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ABSTRACT: Inverse spectral problems for Jacobi and periodic Jacobi matrices with
certain sign patterns are investigated. Necessary and sufficient conditions under
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and illustrative examples are given.
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1. Introduction

In the sequel we consider C" endowed with the indefinite inner product de-
fined by [z,y] = y*Hz, for any z,y € C", where H = diag(dy,da, - ,0y)
is a selfadjoint involution, i.e., H = H* and H? = I. A real matrix A is H-
symmetric or pseudo-symmetric, if HATH = A, being HAT H the H-adjoint
of A, usually denoted by A*.

A periodic pseudo-Jacobi matrix is one of the form

aq €1b1 0 cee 0 b

bl a9 62b2 s 0 0
0 b ag --- 0 0
In = : :2 :3 .. : : ’ (1)
0 0 0 S ¢ 7 | 6n—lbn—l
[ €1 6nflbn 0 0 T bnfl Qp |
where all entries are real, b; > 0 and ¢;, = £1. The matrix J, is H-symmetric
for H = diag(1, €1, €1€9,- -+ ,€1---€,1). If b, = 0, the tridiagonal matrix so
obtained is called a pseudo-Jacobi matriz, which is said unreduced if b; >
0, 2 = 1,...,n — 1. In the sequel, we shall be concerned with this case.

If H is the identity, matrices of the type (1) are termed periodic Jacobi
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matrices. These matrices deserved the attention of many authors as they
appear in different subjects of pure and applied mathematics, see [10, 11] and
the references therein. For example, they arise in the discretization of the
one-dimensional Schrédinger equation with periodic boundary conditions [3],
or in connection with small vibrations of a nonhomogeneous ring [8]. Jacobi
matrices have motivated the interest of researchers due to its applications in
many areas (cf. e.g. [2, 7, 9] and the above cited monographs).
Following [12], the matrix .J,, can be represented as

- Jnfl Y
h= | v 2
where J,_1 is the matrix obtained from J, by deleting the last row and
column and

Yy = (bTM 07 e 707 enflbnfl)T S Rn_la ZT — (61 Tt €n,1bn, 07 Tt 707 bnfl) c Rn_l-

The matrix J, 1 is pseudo-symmetric, so its spectrum is symmetric rela-
tively to the real axis. We shall assume that J,,_; has real and simple eigen-
values, this condition ensuring that J, ; has a corresponding set of real
H-orthonormal eigenvectors.

Our main aim is the investigation of the following inverse spectral problem,
throughout referred as IPPJ:

Given the data {\, p, 5,0} satisfying the following conditions:

(i) A1, ..., A, are complex and pairwise distinct numbers, closed under
complex conjugation;
(ii) p1, ..., p—1 are real and pairwise distinct numbers;

(iii) 5 is a positive number;

(iv) 6y =1,and 6, = %1, 7 =2,--- ,n —1;
determine a necessary and sufficient condition for the existence of a matrix
J,, of the form (1), H-symmetric for H = diag(ds, ..., d,), such that o(J,,) =
{My o ), o( 1) = {1}, where o(X) denotes the spectrum
of the matrix X, and [/, b; = 3.

This note is organized as follows. In Section 2 a modified Lanczos al-
gorithm, which constructs a pseudo-Jacobi matrix from prescribed spectral
data, is presented. In Section 3, IPPJ is investigated. In Section 4, an al-
gorithm to construct its solutions is proposed and an illustrative example is
given. The obtained results are parallel to the analogous ones for classical
Jacobi and periodic Jacobi matrices, from which the here considered matrices
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differ in sign patterns. The approaches of Ferguson’s in [8] and of Xu and
Jiang in [12] have been followed with convenient adaptations.

2. An inverse problem for pseudo-Jacobi matrices

In this section we show that the Lanczos algorithm can be used to re-
cover the entries of a pseudo-Jacobi matrix from its real, simple eigenvalues
{1, ..., n_1, the first entries of the corresponding eigenvectors vy, ..., v, 1
and the respective norms 91, ...,0,_1.

