]] [[b1, b2], a] = [[b1, a], b2] + [b1, [b2, a]]

In the previous definition we use the same symbol to denote the action
and the bracket operation. This choice is justified by the fact that, in the
semi-abelian case, actions can always be interpreted as conjugations (in the
semi-direct product) and in k-Leib the conjugation is exactly the bracket
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operation. So it becomes clear that the properties listed above are inherited
from the Leibniz identity.

Definition 5.4 ([23], Definition (1.6)). A crossed module in k-Leib is a

morphism A
µ
→ B, together with an action of B on A, such that, for all

a, a1, a2 ∈ A and b ∈ B:
{

[µ(a), b] = [a, b]
[b, µ(a)] = [b, a]

(precrossed module condition)

[µ(a1), a2] = [a1, a2] = [a1, µ(a2)] (Peiffer identity)

Definition 5.5 ([23], Definition (1.8)). Let two Leibniz algebras A and B be
given, together with an action ξ of B on A. Denote:

Cn(B,A) := Homk(B
⊗n, A)

(dnξf)(x1, . . . , xn+1) := [x1, f(x2, . . . , xn+1)]+

n+1∑

i=2

(−1)i[f(x1, . . . , x̂i, . . . , xn+1), xi]+

+
∑

1≤i<j≤n+1

(−1)j+1f(x1, . . . , xi−1, [xi, xj], xi+1, . . . , x̂j, . . . , xn+1)

Then (C∗(B,A), dξ) is a cochain complex, whose cohomology is called the
cohomology of the Leibniz algebra B with coefficients in A:

HL∗
ξ(B,A) := H∗(C∗(B,A), dξ) .

Notice that, differently from the original notation adopted in [23] for the
cohomology groups HL, we use the subscript ξ in order to keep track of the
action.

Proposition 5.6. Every crossed module A
µ
→ B in k-Leib is associated with

an equivalence class of cocycles in HL3
ξ(coker(µ), ker(µ)).

Proof : Consider the following diagram:

N
n // A

µ
//

q

!!B
BB

BB
BB

BB
BB

B B
p

// Q
s

oo_ _ _ _

µ(A)

m

==||||||||||||
t

aaB
B

B
B

B
B
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where n = ker(µ), p = coker(µ), (q,m) is the (regular epi, mono) factoriza-
tion of µ, s and t are any fixed k-linear sections of p and q respectively (i.e.
ps = 1Q and qt = 1µ(A) as linear maps). As a consequence of the definition
of crossed module, q is a central extension and m = ker(p). The action of B
on A induces an action ξ of Q on N :

for all (x, y) ∈ Q×N : [x, y] := [sx, ny] and [y, x] := [ny, sx]

The choice of s determines a k-linear map f : Q⊗Q → µ(A) defined by the
following equality for all (x1, x2) ∈ Q⊗Q:

[sx1, sx2] = mf(x1, x2) + s[x1, x2]

which measures the extent to which s is not a morphism in k-Leib. By the
Leibniz identity it is easy to show that for all (x1, x2, x3) ∈ Q⊗3:

[sx1, mf(x2, x3)] + [mf(x1, x3), sx2]− [mf(x1, x2), sx3]+
−mf([x1, x2], x3) +mf([x1, x3], x2) +mf(x1, [x2, x3]) = 0

(7)

Notice that this “cocycle” equation does not mean that f is a “true” 2-cocycle
since the bracket operation in B does not induce any action of Q on µ(A),
unless µ(A) is abelian. By lifting f via the chosen t, the equality above no
longer holds, but the distance of tf from being a (true) 2-cocycle is measured
by an element of N (apply q to obtain (7)):

ng(x1, x2, x3) = [sx1, tf(x2, x3)] + [tf(x1, x3), sx2]− [tf(x1, x2), sx3]+
−tf([x1, x2], x3) + tf([x1, x3], x2) + tf(x1, [x2, x3])

In fact, some calculation shows that d3g ≡ 0, so that the equation above de-
fines a 3-cocycle g : Q⊗3 → N . Moreover, it is possible to show that different
choices of the k-linear sections s and t give rise to a 3-cocycle cohomologous
to g.

