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WELL-POINTED COALGEBRAS

JIŘÍ ADÁMEK, STEFAN MILIUS, LAWRENCE S. MOSS AND LURDES SOUSA

Abstract: For set functors preserving intersections, a new description of the final
coalgebra and the initial algebra is presented: the former consists of all well-pointed
coalgebras. These are the pointed coalgebras having no proper subobject and no
proper quotient. The initial algebra consists of all well-pointed coalgebras that
are well-founded in the sense of Osius [21] and Taylor [28]. And initial algebras
are precisely the final well-founded coalgebras. Finally, the initial iterative algebra
consists of all finite well-pointed coalgebras. Numerous examples are discussed e.g.
automata, graphs, and labeled transition systems.

Keywords: Well-founded coalgebra, well-pointed coalgebra, initial algebra, final
coalgebra, iterative algebra.

1. Introduction

Initial algebras are known to be of primary interest in denotational se-
mantics, where abstract data types are often presented as initial algebras for
an endofunctor H expressing the type of the constructor operations of the
data type. For example, binary trees are the initial algebra for the functor
HX = X ×X + 1 on sets. Analogously, final coalgebras for an endofunctor
H play an important role in the theory of systems developed by Rutten [22]:
H expresses the system type, i. e., which kind of one-step reactions states
can exhibit (input, output, state transitions etc.), and the coalgebras for H
are precisely systems with a set of states having reactions of type H. The
elements of a final coalgebra represent the behavior of all states in all sys-
tems of type H, and the unique homomorphism from a system into the final
one assign to every state its behavior. For example, deterministic automata
with input alphabet I are coalgebras for HX = XI × {0, 1}, and the final
coalgebra is the set of all languages on I.
In this paper a unified description is presented for (a) initial algebras, (b)

final coalgebras and (c) initial iterative algebras (in the automata example
this is the set of all regular languages on I). We also demonstrate that this
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new description provides a unifying view of a number of other important
examples. We work with set functors H preserving intersections. This is
an extremely mild requirement that most “everyday” set functors satisfy.
We prove that the final coalgebra for H can then be described as the set
of all well-pointed coalgebras, i.e., pointed coalgebras not having any proper
subobject and also not having any proper quotient. Moreover, the initial
algebra can be described as the set of all well-pointed coalgebras which are
well-founded in the sense of Osius [21] and Taylor [27, 28]. Before we mention
the definition, recall that the notion of well-foundedness of relations R ⊆
X ×X has several alternative forms:

(1) No proper subset Y of X has the property that if all R-successors of
a given point x ∈ X lie in Y , then x ∈ Y as well.

(2) There is no infinite path x0Rx1Rx2R · · · .
(3) There is a map rk fromX to ordinals such that rk(x) > rk(y) whenever

xRy.

For sets and relations as usual, these conditions are equivalent. The first
of these is an induction principle, and this is closest to what we are calling
well-foundedness in this paper, following Taylor. The equivalence of the first
and the second requires Dependent Choice, a weak form of the Axiom of
Choice; in any case, our work in this area does not use this at all. The last
condition is close to a result which we will see, but note as well that even
this requires something special about sets, namely the Replacement Axiom.
The notion of well-foundedness of a coalgebra (A, α) generalizes condition

(1) above. It says that no proper subcoalgebra m : (A′, α′) →֒ (A, α) forms
a pullback

A HAα
//

A′

A

� _

m

��

A′ HA′α′
// HA′

HA

� _

Hm

��

This concept was first studied by Osius [21] for graphs considered as coal-
gebras for the power-set functor P : a graph is well-founded in the coal-
gebraic sense iff it is well-founded in any of the equivalent senses above.
Taylor [27, 28] introduced well-founded coalgebras for general endofunctors,
and he proved that for set functors preserving inverse images the concepts of
initial algebra and final well-founded coalgebra coincide.
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Wemust mention that our motivation differs from Taylor’s. He is concerned
with foundational matters connected to recursion and induction, while we are
interested in studying initial algebras and final coalgebras in as wide a setting
as possible.
Returning to our topic, we are going to prove that for every set functor H

the concepts of initial algebra and final well-founded coalgebra coincide; the
step towards making no assumptions on H is non-trivial. We also prove the
same result for endofunctors of locally finitely presentable categories preserv-
ing finite intersections. And if H preserves (wide) intersections, we describe
its final coalgebra and initial algebra using well-pointed coalgebras.
The last section takes a number of known important special cases: de-

terministic (Mealy and Moore) automata, trees, labeled transition systems,
non-well-founded sets, etc., and demonstrates how well-pointed coalgebras
work in each case. Here we describe, in every example, besides the initial
algebra and the final coalgebra, the initial iterative algebra [6] (equivalently,
final locally finite coalgebra, see [19, 10]) as the set of all finite well-pointed
coalgebras.

2.Well-founded coalgebras

In this section we recall the concept of well-founded coalgebra of Osius [21]
and Taylor [27]. Our main result is that

initial algebra = final well-founded coalgebra

holds for all endofunctors of Set. (In the case where the endofunctor pre-
serves inverse images, this result can be found in [27].) For more general
categories the above result holds whenever the endofunctor preserves finite
intersections.

2.1. Well-founded coalgebras in locally finitely presentable cate-

gories.

We make several assumptions on the base category A in our study.

Definition 2.1. (1) A category A is locally finitely presentable (LFP) if
(a) A is complete;
(b) there is a set of finitely presentable objects whose closure under fil-

tered colimits is all of A .
(See [14] or [8] for more on LFP categories.)
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(2) An object A of (any category) A is called simple if every morphism with
domain A is a monomorphism. (In categories with (strong epi, mono)-
factorizations, see Remark 2.5, this is equivalent to saying that every
strong epimorphism with domain A is invertible.)

Assumption 2.2. Throughout this section our base category A is locally
finitely presentable and has a simple initial object 0.

Examples 2.3. The categories of sets, graphs, posets, and semigroups are
locally finitely presentable. The initial objects of these categories are empty,
hence simple. The LFP category of rings has the initial object Z that is not
simple.

Notation 2.4. For every endofunctor H denote by

CoalgH

the category of coalgebras α : A // HA and coalgebra homomorphisms.

Remark 2.5. There are some consequences of the LFP assumption that play
an important role in our development:

1. A has (strong epi, mono)-factorizations; see 1.16 in [8]. (Recall that
an epimorphism e is called strong if it fulfils the diagonal fill-in property
w. r. t. all monomorphisms, i.e., fe = mg withm a monomorphism implies
the existence of a unique factorization of g through e.)

2. A is wellpowered, see 1.56 in [8]. This implies that for every object A the
poset Sub(A) of all subobjects of A is a complete lattice.

3. Monomorphisms are closed under filtered colimits (see 1.62 in [8]). We
also use the fact (true in every category) that monomorphisms are closed
under wide intersections and inverse images.

Since subcoalgebras play a basic role in the whole paper, and quotients are
important from Section 3 onwards, we need to make clear what we mean by
those. This is the aim of Remark 2.6 and Terminology 2.7.

Remark 2.6. Assuming that H preserves monomorphisms, homomorphisms
of coalgebras factorize into those carried by strong epimorphisms followed by
those carried by monomorphisms. Moreover, the two classes of homomor-
phisms form a factorization system in CoalgH. Indeed, let h be a coalgebra
homomorphism from the coalgebra (A, α) to the coalgebra (B, β) and let
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h = m·e be a (strong epi, mono)-factorization in A , then the diagonal fill-in
property yields a coalgebra for which m and e are homomorphisms:

HA B

A

HA

α

��

A C
e

// C

B

m

��

HC HB
Hm

//

HA

HC

He

��

HA BB

HB

β

��

C

HC

γ

���
�

�
�

�
�

�
�

�
�

�
�

�

The diagonal fill-in property in CoalgH follows easily, too.
We also point out that the monomorphisms ofCoalgH need not be carried

by monomorphisms in A .

Terminology 2.7. When we speak about subcoalgebras of a coalgebra (A, α)
we mean those represented (up to isomorphism) by homomorphisms m :
(A′, α′) // (A, α) with m a monomorphism in A . As usual, if m is not
invertible, the subcoalgebra is said to be proper. Quotients of (A, α) are
represented by homomorphisms with domain (A, α) carried by a strong epi-
morphism in A .

Definition 2.8. A cartesian subcoalgebra of a coalgebra (A, α) is a sub-
coalgebra m : (A′, α′) →֒ (A, α) forming a pullback

A HAα
//

A′

A

� _

m

��

A′ HA′α′
// HA′

HA

� _

Hm

��

A coalgebra is called well-founded if it has no proper cartesian subcoalge-
bra.

Example 2.9. (1) The concept of well-founded coalgebra was introduced
originally by Osius [21] for the power set functor P . Recall that coal-
gebras for P are simply graphs: given α : A → PA, then α(x) is the
set of neighbors of A in the graph. However, coalgebra homomorphisms
h : A→ B are stronger than graph homomorphisms: h not only preserves
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edges of A, but also for every edge h(a) → b in B there exists an edge
a → a′ in A with b = h(a′). Then a subcoalgebra of A is an (induced)
subgraph A′ with the property that every neighbor of a vertex of A′ lie in
A′. The subgraph A′ is cartesian iff it contains every vertex all of whose
neighbors lie in A′.
The graph A is a well-founded coalgebra iff it has no infinite path.

Indeed, the set A′ of all vertices lying on no infinite path forms clearly a
cartesian subcoalgebra. And A is well-founded iff A = A′.

(2) Let A be a deterministic automaton considered as a coalgebra for HX =
XI × {0, 1}. A subcoalgebra A′ is cartesian iff it contains every state
all whose successors (under the inputs from I) lie in A′. This holds, in
particular, for A′ = ∅. Thus, no nonempty automaton is well-founded.

(3) Coalgebras for HX = X + 1 are dynamical systems with deadlocks. A
subcoalgebra A′ of a coalgebra A is cartesian iff A′ contains all deadlocks
and every state whose next state lies in A′. So a dynamical system is
well-founded iff it has no infinite computation.

Proposition 2.10. Initial algebras are, as coalgebras, well-founded.

Remark. No assumptions on the base category are needed in the proof.

Proof : Let ϕ : HI → I be an initial algebra. Given a pullback

B
β

//

m
��

HB

Hm
��

I
ϕ−1

// HI

with m monic, we prove that m is invertible. It is clear that β is invertible
(since ϕ−1 is), and for the algebra β−1 : HB → B there exists an algebra
homomorphism f : (I, ϕ) → (B, β−1). Since m is also an algebra homomor-
phism, we conclude thatmf is an endomorphism of the initial algebra. Thus,
mf = id, proving that m is invertible.

Remark 2.11. In contrast, final coalgebras are never well-founded, unless
they coincide with initial algebras.

To prove this, we are going to use the initial chain defined in [3]. This is
the chain

H i0 (i ∈ Ord) and wij : H
i0 // Hj0 (i ≤ j) (2.1)
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defined uniquely up to natural isomorphism by

H0 = 0 (initial object of A )

H i+10 = HH i0 and wi+1,j+1 = Hwi,j

and for limit ordinals i

H i0 = colim
j<i

Hj0 with colimit cocone wij (i < j).

The chain is said to converge at i if the connecting map wi,i+1 : H
i0 //HH i0

is invertible. The inverse then makes H i0 an initial algebra.

Proposition 2.12 ([31]). Let H preserve monomorphisms.

(1) Whenever there exists a fixed point of H, i.e. an object X ∼= HX, then
H has an initial algebra.

(2) If H has an initial algebra, then the initial chain converges.

Remark 2.13. This result was shown in Theorem II.4 of [31]. The proof
uses 2. and 3. of Remark 2.5. It is based on the fact that the isomorphism
u : HX → X yields a cone mi : H

i0 → X (i ∈ Ord) of the initial chain with
all mi monic: m0 : 0 → X is unique and mi+1 = u · Hmi. Thus, the initial
chain converges because it is a chain of subobjects of X.

Proposition 2.14. If H preserves monomorphisms, the only well-founded
fixed points of H are the initial algebras.

Proof : Let u : HX
∼
→ X be a fixed point such that u−1 : X → HX is a

well-founded coalgebra. Then we prove that (X, u) is an initial algebra. Let
mi : H i0 → X be the cone of Remark 2.13. We know that there exists
an ordinal j such that mj and mj+1 represent the same subobject, thus,
wj,j+1 : H

i0 → H(H i0) is invertible. Consequently, w−1
j,j+1 : H(H i0) → H i0

is an initial algebra.
The following square

Hj0
wj,j+1

//

mj

��

H(Hj0)

Hmj

��

X
u−1

// HX
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commutes: by definition we havemj+1 = u·Hmj and since mj = mj+1 ·wj,j+1

(due to the compatibility of the mi’s) we conclude

mj = u ·Hmj · wj,j+1.

Since both horizontal arrows are invertible, the above square is a pullback.
From the well-foundednes of (X, u−1) we conclude thatmj is invertible. Thus,
the algebra (X, u) is isomorphic to the initial algebra (H?0, w−1

j,j+1) via mj .
This proves that (X, u) is initial.

Corollary 2.15. If H preserves monomorphisms and has a well-founded final
coalgebra, then the initial algebra and final coalgebra coincide.

Example 2.16. An analogous example demonstrates that the assumption
that H preserves monomorphisms is also essential. Consider the category
Gra of graphs and graph morphisms (i.e., functions preserving edges). All
assumptions in 2.2 are fulfilled. The endofunctor

HX =

{

X + {t} (no edges) if X has no edges

1, terminal graph, else.

does not preserve monomorphisms. Its final coalgebra 1 = H1 is well-founded
because neither of the two proper subcoalgebras is cartesian. However, the
initial algebra is carried by an infinite graph without edges.

Definition 2.17. Assume that H preserves monomorphisms. Then for every
coalgebra α : A // HA we denote by © the endofunction on Sub(A) (see
Remark 2.5.2) assigning to every subobject m : A′ // A the inverse image
of Hm under α, i. e., we have a pullback square:

A HAα
//

©A′

A

©m

��

©A′ HA′α[m]
// HA′

HA

Hm

��

(2.2)

This function m � // ©m is obviously order-preserving. By the Knaster-
Tarski fixed point theorem, it has a least fixed point.

Corollary 2.18. A coalgebra (A, a) is well-founded iff the least fixed point
of © is all of A.
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Incidentally, the notation©m comes from modal logic, especially the areas
of temporal logic where one reads ©φ as “φ is true in the next moment,” or
“next time φ” for short.

Example 2.19. Recall our discussion of graphs from Example 2.9 (1). The
pullback©A′ of a subgraph A′ is the set of points in the graph A all of whose
neighbors belong to A′.

Remark 2.20. As we mentioned in the introduction, the concept of well-
founded coalgebra was introduced by Taylor [27, 28]. Our formulation is a
bit simpler. In [28, Definition 6.3.2] he calls a coalgebra (A, α) well-founded
if for every pair of monomorphisms m : U // A and h : H // U such that
h·m is the inverse image of Hm under α it follows that m is an isomorphism.
Thus, in lieu of fixed points of m 7−→ ©m he uses pre-fixed points.
In addition, our overall work has a methodological difference from Taylor’s

that is worth mentioning at this point. Taylor is giving a general account
of recursion and induction, and so he is concerned with general principles
that underlie these phenomena. Indeed, he is interested in settings like non-
boolean toposes where classical reasoning is not necessarily valid. On the
other hand, in this paper we are studying initial algebras, final coalgebras,
and similar concepts, using standard classical mathematical reasoning. In
particular, we make free use of transfinite induction.

