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Abstract: An exact meet in a lattice is a special type of infimum characterized
by, inter alia, distributing over finite joins. In frames, the requirement that a meet
is preserved by all frame homomorphisms makes for a slightly stronger property. In
this paper these concepts are studied systematically, starting with general lattices
and proceeding through general frames to spatial ones, and finally to an important
phenomenon in Scott topologies.
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Introduction
The notion of an exact meet probably first appeared in [7] (1970), under

the name admissible meet. It was used as a technical device for the study of
injective hulls of semilattices. In [2] (1984), the first author arrived at the
concept by extrapolating the following characterization of meets in Boolean
algebras. A lower bound b of a subset A in a Boolean algebra B is the
infimum of A iff, for all differences d− c in B,

∀ a ∈ A (a ≥ d− c ⇒ b ≥ d− c).

Modeling x ≥ d− c in a general lattice by x ∨ c ≥ d, and restricting this to
the pairs c < d, one obtains the definition of a special type of meet called an
exact meet, coinciding with the notion of an admissible meet, as it turned out.
Such meets then proved useful for various purposes: injective hulls (again)
and essential extensions, and in the study of completions of lattice ordered
groups.
A very similar notion, with a very different motivation, appeared under

the name free meet in [18] (1994). Free meets are the meets in frames which
are preserved by all frame homomorphisms. The property of being free is
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stronger than exactness (and we use the term strong exactness here) but it
is closely related.
To illustrate the situation, consider the lattice Ω(X) of all open subsets of a

TD-topological space X. Here, the exact meets are those intersections which
happen to be open, in other words the meets that coincide with intersections.
Because such meets are intersections, they distribute over all finite joins with
elements of Ω(X) and in fact, this is the characteristic feature of exact meets
in general. In a general space X, strongly exact meets of open sets are always
open intersections, but if X is not TD then there are intersections that are
not open such that their meet is exact nevertheless.
Open intersections of systems of open sets also appeared in another context,

in an important step in proving the Hofmann-Lawson duality. Namely, in
the Scott topology of a continuous frame, the intersection of certain open
sets was shown to be open iff the open sets were indexed by a compact index
set. (For a precise formulation see 5.2 below.)
In this paper we present a systematic study of these phenomena. We start

with exactness in a general, not necessarily distributive, lattice. Then we
proceed to frames, where we are dealing with the exactness of the meets
only, since all joins are exact in frames. (The latter feature, by the way,
distinguishes frames among complete lattices.) We obtain characterizations
in terms of the behavior of closed and open sublocales; in fact, the char-
acterizations for general lattices in the preceding section can be viewed as
describing the behavior of ‘generalized closed sublocales’. The discrepancy
between the characterizations in terms of the open sublocales as opposed
to the closed ones then leads to the reappearance of the aforementioned free
meets of Wilson. Furthermore, the situation is analyzed in the case of spatial
frames, where the TD-spatiality makes the two notions coincide, and is, in
fact, characterized by this fact. Finally, we discuss the open intersections in
Scott topologies. We conclude with a brief discussion of the preservation of
exact meets by homomorphisms.

1. Preliminaries and problem setting
1.1. Although some of the statements may be formulated for more general

posets, the most general setting we will consider will be lattices L without
special completeness or distributivity properties. For a subset A and element
x of a lattice L, we shall write, as usual,

↑A = {y | y ≥ a ∈ A} , and ↑x = {y | y ≥ x} .
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We express the fact that x is an upper bound of A by writing

A ≤ x if ∀ a ∈ A, a ≤ x.

Similarly we write x ≤ A if x is a lower bound of A, and we make use of the
abbreviations

A ∨ b = {a ∨ b | a ∈ A} , A ∧ b = {a ∧ b | a ∈ A} ,

and
A→x = {a→x | a ∈ A} .

From [2] we adopt the operations

a ↓ b = {x | x ∧ b ≤ a} and a ↑ b = {x | x ∨ a ≥ b} .

We write ∨
A, resp.

∧
A,

for the supremum (join), resp. infimum (meet) of A if it exists, so that use
of the symbol entails the assertion that the supremum or infimum exists.

1.2. Recall that a frame is a complete lattice L satisfying the distributivity
law (∨

A
)
∧ b =

∨
(A ∧ b) =

∨

a∈A

(a ∧ b)

for all A ⊆ L and b ∈ L. We speak of a co-frame if we have the distributivity
law (

∧
A)∨b =

∧
(A∨b) instead. Frame homomorphisms are maps preserving

all joins and all finite meets; the resulting category will be denoted by Frm.
A typical frame is the lattice Ω(X) of all open sets of a topological space; if
f : X → Y is a continuous map then Ω(f) = (U 7→ f−1[U ]) : Ω(Y ) → Ω(X)
is obviously a frame homomorphism.

Every frame is a Heyting algebra; the Heyting operation will be denoted
by a→b. In particular, a frame has pseudocomplements

a∗ = a→0 =
∨

{x | x ∧ a = 0} .

Similarly, a co-frame has pseudosupplements, i.e., co-pseudocomplements
a# =

∧
{x | x ∨ a = 1}. For more about frames see, e.g., [13, 17], or the

more recent [15].