For convenience, we shall use capital letters to denote the entries of vectors
and matrices obtained by an algorithm. As usual, d;, denotes the Kronecker
symbol (05 is 0 if j # k and 1 if j = k). A real matrix V is called H-
orthogonal if VV# = 1.

The next statement is a sort of uniqueness theorem and the proof provides
a reconstruction algorithm.

Theorem 2.1. Let J, 1 be H-symmetric for
H = dlag(l, €1....,€1 """ Enfg) = diag(él, ceey 5nf1).

Let o(Jp-1) = {p1,- - tn-1}, V11, .., Un_11 be the first entries of the corre-
sponding eigenvectors vy, ..., vn_1, and 61 = [v,v1], ..., 0n—1 = [Un_1, Vp_1].
Then, J,_1 can be constructed by the following:

Algorithm 1.

1. Setbozl;

2. Forj=1,...,n—1, set Yy; = 0;
3. Forj=1,...,n—1, set Y1; = vi;;
4. Iterate forti=1,...,n—1;

n—1
5. a; = 0; Z Skt Yis
k=1

n—1
6. b; = VD, Dj := 0;41 Z Or( (e — ai)Yir — bi1Yi11)?;
k=1

(Mj - Clz')Yij - bi—lifi—l

d forg=1,...,n—1;
€ibi

7. Y, =
8. Take next 1,

n—1

9. Ap—1 = 6n—1 ZékMkYnZ—l,k'
k=1
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Proof: The theorem is a consequence of the following three Lemmas. u

Lemma 2.1. Under the conditions of Theorem 2.1, we have

n—1
aj =0; Y Opprviy, (3)
k=1
n—1
b2 = 0y Z 0k (e — ar)vig, (4)
k=1
n—1
b? = 0j+1 Zék((ﬂk - Clj)Ujk - bj—1Uj—1,k)2, J=2,...,n—2, (5)
k=1
Ugj = elbfl(vlj,uj — CL1’U1]'), (6)

Vi1, = ekbgl(vkjuj — (bkflkal,j + akvkj)), k= 2,....,n—2. (7)

Proof: Consider the matrix

[a; eiby O 0 0
bl as €2b2 0 0
0 b a 0 0
Joa=1|. 7 , C |, b bei >0, (8)
0 0 0 a2 €20y 2
| 0 0 0 bn72 Ap—1
which is H-symmetric for H = diag(1,e€1,€1€9,...,€1---€,-2) = diag(dy,
- ,0p-1). The real matrix V' whose columns are, respectively, vy, -+, v,_1,

satisty J,—1v; = pyv; and vaJnflvk = 0x0jk, jJ,k = 1,...,n — 1. Thus,
VV# =1, 1and J, | = Vdiag(uy, ..., tn—1) V. Now, we prove (3). From
JnaV=VD, D =diag(u, -, n1), (9)

it follows that
ayvyj + €101v9; = vijpy, (10)
bp—1Vp—1; + AxVkj + €bpvpi1; = vgip, k=2,....n—2. (11)

Multiplying these relations by v;;0;, summing over j and having in mind that
the v; are H-orthogonal, (2) follows. Next, we prove (4), (5). Clearly, from
(10), (11), we get

€abav ) = Vi — 1),

ejbjUjJrl’k = vjk(,uk — aj) — Ujflvkbjfl, j = 2, e, = 2.
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If these relations are squared and the result summed over k after multiplica-
tion by d, (4) (5) are obtained.
Finally we observe that (6), (7), follow from (10), (11). m

Lemma 2.2. Under the conditions of Theorem 2.1, we have

V1jUn—1X (1) = 010;b1 .. . by—o, for j=1,....,n—1,
where x(z) = det (J,—1 — z]nfl). In particular, vi; # 0, vo_1; # 0, for
j=1,....n—1.
Proof: Clearly,
x(2) A (g — 2l ) = (Juoy — 2L, 1) P = V(D — 20, ) 'HVTH.
Considering the (1,7 — 1)th entry of this relation, we find that

n—1
zZ
. bn72 = 5n71 Z %vlv‘jvnl,jéj. (12)
; J

Taking the limit as z approaches p; and observing that

X'(Mj) = H(Mk — 1),
ki
the result follows. [ |

Lemma 2.3. The pseudo-Jacobi matrix J, 1 constructed by the modified
Lanczos algorithm s unique.