Notation 2.21. (a) Assume that H preserves monomorphisms. For every
coalgebra α : A // HA denote by

a∗ : A∗ // A (2.3)

the least fixed point of the function m � // ©m of Definition 2.17. (Thus,
(A, α) is well-founded iff a∗ is invertible.) Since a∗ is a fixed point we
have a coalgebra structure α∗ : A∗ //HA∗ making a∗ a coalgebra homo-
morphism.

(b) For every coalgebra α : A // HA we define a chain of subobjects

a∗i : A
∗
i

// A (i ∈ Ord)
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of A on A by transfinite recursion: a∗0 : 0 // A is unique; given a∗i ,
define a∗i+1 by the pullback

A HAα
//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i
// HA∗

i

HA

Ha∗i

��

and for limit ordinals i we define a∗i : A
∗
i

// A to be the union of the
chain of monomorphisms a∗j : A

∗
j

// A,

a∗i =
⋃

j<i

a∗j .

It is easy to prove by transfinite induction that all a∗i are monic (for i = 0
recall that 0 is simple). Moreover, for every limit ordinal i the above
union coincides with the colimit of the chain, that is, the monomorphism
a∗i : A

∗
i

// A is just the induced morphism from the colimit of the chain
to A, see Remark 2.5, point 3.

Remark 2.22. We observe that for all ordinals i ≤ j the connecting maps

A∗
i

A

a∗i
��

??
??

??
??

??
??

??
A∗
i A∗

j

a∗ij
// A∗

j

A

a∗j
����

��
��

��
��

��
��

of the chain of Notation 2.21 form the following commutative diagram which
can be used as a definition of the maps a∗ij (via the universal property of
pullbacks):

A HA
α

//

A∗
j+1

A

a∗j+1

��

A∗
j+1 HA∗

jα[a∗j ]
// HA∗

j

HA

Ha∗j
��

A∗
j+1 HA∗

j
//

A∗
i+1

A∗
j+1

a∗i+1,j+1

��

A∗
i+1 HA∗

i

α[a∗i ]
// HA∗

i

HA∗
j

Ha∗ij

��

A∗
i+1

A

a∗i+1

��

HA∗
i

HA

Ha∗i

��

(2.4)
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Remark 2.23. This way, what we have is nothing else than the construction
of the least fixed point of m � // ©m, see Remark 2.20, in the proof of the
Knaster-Tarski Theorem in [26]. Thus, a∗ =

⋃

i∈Ord
a∗i . However, since A has

only a set of subobjects,

a∗ = a∗i0 for some ordinal i0. (2.5)

And for this ordinal i0, an easy verification shows that the coalgebra structure
of A∗ above is

α∗ = α[a∗i0] = α[a∗]. (2.6)

Henceforth, we call A∗ the smallest cartesian subcoalgebra of A.

From now on, whenever we use the notations ©m and a∗, we only do so
when H preserves monomorphisms.

Example 2.24. On the category Gra consider the functor H of Example
2.16. It has 1 = H1 as its final coalgebra, and this coalgebra is well-founded.
However, for α as id : 1 // H1 (the final coalgebra), there is no ordinal i
such that a∗i = id1. This shows that Notation 2.21 is meaningful only if we
assume that H preserves monomorphisms.

Example 2.25. For every graph A considered as a coalgebra for P , A∗ is
the subgraph on all vertices of A from which no infinite path starts. Since
m 7→ ©m is not necessarily continuous, the ordinal i0 of (2.5) above can be
arbitrarily large. Here is an example with i0 = ω + 1:

•

•
##GG

GG
GG

GG
GG

G•
•++WWWWWWWWW•
•33ggggggggg•

•;;wwwwwwwwwww • •//

• •//

• •// • •//

• •//

• •//
...

Proposition 2.26. If H preserves monomorphisms then well-founded coal-
gebras form a full coreflective subcategory of Coalg H: For every coalge-
bra (A, α), the smallest cartesian subcoalgebra (A∗, α∗) is its coreflection.

Remark. We thus prove that (A∗, α∗) is well-founded, and for every homo-
morphism f : (B, β) // (A, α) with (B, β) well-founded there exists a unique
homomorphism

f̄ : (B, β) // (A∗, α∗) with f = a∗·f̄ .



12 J. ADÁMEK, S. MILIUS, L. S. MOSS AND L. SOUSA

Proof : (i) (A∗, α∗) is clearly well-founded: From Definition 2.17 and Notation
2.21, we know that (A∗, a∗) is the least fixed point of© : Sub(A) // Sub(A),
that is, (A∗, α∗) is the smallest cartesian subcoalgebra of (A, α). Then
(A∗, α∗) cannot have proper cartesian subcoalgebras since its cartesian sub-
coalgebras are cartesian subcoalgebras of (A, α).
(ii) Since a∗ is a monomorphism there is at most one coalgebra homomor-

phism f̄ : B // A∗ with a∗·f̄ = f . Thus, we are finished if we show that
f̄ exists. To this end, for all ordinals i ≤ j, let a∗ij : A

∗
i

// A∗
j be the con-

necting maps of the chain of Remark 2.22. Analogously, use b∗ij : B
∗
i

// B∗
j

for the chain of the subobjects b∗i : B∗
i

// B, whose union is B∗ = B. We
define the components of a natural transformation f̄i : B

∗
i

// A∗
i , i ∈ Ord,

by transfinite recursion on ordinals i, satisfying

B A
f

//

B∗
i

B

b∗i
��

B∗
i A∗

i

f̄i
// A∗

i

A

a∗i
��

(2.7)

Let f̄0 = id: 0 // 0. For isolated steps consider the diagram below:

A HAα
//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i

α[a∗i ]
// HA∗

i

HA

Ha∗i
��

B∗
i+1 HB∗

i

β[b∗i ]
//B∗

i+1

A∗
i+1

f̄i+1

$$J
J

J
J

J
J

J
B∗
i+1

B

b∗i+1

��

HB∗
i

HA∗
i

Hf̄i

zzttttttttttttt
HB∗

i

HB

Hb∗i

��

B

A

f

::tttttttttttttttt
B HB

β
// HB

HA
Hf

ddJJJJJJJJJJJJJJ

(2.8)

The inner and outside squares commute by the definition of A∗
i+1 and B∗

i+1,
respectively. For the lower square we use that f is a coalgebra homomor-
phism, and the right-hand one commutes by the induction hypothesis. The
inner pullback induces the desired morphism f̄i+1 and the commutativity of
the left-hand square is that of (2.7) for i+ 1. Finally, for a limit ordinal j
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let f̄j = colimi<j f̄i, in other words, f̄j is the unique morphism such that the
squares

B∗
i A∗

i
f̄i

//

B∗
j

B∗
i

OO

b∗i,j

B∗
j A∗

j

f̄j
// A∗

j

A∗
i

OO

a∗i,j (2.9)

commute for all i < j. It is easy to prove by transfinite induction that
f̄j : B

∗
j → A∗

j is natural in j.

We need to verify that (2.7) commutes for f̄j. This is clear for j = 0 and
for j isolated this follows from the above definition of f̄i+1. Let j be a limit
ordinal. Then (2.7) commutes due to the following diagram for every i < j:

B A
f

//

B∗
j

B

b∗j
��

B∗
j A∗

j

f̄j
// A∗

j

A

a∗j
��

B∗
j A∗

j
//

B∗
i

B∗
j

b∗i,j

��

B∗
i A∗

i

f̄i
// A∗

i

A∗
j

a∗i,j

��

B∗
i

B

b∗i

��

A∗
i

A

a∗i

��

(2.10)

To complete the proof consider any ordinal i such that B∗
i = B∗ = B

and A∗
i = A∗ hold. Then f̄ = f̄i : B // A∗ is a coalgebra homomorphism

with a∗i ·f̄ = f by the commutativity of the upper and left-hand parts of
Diagram (2.8).

For endofunctors preserving inverse images the following corollary is Exer-
cise VI.16 in [28]:

Corollary 2.27. Assuming that H preserves monomorphisms, the subcat-
egory of CoalgH consisting of the well-founded coalgebras is closed under
quotients and coproducts in CoalgH.

This follows from a general result on coreflective subcategories: the cat-
egory CoalgH has a (strong epi, mono)-factorization system (see Remark
2.5), and its full subcategory of well-founded coalgebras is coreflective with
monomorphic coreflections (see Proposition 2.26). Consequently, it is closed
under quotients and colimits.
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We also have the following fact which will be used in Section 3.

Lemma 2.28. If H preserves finite intersections, then every subcoalgebra of
a well-founded coalgebra is well-founded.

Proof : Given a subcoalgebra f : (B, β) // (A, α) we prove that the natural
transformation f̄i : B

∗
i

// A∗
i of (2.9) makes the squares in (2.7) pullbacks

for every ordinal number i. The base case i = 0 is clear. For the isolated
step we use that a∗i+1 : A

∗
i+1

// A is the pullback of Ha∗i along α. Thus, it
suffices to show that b∗i+1 : Bi+1

// B is a pullback of Ha∗i along α·f . But,
since α·f = Hf ·β and since H preserves finite intersections (i.e., pullbacks
of monos along monos), the latter pullback can be obtained by pasting two
pullback squares as displayed below:

B∗
i+1

b∗i+1

��

β[b∗i ]
// HB∗

i

Hb∗i
��

Hf̄i
// HA∗

i

Ha∗i
��

B
β

// HB
Hf

// HA

Now assume that (A, α) is well-founded, i. e., some a∗i is invertible. Then
its pullback b∗i along f is invertible, i. e., (B, β) is well-founded.

Remark 2.29. If H is a set functor which also preserves inverse images, a
much stronger result holds, as proved in [28]: every coalgebra from which a
homomorphism into a well-founded coalgebra exists is well-founded.

Example 2.30. Without the assumption that H preserves finite intersec-
tions the above lemma can fail to be true. On the category Gra of graphs
the functor H of Example 2.16 has the well-founded coalgebra 1 = H1 which
has the subcoalgebra

• � � // • • t

which is not well-founded: its subcoalgebra ∅ // {t} is cartesian.

2.2. Recursive coalgebras.

Here we recall the notion of recursive coalgebra in order to use it for our
proof that initial algebras are the same as final well-founded coalgebras.
“Recursive” and “well-founded” are closely related concepts. But whereas
final recursive coalgebras are already known to be initial algebras, see [11],
for well-founded coalgebras this is new (and a bit more involved).
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Definition 2.31. A coalgebra α : A //HA is recursive if for every algebra
β : HB // B there exists a unique coalgebra-to-algebra homomorphism

B HBoo

β

A

B

h

��

A HA
α

// HA

HB

Hh

��

This concept was introduced by Taylor under the name “coalgebra obeying
the recursion scheme”, the name recursive coalgebra stems from Capretta et
al. [11].

Examples 2.32 (see [11]). (1) 0 // H0 is a recursive coalgebra.
(2) If α : A // HA is recursive, then so is Hα : HA // HHA.
(3) A colimit of recursive coalgebras is recursive. Combining these results

we see that in the initial chain (2.1) all the coalgebras

wi,i+1 : H
i0 // HH i0

are recursive.

We are going to prove that for set functors, well-founded coalgebras are
recursive. Before we do this, let us discuss the converse. In general, recursive
coalgebras need not be well-founded, even for set functors. However for all
set functors preserving inverse images recursiveness is equivalent to well-
foundedness, as shown by Taylor [27, 28].

Example 2.33 (see [5]). A recursive coalgebra need not be well-founded.
Let H : Set // Set be defined on objects by

HX = (X ×X \∆X) + {d}

where ∆X denotes the diagonal of X. For morphisms f : X // Y we take
Hf(d) = d and

Hf(x1, x2) =

{

d if f(x1) = f(x2)

(fx1, fx2) else

This functor H preserves monomorphisms. The coalgebra A = {0, 1} with
the structure α constant to (0, 1) is recursive: given an algebra β : HB //B,
the unique coalgebra-to-algebra homomorphism h : {0, 1} // B is

h(0) = h(1) = β(d).
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But A is not well-founded: ∅ is a cartesian subcoalgebra.

Theorem 2.34. If H preserves monomorphisms, then every well-founded
coalgebra is recursive.

For functors preserving inverse images this follows from [27, Theorem 6.3.13].

Proof : Let α : A //HA be well-founded. For every algebra e : HX //X we
prove the existence and uniqueness of a coalgebra-to-algebra homomorphism
A //X. We use the initial chain (H i0) of (2.1) and also the chain (A∗

i ) from
Notation 2.21.
(1) Existence. We prove first that there is a unique natural transformation

fi : A
∗
i

// H i0 (i ∈ Ord)

such that for all ordinals i we have

fi+1 =

(

A∗
i+1

α[a∗i ]−−−→ HA∗
i

Hfi−−−→ H(H i0) = H i+10

)

. (2.11)

In fact, since both of the transfinite chains (A∗
i ) and (H i0) are defined by

colimits on all limit ordinals i, and f0 must be id∅, we only need to check the
commutativity of the square

A∗
i+1 H i+10

fi+1

//

A∗
i

A∗
i+1

a∗i,i+1

��

A∗
i H i0

fi
// H i0

H i+10

wi,i+1

��

(2.12)

for every successor ordinal i. For this, the diagram below commutes by the
induction hypothesis (2.12) and by the commutativity of the upper inner
square of (2.4) in Remark 2.22:

A∗
+i1

a∗i+1,i+2
��

α[a∗i ]
// HA∗

i

Hfi
//

Ha∗i,i+1
��

H(H i0)

Hwi,i+1
��

ED��GF
fi+1

A∗
i+2

α[a∗i+1]
// HA∗

i+1 Hfi+1

// H(H i+10)BCOO@A
fi+2
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Next, since the H i0 are recursive coalgebras (see Example 2.32) we have
unique coalgebra-to-algebra homomorphisms into X. These form a natural
transformation into the constant functor with value X:

ri : H
i0 // X (i ∈ Ord).

Consequently, we obtain a natural transformation rifi : A
∗
i

//X which, for i
such that A = A∗

i , yields

h = rifi : A // X .

Now consider the diagram below for an ordinal i such that A∗
i = A∗

i+1 (more
precisely, ai,i+1 is invertible), see Notation 2.21:

X HXoo

e

H i0

X

ri

��

H i0 H(H i0)
wi,i+1

// H(H i0)

HX

Hri
��

H i0 H(H i0)//

A∗
i = A∗

i+1

H i0

fi
��

A∗
i = A∗

i+1 HA∗
i

α[a∗i ]
// HA∗

i

H(H i0)

Hfi
��

A∗
i = A∗

i+1

H(H i0)

fi+1

))SSSSSSSSSSSSSSS
A∗
i = A∗

i+1

X

h

��

HA∗
i

HX

Hh

��

The morphism at the top is α∗, by (2.6). The sides are the definition of h,
the bottom square is the definition of ri, and the upper right-hand triangle
is the definition of fi+1. The upper left-hand triangle is (2.12) since a∗i,i+1 =
id. The overall outside of the figure shows that h is a coalgebra-to-algebra
homomorphism as desired.
(2) Uniqueness. If h1, h2 : A // X are coalgebra-to-algebra homomor-

phisms, then we prove h1 = h2 by showing that

h1·a
∗
i = h2·a

∗
i for all i ∈ Ord.

