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MEMORY EFFECT IN TIME AND SPACE IN NON
FICKIAN DIFFUSION PHENOMENA

J. A. FERREIRA AND G. PENA

Abstract: Usually diffusion processes are simulated using the classical diffusion
equation. In certain scenarios such equation induces anomalous behavior and con-
sequently several improvements were introduced in the literature to overcome them.
One of the most popular was the replacement of the diffusion equation by an integro-
differential equation. Such equation can be established considering a modification
of Fick’s mass flux where a delay in time is introduced. In this paper we consider
mathematical models for diffusion processes that take into account a memory effect
in time and space.
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1. Introduction
The diffusion process is usually simulated using the classical diffusion equa-

tion
∂c

∂t
+∇ · (vc)−∇ · (DF∇c) = f in Ω× (0, T ], (1)

where c denotes the concentration of a solute, v and DF represent, respec-
tively, the velocity field and the diffusion tensor, Ω ⊂ Rn, and f denotes a
source term. Throughout the paper, the velocity v is assumed constant in
space and time. Equation (1) is established using the mass conservation law

∂c

∂t
+∇ · Jtotal = f, (2)

where the total mass flux Jtotal is split into Jtotal = Ja + JF , with Ja being
the advection flux

Ja = vc, (3)

and JF is given by Fick’s law

JF = −DF∇c. (4)
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For instance, when diffusion processes occur in porous media, the diffusion
tensor is replaced by

DF = DmI + Dd (5)

where Dm is associated with molecular diffusion and Dd represents the dis-
persive tensor that depends on the velocity v. It was observed in this case
that (1) gives accurate results in laboratory environments for perfectly ho-
mogeneous media and a deviation of Fickian behaviour is presented when
nonhomogeneous media are used (see for instance [6], [10], [9]). Fick’s law
also does not reproduce flux behavior in diffusion in biological tissues or poly-
meric materials. Indeed, it has been observed in this case that the flux at
a certain time t depends on the gradient of the concentration at a previous
instant t− τ (see [3]).

However, the main limitation induced by (1) is the infinite propagation
speed which is associated with its parabolic character.

To overcome the deviations observed when (1) is used, several approaches
have been introduced in the literature (see [10] for some examples). In this
paper we consider the use of differential equations for the mass flux Jtotal or
for JF that replace Fick’s law (4). We shall see that this induces a memory
effect in time or in time and space.

The paper is organized as follows. In Section 2 we introduce the differential
model that we intent to study in this paper and derive, under suitable reg-
ularity conditions, equivalent formulations. In Section 3, we obtain energy
estimates for the formulations introduced in Section 2. Finally, in Section 4,
we simulate the evolution of the coupled model and illustrate the different
behavior of the variables.

2. Memory in time and space
In this paper we study the following model

∂c

∂t
+∇ · (vc)−∇ · (DF∇c) +∇ · J = f, in Ω× (0, T ] (6)

τ
∂J

∂t
+ τ(vJ · ∇)J + J = −DnF∇c, in Ω× (0, T ] (7)

to govern the evolution of c on a domain Ω over time. In (6)-(7), vJ is the
non Fickian flux velocity and is assumed constant in time and space, DF

and DnF are assumed real symmetric positive definite matrices with a lower
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positive bound αF and αnF , respectively. Furthermore, we assume that all
entries of these tensors are L∞(Ω) functions.

This system is complemented with initial data

c(x, 0) = c0(x) and J(x, 0) = J0(x),x ∈ Ω.

Regarding boundary conditions, let us first introduce a disjoint decomposi-
tion of the boundary: ∂Ω = ∂Ω+ ∪ ∂Ω−, where

∂Ω− = {x ∈ ∂Ω : vJ · n(x) < 0}

and n(x) represents the unit outer normal vector at x ∈ ∂Ω.
We complement (6)-(7) with the following boundary conditions:

∂c

∂n
= 0 on ∂Ω−, c = 0 on ∂Ω+

and

J = 0 on ∂Ω−.

Remark 1. The coupled system (6)-(7) comprises three components for the
mass flux: the advective mass flux, the Fickian mass flux (modeling, for
instance, the molecular mass flux) and a non Fickian component (through
(7)). The total mass flux admits the representation

Jtotal = vc−DF∇c+ J.