1.3. Sublocales. Frames can be viewed as generalized spaces. Subspaces of
a frame L are then represented as sublocales, that is, as subsets S ⊆ L such
that
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• for all M ⊆ S, the meet
∧
M lies in S, and

• for every x ∈ L and s ∈ S, x→s lies in S.

The sublocale S is a frame in the order inherited from L, and there is a natural
frame surjection L → S (the representation of a “subspace” is contravariant),
namely the left Galois adjoint of the embedding j : S → L, which is a localic
map in the sense of 1.3.2 below. The family of all sublocales of L constitutes
a co-frame

Sℓ(L)

with intersection for meet, and join defined by
∨

J

Si =
{∧

M | M ⊆
⋃

J
Si

}
.

Equivalently, a sublocale S can be represented by the frame congruence in-
duced by the frame surjection j∗ : L → S adjoint to the embedding j : S → L.

1.3.1. Open and closed sublocales. The open subspace of L associated
with the element a ∈ L is represented by the open sublocale

o(a) = {a→x | x ∈ L} = {x | a→x = x} ,

which can be represented by the congruence ∆a = {(x, y) | x ∧ a = y ∧ b}.
The complement in Sℓ(L) of o(a) is the closed sublocale

c(a) = ↑a,

with the associated congruence ∇a = {(x, y) | x ∨ a = y ∨ b}. Note that the
closure of a sublocale S, the smallest closed sublocale containing S, is given
by a particularly simple formula

S = cl (S) = c(
∧

S).

We recall from [15] the following equations in the co-frame Sℓ(L):
∨

J

o(ai) = o

(∨
J
ai

)
, o(a) ∧ o(b) = o(a ∧ b),

∧

J

c(ai) = c

(∨
J
ai

)
, c(a) ∨ c(b) = c(a ∧ b).

1.3.2. Localic maps. Following the development of the second and third
authors in their treatise [15], we will use the term localic map to refer to the
right Galois adjoint f : L → M of a frame homomorphism h : M → L; that
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is, we have h(x) ≤ y iff x ≤ f(y).1 That is, they are the meet-preserving
maps f : L → M whose left adjoints f ∗ : M → L preserve binary meets.
Alternatively, they may be described as the meet-preserving maps L → M
which satisfy

f(f ∗(a)→b) = a→f(b).

See [15] for proofs and additional details. From this same text we shall also
require several technical results in the sequel.

1.3.3. Lemma. Let f : L → M be a localic map with left adjoint f ∗ : M →
L.

(1) The image function f [−] = (S 7→ f [S]) maps Sℓ(L) into Sℓ(M) and

preserves joins.

(2) For each sublocale T of M there is a unique largest sublocale contained

in f−1[T ], designated f−1[T ].
(3) The function f−1 : Sℓ(M) → Sℓ(L) is right adjoint to the image func-

tion in (1), and therefore preserves all meets in Sℓ(M).
(4) f−1[o(a)] = o(f ∗(a)) for all a ∈ M .

Proof. See II.2.3, III.4.1, and III.6.3 in [15].

1.3.4. The Booleanization sublocale. By the formula for closure, a
sublocale S ⊆ L is dense, that is, S = L, iff 0 ∈ S. Thus, every frame L
contains the minimal dense sublocale

BL = {a∗∗ | a ∈ L}

([12]). BL is a Boolean frame, called the Booleanization of L.

1.4. Exact meets and joins. Recall [2]. An element b is the exact meet of
a subset A of a lattice L if

• b is a lower bound of A, and
• for any c < d, if A ⊆ c ↑ d then b ∈ c ↑ d.

(The latter in detail: if a ∨ c ≥ d for all a ∈ A then b ∨ c ≥ d.)

Dually, b is the exact join of a subset A if

• b is an upper bound of A, and
• for any c < d, if A ⊆ c ↓ d then b ∈ c ↓ d.

1 The reader is cautioned of the widespread use of the term ‘localic map’ or ‘localic morphism’
for the formal morphism in the category Loc of locales, the formal dual of the category Frm. Here
we have a concrete representation of these ‘inverted arrows’ as maps.
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Exact meets and joins have various motivations. For instance, the exact
joins and meets in a distributive lattice L are precisely those which remain
valid in the injective Boolean hull ρL of L ([2, Proposition 1.10]). Here we
will be particularly interested in the distributivity aspects of exact joins. In
[7], subsets A with exact joins are called admissible.

1.4.1. Proposition. An exact meet is a meet.

Proof. Suppose b is an exact meet of A and consider an arbitrary x ≤ A.
Then A ⊆ b ↑ (b ∨ x) implies b ∈ b ↑ (b ∨ x), which is to say that b ≥ x.

1.4.2. Theorem. [2, Lemma 1.8] The following statements about an element

b and a subset A of a lattice L are equivalent.

(1) b is an exact meet of A.
(2)

∧
(A ∨ x) = b ∨ x for each x.