Proof: Let J._1 be a pseudo-Jacobi matrix constructed by the modified
Lanczos algorithm from the data {u,y,d}. Then, yi1,...,y1,—1 are the first
components of a set 171, .. .,Yn 1 of real, pseudo-orthogonal eigenvectors
of jn—1, with pseudo-norms 01,...,0,_1, corresponding to the eigenvalues

1y ooy fipq. If Y denotes the matrlx whose jth column is Yj, then Y is
H-orthogonal for H = diag(dy,...,0,-1) and

J,1Y = DY, D =diag(u, ..., fn1)-

We will now prove that the entries (a, b, 9) of J,_1 are identical to the entries
(a,b,9) of the matrix J,,_; computed by the modified Lanczos algorithm. The
entries Y]k of Y satisfy the H-orthogonality relations

n—1

Vit Yirdr = 0:0ij,

(]
<

k=1
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and also satisfy the recurrence relations
a1Y1j + e1b1Yo; = Y14,
bp—1Yi—1; + arYy + abpYepr; = Yiguy, k=2,...,n—2,

which follow from J, 1Y = DY. If we multiply the recurrence relations by
Y;;0; and sum over j the result so obtained, we find that

The recurrence relations also imply that
62?)2372,k = 5711@(#1@ —ap),
€0 Yk = Yir(ur — a5) = Yiawbj1, j=2,...,n—2.

If these relations are squared, and then summed over k after multiplication
by 0x, we get

n—1
bi = 4| Oit1 Z k(s — @) Yip — bi 1 Yi 1)
=1

Since }A/lj = 115, we easily prove, following the sequence of computations in
the modified Lanczos algorithm, that

ap = ag, by = by, Yzj = Yzj,
ay = az, by = by, Y3; = Y3,
dn72 = Up—2, bn72 - bn727 Ynfl,j = I'n-1jy,
dp—1 = Qp_1.
|
We observe that if D; < 0 at step 6 of the Algorithm 1, then its execution

is interrupted. The next result gives sufficient conditions for the algorithm
to work.

Theorem 2.2. Let the data {u,y,0} be given and satisfy:

(i) g1, ..., pn_1 are real and pairwise distinct numbers;
(ii) Y11, .-, Yn—11 are real, nonzero numbers;

(i) 6, =1,0; =41, j=2,--- ,n—1, and Sp_1 6xys = 01;
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(iv) D; >0,i=1,...,n—2.
Then the Algorithm 1 constructs a H-Jacobi matriz J, 1,

H = diag((Sl) R 671—1)7

such that o(Jy—1) = {p1, .-, fn—1}, Yi1,---,Yn—11 are the first entries of
the corresponding eigenvectors yi,...,Yn—1, and 60 = [y, 1], ., 0p_1 =

[yn—la yn—l]-

Proof: Assume that D; > 0, ¢ = 1,...,n — 2. We show that the rows of
the matrix Y constructed by the algorithm satisfy the pseudo-orthogonality
relations

n—1
ZY;kY}kék = 0;0;5, Jj=1,--+,1, (13)
k=1

and i = 1,...,n — 2. By the hypothesis, 22:11 5jyj21 = 07. If (13) holds for

i =1,---,1, we will show that it also holds for ¢ = [ 4+ 1. Consider Y,
according to step 7,

n—1 n—1
1
E YirikYeor = by E (e — @)Y — bi—1Y1-15) Y565,

Elbg 1

n—1
1
(Z i YirYje0r — 10705 — blléll,jéj) :