It is clear that if τ = 0, (6)-(7) is equivalent to (1). However, when τ > 0,
the term ∇ · J in (6), induces a different flux for this variable.

Equation (7) has already been proposed in the literature in the context
of porous media. In fact, Strack [15] and Tompson [17] proposed a similar
equation to model the dispersive mass flux in a porous media. These con-
tributions did not include the convective term τ(vJ · ∇)J although such a
model had already been proposed by Scheidegger [13]. We point the reader
to Hassanizadeh [6] for an overview on these models.

In order to understand and study the diffusion process in a system like
(6)-(7), we will now limit our analysis to the case v = 0.

We can follow two approaches to derive, under certain regularity conditions,
equivalent formulations of (6)-(7) that will be detailed in the next sections.
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2.1. Integro-differential formulation. Using the method of characteris-
tics in (7) we obtain for the dispersion mass flux the following expression

J(x, t) = e−
t
τ J(x, 0)− 1

τ

∫ t

0

e−
t−s
τ DnF∇c(x + vJ(s− t), s) ds (8)

valid for (x, t) ∈ Ω∗ where

Ω∗ = {x ∈ Ω : x− tvJ ∈ Ω} .

A similar expression can be deduced in the case x− tvJ ∈ ∂Ω.
Equation (7) can be obtained also from

J(x + τvJ, t+ τ) = −DnF∇c(x, t) (9)

neglecting second order terms in a convenient Taylor’s expansion. Equation
(9) reflects the memory effect in space and time: the mass flux at x + τvJ

at time t + τ is related with the gradient of the concentration at a delayed
position x and at a delayed time t.

From equation (6) and (8) we obtain the following integro-differential equa-
tion,

∂c

∂t
−∇ · (DF∇c) +∇ · J(0)e−

t
τ

−1

τ

∫ t

0

e−
t−s
τ ∇ · (DnF∇c(x + vJ(s− t), s)) ds = f in Ω∗ × (0, T ],

(10)

which requires smoothness on J at t = 0.

Remark 2. We can observe from the presence of the integral in (10) the
dependence of the total flux with respect to time and space. Indeed, if vJ = 0,
the total flux has a term involving the gradient of the concentration at all
instants in (0, t). In this case we say there is an effect of memory in time
for the flux. However, if vJ 6= 0, then the total flux will depend on the history
of the gradient along a characteristic of the flux equation. In this case, we
say the flux has memory in time and space.

Remark 3. While representation (8) is valid only on Ω∗ if vJ 6= 0, in the
case vJ = 0 and τ > 0, the characteristics cover the whole domain Ω× (0, T )
and (10) is valid over Ω× (0, T ).

Remark 4. The numerical simulation of (10) with a nonzero velocity vJ im-
poses several difficulties, namely, the requirement that all data from previous
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time levels be stored to approximate properly the integral, as well as the shift
in the space variable in ∇c.

The simpler case in which vJ = J(0) = 0 in equation (10) was largely
studied from a mathematical point of view. Without being exhaustive, we
mention [1], [4], [5], [7], [8], [11], [14] and [16].

2.2. Hyperbolic formulation. We establish in what follows an hyperbolic
equation combining (6) with (7). From (7) we obtain

∇ · J = −∂c
∂t

+∇ · (DF∇c) + f, (11)

∇ · ((vJ · ∇)J) = −vJ · ∇
∂c

∂t
+ vJ · ∇(∇ · (DF∇c)) + vJ · ∇f, (12)

and

∇ · ∂J

∂t
= −∂

2c

∂t2
+∇ · (DF∇

∂c

∂t
) +

∂f

∂t
. (13)

Furthermore, from (7) we also have

∇ · J + τ∇ · ∂J

∂t
+ τ∇ · ((vJ · ∇)J) = −∇ · (DnF∇c). (14)

Replacing (11)-(13) in (14) we obtain the following third order hyperbolic
equation with mixed derivatives

∂2c

∂t2
+ vJ · ∇

∂c

∂t
− vJ · ∇(∇ · (DF∇c))

1

τ

(∂c
∂t
−∇ · ((DF + τDnF )∇c)

)
=

∂f

∂t
+ vJ · ∇f +

f

τ

(15)

in Ω × (0, T ]. We point out that the establishment of (15) requires smooth
data and it should be complemented with the initial conditions

∂c

∂t
(0) = −∇ · J0 + f(0) +∇ · (DF∇c0)

c(0) = c0

in Ω. (16)
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3. Energy estimates
In this section we focus on deducing energy estimates for the different

equations introduced in the previous section.
Let us first introduce some notations, necessary for the following sections.