Proof. (1) ⇒ (2): b ∨ x is certainly a lower bound of A ∨ x, and if it is not
the greatest such then there is some y ≤ A∨ x such that y � b∨ x. Then we
would have b ∨ x < y ∨ b ∨ x ≤ A ∨ x, i.e., A ⊆ (b ∨ x) ↑ (y ∨ b ∨ x), which
would imply the contradiction b ∨ b ∨ x = b ∨ x ≥ y ∨ b ∨ x.
(2) ⇒ (1): Suppose

∧
(A ∨ x) = b ∨ x for all x. For each a ∈ A we get

x ≤ a by setting x = a. If for c < d we have a ∨ c ≥ d for all a ∈ A then
b ∨ c =

∧
(A ∨ c) ≥ d. This shows that b is the exact meet of A.

It is a surprising fact that the property that every existing meet in a lattice
is exact is expressible in the first order language of lattice theory.

1.4.3. Proposition. [2, Proposition 1.10] The following statements about a

lattice L are equivalent.

(1) Every meet which exists in L is exact.

(2) If
∧

A exists for some subset A ⊆ L then
∧
(A ∨ b) exists for every

b ∈ L, and
∧
(A ∨ b) = (

∧
A) ∨ b.

(3) For all a < b < c in L there exists some d ∈ L such that a < d ≤ c
and b ↑ c ⊆ a ↑ d.

Consequently, such a lattice is distributive, and a co-frame if complete.

Proof. The equivalence of (1) and (2) is an immediate application of 1.4.2.
So suppose these conditions hold in L, and consider a < b < c for which
no element d can be found to satisfy (3). We claim that

∧
A = a, where

A = a ∨ (b ↑ c). For the claim could fail only if a < d ≤ A for some d ∈ L,
in which case b ↑ c ⊆ a ↑ d, contrary to assumption. But a is not the exact
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meet of A, for A ⊆ b ↑ c while a /∈ b ↑ c. This cannot happen by (2), so we
are forced to conclude that an element d can be found satisfying (3).
Suppose (1) fails, say

∧
A = a but A ∨ b ≥ c > a ∨ b. By replacing b with

a ∨ b if necessary, we may assume that a < b < c. Since A ⊆ b ↑ c and∧
A = a, no element d satisfying (3) can be found.

1.4.4. Remark. The concept of an exact join is, in a way, dual to, or,
rather, orthogonal to, that of being a linear element of a lattice L. In [12], a
is called linear in L if, for each B ⊆ L,

a ∧
∨

B =
∨

(a ∧B) .

Dually, a is termed co-linear if a ∨
∧

B =
∧
(a ∨ B) for all B ⊆ L. One of

the notable facts is that, in a subfit frame, a is co-linear if and only if it is
complemented (see, e.g. [12, 15]).

2. Exact meets in general lattices
In the sequel we will concentrate on exact meets. The results are easily

dualized, and, more specifically, we will be interested in the phenomena in
frames and particularly in topological spaces, where the joins are automati-
cally exact and hence the exactness of meets is what is of interest.

2.1. In spaces and, as we shall see, in frames, the exactness of a meet
is connected with the openness of an intersection of open objects and the
closedness of the union of closed objects. For instance, if Ui are open inX and
it so happens that

⋂
Ui is open, then, for any open V , (

⋂
Ui)∪V =

⋂
(Ui∪V )

and hence
∧

Ui =
⋂
Ui is an exact meet in Ω(X).

The general phenomena go in this direction. Therefore we will imitate the
sublocale terminology and speak of the subsets of a general lattice of the
form

c(a) = ↑a

as being the closed ones.

More generally, we define a geometric subset of a lattice L (the lattices will
be assumed bounded, but this may not be necessary) as a subset S ⊆ L such
that

if M ⊆ S and
∧

M exists then
∧

M ∈ S.

The set of all geometric subsets of a lattice L will be denoted by

G(L).
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2.2. Proposition. For any lattice L, G(L) is a complete lattice in the

inclusion order, with the join given by
∨

J

Si =
{∧

M | M ⊆
⋃

J
Si,

∧
M exists

}
.

Consequently, if L is a frame then the sublocale frame Sℓ(L) is a subset of

G(L) closed under all joins.

Proof. Let N be a subset of
∨
Si and let

∧
N exist. For each n ∈ N we

have an Mn ⊆
⋃
Si such that

∧
Mn exists and is equal to n. Now it is a

standard fact that then
∧
(
⋃
{Mn | n ∈ N}) exists and is equal to

∧
N . If,

in addition, L is a frame and the Si’s are sublocales then for x ∈
∨
Si, say

x =
∧
N for N ⊆

⋃
Si, and for y ∈ L we have

y→x = y→
∧

N =
∧

N

(y→n).

Since, for each n ∈ N , y → n ∈
⋃

J Si because n ∈
⋃

J Si, it follows that
y→x ∈

∨
J Si and consequently that

∨
J Si ∈ Sℓ(L).

2.3. Proposition. Let
∨

A c(a) be closed in G(L). Then
∧
A exists, and∨

A c(a) = c (
∧

A).