Thus, taking 7 = [ and using step 5, we obtain

n—1 n—1

1
g Y x Yoy = v ( E P Y Y1505 — al5z> = 0.
k=1 k=1

For 7 <[ we have

n—1 n—1
1
E Yl+1,kY}'k5k = —szz ( E MkYEijkék - 511511,j5j> .
k=1

k=1
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We consider now Y given by step 7, for j < [, and observe that

n—1 n—1
1
Z Y11 Yoy = 0541000 = — (o — aj) Y Yior — b1 Y11 Y10k)
k=1 €% k=1
1 n—1
= Z Y1 Y10k — bj_105-1,01 |
% \=1
so that
n—1
D kYiRYikbr = 85411€ib;01 + bj 1851101
k=1

Thus, since j < [,

n—1 n—1

1
E Y1 xYinor = v ( E 1Y Y08 — blléll,jéj)
=1 =1

1
= o (041,606 + bj_16j-1,6 — b—161-1,;0;)

= €0;14+10] = 0j1+1014+1-
This completes the proof that the rows of the real matrix Y, whose jth
column is the vector Y}, are H-orthogonal, that is, Y H YT = H holds for H =
diag(1, ey, -+ ,€1---€,_2). This implies that the vectors Y7, ...,Y, 1 are such
that Y;THYk = 0;10x. Moreover, we have J,_1Y; = p;Y;. Thus, o(J,—1) =
{pa, ... pm—1} and yi1, ..., y,—11 are the first entries of the corresponding
eigenvectors Y7, ..., Y, 1. u

Example 2.1. Consider the data

(,M1,M27 M3, Y11, Y21, Y31, 01, 09, 53)

—2V/2 2442 1
(—\/5,\/5,0, 3 - 2v2 V2 1,—1,1).

2/3 —2v2 2v/3 — 22 2v/3 — 22

From these data, the modified Lanczos algorithm determines the matriz
-2 -1 0

=11 0 -1
0 1 2
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Now, consider the data

(Mb M2, 13, Y11, Y21, Y31, 01, 02, 53)

::(ﬂ@,¢zo,¢4_¢ZVG_2¢12,L_J,Q.

These data lead to ay = p1yd, — paysy + Hsys, = —2. However the algorithm
has been interrupted at step 6, since Dy = ((p1 — a1)y11)? — ((ug — a1)y21)? +
((u3 — a1)ys1)? = —12 422 < 0. Thus, a matriz J3 corresponding to these
data does not exist.

3. An inverse problem for periodic pseudo-Jacobi matri-
ces

The main result of this section is the solution of IPPJ (cf. [4] for a particular
case).

Theorem 3.1. Let the data {\, u, 3,0} be given and satisfy (i), (ii), (i),
(iv). There exists a periodic pseudo-Jacobi matriz J, of the form (1), H-
symmetric for H = diag(dy, -+, 0,), such that

o(Jn) =421, s}, o) = {1, -y i1}, and B = Hbi
i=1

iof and only if the following conditions hold for j=1,... n-1:
n n—1 _
1) ~8udgey > 0, where z; = [Py — ) TS o — )™ Jor iy €
{A1, .., A}, and x; = 0 otherwise;

n—1

2) Ty I\ — gl — 46,6;8 signx/ (1) = 0, where X' (1) = ] (e — 1)
j#k=1
3) For a selected sign =+,

n—1 2
43
0 —0p0ix; £ 4| =00, — 0,0, ——— | >0
J( L \/ gL jX'(Mj))

J=1

4) D; >0 (cf. Algorithm 1) for j=1,...,n—2.
Furthermore, there are at most 2" 1 different solutions J,,.

Next, we present four auxiliary lemmas needed for the proof of Theorem
3.1.
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Lemma 3.1. Let py, ..., u,—1 be the eigenvalues of J, 1 and
T n—1 .
Ui:(?}ﬂ,...,vi,n_l) eR"7", +=1,...,n—1,

be the corresponding eigenvectors, satisfying [vi,v;] = 0;. Then p; is an
etgenvalue of J,, if and only if byvi1 + 0pbp—10in—1 = 0.