The case i = 0 is clear, in the isolated step use the commutative diagrams
(with t = 1, 2):
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X HXoo

e

A

X

ht

��

A HA
α

// HA

HX

Hht

��

A HA//

A∗
i+1

A

a∗i+1

��

A∗
i+1 HA∗

i

α[a∗i ]
// HA∗

i

HA

Ha∗i
��

and the limit steps follow from A∗
j = colimi<j A

∗
i for limit ordinals j.

Example 2.35. There is a P-algebra (B, β) such that for all P-coalgebras
(A, α), if (A, α) is not well-founded, then there are at least two coalgebra-to-
algebra homomorphisms h : A // B.
We take B = {0, 1, 2}, with β : PB // B defined as follows:

β(x) =







0 if x = ∅ or x = {0}
1 else if 1 ∈ x
2 if 2 ∈ x and 1 /∈ x

If (A, α) is any coalgebra which is not well-founded, we show that there are
at least two coalgebra-to-algebra homomorphisms h : A // B. We can take

h1(x) =

{
0 if there are no infinite sequences x = x0 → x1 → x2 · · ·
1 if there is an infinite sequence x = x0 → x1 → x2 · · ·

and also h2 defined the same way, but using 2 as a value instead of 1. The
verification that h1 and h2 are coalgebra-to-algebra homomorphisms hinges
on two facts: first, h(x) = 0 iff there is no infinite sequence starting from x;
and second, if hi(x) 6= 0, then there is some y ∈ α(x) such that hi(y) 6= 0 as
well.

For endofunctors preserving inverse images the following theorem is Corol-
lary 9.9 of [27]. As we mentioned in the introduction, it is non-trivial to relax
the assumption on the endofunctor, and so our proof is different from Tay-
lor’s. As a result we obtain in Theorem 2.45 below that for a set endofunctor
no assumptions are needed.

Theorem 2.36. If H preserves finite intersections, then

initial algebra = final well-founded coalgebra
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That is, an algebra ϕ : HI // I is initial iff ϕ−1 : I // HI is the final well-
founded coalgebra.

Proof : Recall that since H preserves finite intersections, i.e., pullbacks of
monomorphisms, it preserves monomorphisms (since m is monic iff the pull-
back of m along itself is formed by identity morphisms).
(a) Let I be an initial algebra. By Remark 2.38 below, I is a final re-

cursive coalgebra. Also, I is well-founded by Proposition 2.10. Thus by
Theorem 2.34, it is a final well-founded coalgebra.
(b) Let ψ : I // HI be a final well-founded coalgebra.
(b1) Factorize ψ = m·e where e is a strong epimorphism andm a monomor-

phism (Remark 2.5). By diagonal fill-in

HI HHI
Hψ

//

I ′

HI

m

��

I ′ HI ′
ψ′

//_________ HI ′

HHI

Hm

��

I ′ HI ′//_________

I

I ′

e

��

I HI
ψ

// HI

HI ′

He

��

we obtain a quotient (I ′, ψ′) which, by Corollary 2.27, is well-founded. Con-
sequently, a coalgebra homomorphism f : (I ′, ψ′) // (I, ψ) exists. Then fe is
an endomorphism of the final well-founded coalgebra, hence, fe = idI . This
proves that e is an isomorphism, in other words

ψ is a monomorphism.

(b2) The coalgebra (HI,Hψ) is well-founded. Indeed, consider a cartesian
subcoalgebra (A′, a′)

I HI
ψ

//__________

J

I

m′

��
�
�
�
�J A′ψ′

//__________ A′

HI
��

HI HHI
Hψ

//

A′

HI

m

��

A′ HA′a′
// HA′

HHI

Hm

��



20 J. ADÁMEK, S. MILIUS, L. S. MOSS AND L. SOUSA

Form the intersection J of m and ψ. Since H preserves this intersection, it
follows that m and Hm′ represent the same subobject of HI, thus, we have

u : A′ // HJ, an isomorphism, with m = Hm′·u.

This yields a cartesian subcoalgebra

I HI
ψ

//

J

I

m′

��

J A′ψ′

// A′ HJ
u

// HJ

HI

Hm′

��

and since (I, ψ) is well-founded, we conclude that m′ is invertible. Conse-
quently, m = Hm′·u is invertible.
(b3) ψ is invertible. Indeed, we have, by (b2), a homomorphism h : (HI,Hψ) //(I, ψ):

I HI
ψ

//

HI

I

h

��

HI HHI
Hψ

// HHI

HI

Hh

��

HI HHI//

I

HI

ψ

��

I HI
ψ

// HI

HHI

Hψ

��

Then h·ψ is an endomorphism of (I, ψ), thus, h·ψ = id. And the lower square
yields ψ·h = H(h·ψ) = id, whence I ∼= HI,
(b4) By Proposition 2.12, the initial chain converges, and for some ordinal

i, w−1
i,i+1 : HH

i0 //H i0 is an initial algebra. Moreover, wi,i+1 : H
i0 //HH i0

is by (a) a final well-founded coalgebra, thus, isomorphic to ψ : I // HI.
Therefore (I, ψ−1) is isomorphic to the initial algebra above.

Example 2.37. (a) For the identity functor on the category of rings the
initial algebra is Z and the terminal well-founded coalgebra is 1. This
shows the importance of our assumption that the base category have a
simple initial object.

(b) Also the assumption that H preserves finite intersections is important:
The endofunctorH ofGra in Example 2.16 has 1 as its final well-founded
coalgebra, and its initial algebra is infinite.



WELL-POINTED COALGEBRAS 21

Remark 2.38. The concepts “initial algebra” and “final recursive coalgebra”
coincide for all endofunctors, as proved by Capretta et al. [11]. This is not
true in general for well-foundedness in lieu of recursiveness:

Remark 2.39. Although we have worked above with monomorphisms only,
the whole theory can be developed for a general class M of monomorphisms
in the base category A . We need to assume that

(a) A is M -wellpowered,
(b) M is closed under inverse images, and
(c) M is constructive in the sense of [31].

The last point means that M is closed under composition, and for ev-
ery chain of monomorphisms in M , (i) a colimit exists and is formed by
monomorphisms in M , and (ii) the factorization morphism of every cocone
of monomorphisms in M is again a monomorphism in M . This in particular
states that the initial object has the property that all morphisms 0 → X lie
in M .
We then can define M -well-founded coalgebra as one that has no proper

cartesian subcoalgebra carried by an M -monomorphism.
All results above hold in this generality. In Theorem 2.34 we must assume

that H preserves M , that is, if m lies in M then so does Hm. In Theo-
rem 2.36 we need to assume that H preserves M and finite intersections of
M -monomorphisms.

Example 2.40. All LFP categories with simple initial object satisfy all the
assumptions of 2.2 for

M = strong monomorphisms,

see [8].

Example 2.41. Here we compare well-foundedness w.r.t to monomorpisms
to that w.r.t. strong monomorphisms. Take again the categoryGra of graphs
and graph morphisms and H be the following endofunctor: The nodes of HA
are all finite independent sets a ⊆ A (i.e., no edge lies in a) plus a new node
t. The coalgebra structure is the constant map to {t}, i.e., the only edges of
HA connect every node to t (t is a loop). For a graph morphism f : A //B,
we take Hf : HA // HB to be

Hf(a) =

{

f [a] if f [a] is independent in B

t otherwise



22 J. ADÁMEK, S. MILIUS, L. S. MOSS AND L. SOUSA

This functor clearly preserves strong monomorphisms (but not monomor-
phisms).
By Theorem 2.36, the initial algebra for H is the same as its final M -well-

founded coalgebra. This is

I = I0 ∪ {t}

where I0 = PfI0 is the initial algebra of the finite power set functor on Set,
taken as a discrete graph, and the coalgebra structure is the constant to {t}.
In contrast, I is not well-founded (w. r. t. all monomorphisms). Here is the

reason. Let J be the same as I, except that we drop all edges between t and
the elements of I0. (We keep just the loop at t.) Then HJ = HI = I. The
inclusion i : J // I is of course monic, and Hi = idHI . It is easy to check
that this inclusion is a coalgebra morphism, and indeed this subcoalgebra is
clearly cartesian. This verifies that I is not well-founded.

2.3. Initial algebras of set functors.

The main result of this section is that for all endofunctors H of Set the
equality

initial algebra = final well-founded coalgebra (2.13)

holds, i. e., for the particular case of our given LFP category being A = Set

one can lift the assumption that H preserves finite intersections in Theo-
rem 2.36.

Proposition 2.42 (Trnková [30]). For every endofunctor H of Set there
exists an endofunctor H̄ preserving monomorphisms and finite intersections
and identical with H on all nonempty sets (and nonempty functions).

Remark 2.43. The functor H̄ is unique up to natural isomorphism. We call
it the Trnková closure of H. Let let us recall how Trnková defined H̄:
Denote by C01 the set functor ∅

� // ∅ and X � // 1 for all X 6= ∅. Define H̄
as H on all nonempty sets, and put

H̄∅ = {τ ; τ : C01
// H a natural transformation}.

(To check that we have a set here and not a proper class, note that each
τ : C0,1

// H is determined by τ1 : 1 // H1. For a nonempty set A, if
k : 1 // A is arbitrary, τA = Hk ◦ τ1.) Given a nonempty set X, H̄ assigns
to the empty map qX : ∅ // X the map

H̄qX : τ � // τX for every τ : C01
// H,
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where that τX : 1 // HX is simply an element of HX.
Observe that there exists a map u : H∅ //H̄∅ such that for every set A 6= ∅

the triangle

H∅

HA = H̄A

HqA
""EE

EE
EE

EE
EE

EE
H∅ H̄∅

u
// H̄∅

HA = H̄A

H̄qA
||yy

yy
yy

yy
yy

yy

(2.14)

commutes. Indeed, for each element x ∈ H∅, let the natural transformation
u(x) : C01

// H have components u(x)A = HqA(x) for all A 6= ∅. Then

H̄qA(u(x)) = (u(x))A = HqA(x).

Lemma 2.44. Let (A, a) be a well-founded H-coalgebra, with A 6= ∅, so that
(A, a) is also an H̄-coalgebra. Then ∅ is not the carrier of any cartesian
H̄-subcoalgebra of (A, a).

Proof : Assume towards a contradiction that qH̄∅ : ∅ // H̄∅ were a cartesian
subcoalgebra of (A, a). We claim that the square below is a pullback:

A HAa
//

∅

A

qA

��

∅ H∅
qH∅

// H∅

HA

HqA

��

(2.15)

We show that there are no y ∈ A and x ∈ H∅ such that that a(y) =
HqA(x). For assume that y and x exist with these properties. Then by
(2.14), H̄qA(u(x)) = a(y). This contradicts our assumption that (∅, qH̄∅) is
a cartesian subcoalgebra of (A, a). Thus, y and x do not exist as assumed,
and hence, the square in (2.15) is indeed a pullback. Therefore qA is an
isomorphism. But A 6= ∅, and this is a contradiction.

Theorem 2.45. For every endofunctor on Set we have:

initial algebra = final well-founded coalgebra.

Proof : Given H, we know from Theorem 2.36 that the statement holds for
the Trnková closure H̄. From this we are going to prove it for H.
(a) If ϕ : HI // I is an initial algebra, we prove that ϕ−1 : I // HI is a

final well-founded coalgebra.
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This is clear when H∅ = ∅. In this case I = ∅. And the only (hence, the
final) well-founded coalgebra is the empty one: if a : A //HA is well-founded,
then the following cartesian subcoalgebra

A HAa
//

∅

A

qA

��

∅ ∅
id

// ∅

HA

HqA

��

(2.16)

demonstrates that qA is an isomorphism, so A = ∅.
Thus we assume H∅ 6= ∅. Then H̄∅ 6= ∅ via u in (2.14) above. The H̄-

algebra ϕ : H̄I // I is initial because every H̄-algebra is nonempty, hence, it
also is an H-algebra. And the unique homomorphism from I w.r.t. H is also
a homomorphism w.r.t. H̄. By Theorem 2.36, ϕ−1 : I // H̄I is a final well-
founded H̄-coalgebra. Let us now verify that it is also well-founded w.r.t. H.
Consider a cartesian subcoalgebra

I HI
ϕ−1

//

A′

I

m

��

A′ HA′a′
// HA′

HI

Hm

��

(2.17)

We claim that A′ cannot be empty. For if it were, then since HA′ = H∅ 6= ∅,
we take any x ∈ HA′ and consider x and (ϕ · Hm)(x). By the pullback
property, there is some y ∈ A′ so that a′(y) = x. This contradicts A′ = ∅.
As a result, HA′ = H̄A′, and Hm = H̄m. So (2.17) is a cartesian subcoal-

gebra for H̄. Thus m is invertible, as desired.
At this point we know that ϕ−1 : I // HI is a well-founded H-coalgebra;

we conclude with the verification that ϕ−1 is final among these. This fol-
lows from the observation that every nonempty well-founded H-coalgebra
a : A // HA is also well-founded w.r.t. H̄. Indeed, consider a cartesian
subcoalgebra

A H̄A
a

//

A′

A

m

��

A′ H̄A′a′
// H̄A′

H̄A

H̄m

��

(2.18)
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By Lemma 2.44, A′ 6= ∅. Thus H̄m = Hm and we conclude that m is
invertible.
(b) If ψ : I // HI is a final well-founded coalgebra, we prove that ψ is

invertible and ψ−1 : HI // I is an initial algebra. Unfortunately, we cannot
use the converse implication of what we have just proved (every nonempty
well-founded H̄-coalgebra is also well-founded w.r.t. H) since this is false in
general (see Example 2.46 below). We can assume H∅ 6= ∅, since the case
H∅ = ∅ is trivial.
Consider first the coalgebra

b : H̄∅ // HH̄∅

defined by

b(τ) = τH̄∅ for all τ : C01
// H.

Let us show that this coalgebra is well-founded for H. Consider a cartesian
subcoalgebra

H̄∅ HH̄∅
b

//

A′

H̄∅

m

��

A′ HA′a′
// HA′

HH̄∅

Hm

��

(2.19)

It is our task to prove that m is surjective (thus, invertible). First, assume
that A′ 6= ∅. Given τ : C01

// H in H̄∅, the element τA′ of HA′ fulfils

b(τ) = τH̄∅ = Hm(τA′)

by the naturality of τ and the fact that C01m = id1. Thus, there exists an
element of A′ that m maps to τ . Our second case is when A′ = ∅. We show
that this case leads to a contradiction. Observe that m = qH̄∅ : ∅ // H̄∅, and
let x ∈ H∅, so that u(x) ∈ H̄∅, see (2.14), and we have

b(u(x)) = (u(x))H̄∅ = HqH̄∅(x).