We are now ready to deal with the problem of extensions with non-abelian
kernel. Given an extension of Leibniz algebras:

0 // K
i // X

p
//
Y

s
oo_ _ _ _ // 0 (8)

that is a pair of morphisms as above, such that i = ker(p) and p = coker(i),
it is always possible to choose a k-linear section s of p. As in the proof
of Proposition 5.6, we can see that this choice produces a k-linear map f :
Y ⊗ Y → K defined by the following equality for all (y1, y2) ∈ Y ⊗ Y :

[sy1, sy2] = if(y1, y2) + s[y1, y2]
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and satisfying the following equation for all (y1, y2, y3) ∈ Y ⊗3:

[sy1, if(y2, y3)] + [if(y1, y3), sy2]− [if(y1, y2), sy3]+
−f([y1, y2], y3) + f([y1, y3], y2) + f(y1, [y2, y3]) = 0

(9)

Observe that if the section s is a morphism in k-Leib, then f ≡ 0, Y acts on
K by conjugation in X via s and X is isomorphic to the semi-direct product
K ⋊ Y in k-Leib, that is the Leibniz algebra with underlying vector space
K ⊕ Y and with bracket operation:

[(k1, y1), (k2, y2)] = ([k1, k2] + [k1, sy2] + [sy1, k2], [y1, y2])

In the general case, s is not a morphism and X is isomorphic to a Leib-
niz algebra whose underlying vector space is again K ⊕ Y and the bracket
operation is perturbed by f :

[(k1, y1), (k2, y2)] = ([k1, k2] + [k1, sy2] + [sy1, k2] + f(y1, y2), [y1, y2])

The conjugation in X via s does not induce any action of Y on K, but an
action of Y on the centre ZK of K.
Indeed, given an abstract K-kernel (µ, φ) (see Definition 5.9 below), with

the induced action φ of Y on ZK, the following theorem, which turns out
to be a particular case of Theorem 4.1 in [14] (see also Theorem 3.3 herein),
holds:

Theorem 5.7 (Schreier-Mac Lane extension Theorem). There is a simply
transitive action of the group HL2

φ
(Y, ZK) on the set of equivalence classes

of extensions of Y by K inducing the abstract kernel (µ, φ).

Proof : We give here only a sketch of the proof, explaining the (very simple)
way HL2

φ
(Y, ZK) acts on the set of extensions.

As above, any extension E of Y by K is associated with a bilinear map
f : Y ⊗ Y → K for any chosen section of p. An element of HL2

φ
(Y, ZK)

acts on E by the sum f + g, where g is a 2-cocycle in the given class of
HL2

φ
(Y, ZK). Indeed, f + g : Y ⊗ Y → K is a bilinear map satisfying an

equation like (9) and, with the same construction of the previous paragraph,
it allows to turn K ⊕ Y into a Leibniz algebra.

In order to formulate the inverse problem of constructing an extension of
Y by K we need some tools.
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Lemma 5.8. The crossed module associated with any faithful internal groupoid
on a Leibniz algebra K has the centre ZK of K as its kernel.
We call faithful any crossed module associated with a faithful internal

groupoid.

Proof : Let be given an internal K-groupoid in k-Leib:

K
i // A

d //

c
// Beoo

Then, by the already mentioned equivalence between internal categories and
crossed modules, the composite ci gives rise to a crossed module. By the
Peiffer identity, the kernel of ci is contained in the centre ZK of K.
Suppose now the groupoid (A,B, d, c, e) to be faithful. This implies that

the action of B on K induced by conjugation in A is faithful (see Proposition
4.6 in [27]), i.e.:

(for all x ∈ K [b, x] = [e(b), i(x)] = 0 = [i(x), e(b)] = [x, b]) ⇐⇒ b = 0

Since for all z ∈ ZK and x ∈ K:

[ci(z), x] = [z, x] = 0 = [x, z] = [x, ci(z)]

where the first equality depends on the Peiffer identity and the second one
holds because z ∈ ZK (and similarly for the other two equalities), then
ci(z) = 0 and this proves that ZK = ker(ci).