Proof: Let V be the matrix whose ith column is the eigenvector v; associated
with p; such that [v;,v;] = ;i =1,--- ,n—1. It is easy to confirm that the
matrix
V0
v = Loy
satisfies U"U = I,,, since VV# = I,,_;. Furthermore,
U U = [V Jp1V V#y] ldiag(,ul, cee 1) d

Ty ay, fr an |’
where
d = (di,- ,dy1)" =VPy (14)
= (6 ( nU11 +bn 1W1n—10n), -+ 5 0p—1(bpvn_11 +bn—1vn—1,n—15n))T,
JT= (faee s fa) = 21V (15)

- 6n(bnvll + bn—lvl,n—léna T 7bnvn—1,1 + bn—lvn—l,n—lén)-

A simple computation yields

det (UFJ,U — 21,) = (an — 2) f[ Z d; fi H —2).

]?61

Henceforth (e is an eigenvalue of J,, if and only if det (J,, — pel) = 0, that
is, dy fy H (,uZ pe) = 0. [

Next, we Shall assume that J, and J,,_; do not have common eigenvalues.

Lemma 3.2. If b,vi1+0,bp—10in—1 # 0, fori =1,...,n, then the eigenvalues
of J, are the n zeros of the function

n—1

Z 01,0i (010,051 + 5nbn—1vi,n—1)2

L —
i=1 Hi

f(z)=a, —z—

(16)
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Proof: The lemma is an easy consequence of the following observation
n—1 fd
det (J, — 21,) = (g — 2) -+ (11 — =N %)
et (Ju = 21) = (1 = )+ (o z>(a : ;M—z)

keeping in mind expressions (14) and (15). m
In the following, we consider that J, and J, ;1 have common eigenvalues.
Lemma 3.3. Let S be a subset of {1,...,n — 1} with s elements such that
01bpvi1 + Onby—1Vin—1 = 0 for @ € S and 01b,vi + 9pbp_1vip—1 # 0 for

1 & S. Then, u; s an eigenvalue of J, fori € S. The remaining eigenvalues
of J, are the n — s zeros of the function defined by

n—1 - - | 5
f(z) —a, — 2 — Z 5n5z(51bn'011 + 5nbn,1’l}z’n71) .

pumy Hi — %
iZs

Proof: By Lemma 3.1 p; is an eigenvalue of J, if ¢ € S, being the remaining
eigenvalues of J,, the zeros of the polynomial

det (U#J,U — zI,) < fidi \
p(z) = = an—z—g ||,u-—z.
( ) HjeS (:uj - Z) ( i—1 Hi— 2 ) 55 ( ’ )
Jgs

Thus, p(z) = det (U#J,U — 21,,) [Tics (1 — 2)"' =0 if and only if

n—1 dz : n—1 dz :
f(z)(an—z—zu'fz> ay, — 2 — Z i =0.
i=1

intags M T
The polynomial p(z) has degree n — s, and by construction, it has n — s
distinct zeros. The result follows by Lemma 3.2. u

The next lemma follows [12, Theorem 4].

Lemma 3.4. For A\, u satisfying (i), (i) and pj & {\1, ..., \}, we have
X1

X9 Tp—1 .
e — 44, =N\ =0, =1,...,n, (17
m—Aﬁﬂm—M+ 4Vm4_&+a for i n, (17)

. . —1 _ .
if and only if @ = Ty — ) TIS oay s — i)™ Jor j = 1,em— 1,
and a, = Z?:l Ai — Z;:f i -
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Proof: (=) Let

q(2) —z—l—z

1=1 Hi == |
By easy computations we get
n—1 n—1 n—2
(an—2)[J (i —2) + o] [ (i = 2) + - + 2 a [ [ (i = 2)
i=1 i=2 i=1
H (i = 2)
i=1
n—1
and so ¢q(z) = Q(Z)H (i — z)~", where Q(z) is a monic polynomial in —z
i=1
of degree n. By the hypothesis qgA) = - = q(M\) = 0, 50 Q(2) =
n—1