Thus x and u(x) are mapped to the same element of HH̄∅ by Hm and
b, respectively, contradicting the assumption that ∅ is a pullback in (2.19)
above.
The first point of this coalgebra (H̄∅, b) is that its well-foundedness and

non-emptiness implies that the final well-founded H-coalgebra I must also
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be nonempty. Thus I is also a coalgebra for H̄ . Let us prove that it is
well-founded w.r.t. H̄. Given a cartesian subcoalgebra

I H̄I
ψ

//

A′

I

m

��

A′ H̄A′a′
// H̄A′

H̄I

H̄m

��

by Lemma 2.44, A′ 6= ∅. So H̄m = Hm, hence m is invertible.
We next prove that (I, ψ) is the final well-founded H̄-coalgebra. Let

a : A // H̄A be a nonempty well-founded H̄-coalgebra. We prove that the
coproduct

(A, a) + (H̄∅, b) in CoalgH

is a well-founded H-coalgebra. This will conclude the proof: we have a
unique homomorphism from that coproduct into (I, ψ) in CoalgH, hence,
a unique homomorphism from (A, a) to (I, ψ). Now in oder to prove that
the above coproduct is a well-founded H-coalgebra we first use that every
nonempty well-founded coalgebra forH is also well-founded for H̄, thus, both
of the above summands are well-founded H̄-coalgebras. Since coproducts
of coalgebras are formed on the level of sets, the two categories CoalgH
and Coalg H̄ have the same formation of coproduct of nonempty coalgebras.
Let

(A, a) + (H̄∅, b) = (A+ H̄∅, c)

be a coproduct in Coalg H̄, then this coalgebra is well-founded w.r.t. H̄ by
Corollary 2.27. To prove that it is also well-founded w.r.t. H, we only need
to consider the empty subcoalgebra: we must prove that the square

A+ H̄∅ H(A+ H̄∅)c
//

∅

A+ H̄∅

m

��

∅ H∅
a′

// H∅

H(A+ H̄∅)

Hm

��

is not a pullback. Indeed, choose an element x ∈ H∅ and put τ = u(x)
(see (2.14)). Then m = qA+H̄∅ implies

Hm(x) = τA+H̄∅.
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We also have τ ∈ H̄∅ and the coproduct injection v : H̄∅ // A + H̄∅ fulfils
c·v = Hv·b (due to the formation of coproducts in Coalg H̄). Therefore

c
(
v(τ)

)
= Hv

(
b(τ)

)
= Hv(τH̄∅) = τA+H̄∅.

Since we presented elements of A+ H̄∅ and H∅ that are mapped to the same
element by c and Hm, respectively, the above square is not a pullback. This
finishes the proof that (I, ψ) is a final well-founded H̄-coalgebra.
By Theorem 2.36 we conclude that ψ is invertible and (I, ψ−1) is an initial

H̄-algebra. It is also an initial H-algebra: due to H∅ 6= ∅ 6= H̄∅, the two
functors have the same categories of algebras.

Example 2.46. Let H = C01+C1 be the constant functor of value 2 except
∅ 7→ 1. The functor H̄ in the above proof is the constant functor with
value 1 + 1, expressed, say as {a, b}. Here

H∅ = {b} and HA = {a, b} for A 6= ∅.

The coalgebra

{a} � � // {a, b}

is obviously well-founded w.r.t. H̄ but not w.r.t.H since we have the pullback:

{a} {a, b}� � //

∅

{a}

q{a}

��

∅ H∅ = {b}// H∅ = {b}

{a, b}

Hq{a}

��

2.4. The canonical graph and well-foundedness.

Definition 2.47. Let H be a set functor preserving (wide) intersections.
For every coalgebra a : A // HA define the canonical graph on A: the
neighbors of x ∈ A are precisely those elements of A which lie in the least
subset m : M � � // A with a(x) ∈ Hm[HM ].

Remark 2.48. (a) Gumm observed in [16] that if H preserves intersections
we obtain a “subnatural” transformation from it to the power-set functor P

by defining functions

τA : HA //PA, τA(x) = the least subset m : M � � // A with x ∈ Hm[HM ].
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The naturality squares do not commute in general, but for every monomor-
phism m : A′ � � // A we have a commutative square

HA PA
τA

//

HA′

HA

Hm

��

HA′ PA′τA′
// PA′

PA

Pm

��

which even is a pullback. The canonical graph of a coalgebra a : A // HA
is simply the graph τA·a : A // PA.
(b) Recall that a graph is well-founded iff it has no infinite directed paths.

This also fully characterizes well-foundedness of H-coalgebras:

Proposition 2.49. If a set functor preserves intersections, then a coalgebra
is well-founded iff its canonical graph is well-founded.

Remark. For functors H preserving inverse images this fact is proved by
Taylor [28, Remark 6.3.4]. Our proof is essentially the same.

Proof : Let a : A //HA be a well-founded coalgebra. Given a subgraph (A′, a′)
of the associated graph (A, τ ·a) forming a pullback

A HA
a

// HA PA
τA

//

A′ PA′a′
//A′

A

m

��

PA′

PA

Pm

��

we are to prove that m is invertible. Use the pullback of Remark 2.48:

A HAa
//

A′

A

m

��

A′ HA′a′′
// HA′

HA

Hm

��

HA PAτA
//

HA′

HA

HA′ PA′τA′
// PA′

PA

Pm

��

(2.20)

We get a unique a′′ : A′ //HA′ with a′′ = τA′·a, and (A′, a′′) is a subcoalgebra
of (A, a). Moreover, in the above diagram the outside square and the right-
hand one are both pullbacks, thus, the left-hand square is also a pullback.
Consequently, m is invertible since (A, a) is well-founded.
Conversely, if the graph (A, τA·a) is well-founded, we are prove that if the

left-hand square of (2.20) is a pullback then m is invertible. Indeed, in that
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case, by composition, the outside square is a pullback for the subcoalge-
bra (A′, τA′·a′) of (A, τA·a). Thus, since the last coalgebra is well-founded,
m is invertible.

2.5. Initial algebras for functors on vector spaces.

For every field K, the category VecK of vector spaces over K also has the
property that the equality (2.13) holds for all endofunctors. This follows
from the next lemma whose proof is a variation of Trnková’s proof of Propo-
sition 2.42 (cf. [30]):

Lemma 2.50. In VecK, finite intersections of monomorphisms are absolute,
i.e., preserved by every functor with domain VecK.

Corollary 2.51. For every endofunctor of VecK we have

initial algebra = final well-founded coalgebra.

Remark 2.52. The existence of an initial algebra is equivalent to the exis-
tence of a space X ∼= HX, see Proposition 2.12.

3.Well-pointed coalgebras

3.1. Simple coalgebras.

We arrive at the centerpiece of this paper, characterizations of the initial alge-
bra, final coalgebra, and initial iterative algebra for endofunctors preserving
intersections. Recall from Section 2 that subcoalgebras are represented by
homomorphisms carried by monomorphisms in A , and quotient coalgebras
by homomorphisms carried by strong epimorphisms in A . And a coalgebra
(A, a) for H is simple if every homomorphism from (A, a) is a subcoalgebra.
Here we prove that an endofunctor preserving monomorphisms has a final

coalgebra iff it has only a set of simple coalgebras (up to isomorphism).
For concrete categories and endofunctors preserving intersections we prove
a stronger result: the final coalgebra consists of all well-pointed coalgebras
which are those pointed coalgebras with no proper quotient and no proper
subobject. And a much sharper result is obtained if the base category is an
equational class of algebras. Numerous examples of this type of description
of final coalgebras are presented in Section 4.

Assumption 3.1. Throughout this section A denotes a cocomplete, wellpow-
ered and cowellpowered category. And H : A // A is an endofunctor.
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Additionally, in a number of results below we assume that H preserves
(wide) intersections, i.e., multiple pullbacks of monomorphisms.

Examples 3.2. In the case where A =Set the assumption that H preserves
intersections is an extremely mild condition: examples include

(a) the power-set functor, all polynomial functors, the finite distribution
functor,

(b) products, coproducts, quotients, and subfunctors of functors preserving
intersections, and

(c) “almost” all finitary functors: if H is finitary then H̄ in Theorem 2.45
preserves intersections.

(d) An example of an important set functor not preserving intersections is

the continuation monad X 7→ R(RX) for a fixed set R.

Remark 3.3. (a) We are working with factorizations of morphisms as strong
epimorphisms followed by monomorphisms, see Remark 2.5. Recall from
[4] that every cocomplete and cowellpowered category has such factoriza-
tions.

(b) We use Terminology 2.7 and recall from Remark 2.6 that quotients and
subcoalgebras form a factorization system in CoalgH whenever H pre-
serves monomorphisms. In this case, a coalgebra (A, a) is simple iff it
has no proper quotient (see Definition 2.1).

Notation 3.4. From now on we will write

νH and µH

for the final coalgebra and initial algebra for H, respectively, whenever they
exist.

Examples 3.5. (1) If H has a final coalgebra νH, then νH is simple. In-
deed, the terminal object of every category is (clearly) simple.

(2) If a set functor H has an initial algebra, then it is simple. More generally,
let A fulfil the assumptions of 2.2. If H preserves finite intersections and
has an inital algebra µH, then µH is (as a coalgebra) simple. Indeed, by
Theorem 2.36, µH is a final well-founded coalgebra. Since well-founded
coalgebras are closed under quotients (see Lemma 2.27), it follows that
µH is simple (in CoalgH).

(3) A deterministic automaton considered as a coalgebra of

HX = XI × {0, 1} (I = the set of inputs)
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is simple iff it is observable. That is, for every pair of distinct states there
exists an input string taking one of the states to an accepting state and
the other one to a non-accepting state.

(4) A graph, considered as a coalgebra for P , is simple iff it has pairwise
non-bisimilar vertices.

Observation 3.6. Simple coalgebras form an ordered class (up to isomor-
phism), i.e., between two simple coalgebras there exists at most one homo-
morphism.
Indeed, given a parallel pair h1, h2 : (A, a) // (B, b), their coequalizer is a

quotient of (B, b), hence it is invertible and we conclude h1 = h2.

Proposition 3.7 (Gumm [15]). Every coalgebra has a unique simple quotient
represented by the wide pushout

e(A,a) : (A, a) // (Ā, ā)

of all quotients. This is the reflection of (A, a) in the full subcategory of all
simple coalgebras.

Gumm worked with A = Set, but his argument extends without problems:
for every coalgebra homomorphism f : (A, a) // (B, b) there exists a unique
coalgebra homomorphism f̄ : (Ā, ā) // (B̄, b̄) with f̄ · e(A,a) = e(B,b) · f by the
universal property of wide pushouts.

Corollary 3.8. Every subcoalgebra of a simple coalgebra is simple.

Indeed, every full strong epi-reflective subcategory is closed under subob-
jects.

Theorem 3.9. For every endofunctor H the existence of νH implies that
H has only a set of simple coalgebras (up to isomorphism). If H preserves
monomorphisms, the converse implication also holds.

Remark. Moreover, if (Ai, ai), i ∈ I, is a set of representatives of all simple
coalgebras, then νH is the simple quotient of their coproduct:

νH = (Ā, ā) where (A, a) =
∐

i∈I

(Ai, ai).

The theorem is a consequence of Freyd’s Adjoint Functor Theorem. We
include a (short) proof for the convenience of the reader.
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Proof : (1) Let H have a set (Ai, ai), i ∈ I, of representative simple coalge-
bras. Proposition 3.7 implies that this set is weakly final: for every coalge-
bra (B, b) choose i ∈ I with (B̄, b̄) ≃ (Ai, ai) and obtain a homomorphism
(B, b) // (Ai, ai). Consequently, the above coproduct (A, a) is a weakly final
object, hence, so is its quotient (Ā, ā). For every parallel pair of morphisms
with codomain (Ā, ā) their coequalizer is invertible (since the codomain is
simple, see Remark 3.3). Hence, (Ā, ā) is final.
(2) Let νH exist. Then for every simple coalgebra the unique homomor-

phism into νH is monic. Therefore, since A is wellpowered by assumption,
H has only a set of simple coalgebras up to isomorphism.

Example 3.10. If H does not preserve monomorphisms, then it can have
both a final coalgebra and a proper class of simple coalgebras which are
pairwise non-isomorphic.
On the category Gra of graphs and graph morphisms define an endofunc-

tor, based on the power-set functor P , as follows:

HX =

{
PX (no edges) if X has no edges
1 else

For morphisms between graphs without edges put Hf = Pf . Then 1 = H1
is the final coalgebra.
Now P as an endofunctor of Set has, since no final coalgebra exists, a

proper class of simple, pairwise non-isomorphic coalgebras ai : Ai
//PAi (i ∈

I). Consider Ai as a graph without edges, then (Ai, ai) is a coalgebra for
H. And this coalgebra is simple because if a coalgebra homomorphism
e : (Ai, ai) // (B, b) is carried by a strong epimorphism e : Ai

// B of
Gra, then the fact that Ai has no edge implies that neither has B. Then
e is a homomorphism in CoalgP which implies that it is invertible (in
Set, hence, in Gra). Thus, we obtain a proper class of simple H-coalgebras
(Ai, ai).

3.2.Well-pointed coalgebras.

Remark 3.11. In the rest of Section 3 we assume that the base category A is
concrete, i.e., a faithful functor

U : A // Set

is given. We require that U

(a) preserves intersections,
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(b) is fibre-small, i.e., for every set X there exists up to isomorphism only a
set of objects A ∈ A with UA = X, and

(c) is uniquely transportable, i.e., for every object A and every bijection
b : UA // X in Set there exists a unique object Ā with UĀ = X and
A ≃ Ā where the isomorphism is carried by b.

Condition (c) is harmless: every concrete category is equivalent to a uniquely
transportable one, see [4]. Also (a) and (b) are conditions fulfilled by all
“everyday” concrete categories: usually U is the hom-functor of an object G
which is a generator, and then (a) and (b) hold. More generally:

Example 3.12. (1) Let Gi (i ∈ I) be a generating set of A , i.e., for every
parallel pair f1, f2 : A //B of distinct morphisms there exists i ∈ I and
h : Gi

// A with f1 · h 6= f2 · h. Then the functor

U =
∐

i∈I

A (Gi,−) : A // Set

is faithful, fibre-small, and preserves intersections. Indeed, faithfulness is
equivalent to {Gi : i ∈ I} forming a generating set. Each A (Gi,−) pre-
serves limits, and connected limits commute with coprodutcs in Set, thus,
U preserves connected limits. Fibre-smallness follows from A being co-
complete and cowellpowered: for every object A the canonical morphism

e :
∐

i∈I

A (Gi, A) •Gi
// A

where − • Gi denotes copowers of Gi (and the f -component of e is f
for every f ∈ A (Gi, A)) is an epimorphism. This is also equivalent
to {Gi : i ∈ I} forming a generating set. For every set X all objects
A with UA = X are thus quotients of

∐

i∈I Xi • Gi where Xi ⊆ X.
Since A is cowellpowered, all these quotients form a set of objects up to
isomorphism.