Proof. Suppose
∨

A c(a) = ↑ b. Then, first, all the a’s are in ↑ b and hence
b ≤ A. If x ≤ A then x is a lower bound of each subset M ⊆ ↑ A. In
particular, b ∈

∨
A c(a) entails b =

∧
M for some M ⊆ ↑A, hence x ≤ b.

2.4. Theorem. A meet
∧

A is exact in L if and only if the join
∨

A c(a) is
closed in G(L).

Proof. Let u be the exact meet of A in L. Surely ↑ u ⊇ ↑ a for all a ∈ A,
so that ↑u ≥

∨
A c(a). To demonstrate the opposite inequality, consider an

arbitrary x ≥ u. Then we have by the exactness

x = u ∨ x =
(∧

A
)
∨ x =

∧
(A ∨ x) .

Since A ∨ x ⊆ ↑A =
⋃

A ↑a, this yields x =
∧
(A ∨ x) ∈

∨
A c(a).

Let
∨

A ↑a be closed, i.e., equal to ↑u for some u ∈ L. Then u =
∧

A by
2.3. To show this meet exact, consider an arbitrary x ∈ L. Then

(∧
A
)
∨ x = u ∨ x ∈ ↑u
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and hence u ∨ x =
∧
B for some B ⊆ ↑A. That means that for each b ∈ B

there is some ab ∈ A such that b ≥ ab, and since u ∨ x ≤ b we have b ≥ x
and finally b ≥ ab ∨ x. Thus,

u ∨ x =
∧

B ≥
∧

B

(ab ∨ x) ≥
∧

(A ∨ x) ≥ u ∨ x.

3. Exact and strongly exact meets in frames
From now on, L will be a frame.

3.1. Recall that for the pseudosupplement x# in a co-frame we have

y ≥
(∧

J
xi

)#
⇐⇒ y ∨

(∧
J
xi

)
=
∧

J

(y ∨ xi) = 1 ⇐⇒ ∀i (y ∨ xi = 1)

⇐⇒ ∀i
(
y ≥ x#

i

)

and hence (∧
J
xi

)#
=
∨

J

x#
i . (3.1.1)

3.2. Lemma. In the co-frame Sℓ(L) we have
∨

J c(ai) = c(a) if and only if

(
⋂

J o(ai))
## = o(a).

Proof. Set S =
⋂

J o(ai) and let S## = o(a). Then by (3.1.1)
∨

c(ai) =
∨

o(ai)
# =

(∧
o(ai)

)#
= S# = S### = o(a)# = c(a).

On the other hand, if
∨

c(ai) = c(a) then, again by (3.1.1),

(∧
o(ai)

)##

=

((∧
o(ai)

)#)#

=
(∨

o(ai)
#
)#

=

=
(∨

c(ai)
)#

= c(a)# = o(a).

From 1.4.2, 2.2, 2.4, and 3.2 we immediately obtain

3.3. Theorem. The following facts about a meet a =
∧

J ai in a frame L
are equivalent.

(1) The meet a =
∧

i ai is exact.

(2) For every b ∈ L,
∧

i(ai ∨ b) = a ∨ b.
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(3)
∨

i c(ai) = c(a) in Sℓ(L).
(4)

∨
i c(ai) is a closed sublocale of L.

(5) If x ≥ a then there exist xi ≥ ai such that x =
∧

i xi.

(6) (
∧

i o(ai))
## = (

⋂
i o(ai))

## = o(a) in Sℓ(L).

(7) (
∧

i o(ai))
## = (

⋂
i o(ai))

##
is an open sublocale of L.

((5) is just
∨

j ↑ai = ↑a explicitly rewritten.)

3.4. Characterizing P -frames. Of some importance in general topology
are the P -spaces, i.e., the Tychonoff spaces on which a continuous real-valued
function must be constant in some neighborhood of each point. Zero sets are
obviously open in such spaces, meaning cozero sets are clopen. Indeed, this
is taken as the frame definition: a completely regular frame L is said to
be a P -frame if each cozero elements is complemented, i.e., if its cozero part
cozL is a Boolean σ-frame. (See [3] for several characterizations of P -frames,
together with information on their role in the general theory.)
Perhaps the handiest of the several well-known characterizations of P -

spaces is that a countable intersection of open sets remains open. But this
attribute has resisted a pointfree formulation, and for good reason. To say of
an open set that it is the set-theoretic intersection of some countable family
in the frame of open sets is much stronger than to say that it is their meet. In
fact, this strict sort of meet would appear at first glance to be an inherently
pointed notion.
Notice, however, the meets which are actually set-theoretic intersections are

just those that commute with the joins. On this basis, one might therefore
hope to capture the P -frame property by requiring countable meets to be
exact. Such is not the case, unfortunately, but a slightly weaker condition
does work. We shall say that a meet a =

∧
ai is cozero exact if

∧
(ai ∨ b) = a ∨ b for all b ∈ cozL.

3.4.1. Theorem. A completely regular frame is a P -frame iff each countable

meet is cozero exact.