[T, (\; — 2z). Hence ¢(z H Ai — 2) H — 2)~". For each i, the residue
1=1

=1

n n—1
of q(z) at p; is given by Res.—,q(z) = —H()\j _Mz‘)H(Mj — ;)" and
j=1 =1
i#£]
yields the value of z;. Having in mind that lim, ,,.(q(2) + 2) = Z?Zl Aj —
Z;:ll i, the direct implication follows. The converse holds by analogous
arguments. [ ]

Proof of Theorem 3.1

(=) Assume that there exists a periodic pseudo-Jacobi matrix J, of the
form (1) such that o(J,) = {A\,..., \} and o(J1) = {p1, -+ pn—a}. If
pj & o(Jy,), by Lemma 3.1 we have (b,vj1+610,—1b—10jn—1) # 0 and bearing
in mind Lemma 3.2 and Lemma 3.4, x; = [[_; (A — u;) H (uz — pi)

= —0,0;(01b,vj1 + Onbp_1vj 1) If uj € o(J,), by Lemma 3. 1 We have z; =
—5n6j(51bnvj1 + 6nbn—1vj,n—1)2 = 0.

Henceforth, the condition 1) holds.

Next, we show that the condition 2) is satisfied. From Lemma 3.3 we get
010,01 4+0by—10j 1 = £4/—0,0;2;, and from Lemma 2.2 (v,1b,,)(v;—1by—1) =
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5153x’( ok for j =1,. — 1, where [/, b; = 5. Thus
1
Ujlbn = 5 (:i: _5n5jxj + \/_5n5j$j — 45715]5/)(/(#])) , j = 1, ey, — 1.
(18)
Let
H(Ai )
A = 651, 4?5163' 6, i1 4B, |
X' (1) nl nl
H fi — f47) H(Mz’ )
i =
n n—1
IR § (G
= :;11 — — ksl , forj=s+1,....,n—1.
T — 1) N

i#] i#]
Since v;; and b, are real, we necessarily have A; > 0 or, equivalently,

H|>\i — 1] _4/8515jSigHH(,LL1 — ;) >0, forj=1,....,n—1.
i=1

Thus, the condition 2) follows.

By (18) and having in mind that Z;:ll d;v1; = 01, we infer that the condi-
tion 3) is satisfied. Finally, 4) clearly follows because D; = b? > 0.

Next, we prove the converse. Assume that 1) 2) 3) and 4) hold. Consider

x; = [T (N — ) H (,uZ pi) tif gy € {, ..., A} and z; = 0 otherwise.

Let define
1 48
— —0,0,%; £ 4| —0,0,2; — 0,0 ) 19
2 ( J) \/ 7777 le(/’Lj>> ( )

Jj=1

We show that b, > 0. In fact, condition 1) ensures that —d,0,2; > 0,
and condition 2) guarantes that —d,d;z; — 5n5j% > 0. On the other
hand, condition 3) ensures that a selected sign + may be chosen such that



14 NATALIA BEBIANO AND JOAO DA PROVIDENCIA

2
>l ( 0,04, & /=000, — 5n5j4,8/xf(uj)) > 0. Hence, b, > 0.
Considering the selected sign + we find
V =0n0;j £ \/—0ndjxj — 000;48/X' (117)
2b,

being the real numbers vyy,...,v,-11 clearly nonzero. So, applying Theo-
rem 2.2 to the data {uq,..., -1}, {v11,-- ., vn—11}, {01,...,0n-1} and re-
calling that D; > 0 by condition 4), a unique pseudo-Jacobi matrix J,_;

Vj1 = ,jzl,...,n—l,

can be constructed such that o(J,_1) = {p1, .-, fbn_1}, V11, ..., V1n_1 are
the first entries of the corresponding eigenvectors vy,...,v,_1 and 6; =
[v1, 1], ..., 0n_1 = [Un_1,V,_1]. Next, we may determine b,,_1 = . and
SO @ = Y i Aj — Z;:ll ;. Lemma 3.2 ensures that o(J,) = {1, ..., \u}.
We finish the proof, by observing that if strict inequality A; > 0 occurs for
each j, there are two possible choices for the signs £ of vj;, j =1,...,n—1.
Thus, there are at most 2"~ ! different solutions. u

4. An algorithm and an example

Several algorithms for the construction of periodic Jacobi matrices with
given spectral data are known [1, 5, 6, 13]. The solutions of IPPJ can be
constructed from the given data {\, i, 3,9}, according to the following algo-
rithm.