(2) Every LFP category A is concrete as described in the previous point
when one chooses as generating set any set of representatives of all finitely
presentable objects up to isomorphism.

Definition 3.13. By a pointed coalgebra is meant a triple (A, a, x) con-
sisting of a coalgebra a : A // HA and an element x of UA. The category

CoalgpH
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of pointed coalgebras has as morphisms from (A, a, x) to (B, b, y) those coal-
gebra homomorphisms f : (A, a) // (B, b) which preserve the point:

UA UB
Uf

//

1

UA

x

||yyyy
yy

yyy
yyy

y
1

UB

y

""EE
EE

EEE
EE

EEE
E

Remark 3.14. As forCoalgH, the quotients of a pointed coalgebra (A, a, x)
are precisely the morphisms with this domain carried by strong epimor-
phisms of A . And subcoalgebras are precisely the morphisms with codomain
(A, a, x) carried by monomorphisms of A . Indeed, Remark 2.6 immediately
extends to CoalgpH.

Definition 3.15. A well-pointed coalgebra is a pointed coalgebra with
no proper quotient and no proper subobject.

Remark. (a) To say that a pointed coalgebra (A, a, x) has no proper sub-
object means precisely that x generates the coalgebra (A, a): whenever a
subcoalgebra m : (B, b) // (A, a) contains x (in the image of Um) then
m is invertible. We call such coalgebras reachable. Thus:

well-pointed = simple + reachable.

(b) It is easy to see that if f : (A, a, x) // (B, b, y) is a morphism of pointed
coalgebras, and if (A, a) is simple and (B, b, y) is reachable, then f is an
isomorphism.

(c) In the case where A = Set and H = P , reachability of a pointed graph
means that every vertex can be reached from the chosen one. Suppose
H is an arbitrary set functor preserving intersections. Then reachability
of coalgebras can be translated to reachability of its canonical graph, see
Definition 2.47:

Lemma 3.16. Let H be a set functor preserving intersections. Then a
pointed coalgebra (A, a, x) is reachable iff its pointed canonical graph is, i.e.,
every vertex can be reached from x by a directed path.
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Proof : Recall τA : HA //PA from Remark 2.48. Given a subcoalgebra (A′, a′)
containing x:

1 A
x

//

A′

1

::

x′

t
t

t
t

t
t

t
t
A′

A

m

��

A HA
a

//

A′

A
��

A′ HA′a′
// HA′

HA

Hm

��

HA PA
τA

//

HA′

HA

HA′ PA′τA′
// PA′

PA

Pm

��

Then A′ is a subcoalgebra of the canonical graph (A, τA·a) (as a pointed
coalgebra of P). And vice versa: if m : A′ //A is a subobject of the pointed
canonical graph then, since the square in Remark 2.48 is a pullback, we have
a unique structure a′ : A′ // HA′ of a subobject of (A, a, x). Therefore,
(A, a, x) is reachable w.r.t. H iff (A, τA·a, x) is reachable w.r.t. P .

Examples 3.17. (a) A deterministic automaton with a given initial state is
a pointed coalgebra forHX = XI×{0, 1}. Reachability means that every
state can be reached (in finitely many steps) from the initial state. The
usual terminology is that reachability and observability (see Example 3.5
(3)) together are called minimality. Thus, well-pointed coalgebras are
precisely the minimal automata.

(b) For the power-set functor the pointed coalgebras are the pointed graphs.
Well-pointed means reachable and simple (Example 3.5 (4)). See Sub-
section 4.6 for more details.

Notation 3.18. IfH preserves intersections, then there is a canonical process
of turning an arbitrary pointed coalgebra (A, a, x) into a well-pointed one:
form the simple quotient (see Proposition 3.7) pointed by Ue(A,a)·x : 1 //UĀ,
then form the least subcoalgebra containing that point:

1 UAx
// UA UĀ

Ue(A,a)

//1

UĀ0

x0

66mmmmmmmmmmmmmmmmmmmmmmm

UĀ0

UĀ

Um

��

Ā HĀ
ā

//

Ā0

Ā

m

��

Ā0 HĀ0
ā0

// HĀ0

HĀ

Hm

��

Then (Ā0, ā0, x0) is well-pointed by Corollary 3.8. We denote the well-pointed
coalgebra (Ā0, ā0, x0) (unique up to isomorphism ) by

wp(A, a, x)

and call it the well-pointed modification of (A, a, x).
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Example 3.19. For deterministic automata our process A � // Ā0 above
means that we first merge the states that are observably equivalent and
then discard the states that are not reachable. A more efficient way is first
discarding the unreachable states and then merging observably equivalent
pairs. Both ways are possible if our functor preserves inverse images:

Remark 3.20. Let H and U preserve inverse images. Then a quotient of
a reachable pointed coalgebra is reachable. Indeed, given such a quotient e
and its subcoalgebra m containing the given point x, form the inverse image
of m along e in A :

UĀ0 UĀ
Um

//

UA′

UĀ0

Ue′

��

UA′ UA
Um′

// UA

UĀ

Ue

��

1

UA

x

99rrrrrrrrrrrr
1

UA′
eeL

L
L

L
L

L
1

UĀ0

x0
yyrrrrrrrrrrr

Since H preserves inverse images, m′ : A′ // A is a subcoalgebra of A, and,
since U preserves inverse images too, the universal property of pullbacks
implies that A′ contains the given point x. Consequently, m′ is invertible,
thus, m·e′ is strongly epic, therefore m is invertible.
Thus, we have an alternative procedure of forming well-pointed coalge-

bras from pointed ones, (A, a, x): first form the least pointed subcoalge-
bra (A0, a0, x). Then form the simple quotient of (A0, a0).

Notation 3.21. The collection of all well-pointed coalgebras up to isomor-
phism is denoted by T . For every coalgebra a : A //HA we have a function

a+ : UA // T defined by a+(x) = wp(A, a, x).

(Notice that the well-pointed modification wp(A, a, x) is unique up to iso-
morphism. Thus we have precisely one choice in T .)
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Lemma 3.22. Let H preserve monomorphisms. For every coalgebra homo-
morphism h : (A, a) // (B, b) the triangle

UA

T

a+

��
??

??
??

??
??

??
??

??
UA UB

Uh
// UB

T

b+

����
��

��
��

��
��

��
��

commutes.

Proof : (a) Assume that both coalgebras above are simple. In particular, h
is a monomorphism by simplicity of (A, a). For every element x ∈ UA we
know that a+(x) is the subcoalgebra m : (A0, a0) // (A, a) generated by x.
Therefore h · m : (A0, a0) // (B, b) is a subcoalgebra of (B, b, Uh(x)), and
since (A0, a0, x0), with Um(x0) = x, is well-pointed, we conclude that it is
isomorphic to b+(Uh(x)). Now T contains just one representative of every
well-pointed coalgebra up to isomorphism, consequently, b+(Uh(x)) = a+(x).
(b) If the two coalgebras are arbitrary, form the reflection h̄ of h (see

Proposition 3.7):

(Ā, ā) (B̄, b̄)
h̄

//

(A, a)

(Ā, ā)

e(A,a)

��

(A, a) (B, b)
h

// (B, b)

(B̄, b̄)

e(B,b)

��

Then for every element x ∈ UA we have that a+(x) is the subcoalgebra of
(Ā, ā) generated by x̄ = Ue(A,a)(x), thus a

+(x) = ā+(x̄); analogously for
b+(Uh(x)). By applying (a) to h̄ in lieu of h we conclude a+(x) = ā+(x̄) =
b̄+(Uh̄(x̄)) = b+(Uh(x)).

Lemma 3.23. If (A, a) is a simple coalgebra, then a+ : UA //T is injective.

Proof : Suppose that wp(A, a, x1) = wp(A, a, x2). Let

mi : (Ai, ai, x
i
0)

// (A, a, xi)

denote the smallest subcoalgebra containing xi (i = 1, 2). Let

u : (A1, a1, x
1
0) // (A2, a2, x

2
0)
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be an isomorphism. Then since (A, a) is simple, we have m1 = m2 · u due to
Observation 3.6. From Uu(x10) = x20 we get

x2 = Um2(x
2
0) = U(m2u)(x

1
0) = Um1(x

1
0) = x1.

3.3. Final coalgebras.

We remind the reader that in this section, we assume that the endofunctor
H preserves intersections.

Theorem 3.24. H has a final coalgebra iff it has only a set of well-pointed
coalgebras up to isomorphism. Moreover, a set T of representatives of well-
pointed coalgebras carries the final coalgebra:

U(νH) = T.

Remark 3.25. The final coalgebra for H is, as we will also prove, charac-
terized as the only coalgebra τ̄ : T̄ // HT̄ with two properties: UT̄ = T ,
and for every coalgebra (A, a) the function a+ : UA // T carries a coalgebra
homomorphism from (A, a) to (T̄ , τ̄)).

Proof : The necessity follows from Theorem 3.9. For the sufficiency, fix a set
T of representative well-pointed coalgebras. We also use Theorem 3.9 to show
that H has a final coalgebra. Indeed, if (A, a) is a simple coalgebra, then by
Lemma 3.23, UA has cardinality at most cardT . Since A is small-fibred and
uniquely transportable, it has up to isomorphism of A only a set of objects
whose underlying sets have cardinality at most cardT . Consequently, H
has up to isomorphism of CoalgH only a set of simple coalgebras: given
an object A with A (A,HA) of cardinality α, there are at most α pairwise
non-isomorphic coalgebras b : B // HB with A ∼= B in A .
Given the coalgebra structure

τ : νH // H(νH)

of the final coalgebra, we now prove that the map τ+ : U(νH) // T is a
bijection. Indeed, τ+ is monic due to the simplicity of νH (see Example 3.5
(1)) and Lemma 3.23. To check the surjectivity, let a+(x) ∈ T , where (A, a)
is a coalgebra and x ∈ UA. Then by Lemma 3.22, a+(x) = τ+(Uh(x)), where
h : A // ν is the coalgebra map. This shows that the image of τ+ contains
a+(x).
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Since A is uniquely transportable, there exists a unique object T̄ of A

and a unique isomorphism i : νH // T̄ with τ+ = Ui. Define a coalgebra
τ̄ : T̄ // HT̄ so that i is a coalgebra isomorphism: τ̄ = Hi · τ · i−1. The
coalgebra (T̄ , τ̄) is final because for every coalgebra (A, a) we have a unique
coalgebra homomorphism a∗ : (A, a) // (νH, τ), hence a unique coalgebra
homomorphism i · a∗ : (A, a) // (T̄ , τ̄):

T̄ H(T̄ )
τ̄

//

νH

T̄

i

��

νH H(νH)// H(νH)

H(T̄ )

Hi

��

νH H(νH)τ
//

A

νH

a∗

��

A HA
a

// HA

H(νH)

Ha∗

��

i−1

OO

We conclude with the verification of Remark 3.25. First we show that
τ̄+ = id. To see this apply Lemma 3.22 to i in order to get τ+ = τ̄+ · Ui.
But since τ+ = Ui, we get Ui = τ̄+ · Ui, hence τ̄+ = id because Ui is an
isomorphism.
To see that a+ = U(i · a∗), we use Lemma 3.22 again:

a+ = τ̄+ · U(i · a∗) = id · U(i · a∗) = U(i · a∗).

For the uniqueness, suppose that (T ′, τ ′ : T ′ // HT ′) also has UT ′ = T
and also that for all coalgebras (A, a), the map a+ : UA // T is U(b) for
some coalgebra homomorphism b : (A, a) // (T ′, τ ′). We apply this with
(A, a) = (T̄ , τ̄), and so id = τ̄+ : T //T is Uf for some coalgebra morphism
f : (T̄ , τ̄) // (T ′, τ ′). However, by unique transportability, there is some
isomorphism g : T̄ // T ′ such that Ug = id. And by faithfulness, f = g.
Thus the coalgebras (T̄ , τ̄) and (T ′, τ ′) are isomorphic.

Example 3.26. Let H be a set functor preserving intersections. If T is a set
of representatives of all well-pointed coalgebras, then T is a final coalgebra.
Its coalgebra structure assigns to every member (A, a, x) of T the following
member of HT :

1
x

// A
a

// HA
Ha+

// HT. (3.1)

See Section 4 for numerous concrete examples.
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Example 3.27. Observe that for a pointed coalgebra to be well-founded and
well-pointed two types of proper subcoalgebras are prohibited: the cartesian
ones, and those containing the chosen point.

Example 3.28. If H does not preserve intersections the theorem can fail:
the functor in Example 3.10 has a proper class of well-pointed coalgebras.

Example 3.29. For the set functor

HX = XI × {0, 1}

presenting deterministic automata the well-pointed coalgebras are precisely
the minimal (i.e., reachable and observable = simple) automata. Since ev-
ery language L ⊆ I∗ is accepted by a minimal automaton, unique up to
isomorphism, we get the more usual description of the final coalgebra

ν X .XI × {0, 1} = all minimal automata
∼= PI∗ (all languages).

Remark 3.30. Actually every set functor H has a final coalgebra, but this
can be a proper class. More precisely, H has an extension H∗ to the category
of classes and functions unique up to a natural isomorphism, and νH∗ exists,
see [7].

Corollary 3.31. For every set functor H preserving intersections a class of
representative well-pointed H-coalgebras with the coalgebra structure given by
the formula (3.1) is a final coalgebra for H∗.

The proof is completely analogous to that of Theorem 3.24.

Example 3.32. The final coalgebra of the power set functor is the class of
all well-pointed graphs (up to isomorphism).

Construction 3.33. Now let A be an equational class of algebras deter-
mined by a set E of equations, for a fixed signature Σ∗. Given a set T
representing all well-pointed coalgebras up to isomorphism, we turn it into a
final coalgebra of H as follows.

(a) T as a Σ-algebra. For every n-ary symbol σ ∈ Σ define σT : T n // T as
follows: Given an n-tuple of elements (Ai, ai, xi) of T form a coproduct

A =
∐

i<n

Ai in A

∗The construction works for all monadic categories A of Set. Thus Σ may be a large signature,
however, such that every set generates a free algebra in A (and thus A has coproducts).
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and obtain a coproduct (A, a) =
∐

i<n(Ai, ai) in CoalgH together with
elements x̂i ∈ A corresponding to xi ∈ Ai. For the element

y = σA(x̂i)i<n of A

we define the result of σT as the well-pointed modification of (A, a, y):

σT (Ai, ai, xi)i<n = wp(A, a, y). (3.2)

(b) T will be proved to satisfy all equations in E, i.e., T is an object of A .
And all a+ in Notation 3.21 are Σ-homomorphisms. (See Lemma 3.34.)

(c) T is a coalgebra. We have a function

τ : T // HT

defined precisely as in Example 3.26:

τ(A, a, x) = Ha+(a(x))

We prove that τ is a Σ-homomorphism. (See Proposition 3.35.)
(d) We derive that (T, τ) is a final coalgebra for H.

Lemma 3.34. The Σ-algebra T lies in A and for every coalgebra (A, a) we
have a Σ-homomorphism a+ : A // T .