Proof. Suppose each countable meet in L is cozero exact. Consider a cozero
element a ∈ L, and write a =

∨
n an for cozero elements an ≺ a. Let

bn ∈ cozL witness an ≺ a, i.e., an ∧ bn = 0 and a ∨ bn = 1. We claim that
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b =
∧

n bn is the complement of a. For

a ∧ b =

(
∨

n

an

)
∧ b =

∨

n

(an ∧ b) ≤
∨

n

(an ∧ bn) = 0, and

a ∨ b = a ∨
∧

n

bn =
∧

n

(a ∨ bn) = 1.

Now suppose that L is a P -frame, i.e., a ∨ a∗ = 1 for all a ∈ cozL.
Consider an arbitrary subset {an} and a cozero element b of L. Since clearly
b ∨
∧

n an ≤
∧

n (b ∨ an), we need only establish the opposite inequality. For
that purpose, consider arbitrary c ∈ cozL such that c ≤

∧
n (b ∨ an). Now

for each n, the fact that c ≤ b∨an is equivalent to b∧ c∗ ≤ an. Consequently,
b ∧ c∗ ≤

∧
n an, with the result that b ∨

∧
n an ≥ c.

3.5. Strongly exact (free) meets. Points (3) and (4) in 3.3, compared
with (6) and (7), give rise naturally to the question of what happens if we
require open meets (intersections) of the open sublocales instead of closed
joins of the corresponding closed sublocales, i.e.,

∧

J

o(ai) =
⋂

J

o(ai) = o(a). (s-exact)

This property is stronger (see 3.5.4, 3.6.2 and 4.3.1 below), although it does
coincide with exactness in a broad class of topological spaces, as we shall see
in 4.2.4. For our purposes, we will refer to the s-exact property as strong

exactness, and immediately obtain

3.5.1. Theorem. The following facts about a meet a =
∧

J ai in a frame L
are equivalent.

(1) The meet a =
∧

i ai is strongly exact.

(2)
∧

i o(ai) =
⋂

i o(ai) is an open sublocale of L.
(3) If ai→x = x for all i ∈ J then (

∧
J ai)→x = x.

(3) is just the s-exact condition written explicitly. Furthermore, if
⋂

i o(ai) =
o(a) then, necessarily, a =

∧
ai. This follows immediately from the fact that

o(x) ⊆ o(y) iff x ≤ y.

3.5.2. Viewed from another perspective, strongly exact meets appeared un-
der the name

free meets
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in the unpublished thesis of Todd Wilson [18]. There they were defined as
the meets which are preserved by all frame homomorphisms. Wilson charac-
terized freeness by means of several interesting conditions, one of which was
s-exactness. Here is a variant of Wilson’s characterization.

3.5.3. Theorem. The following statements about a meet
∧

J ai in a frame

L are equivalent.

(1)
∧

i ai is strongly exact.

(2) For every frame homomorphism h : L → M , h(
∧

i ai) =
∧

i h(ai), and∧
i h(ai) is strongly exact.

(3) For every frame homomorphism h : L → M , h(
∧

i ai) =
∧

i h(ai).
(4) For every x ∈ L,

∧
((A→x)→x) = ((

∧
A)→x)→x.

Proof. (1)⇒(2): Let f be the localic map adjoint to a frame homomorphism
h : L → M . Consider f−1 : Sℓ(L) → Sℓ(M). By 1.3.3 we have

⋂
o(h(ai)) =

⋂
f−1(o(ai)) = f−1(o(a)) = o(h(a)).

(2)⇒(3) is trivial.

(3)⇒(4): Consider the mapping hx : L → Bc(x) defined by

hx(a) = (a→x)→x.

Since a→x is the pseudocomplement of c(x)(a) = x ∨ a in c(x) = ↑x, it is
clear that hx is the frame map bc(x) ◦ c(x). Thus hx preserves the meet of A
by assumption, and, since the meets in the frame Bc(x) coincide with the
meets in L, the conclusion follows.

(4)⇒(1): By 3.5.1(3) it suffices to check that a → x = x for every a ∈ A
implies (

∧
A) → x = x, i.e., (

∧
A) → x ≤ x, since the other inequality

is always true. So let a → x = x for every a ∈ A. Then, by hypothesis,
((
∧
A)→x)→x = x→x = 1 and hence (

∧
A)→x ≤ x.

3.5.4. Example. The poset L = {1 > 2 > · · · > n > · · · > 0} is obviously
both a frame and a co-frame so that all meets in L are exact. On the other
hand we have the frame homomorphism h : L → {0, 1} with h(0) = 0 and
h(n) = 1 otherwise. Now h(

∧
n 6=0 n) = h(0) = 0 6= 1 =

∧
n 6=∞ h(n) and hence∧

n 6=∞ n is not strongly exact.

It is worth remarking that o(n) = {k | k > n} ∪ {0, 1} for n 6= 0, while
o(0) = {1}. Therefore

⋂
n 6=0 o(n) = {0, 1} 6= o(0), consistent with 3.5.1.
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3.6. Conservative subsets. In [9], the authors use conservative subsets
of frames to study paracompactness. Translated into our language, a subset
A ⊆ L is conservative if

∧
B is exact for every B ⊆ A. Chen [8] also uses con-

servative sets to present some new characterizations of paracompact frames.
In particular, he proves characterization (4) in our 3.3 using congruences ([8,
Lemma 2.3]).
Exact meets are also related to the concepts of interior-preserving and

closure-preserving families of sublocales of Plewe ([16]). Recall that a family
S = {Si | i ∈ I} ⊆ Sℓ(L) is closure-preserving if for all J ⊆ I,

cl (
∨

J

Si) =
∨

J

cl(Si).