Algorithm 2.
Step 1 Forj=1,...,n—1, set

n—1
X () = T (s — 1)
i
Step 2 Set

n n—1

vy= [ =) [ [ — )" if s & o (),

i=1 i=1
i#j

ry=0 if pje o (Jn).
Step 3 Choose 0,,0; such that —o6,0;x; > 0.
Step 4 Check that Aj = —6,2,0; — 0,0, 2~ > 0.
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Step 5 Compute the quantities

1 4
Wj = 5 ( _6n$j5j + \/—5nxj5j — (5n5JW§)>
J

n—1
and select the + sign ensuring that Z Wféj > 0.
j=1
Step 6 For the selected £+ sign, let
1 n—1 2
n 5 Z ( _5715]'55]‘ + \/—5n5j£€j — 5n5j4ﬁ/x’(,uj)) .
7=1

Step 7 For j =1,...,n—1 and for the selected + sign, set
V =0ndjaj £ \/—0ndwj — 000;48/X (1))
2 by, '

Step 8 Apply the modified Lanczos algorithm to the sets {py, ..., pn_1},

{’Ull, RN ,’Unflvl} and {51, ceey 5nf1}.
Step 9 Let
5

b1+ by—obn

Vj1 =

bn—l =

Step 10 Set

n

n—1
Ay = ZAJ —Z,uj.
j=1 j=1

Example 4.1. We illustrate the algorithm with the following example. Let
us consider § = (61, da, 03, 04) and

(A1,A2, A3, Ags o, o, i3; B)
= (2.82843, 0,0, —2.82843;2.90321, 0.806063, —1.70928; 1).

We look for a 4 x 4 matriz Jy such that o(Jy) = {1, Ao, A3, \a}, 0(J3) =
{11, po, 3} and bibobs = 1.

Consider the function
f(2) = (M —2)( A — 2)(A3 — 2) (A3 — z)
(1 = 2)(p2 — 2) (s — 2)
The residues —x1, —x9, —x3 of f(2) at py, pe, ps are:
o = —0.405642, —x9 = —0.69142, —x5 = 1.09706.
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We infer that 0164 = —1, 0204 = —1, 0304, = 1. Hence, J3 and Jy are,
respectively, H'-symmetric for H' = diag(1, 1, —1) and H-symmetric for H =
diag(1,1, -1, —1).
We compute X'(11), X' (p2), X' (13):
X (1) = 13.7627, x'(p2) = —9.60928, x'(u3) = 31.8471 .
Next, we analyze whether the discriminants Ay, Ao, Az are positive:
A1 =0.692883, A, =0.275179, Az = 0.9710463 .

Applying (18), we compute vj1by. For a particular choice of the £ signs,
we find by = 1 and

vithy = =(—/a1 — /A1) = —0.735668

U21b4 \/_ \/ = —0.678046
U1354 \/ —xr3 — \/ = 0.0308898.

Applying the modified Lanczos algomthm, we get a1 = as = —az3 = —ay =
2, by =by=103=1.

5. Final remarks

We have solved IPPJ under the restrictive condition of the p’s being real
and pairwise distinct. This condition ensures that J,_; is diagonalizable un-
der a pseudo-orthogonal similarity. The existence of a real multiple p; may
prevent this diagonalizability, and then the previous approach does not ap-
ply. The same occurs if complex u’s exist. Hence, IPPJ is an open problem
in these cases, and its study appears to be of some interest.

Acknowledgments. The authors are grateful to the referee for careful
reading of the manuscript and crucial observations.
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