Proof : Recall the final coalgebra (T̄ , τ̄) from the proof of Theorem 3.24 whose

underlying set is T . All we need proving is that the operations σT̄ of the Σ-
algebra T̄ are given by the formula (3.2) above. Indeed, given a well-pointed
coalgebra (Ai, ai, xi) we have a+i (xi) = (Ai, ai, xi). Let us apply Lemma 3.22
to the coproduct injection vi : (Ai, ai) // (A, a): since a+i = a+ · vi and
x̂i = vi(xi), we conclude

(Ai, ai, xi) = a+i (xi) = a+(x̂i).

Since a+ : A // T̄ is (by Remark 3.25) a Σ-homomorphism, we obtain

σT̄ ((Ai, ai, xi)i<n) = σT̄
(
(a+(x̂i))i<n

)
= a+(σA((x̂i)i<n)) = a+(y) = wp(A, a, y)

as required.

Proposition 3.35. The function τ(A, a, x) = Ha+(a(x)) is a Σ-homomorphism
from T to HT , and the coalgebra (T, τ) is final.
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Proof : For the final coalgebraτ̄ : T̄ // HT̄ of the proof of Theorem 3.24 we
already know that T = T̄ . It remains to prove that τ̄ = τ . For every element
(A, a, x) of T we have a+(x) = (A, a, x) and, since a+ : (A, a) // (T, τ̄) is a
coalgebra homomorphism,

τ̄(A, a, x) = τ̄(a+(x)) = Ha+(a(x)) = τ(A, a, x).

3.4. Initial algebras.

Just as the final coalgebra νH for a set functor H consists of all well-pointed
coalgebras (up to isomorphism), we now prove that the initial algebra µH
consists of all well-founded, well-pointed coalgebras. In more detail: the
well-founded coalgebras in νH form a subcoalgebra, and we prove that this
is a final well-founded coalgebra which we know is µH. In Section 4 we then
present numerous examples of initial algebras described in this manner. Al-
though in this subsection we work with the base category Set, all the results
generalize without problems to endofunctors of locally finitely presentable
categories A having a simple initial object (as we assumed in Section 2) and
equipped with a faithful functor U : A // Set as in Remark 3.11. But
since the ideas are the same and the notation for set functors is ”lighter”, we
decided to restrict to Set.

Notation 3.36. Recall the concept of well-founded coalgebra from Section
2. The collection of all well-founded, well-pointed coalgebras (up to isomor-
phism) is denoted by I. For every well-founded coalgebra a : A // HA we
have a function

a+ : A // I

assigning to every element x : 1 //A the well-founded, well-pointed coalgebra
of Notation 3.18:

a+(x) = (Ā0, ā0, x0).

Indeed, (Ā0, ā0) is well-founded due to Corollary 2.27 and Lemma 2.28.

Theorem 3.37. Let H preserve intersections. Then it has an initial alge-
bra iff it has only a set of well-founded, well-pointed coalgebras up to iso-
morphism. Moreover a set I of representatives of well-founded, well-pointed
coalgebras carries the initial algebra: µH = I.
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Proof : (1) If H has an initial algebra µH, then by Theorem 2.36 this is a final
well-founded coalgebra. Every well-founded, well-pointed coalgebra, being in
particular simple, is a subcoalgebra of µH, since the unique homomorphism
into µH is carried by a monomorphism. Consequently, I is a set.
(2) Let H have a set I of representatives of well-founded, well-pointed

coalgebras. I carries a canonical coalgebra structure

ψ̄ : I // HI.

As in Theorem 3.24, this structure assigns to every member (A, a, x) of I the
following element of HI:

1
x

// A
a

// HA
Ha+

// HI.

We prove below that this is a final well-founded coalgebra. Thus, by Theo-
rem 2.36, I is an initial algebra w.r.t. the inverse of ψ̄.
The proof that for every well-founded coalgebra (A, a) the map a+ : A //I

is a unique coalgebra homomorphism into ψ̄ : I // H(I) is completely anal-
ogous to the proof of Theorem 3.24. Just recall that subcoalgebras and
quotients of a well-founded coalgebra are all well-founded (by Corollary 2.27
and Lemma 2.28).
It remains to prove that (I, ψ̄) is a well-founded coalgebra. To this end

notice that for every well-pointed, well-founded coalgebra (A, a, x) in I we
have that

a+(x) = (A, a, x).

Now take the coproduct (inCoalgH) of all (A, a) for which there is an x ∈ A
such that (A, a, x) lies in I. This coproduct is a well-founded coalgebra by
Corollary 2.27, and, as we have just seen, the unique induced homomorphism
from the coproduct into (I, ψ̄) is epimorphic, whence I is a quotient coalgebra
of the coproduct. Thus, another application of Corollary 2.27 shows that
(I, ψ̄) is a well-founded coalgebra as desired.

Example 3.38. The initial algebra for HX = XI × {0, 1}, and more gener-
ally, for any set functor H with H∅ = ∅, is empty. No non-empty coalgebra
is well-founded (due to the cartesian subcoalgebra ∅) and thus no pointed
coalgebra is well-founded.

Remark 3.39. Analogously to Corollary 3.31, every set functor H has a,
possibly large, initial algebra. That is, the extension H∗ of H to classes
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always has an initial algebra:

µH∗ = all well-founded, well-pointed algebras

(up to isomorphism). This is a subcoalgebra of νH of Remark 3.30. And as
an algebra for H∗ it is initial:

Corollary 3.40. For every intersection preserving set functor H the large
coalgebra µH∗ is the final well-founded coalgebra for H∗. Thus, the large
initial algebra is µH∗ w.r.t. the inverse of ψ̄.

The first statement follows from the Small Subcoalgebra Lemma of [2]
and the fact that subcoalgebras of well-founded coalgebras are well-founded
(Corollary 3.8). The second statement is proved precisely as Theorem 2.36.

Example 3.41. The initial algebra for P consists of all well-founded, well-
pointed graphs.

3.5. Initial iterative algebras.

In this subsection, we study another subcoalgebra of the final coalgebra for a
set functor: all finite well-pointed coalgebras. We prove that this is the initial
iterative algebra (also known as the rational fixed point). Before doing so we
recall what completely iterative and iterative algebras are. Once again, there
is no problem in generalizing the results below to locally finitely presentable
base categories with simple initial objects and which are concrete via a given
U : A // Set.

Remark 3.42. We know, from Theorem 2.36 and 3.37, that µH has a double
role: an initial algebra and a final well-founded coalgebra. Also νH has a
double role. Recall from [18] that an algebra a : HA // A is completely
iterative if for every (equation) morphism e : X // HX + A there exists a
unique solution, i.e., a unique morphism e† : X // A such that the square
below commutes:

HX + A HA+ A
He†+A

//

X

HX + A

e

��

X A
e†

// A

HA+ A

OO

[a,A]

Theorem 3.43 (see [18]). For every endofunctor

final coalgebra = initial completely iterative algebra.



WELL-POINTED COALGEBRAS 45

Remark 3.44. (a) LetH be a finitary set functor, i.e., every element x ∈ HA
lies, for some finite subset m : A′ //A, in the image of Hm. Then an algebra
a : HA // A is called iterative provided that for every equation morphism
e : X // HX + A with X finite, there exists a unique solution e† : X // A.
This concept was studied for classical Σ-algebras by Nelson [20] and Tiurin

[29], and for H-algebras in general in [6].
(b) Form the colimit C, in Set, of the diagram of all finite coalgebras

a : A // HA with the colimit cocone a+ : A // C. Then there exists a
unique morphism c : C //HC with c·a+ = Ha+·a. It was proved in [6] that
c is invertible and the resulting algebra is the initial iterative algebra for H.

Example 3.45 (see [6]). (a) The initial iterative algebra ofHX = XI×{0, 1}
consists of all finite minimal automata. This is isomorphic to its description
as all regular languages.
(b) The initial iterative algebra of the finite power-set functor consists of

all finite well-pointed graphs. See Section 4 for a description using rational
trees.

Definition 3.46 (see [19]). A coalgebra is called locally finite if every
element lies in a finite subcoalgebra.

Theorem 3.47 (see [19]). Let H be a finitary set functor. Then

initial iterative algebra = final locally finite coalgebra.

Moreover, the final locally finite coalgebra is the colimit of all finite coalgebras
in CoalgH.

Remark 3.48. We prove below that given a finitary set functor, the set of
all finite well-pointed coalgebras forms the initial iterative algebra. For this
result we do not need to assume (unlike the rest of this section) that the
functor preserves intersections. This can be deduced from the following

Lemma 3.49. For every finitary set functor H the Trnková closure H̄ (see
Remark 2.43) preserves (wide) intersections.

Proof : The functor H̄ of Proposition 2.42 is obviously also finitary. It pre-
serves finite intersections, and we deduce that it preserves all intersections.
Given subobjects mi : Ai

// B (i ∈ I) with an intersection m : A // B, let
x ∈ H̄B lie in the image of each Hmi; we are to prove that x lies in the image
of H̄m. Choose a subset n : C // B of the smallest (finite) cardinality with
x lying in the image of H̄n. Since H̄ preserves the intersection of n and mi,
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the minimality of C guarantees that n ⊆ mi (for every i ∈ I). Thus, n ⊆ m,
proving that x lies in the image of H̄m.

Notation 3.50. For every finitary set functor denote by

̺H

the set of all finite well-pointed coalgebras up to isomorphism.
Given a finite coalgebra a : A // HA we again define a function

a+ : A // ̺H

by assigning to every element x : 1 //A the well-pointed coalgebra of Nota-
tion 3.18:

a+(x) = wp(A, a, x).

This is well-defined due to Corollary 2.27 and Lemma 2.28 since H and H̄
have the same pointed coalgebras.

Theorem 3.51. Every finitary endofunctor H has the initial iterative alge-
bra ̺H.

Remark. ̺H has the canonical coalgebra structure

ψ∗ : ̺H // H(̺H).

It assigns, analogously to (3.1), to every element (A, a, x) of ̺H the following
element of H(̺H):

1
x

// A
a

// HA
Ha+

// H(̺H).

We prove below that this is the final locally finite coalgebra. Thus, ̺H is the
initial iterative algebra w.r.t. the inverse of ψ∗, by Theorem 3.47.

Proof : Analogously to the proof of Theorem 3.24 one verifies that the mor-
phisms

a+ : (A, a) // (̺H, ψ∗) (A finite)

are coalgebra homomorphisms forming a cocone. By Remark 3.44(b) it re-
mains to prove that this is a colimit in CoalgH, we verify that all a+’s form
a colimit cocone in Set. That is:

(i) Every element of ̺H has the form a+(x) for some finite coalgebra (A, a)
and some x ∈ A. Indeed, for every element (A, a, x) of ̺H we have
a+(x) = (A, a, x).
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(ii) Whenever
a+(x) = b+(y)

holds for two finite coalgebras (A, a) and (B, b) and for elements x ∈ A,
y ∈ B (turning them into pointed coalgebras), we are going to verify
that there exists a zig-zag of homomorphisms of finite pointed coalgebras
connecting (A, a, x) with (B, b, y). For that recall a+(x) = (Ā0, ā0, x0)
in the notation 3.18. Here is the desired zig-zag:

(A, a, x)

(Ā, ā, e(A,a)·x)

e(A,a)
$$JJJJJJJJJJJJ

(A, a, x) (Ā0, ā0, x0)(Ā0, ā0, x0)

(Ā, ā, e(A,a)·x)

m(A,a)
zztttttttttttt

(Ā0, ā0, x0)

(B̄, b̄, e(B,b)·y)

e(B,b)
$$JJJJJJJJJJJJ

(Ā0, ā0, x0) (B, b, y)(B, b, y)

(B̄, b̄, e(B,b)·y)

m(B,b)
zztttttttttttt

Remark 3.52. For non-finitary set functors H the set ̺H also carries the
above structure of a coalgebra. But this is in general not a fixed point
of H. For example, the functor HX = XN + 1 has the final coalgebra
consisting of all countably branching trees. And ̺H is the set of all rational
trees, i.e., those having only finitely many subtrees (up to isomorphism), see
Example 4.29. This is a subcoalgebra of the final coalgebra, but not a fixed
point of H.

4. Examples of well-pointed coalgebras

For a number of important set functors H we are going to apply the results
of Section 3 and compare them to the well-known description of the three
fixed points of interest: the final coalgebra, the initial algebra, and the initial
iterative algebra (= final locally finite coalgebra). The last one is also called
the rational fixed point of H. Throughout this section pointed coalgebras
are considered up to (point-preserving) isomorphism. Recall that

νH = all well-pointed coalgebras

µH = all well-founded well-pointed coalgebras

and if H is a finitary functor

̺H = all finite well-pointed coalgebras.

We are using various types of labeled trees throughout this section. Trees,
too, are considered up to (label-preserving) isomorphism. Unless explicitly



48 J. ADÁMEK, S. MILIUS, L. S. MOSS AND L. SOUSA

stated, trees are ordered, i.e., a linear ordering on the children of every node
is always given.
In all our examples the endofunctors H used preserves intersections and

weak pullbacks. Recall from Rutten [22] that this implies that

(a) congruences on a coalgebra A are precisely the kernel equivalences of
homomorphisms f : A // B, and

(b) for every coalgebra the largest congruence is precisely the bisimilarity
equivalence.

Also recall from Remark 3.20 that, for these functors, every pointed coalge-
bra yields a well-pointed one by first forming the “reachable part” and then
the simple coreflection.
In pictures of pointed coalgebras the choice of the point q0 is depicted by

� � // q0@GAFBECD

4.1. Moore automata.

Given a set I of inputs and a set J of outputs, a Moore automaton on a set Q
(of states) is given by a next-state function δ : Q× I // Q curried as

curry δ : Q // QI

an output function
out : Q // J

and an initial state q0 ∈ Q. The first two items form a coalgebra for

HX = XI × J,

thus we work with pointed coalgebras for this functor, with q0 as the chosen
point. The behavior of an automaton is the function

β : I∗ // J

which to every input word w ∈ I∗ assigns the output of the state reached
from q0 by applying the inputs in w. A function β : I∗ // J is called regular
if the set of all functions β(w−) : I∗ // J for w ∈ I∗ is finite.

Lemma 4.1. The largest congruence on a Moore automaton merges states q
and q′ iff by applying an arbitrary finite sequence of inputs to each of them,
we obtain states with the same output.

This is well-known and easy to prove. Automata satisfying this condition
are called simple. Another well-known fact is the following



WELL-POINTED COALGEBRAS 49

Theorem 4.2. For every function β : I∗ // J there exists a reachable and
simple Moore automaton with the behavior β. This automaton is unique up
to isomorphism. It is finite iff β is regular.

Corollary 4.3. For Moore automata, HX = XI × J , we have

νH ∼= J I
∗
, all functions β : I∗ // J ;

̺H ∼= all regular functions β : I∗ // J ;
µH = ∅.

The coalgebra structure of νH (and ̺H) assigns to every β : I∗ // J the
pair in (νH)I × J consisting of the function i � // β(i−) for i ∈ I and the
element β(ε) of J .