Thanks to the previous lemma, the following one is a special case of Defi-
nition 3.1:

Definition 5.9. An abstract K-kernel in k-Leib is a pair

(µ, φ) ,

where µ is a faithful crossed module of domain K, and φ is a regular epimor-
phism Y → coker(µ).
We will eventually refer simply to φ to denote the abstract kernel (µ, φ),

when this is not ambiguous.
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Suppose now that an abstract K-kernel Y
φ
→ Q is given, where Q is the

cokernel of a faithful crossed module µ:

ZK
n // K

µ
//

q

!!C
CC

CC
CC

CC
CC

C E
p

// Q
s

oo_ _ _ _

µ(K)

m

=={{{{{{{{{{{{
t

aaC
C

C
C

C
C

(10)

Then, as in Proposition 5.6, we can associate with µ a linear map g : Q⊗3 →
ZK, which represents an element of HL3

ξ(Q,ZK). Simply composing with

φ we obtain a 3-cocycle gφ⊗3 : Y ⊗3 → ZK, whose cohomology class is
independent from the choice of s and t. In this way we have associated with
the abstract kernel φ an equivalence class in HL3

φ
(Y, ZK) (where φ is the

action of Y on ZK induced by φ).
The following theorem is the counterpart of Theorem 4.2 for the special

case of Leibniz algebras. Here obstructions to the existence of extensions
of Y by K are classified by means of Loday-Pirashvili cohomology group
HL3

φ
(Y, ZK), while in Theorem 4.2 they are classified by groupoid cohomol-

ogy. This shows that these two approaches give the same classification of
obtructions to extensions in k-Leib.

Theorem 5.10. An abstract K-kernel Y
φ
→ Q in k-Leib gives rise to an ex-

tension of Y by K if and only if the associated equivalence class in HL3
φ
(Y, ZK)

is 0.

Proof : With the notation of the previous paragraph, consider the vector
space F = K ⊕ Y endowed with a bracket operation:

[(k1, y1), (k2, y2)] = ([k1, k2] + [sφy1, k2] + [k1, sφy2] + tf(φy1, φy2), [y1, y2])

A simple calculation shows that:

[[(k1, y1), (k2, y2)], (k3, y3)] = [[(k1, y1), (k3, y3)], (k2, y2)]
+ [(k1, y1), [(k2, y2), (k3, y3)]]
+(ng(φy1, φy2, φy3), 0)

thus F is a Leibniz algebra if and only if gφ⊗3 ≡ 0, or, in other words, if and
only if tf(φ⊗φ) satisfies an equation like (7). In that case, with the obvious
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inclusion and projection, we obtain an extension in k-Leib:

0 // K
j

// F // Y // 0 .

Moreover, the map u : F → E (where E is as in diagram (10)), with u(k, y) =
µk + φy, is a morphism of Leibniz algebras, which induces a morphism of
crossed modules

0 //

��

K
j

// F //

u

��

Y

φ

��

ZK // K µ
// E // Q

showing that the abstract kernel associated with the extension above is the
original one.
If gφ⊗3 is not identically zero, but still a 3-cocycle cohomologous to 0, i.e.

gφ⊗3 = d2
φ
α for some 2-cochain α in C2(Y, ZK), then it is sufficient to replace

tf(φ⊗ φ) with tf(φ ⊗ φ) − α to turn F into a Leibniz algebra and to have
again an extension of Y by K.
Conversely, let an extension in k-Leib be given:

0 // K
i // X

p
// Y // 0 .

Since the category is groupoid accessible, there is a morphism from the kernel
pair R[p] of p to a canonical faithful K-groupoid, which yields a crossed
module morphism between i and a faithful crossed module µ:

0 //

��

K
i // X

p
//

��

Y

φ

��

ZK // K µ
// E // Q

So we obtain the abstract kernel associated with the given extension. The
corresponding cochain gφ⊗3 : Y ⊗3 → ZK actually lifts to the upper row,
thus being identically 0.
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