Dually, S is interior-preserving if for all J ⊆ I,

int (
∧

J

Si) =
∧

J

int (Si).

Then, a subset A of L is said to be interior-preserving (resp. closure-preserving)
if {o(a) | a ∈ A} is interior-preserving (resp. {c(a) | a ∈ A} is closure-
preserving). Interior-preserving covers play a decisive role in the construc-
tion of canonical examples of transitive quasi-uniformities for frames ([10]).
Of course, any interior-preserving cover of L is closure-preserving but, some-
what surprisingly and contrary to what happens in spaces, the converse does
not hold in general.

3.6.1. Lemma. Let A ⊆ L. Then:

(1) A is interior-preserving iff
∧

B o(b) = o(
∧

B) for every B ⊆ A.
(2) A is closure-preserving iff

∨
B c(b) = c(

∧
B) for every B ⊆ A.

Proof. We only prove (a), the proof for (b) is similar. A is interior-preserving
iff {o(a) | a ∈ A} is interior-preserving iff int (

∧
B o(b)) =

∧
B int (o(b)) for

every B ⊆ A iff int (
∧

B o(b)) =
∧

B(o(b)) for every B ⊆ A iff
∧

B o(b) is open
for every B ⊆ A.

From Lemma 3.6.1 and Theorem 3.3 we immediately obtain

3.6.2. Corollary. A subset A of a frame L is conservative if and only if it

is closure-preserving.
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4. Exact meets in spaces and spatial frames

4.1. TD and TD-0. Recall that a space X is TD if

∀x ∈ X ∃U ∋ x open such that U r {x} is open. (TD)

(This concept goes back to 1963, see [1] and [6].) More generally, a space X
is TD-0 if its T0-modification X0 is TD. The T0-modification X0 of a space X
is obtained by factoring X by the equivalence

x ∼ y ≡df {x} = {y}.

We will need the notion of a ∼-set in X, namely a subset A ⊆ X such that

x ∈ A and x ∼ y ⇒ y ∈ A.

Obviously each open set is a ∼-set.

4.2. Proposition. A space is TD iff the following equivalence holds.

(∀A open, int (U ∪ A) = intU ∪ A ) iff U is open. (4.2.1)

Proof. Let X be TD and let int (U ∪ A) = intU ∪ A for all open A. Let
x ∈ U . Choose an open A such that x /∈ A and A ∪ {x} is open. Then
int (U ∪ A) = intU ∪ A and hence x ∈ intU .
Let the implication hold and let x ∈ X. If U ∪ {x} is open for every open

U there is nothing to prove. Else choose an open U such that U ∪ {x} is not
open. By the implication there is an open A such that int (U ∪ {x} ∪ A) 6=
int (U ∪{x})∪A = U ∪A. Obviously x is the only element in which the two
sets can differ, and hence x ∈ int (U ∪ {x} ∪A) and there is an open V such
that x ∈ V ⊆ U ∪ {x} ∪ A. Then V r {x} = V ∩ (U ∪ A) is open.

4.2.1. Corollary. A space is TD-0 iff the following equivalence holds for

every ∼-set U .

(∀A open, int (U ∪ A) = intU ∪ A ) iff U is open.

4.2.2. Lemma. In any space X,

intU =
∧{

X r {x} | x /∈ U
}
.

Proof. An open V ⊆ U is a subset of each X r {x} with x /∈ U ; hence

V ⊆
∧
{X r {x} | x /∈ U}. On the other hand,

∧
x/∈U

(
X r {x}

)
is open and
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we have
∧

x/∈U

(
X r {x}

)
⊆
⋂

x/∈U

(
X r {x}

)
⊆
⋂

x/∈U

(X r {x}) = U.

Thus,
∧
{X r {x} | x /∈ U} is the largest open set contained in U .

4.2.3. Theorem. The following statements are equivalent for a topological

space X.

(1) X is TD-0.

(2) A meet
∧
Ui is exact in Ω(X) iff

⋂
Ui is open.

Proof. (1)⇒(2): Obviously if
⋂
Ui is open then

∧
Ui is exact. Now let

∧
Ui

be exact. Set U =
⋂

Ui and take any open A. We have

intU ∪ A =
(∧

Ui

)
∪ A =

∧
(Ui ∪ A) = int

⋂
(Ui ∪ A) =

= int

((⋂
Ui

)
∪ A

)
= int (U ∪ A)

and hence, since U is obviously a ∼-set (all the Ui are), U is open by 4.2.1.

(2)⇒(1): We will prove that the equivalence from the display in 4.2.1 holds.
Let U be a ∼-set such that for any open A

int (U ∪ A) = intU ∪ A.