Indeed, the isomorphism between νH, the set of all reachable and simple
automata, and J I

∗
is given by the above theorem. And the structure map

of Example 3.26 is easily seen to correspond to the above map taking β to
(i � // β(i−), β(ε)). Also the isomorphism of ̺H and all regular functions
follows from the above theorem; from Theorem 3.51 we know that ̺H is a
subcoalgebra of νH.
Finally, µH = ∅ since no well-pointed coalgebra (A, a) is well-founded due

to the cartesian subcoalgebra

A AI × Ja
//

∅

A

m

��

∅ H∅ = ∅
id

// H∅ = ∅

AI × J

Hm

��

Example 4.4. If J = {0, 1} we get νH = PI∗ and ̺H = regular languages,
see Examples 3.29 and 3.45 (a).

4.2. Mealy automata.

For Mealy automata the next-state function has the form δ : Q× I //Q× J
and in curried form this is a coalgebra for

HX = (X × J)I .

Given a state q of a Mealy automaton Q, its response function fq is the
function fq : I

ω // Jω assigning to an infinite word of input symbols the
infinite word of output symbols (delayed by one time unit) of the inputs
given by the transitions as the computations of the inputs are performed,
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starting in q. Observe that fq is a causal function, i. e., for every infinite
word w the n-th component of fq(w) depends only on the first n components
of w.

Remark 4.5. Given a causal function f : Iω // Jω the above property with
n = 0 tells us that the component 0 of f(w) only depends on w0. We thus
obtain a derived function

f 0 : I // J

with f(iw) = f 0(i)w′ (for convenient w′) for all w ∈ Iω.

Lemma 4.6. For every Mealy automaton the largest congruence merges pre-
cisely the pairs of states with the same response function.

Proof : Let Q be a Mealy automaton, then the equivalence q ∼ q′ iff fq = fq′ is
obviously a congruence. We have a structure of a Mealy automaton δ̄ on Q/∼
derived from that of Q: Given a state [q] ∈ Q/∼ and an input i ∈ I, the pair
δ(q, i) = (q′, j) yields δ̄([q], i) = ([q′], j). It is easy to verify that the canonical
map c : Q //Q/∼ is a coalgebra homomorphism c : (Q, δ, q0) //(Q/∼, δ̄, [q0]).
Conversely, every congruence is contained in ∼ because given a coalgebra
homomorphism h : Q // Q̄ then for every state q ∈ Q we have fq = fh(q).
Thus, the kernel congruence of h is contained in ∼.

Corollary 4.7. The well-pointed Mealy automata are precisely those with an
initial state q0 such that the automaton is

(a) reachable: every state can be reached from q0, and
(b) simple: different states have different response functions.

The automata satisfying (a) and (b) together are called “minimal”. The
following theorem can be found in Eilenberg’s Volume A [12, XII.4.1]:

Theorem 4.8. For every causal function f there exists a unique well-pointed
coalgebra whose initial state has the response function f .

Remark 4.9. Eilenberg also proves that a minimal Mealy automaton is finite
iff f has the property that the set of all functions f(w−) where w ∈ I∗ is
finite. Let us call such causal functions regular.

Corollary 4.10. For Mealy automata, HX = (X × J)I, we have

νH ∼= all causal functions from Iω to Jω

̺H ∼= all regular causal functions

µH = ∅.
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The coalgebra structure of νH (and that of ̺H) assigns to every causal func-
tion f : Iω // Jω the map

I // νH × J, i � //
(
f(i−), f 0(i)

)

for f0 : I // J in Remark 4.5.

Indeed, the first two statements follow from the above theorem, and the last
one follows again from H∅ = ∅. The above description of the final coalgebra
is due to Rutten [23]. Eilenberg works with functions f : I∗ //J∗ preserving
length and prefixes, but it is immediate that these are just another way of
coding all causal functions between infinite streams.

Remark 4.11. An alternative description of the final coalgebra for HX =
(X × J)I is:

νH ∼= J I
+

, all functions β : I+ // J .

Here and below, I+ is the set of finite non-empty words on the set I. The
coalgebra structure assigns to every β the mapping from I to νH × J given
by

i � //
(
β(i−), β(i)

)
for i ∈ I.

Indeed, this coalgebra is isomorphic to that of all causal functions f : Iω //Jω:
to every function β : I+ // J assign the causal function

f(i0i1i2 . . . ) = (β(i0), β(i0i1), β(i0i1i2), . . .).

4.3. Streams.

Consider the coalgebras for

HX = X × I + 1.

Rutten [22] interprets them as dynamical systems with outputs in I and
with terminating states (where no next state is given). Every state q yields a
stream, finite or infinite, over I by starting in q and traversing the dynamical
system as long as possible. We call it the response of q. It is an element
of Iω + I∗.

Lemma 4.12. For a dynamical system the largest congruence merges two
states iff they yield the same response.
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Proof : Let ∼ be the equivalence from the statement of the lemma. Then we
have an obvious dynamic system on Q/∼, thus, ∼ is a congruence. Every
coalgebra homomorphism h : Q // Q̄ fulfils: the response of q and h(q) is
always the same. Therefore, ∼ is the largest congruence.

Corollary 4.13. A well-pointed coalgebra is a dynamical system with an
initial state q0 such that the system is

(a) reachable: every state can be reached from q0, and
(b) simple: different states yield different responses.

Example 4.14. (a) For every word s1 . . . sn in I∗ we have a well-founded
dynamic system

q08?9>:=;< 8?9>:=;<s1
//� � // 8?9>:=;< s2

// . . . 8?9>:=;<sn
//

(b) For every eventually periodic stream in Iω,

w = uvω for u, v ∈ I∗,

we have a pointed dynamical system

q08?9>:=;< // // . . . //
VV

ff

qq

44 **

...
� � //

︸ ︷︷ ︸
u







v

If we choose, for the given stream w, the words u and v of minimum
lengths, then this system is well-pointed.

The following was already proved by Arbib and Manes [17, 10.2.5].

Corollary 4.15. For HX = X × I + 1 we have

νH ∼= I∗ + Iω, all finite and infinite streams,
̺H ∼= I∗ + I∗ × (I∗)ω all finite and eventually periodic streams,
µH ∼= I∗, all finite streams.

The coalgebra structure assigns to every nonempty stream w the pair

(tailw, headw) in νH × I

and to the empty stream the right-hand summand of H(νH) = νH × I + 1.
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Indeed, the description of νH follows from Corollary 4.13 since by forming
the response of q0 we get a bijection between well-pointed coalgebras and
streams in I∗ + Iω. For the description of ̺H observe that a well-pointed
system yields a finite or eventually periodic response iff it has finitely many
states. The about µH follows from the observation that a dynamical system
is well-founded iff every run of a state is finite. Indeed, given a coalgebra
a : A //A× I +1, form the subset m : A′ //A of all states with finite runs.
We obtain a cartesian subcoalgebra

A A× I + 1a
//

A′

A

m

A′ A′ × I + 1
a′

// A′ × I + 1

A× I + 1

m×I+1

A

_�

��

A× I + 1

_�

��

Thus, well-founded, well-pointed coalgebras are precisely those of Exam-
ple 4.14(a).

4.4. Binary trees.

Coalgebras for the functor

HX = X ×X + 1

are given, as observed by Rutten [22], by a set Q of states which are either
terminating or have precisely two next states according to a binary input,
say {l, r}. Every state q ∈ Q yields an ordered binary tree Tq (i.e, nodes that
are not leaves have a left-hand child and a right-hand one) by tree expansion:
the root is q and a node is either a leaf, if it is a terminating state, or has
the two next states as children (left-hand for input l, right-hand for input r).
Binary trees are considered up to isomorphism.

Lemma 4.16. For every system the largest congruence merges precisely the
pairs of states having the same tree expansion.

Proof : Let ∼ be the equivalence with q ∼ q′ iff Tq = Tq′. There is an obvious
structure of a coalgebra on Q/∼ showing that ∼ is a congruence. For every
coalgebra homomorphism h : Q //Q̄ the tree expansion of q ∈ Q is always the
same as the tree expansion of h(q) in Q̄. Thus∼ is the largest congruence.

Corollary 4.17. A well-pointed system is a system with an initial state q0
which is
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(a) reachable: every state can be reached from q0, and
(b) simple: different states have different tree expansions.

Moreover, tree expansion is a bijection between well-pointed coalgebras
and binary trees (see Proposition 4.25 below). For instance, the dynamical
system
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Observe that this tree has only 4 subtrees (up to isomorphism): this follows
from the fact that the dynamical systems has 4 states. In general, the finite
dynamical systems correspond to the rational trees, i.e., trees having (up
to isomorphism) only finitely many subtrees. This description is due to
Ginali [13].

Corollary 4.18. For the functor HX = X ×X + 1 we have

νH ∼= all binary trees,

̺H ∼= all rational binary trees,

µH ∼= all finite binary trees.

The coalgebra structure is, in each case, the inverse of tree tupling: it assigns
to the root-only tree the right-hand summand of νH × νH + 1 and to any
other tree the pair of its maximum subtrees.

Indeed, we only need to explain the last item µH. Given a coalgebra
a : A // A× A+ 1, let m : A′ � � // A be the set of all states defining a finite
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subtree. This is a cartesian subcoalgebra

A A×A+ 1a
//

A′

A

m

A′ A′ ×A′ + 1
a′

// A′ ×A′ + 1

A×A+ 1

m×m+id

A

_�

��

A×A+ 1

_�

��

because this square is a pullback: whenever a state q ∈ A has both next
states in A′ or whenever q is final, then q ∈ A′. Thus, if A is well-founded,
then A = A′. The converse implication is easy: recall the subsets A∗

i of
Notation 2.21. Here A∗

i is the set of all states whose binary tree has depth
at most i. Thus, if A = Ai for some i, the initial state defines a tree of depth
at most i.

4.5. Σ-Algebras and Σ-coalgebras.

All the examples above (and a number of other interesting cases) are sub-
sumed in the following general case. Let Σ be a signature, i.e., a set of
operation symbols with given arities ar(s) of symbols s ∈ Σ; the arity is a
(possibly infinite) cardinal. The classical Σ-algebras are the algebras for the
corresponding polynomial functor

HΣX =
∐

σ∈Σ

Xar(σ).

Coalgebras for HΣ are called Σ-coalgebras.

Example 4.19. Let I be a set of cardinality n. Deterministic automata
HX = XI × {0, 1} = XI +XI are given by two n-ary operations. Streams,
HX = X × I + 1, are given by n unary operations and a constant. Binary
trees HX = X ×X +1 are given by one binary operation and one constant.

Definition 4.20. A Σ-tree is an ordered tree with nodes labeled in Σ so
that every node with n children has a label of arity n. We consider Σ-trees
up to isomorphism.

Observe that every Σ-tree T is a coalgebra: the function a : T //HΣT takes
every node x labelled by a symbol σ ∈ Σ (of arity n) to the n-tuple (xi)i<n
of its children, an element of the σ-summand T n of HΣT .
In general a Σ-coalgebra a : Q // HΣQ can be viewed as a system with a

state set Q labeled in Σ:
ā : Q // Σ
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and such that every state q ∈ Q with n-ary label has “next states” forming
an n-tuple

a∗(q) ∈ Qn.

Indeed, to give a function a : Q //HΣQmeans precisely to given a pair (ā, a∗)
of functions as above.

Definition 4.21. Let a : Q // HΣQ be a Σ-coalgebra.

(a) A computation of length n is a word i0 · · · in−1 in N
∗ for which there

are states q0, · · · , qn in Q with

qk+1 = the ik-component of a∗(qk) (k = 0, . . . , n− 1).

(b) The tree expansion of a state q is the Σ-tree

Tq

of all computations with initial state q. The label of a computation
is ā(qn), where qn is its last state. And the children are all one-step ex-
tensions of that computation, i.e., all words i0 . . . in−1j with j ≤ ar(ā(qn)).

Lemma 4.22. The greatest congruence on a Σ-coalgebra merges precisely the
pairs of states with the same tree expansion.

Proof : Let (Q, ā, a∗) be a Σ-coalgebra and put q ∼ q′ iff Tq = Tq′. Then we
have a coalgebra structure on Q/∼: the label of [q] is ā(q), independent of
the representative. The next-state n-tuple is ([qi])i<n where a∗(q) = (qi). It
is easy to see that this is independent of the choice of representatives. And
the quotient map is a coalgebra homomorphism from Q to Q/∼. Thus, ∼ is
a congruence.
To prove that Σ is the largest congruence, observe that given a coalgebra

homomorphism h : Q // Q′, then for every state q ∈ Q we have Tq = Th(q).
Indeed, an isomorphism i : Tq // Th(q) is easy to define by induction on the
depth of nodes of Tq.

Corollary 4.23. Well-pointed Σ-coalgebras are the Σ-coalgebras with an ini-
tial state q0 which are

(a) reachable: every state can be reached from q0 by a computation, and
(b) simple: different states have different tree expansions.

Example 4.24. For every Σ-tree T the equivalence on the nodes of T given
by

x ∼ y iff Tx ∼= Ty, (4.1)
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where Tx is the subtree of T rooted at node x, is a congruence. And T/∼ car-
ries an obvious structure of a Σ-coalgebra. Let [r] be the congruence class of
the root, then the pointed Σ-coalgebra (T/∼, [r]) is well-pointed.
Indeed, this pointed coalgebra is reachable: given a node q of T let i0 · · · in−1

be the unique path from r to q, then i0 · · · in−1 is a computation in T/∼ with
initial state [r] and terminal state [qn].
The simplicity of T/∼ follows from Lemma 4.22 and the observation that

the tree expansion of a state [q] of T/∼ is the subtree Tq of T .
These are all well-pointed Σ-coalgebras:

Proposition 4.25. Every well-pointed coalgebra is isomorphic to (T/∼, [r])
for a unique Σ-tree T .

Proof : It is well-known that the coalgebra τ : B // HΣB of all Σ-labeled
trees where τ is given by

τ̄(T ) = label of the root of T , and

τ ∗(T ) = (Ti)i<n,

where Ti is the i-th maximum subtree is final. Indeed, for every coalgebra
(Q, a) the unique coalgebra homomorphism h : Q // B is given by tree
expansion (see Definition 4.21): h(q) = Tq.
Now from Theorem 3.24 we have the final coalgebra νHΣ of all well-pointed

coalgebras. The tree expansion map h : νHΣ
// B is then an isomorphism.

The inverse h−1 takes a tree T to the coalgebra (T/∼, [r]) above: this is
immediate from the fact that the tree expansion of [r] in T/∼ is T .

Proposition 4.26. A Σ-coalgebra is well-founded iff all its tree-expansions
are well-founded Σ-trees, i.e., Σ-trees with no infinite path.

Proof : Given a Σ-coalgebra A let m : A′ � � // A be the subset of all states
q ∈ A with Tq well-founded. This is, obviously, a subcoalgebra. And it is
cartesian

A HΣAa
//

A′

A

m

A′ HΣA
′a′

// HΣA
′

HΣA

HΣm

A

_�

��

HΣA

_�

��

Indeed, if a state q has the property that all components of a∗ lies in A′, the
q lies in A′. Thus A is well-founded iff A = A′.
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Corollary 4.27. For every signature Σ we have

νHΣ
∼= all Σ-trees, and

µHΣ
∼= all well-founded Σ-trees.