Recall 4.2.2. We have
∧{

X r {x} | x /∈ U
}
∪ A = intU ∪ A =

=
∧{

X r {x} | x /∈ U ∪ A
}
=

=
∧

{
(
X r {x}

)
∪ A | x /∈ U ∪ A} ⊇

⊇
∧{(

X r {x}
)
∪ A | x /∈ U

}
.

(The last equality holds since X r {x} ⊇ A if x /∈ A.) This makes intU =∧
{X r {x} | x /∈ U} an exact meet and consequently makes U open.

4.2.4. Corollary. In a TD-0 space, a meet is exact iff it is strongly exact.

4.2.5. A frame is spatial if it is isomorphic to an Ω(X); it is TD-spatial if
the X can be chosen to be TD. In [5] it was shown that not every spatial
frame is TD-spatial, and TD-spatiality was characterized. Here we have a new
characterization.
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Proposition. A spatial frame L is TD-spatial iff each exact meet in L is

strongly exact.

4.3. Proposition. Let X be a general topological space and let
∧

i Ui be

strongly exact in Ω(X). Then
⋂

i Ui is open.

Proof. Consider the congruences ∆Ui
, ∆U from 1.3.1. If o(U) =

⋂
o(Ui)

then ∆U is the supremum of the system of congruences ∆Ui
in the lattice of

congruences on L, which is dually isomorphic to Sℓ(L). Set A =
⋂

i Ui and
consider the congruence

E = {(V,W ) | V,W ∈ Ω(X), V ∩ A = W ∩ A} .

If V ∩ Ui = W ∩Ui then V ∩A = V ∩ Ui ∩A = W ∩Ui ∩A = W ∩A, hence
∆Ui

⊆ E for all i, and hence ∆U ⊆ E. In particular U∆UX and hence UEX,
that is, U ∩ A = A and A ⊆ U , and since U is the interior of A, A = U .

4.3.1. Note. On the other hand,
⋂

Ui can be open without
∧
Ui being

strongly exact. The lattice L in 3.5.4. can be represented as

X = ({1, 2, . . . , n, . . .} , {ñ | n ∈ L})

with ñ = {k | k ≤ n in L} and 0̃ = ∅. In this representation,
⋃

n≥1 ñ = 0̃
while

∧
n≥1 ñ is not strongly exact.

Thus, the property of
⋂

Ui being open in Ω(X) is in general strictly between
exactness and strong exactness. Here is a large class of spaces in which the
open intersections and strongly exact meets do not coincide.

Observation. LetX be a non-empty T1-space without isolated points. Then⋂
x∈X(X r {x}) = ∅ is open but

∧
x∈X(X r {x}) ⊇ BΩ(X) (recall 1.3.4: all

the X r x are dense) and hence it is not strongly exact.

5. Open intersections in Scott topology
Scott topologies are typically not TD and hence the first part of Section 4

does not apply. We will discuss the open intersections only.

5.1. The set of all up-sets (that is, the M ⊆ X such that ↑M = M) of a
poset X will be denoted by

U(X).

Recall that the Scott topology σX on a poset X with suprema of directed sets
consists of the U ∈ U(X) such that

for any directed D ⊆ X,
∨

D ∈ U ⇒ D ∪ U 6= ∅.
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In this section the spectrum of a frame L will be represented as the set Σ′L
of all completely prime filters P in L endowed with the topology consisting
of the open sets Σ′

a = {P | a ∈ P}, a ∈ L. It is a well known (and very easy)
fact that each P ∈ Σ′L is Scott open in L.
More generally, in a general lattice L we will consider the pre-topology

Σ′
L = {Σ′

x | x ∈ L} , Σ′
x = {U ∈ U(L) | x ∈ U} .

5.2. One of the important facts needed in the proof of the Hofmann-Lawson
duality ([11], see also [13, 17, 15]) is that

an intersection
⋂
P of a set of completely prime filters is Scott open

iff P is a compact subset of Σ′L.

In this section we will show that this is part of a more general fact.

5.3. A subset U of U(L) will be called d-compact if one can choose in every
directed cover of U by the element of Σ′

L an element covering U .

Note. In a topology, d-compactness coincides with compactness. Further,
compactness with respect to a pretopology T coincides with the compactness
of the topology generated by T , by Alexander’s lemma. But with reducing
d-compactness we would have troubles and hence we keep this concept in the
pretopology context.

5.3.1. Proposition. Let a set U of Scott open sets be d-compact in Σ′
L.

Then
⋂

U is Scott open.

Proof. Take an s =
∨
D ∈

⋂
U with D directed. Then s ∈ U for each U ∈ U

and hence there is a d(U) ∈ D such that d(U) ∈ U , that is, U ∈ Σ′
d(U).

For (U1, . . . , Un) choose d(U1, . . . , Un) ∈ D, d(U1, . . . , Un) ≥ Ui, i = 1, . . . , n.
Then Ui ∈ Σ′

d(U1,...,Un)
for all i, and

C =
{
Σ′

d(U1,...,Un)
| U1, . . . , Un ∈ U

}

is a directed cover of U . By d-compactness we have a d ∈ C (⊆ D) such that
U ⊆ Σ′

d for all U ∈ U so that d ∈
⋂

U .

5.3.2. Proposition. Let X = (X,≤) be a complete lattice. Let U be a set

of Scott open sets in X and let
⋂
U be Scott open. Then U is d-compact in

Σ′
X.
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Proof. Let U ⊆
⋃
{Σ′

d | d ∈ D} with D directed such that Ud ⊆ Ue whenever
d ≤ e. Then for each U ∈ U there is a d ∈ D such that U ∈ Σ′

d, hence d ∈ U
so that

∨
D ∈ U and finally

∨
D ∈

⋂
U . Since

⋂
U is Scott open there is a

d ∈ D such that d ∈
⋂
U , and hence U ⊆ Σ′

d for all U ∈ U .

5.4. Proposition. Let L be a complete lattice. Then the intersection
⋂
U

in the Scott topology σL is open iff U is d-compact in the pretopology Σ′
L on

U(L).

6.More about exactness and maps
In 3.4 we saw that each frame homomorphism preserves all strongly ex-

act meets. Indeed this fact characterized strong exactness. Consequently,
no such universal behaviour can be expected from plain exactness. In this
section we will present two special facts.

First, however, we will apply 3.5 to the TD case. From 4.2.4 we immediately
obtain

6.1. Corollary. If L is TD-spatial then a frame homomorphism h : L → M
sends all exact meets in L to strongly exact meets in M .

6.2. Co-weakly open homomorphisms. Recall from [4] that a frame
homomorphism h is weakly open if h(x∗∗) ≤ h(x)∗∗. We will say that h is
co-weakly open if, for the associated co-frame homomorphism f−1 and the
pseudosupplement S#, one has

f−1(S)
## ⊆ f−1(S

##).

6.2.1. Proposition. A co-weakly open homomorphism preserves all exact

meets.

Proof. Let a =
∧

i ai be an exact meet. By 3.3(6), o(a) = (
∧

i o(ai))
##.

Writing φ for f−1 and S for
∧

i o(ai), we obtain

φ(S)## ⊆ φ(S##) = φ(o(a)) = o(h(a)) ⊆
⋂

i

o(h(ai)) =
⋂

i

φ(o(ai)) = φ(S),

in short

φ(S)## ⊆ o(h(a)) ⊆ φ(S).

Since for a complemented C, C## = C, this makes φ(S)## = o(h(a)) and
the statement follows.
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6.3. Recall from III.7.3 in [15] that a localic map f : L → M is closed if the
image of each closed sublocale is closed (this concept captures the closedness
of continuous maps) and that when this is so then f [c(a)] = c(f(a)) for each
a ∈ L. Further, f is closed if and only if, for its left adjoint h,

c ≤ f(a) ∨ b iff h(c) ≤ a ∨ h(b) for every a ∈ L and b, c ∈ M. (6.3.1)

6.3.1. Proposition. A closed localic map preserves all exact meets.

Proof. Let f : L → M be a localic map. The image function f [−] : Sℓ(L) →
Sℓ(M) is a left adjoint and hence it preserves suprema. Thus we obtain

∨
c(f(ai)) =

∨
f [c(ai)] = f [

∨
c(ai)] = f [c(a)] = c(f(a)).

6.3.2. An interesting consequence of this fact is the extension to frames of
the result of Michael [14, Corollary 1] that the image of a (normal or regular)
paracompact space under a continuous closed mapping is paracompact (see
also [9, Corollary to Theorem 2]). For observing that, recall from [9] that a
subset U of L is a closed covering if x =

∧
u∈U(x ∨ u) for every x ∈ L. A

closed covering is a dual-refinement [8] of a cover A if for each u ∈ U there
exists a ∈ A such that u∨ a = 1. By Theorem 1 of [9] (cf. [8, Theorem 3.3])
a frame L is paracompact and normal iff each cover A of L has a conservative
dual-refinement.

Corollary. The image of a normal paracompact frame under a closed localic

mapping is paracompact.

Proof. Let L be a normal paracompact frame and f be a closed localic onto
mapping from L onto a frame M ; we denote by h its left adjoint. To prove
thatM is paracompact, it suffices, by the mentioned result of Dowker-Strauss
[9], to show that every cover of M has a conservative dual-refinement. Let
C be a cover of M . Then A = h[C] is a cover of L and by hypothesis there
is a conservative dual-refinement U of A. Let V = f [U ]. By 6.3.1, V is
conservative. Moreover, it is a closed covering of M : for each y ∈ M ,

y = f(x) = f

(
∧

u∈U

(x ∨ u)

)
=
∧

u∈U

f(x ∨ u) ≥
∧

u∈U

f(x) ∨ f(u) =
∧

v∈V

(y ∨ v).

Finally, it is a dual-refinement. Indeed, for each v = f(u) ∈ V , let a ∈ A be
such that a∨u = 1 and consider c ∈ C such that a = h(c). Since f is closed,
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we may conclude by (6.3.1) that 1 ≤ v ∨ c iff 1 ≤ u ∨ h(c) = u ∨ a, hence
v ∨ c = 1.
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