The coalgebra structure is in each case inverse to tree tupling.

Indeed, the isomorphism between νHΣ and all Σ-trees is given by Propo-
sition 4.25. And the coalgebra structure of Remark 3.25 corresponds to the
inverse of tree-tupling, i.e., it assigns to a Σ-tree T with a∗(r) = (x1, . . . , xn)
the n-tuple (Tx1, . . . , Txn) in the σ-summand of HΣ(νHΣ) where σ is the label
of the root.

Definition 4.28 (see [13]). A Σ-tree is called rational if it has up to iso-
morphism only finitely many subtrees.

Example 4.29. Given a finite Σ-coalgebra, all tree expansions of its states
are rational.
Indeed, if Q = {q1, . . . , qn} is the state set, then every subtree of Tqi (given

by a computation with initial state qi) has the form Tqj : take qj to be the
terminal state of the computation.

Corollary 4.30. For every finitary signature Σ we have

νHΣ
∼= all Σ-trees,

̺HΣ
∼= all rational Σ-trees,

µHΣ
∼= all finite Σ-trees.

The coalgebra structure is in each case inverse to tree-tupling.

Indeed, the isomorphism between ̺HΣ (all finite well-pointed coalgebras)
and rational Σ-trees follows from Proposition 4.25 and Example 4.29. The
last item follows from König’s Lemma: every well-founded finitely branching
tree is finite.

Example 4.31. For the functor HX = X∗ we can use nonlabeled trees: we
have

νH ∼= all finitely branching trees

̺H ∼= all rational finitely branching trees

µH ∼= all finite trees.
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Indeed, let Σ be the signature with one n-ary operation for every n ∈ N.
Then HΣX ∼= X∗. And Σ-trees need no labeling, since operations already
differ by arities.

4.6. Graphs.

Here we investigate coalgebras for the power-set functor P . In the rest of
Section 4 all trees are understood to be non-ordered. That is, a tree is a
directed graph with a node (root) from which every node can be reached by
a unique path.
Recall the concept of a bisimulation between graphs X and Y : it is a

relation R ⊆ X×Y such that whenever x R y then every child of x is related
to a child of y, and vice versa. Two nodes of a graph X are called bisimilar
if they are related by a bisimulation R ⊆ X ×X.

Lemma 4.32. The greatest congruence on a graph merges precisely the bisim-
ilar pairs of states.

This follows, since P preserves weak pullbacks, from general results of
Rutten [22].

Corollary 4.33. A pointed graph (G, q0) is well-pointed iff it is

(a) reachable: every vertex can be reached from q0 by a directed path, and
(b) simple: all distinct pairs of states are non-bisimilar.

Example 4.34. Aczel [1] introduced the canonical picture of a (well-founded)
set X. It is the graph with vertices all sets Y such that a sequence

Y = Y0 ∈ Y1 ∈ · · · ∈ Yn = X

of sets exists. The neighbors of a vertex Y are all of its elements. When
pointed by X, this is a well-pointed graph. Indeed, reachability is clear. And
suppose R is a bisimulation and Y R Y ′, then we prove Y = Y ′. Assuming
the contrary, there exists Z0 ∈ Y with Z0 /∈ Y ′, or vice versa. Since R is
a bisimulation, from Z0 ∈ Y we deduce that Z ′

0 ∈ Y ′ exists with Z0 R Z ′
0.

Clearly Z0 6= Z ′
0. Thus, we substitute (Y, Y

′) by (Z0, Z
′
0) and obtain Z1 ∈ Z0

and Z ′
1 ∈ Z ′

0 with Z1 R Z ′
1 but Z1 6= Z ′

1 etc. This is a contradiction to the
well-foundedness of X: we get an infinite sequence Zn with

· · · Z2 ∈ Z1 ∈ Z0 ∈ Y.
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Here are some concrete examples of canonical pictures and their corre-
sponding tree expansions (cf. Remark 4.35 below):

Set: Canonical picture: Tree expansion
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1 = {0} 1� � // • •//
1 •

•

2 = {0, 1} 2� � // • •// • •//• •
**

•

•

•

•��
�� ??

??2

3 = {0, 1, 2} 3� � // • •// • •// • •//• •
**

• •33• •55
•

•

•

•��
�� ??

??
3 •

•�
��

�
??

??

ω
. . . • •// • •// • •//• •

&&
• •33• •55

•

•
��

•

•
��

•

•
��

•

•
zz

ω� � //

•

•

•

••

• •

•

•

•

•

•

��
�� ??

??

. . .
ω

•

•��
�� ??

??

��
�� ??

??��
�� ??

??

llllllll
WWWWWWWWWWWW

Remark 4.35. Given a vertex q of a graph, its tree expansion is (similarly
to the ordered case, see Definition 4.21) the non-ordered tree

Tq

whose nodes are all finite directed paths from q.
The children of a node p are all one-step extensions of the path p. The

root is q (considered as the path of length 0).
For every pointed graph (G, x) the tree expansion is the tree Tx. In the

previous example we saw tree expansions of the given pointed graphs.

Definition 4.36 (Worrell [32]). By a tree-bisimulation between trees T1
and T2 is meant a graph bisimulation R ⊆ T1 × T2 which

(a) relates the roots,
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(b) x1 R x2 implies that x1 and x2 are the roots or have related parents, and
(c) x1 R x2 implies that the depths of x1 and x2 are equal.

A tree T is called strongly extensional iff every tree bisimulationR ⊆ T×T
is trivial: D ⊆ ∆T .

Example 4.37. The tree expansion of a well-pointed graph (G, q0) is strongly
extensional. Indeed, given a tree bisimulation R ⊆ Tq0 × Tq0, we obtain a
graph bisimulation R̄ ⊆ G × G consisting of all pairs (q1, q2) of vertices for
which paths pi from q0 to qi exist, i = 1, 2, with p1 R p2. Since G is simple,
R̄ ⊆ ∆. Thus, for all pairs of paths:

if p1 R p2 then the last vertices of p2 and p1 are equal.

We prove p1 R p2 implies p1 = p2 by induction on the maximum k of the
lengths of p1 and p2. For k = 0 we have p1 = q0 = p2. For k + 1 we
have p′1 R p′2 where p′i is the trimming of pi by one edge (since R is a tree
bisimulation). Then p′1 = p′2 implies p1 = p2 because the last vertices are
equal.

Furthermore, there are no other extensional trees:

Proposition 4.38. Every strongly extensional tree is the tree expansion of
a unique (up to isomorphism) well-pointed graph.

Proof : Let T be a strongly extensional tree with root r, considered as a
coalgebra for P .
(a) Existence. The coalgebra (T/∼, [r]) where ∼ merges bisimilar vertices

of T is well-pointed by Lemma 4.32. Its tree expansion T ′ = (T/∼)[r] is
(isomorphic to) the given tree T . Indeed, the relation R ⊆ T × T ′ of all
pairs (x, p) where x is a node of T and p is the equivalence class of the
unique path from r to x is clearly a tree bisimulation. Since P preserves
weak pullbacks, it follows that the composite R ◦R−1 of R and R−1 is also a
tree bisimulation, see [22]. But T is strongly extensional, thus R ◦R−1 ⊆ ∆.
Also T ′ is strongly extensional, see Example 4.37, thus R−1 ◦ R ⊆ ∆. We
conclude that R is (the graph of) an isomorphism from T to T ′.
(b) Uniqueness: If well-pointed graphs (G, q0) and (G′, q′0) have isomorphic

tree expansions, then they are isomorphic. Arguing analogously to (a) we
only need to find a graph bisimulation R ⊆ G × G′ and use the simplicity
of G and G′. For that, we just observe that there is a graph bisimulation
between (G, q0) and Tq0: the relation R ⊆ G × Tq0 of all pairs (q, p) where
q ∈ G is the last vertex of the path p from q0 to q.
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Corollary 4.39. νP = all strongly extensional trees.

We must be careful here: P has no fixed points. But recall the extension
of set functors to classes in Remark 3.30. For P this is the functor P∗ =
{A;A is a set with A ⊆ X}. Its (large) final coalgebra is the coalgebra of all
(small) strongly extensional trees.

Notation 4.40. Let Pλ be the subfunctor of all subsets of cardinality less
than λ. (Thus Pω is the finite power-set functor.) Then by precisely the
same argument as above one proves

Corollary 4.41. For every cardinal λ,

νPλ = all λ-branching strongly extensional trees.

This was proved for λ = ω byWorrell [32] and for general λ by Schwencke [25].
Our proof is entirely different.

We know from Example 2.9(1) that the well-founded graphs are precisely
the graphs without an infinite directed path. Now strong extensionality can,
in the case of well-founded trees, be simplified to extensionality which says
that for every node different children define non-isomorphic subtrees. Thus
we get

Corollary 4.42. µP = all well-founded, extensional trees;
µPλ = all λ-branching, well-founded, extensional trees.

Analogously to Example 4.29 the rational fixed point of the finite-powerset
functor Pω consists of all rational strongly extensional trees, i.e., those with
finitely many subtrees up to isomorphism:

Corollary 4.43. For the finite power-set functor Pω we have

νPω = all finitely branching, strongly extensional trees,

̺Pω = all finitely branching, rational, strongly extensional trees, and

µPω = all finite extensional trees.

4.7. Non-well-founded sets.

We revisit µP and νP here from a set-theoretic perspective. Before com-
ing to the non-well-founded sets, let us observe that Example 4.34 has the
following strengthening:
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Lemma 4.44. Well-founded, well-pointed graphs are precisely the canonical
pictures of well-founded sets.

This follows from the observation of Aczel [1] that every well-pointed
graph G has a unique decoration, i.e., coalgebra homomorphism d to the
class Set of sets considered as a graph with ∈ as the neighborhood relation.
That is, d assigns to every vertex x a set d(x) as follows:

d(x) =
{
d(y); y ∈ G a neighbor of x

}
.

Observe that the kernel of d is clearly a congruence on G. Thus, given a well-
pointed, well-founded graph (G, q0), we know that d is monic. From that it
follows that the canonical picture of the set d(q0) is isomorphic to (G, q0).

Corollary 4.45. µP = the class of all sets.

This was proved by Rutten and Turi in [24]. The bijection between well-
founded, well-pointed graphs and sets (given by the canonical picture) takes
the finite graphs to the hereditarily finite sets, i.e., finite sets with finite
elements which also have finite elements, etc. More precisely: a set X is
hereditarily finite if all sets in the canonical picture of X are finite:

Corollary 4.46. µPω = all hereditarily finite sets.

In order to describe the final coalgebra for P in a similar set-theoretic
manner, we must move from the classical theory to the non-well-founded set
theory of Aczel [1]. Non-well-founded set theory is obtained by swapping
the axiom of foundation, telling us that (Set,∈) is well-founded, with the
following

Anti-foundation axiom. Every graph has a unique decoration.

Example 4.47. The decoration of a single loop is a set Ω such that Ω = {Ω}.

The coalgebra (Set,∈) where now Set is the class of all non-well-founded
sets, is of course final for P : the decoration of any graph G is the unique
homomorphism d : G // Set.

Corollary 4.48. In the non-well-founded set theory

νP = all sets.

Let us turn to the finite power-set functor Pω. Its final coalgebra con-
sists of all sets whose canonical picture is finitely branching. They are
called 1-hereditarily finite, notationHF 1[∅], in the monograph of Barwise and
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Moss [9]. The rational fixed point of Pω consists of all sets whose canonical
picture is finite, these are called 1/2-hereditarily finite, notation HF 1/2[∅].
For well-founded sets (with canonical picture well-founded) both are equiv-
alent to hereditarily finite above.

Corollary 4.49. In the non-well-founded set theory

νPω = HF 1[∅], the 1-hereditarily finite sets,
̺Pω = HF 1/2[∅], the 1/2-hereditarily finite sets, and
µPω = the well-founded, hereditarily finite sets.

4.8. Labeled transition systems.

Here we consider, for a set A of actions, labeled transition systems as coal-
gebras for P(−×A). A bisimulation between two labeled transition systems
(LTS) G and G′ is a relation R ⊆ G×G′ such that

if x R x′ then for every transition x
a

// x′ in G
there exists y′ ∈ G′ and a transition

y
a

// y′ with x′ R y′, and vice versa.

States x, y of an LTS are called bisimilar if x R y for some bisimulation
R ⊆ G×G.

Lemma 4.50. For every LTS the greatest congruence merges precisely the
bisimilar pairs of states.

This, again, follows from general results of Rutten [22] since P(−×A) pre-
serves weak pullbacks.

Corollary 4.51. An LTS together with an initial state q0 is well-pointed iff
it is

(a) reachable: every state can be reached from q0 (by a sequence of actions),
and

(b) simple: distinct states are non-bisimilar.

The tree expansion of a state q is a (non-ordered) tree with edges labeled
inA, shortly, an A-labeled tree. For A-labeled trees we modify Definition 4.36
and speak about tree bisimulation if a bisimulation R ⊆ T1 × T2 also ful-
fils (a)–(c) of Definition 4.36. An A-labeled tree T is strongly extensional iff
every tree bisimulation R ⊆ T × T is trivial.
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Proposition 4.52. Tree expansion is a bijection between well-pointed LTS
and strongly extensional A-labeled trees.

The proof is analogous to that of Proposition 4.38. Also the rest is analo-
gous to the case of P above:

Corollary 4.53. νP(−×A) ∼= all strongly extensional A-labeled trees,
νPλ(−×A) ∼= all λ-branching, strongly extensional

A-labeled trees.

Corollary 4.54. For the finitely branching LTS we have

νPω(−×A) ∼= all finitely branching, strongly extensional A-labeled trees,

̺Pω(−×A) ∼= all rational, finitely branching strongly extensional

A-labeled trees,

µPω(−×A) ∼= all finite extensional A-labeled trees.

5. Conclusion

For set functors H satisfying the (mild) assumption of preservation of in-
tersections we described (a) the final coalgebra as the set of all well-pointed
coalgebras, (b) the initial algebra as the set of all well-pointed coalgebras
that are well-founded, and (c) in the case where H is finitary, the initial iter-
ative algebra as the set of all finite well-pointed coalgebras. This is based on
the observation that given an element of a final coalgebra, the subcoalgebra
it generates has no proper subcoalgebras nor proper quotients—shortly, this
subcoalgebra is well-pointed. And different elements define non-isomorphic
well-pointed subcoalgebras. We then combined this with our result that for
all set functors the initial algebra is precisely the final well-founded coalge-
bra. (For set functors preserving inverse images this was proved by Taylor
[27].) This resulted in the above description of the initial algebra. Numerous
examples demonstrate that this view of final coalgebras and initial algebras
is useful in applications.
More generally, for functors preserving finite intersections the fact that

initial algebras coincide with final well-founded coalgebras was proved in
locally finitely presentable categories. The description of the final coalgebra
was formulated concretely only in varieties of algebras. In future research we
intend to generalize this result to a wider class of base categories.
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[7] J. Adámek, S. Milius and J. Velebil, On coalgebra based on classes, Theoret. Comput. Sci.

316 (2004), 3–23.
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