We denote by L2(Ω) and H1(Ω) the standard L2 and H1 Sobolev spaces of
scalar functions. Given a nonzero measure portion Γ of ∂Ω, H1

Γ(Ω) denotes
the space of H1(Ω) functions that have zero trace on Γ. Also, the equivalent
spaces for vectorial functions are represented using the same notation, but
with bold letters. With an abuse of notation, we shall denote by the same
notation, (·, ·), the inner product of L2 and L2.

Finally, given a space V as any of the ones introduces before, we define

L2(0, T ;V ) =

{
u : (0, T ) −→ L2(Ω) :

∫ T

0

‖u(s)‖2
0 ds <∞

}
and

H1(0, T ;V ) =

{
u ∈ L2(0, T ;V ) :

∂u

∂t
∈ L2(0, T ;V )

}
.

For vectorial functions, the definitions follow the same notation as for the
scalar counterparts.

3.1. Fickian diffusion. For the case in which no memory in time and space
is present in the model and v = 0, we consider the following weak formula-
tion: given f ∈ L2(0, T ;L2(Ω)) and c0 ∈ L2(Ω), find c ∈ L2

(
0, T ;H1

∂Ω+(Ω)
)

such that
∂c

∂t
∈ L2(0, T ;L2(Ω)) such that(

∂c

∂t
, v

)
+ (DF∇c,∇v) = (f, v) a.e. in (0, T ), ∀v ∈ H1

∂Ω+(Ω). (17)

For a concentration c satisfying (17), it is known that (see, for instance,
[12])

Proposition 1. If c ∈ C(0, T ;L2(Ω)) then there exists ε > 0 such that

‖c(t)‖2
0 + αF

∫ t

0

‖∇c(s)‖2
0 ds 6 expεt

(
‖c(0)‖2

0 +
1

ε

∫ t

0

‖f(s)‖2
0 exp−εs ds

)
.

3.2. Non-Fickian diffusion. In the case of the presence of non Fickian
type diffusion, we analyze the two different models deduced in section 2: the
integro-differential model (10) and the hyperbolic model (15).
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3.2.1. Integro-differential model. For the integer-differential model, we con-
sider the weak formulation: given f ∈ L2(0, T ;L2(Ω)) and c0 ∈ L2(Ω), find
c ∈ L2

(
0, T ;H1

∂Ω+(Ω)
)

such that ∂c
∂t ∈ L

2(0, T ;L2(Ω)) and(
∂c

∂t
, v

)
+ (DF∇c,∇v)

+
1

τ

∫ t

0

exp−
t−s
τ (DnF∇c(s),∇v) ds = (f, v) a.e. in (0, T ), ∀v ∈ H1

∂Ω+(Ω)

(18)
for which the following energy estimate holds (see [2]).

Proposition 2. If c ∈ C
(
0, T ;L2(Ω)

)
, then for ε > τ ,

‖c(t)‖2
0 + αF

∫ t

0

‖∇c(s)‖2
0 ds+

αnF
τ

∥∥∥∥∫ t

0

exp−
t−s
τ ∇c(s) ds

∥∥∥∥2

0

6 expεt ‖c(0)‖2
0 +

1

ε

∫ t

0

‖f‖2
0 expε(t−s) ds

(19)

Remark 5. We highlight that if ∂c
∂t ∈ C

0(0, T ;H1
∂Ω+(Ω)) then

αnF
τ

∥∥∥∥∫ t

0

exp−
t−s
τ ∇c(s) ds

∥∥∥∥2

0

−→ αnF ‖∇c(t)‖2
0

showing that the term τ−1
∥∥∥∫ t0 exp−

t−s
τ ∇c(s) ds

∥∥∥2

0
can be seen a relaxation of

‖∇c(t)‖2
0. The proof of this result follows from the following equality and then

taking the limit on both sides as τ tends to zero:

1

τ

∫ t

0

exp−
t−s
τ ∇c(s) ds =

1

τ

[
exp−

t−s
τ

1
τ

∇c(s)

]t
0

− 1

τ

∫ t

0

exp−
t−s
τ

1
τ

∇∂c
∂t

(s) ds

= ∇c(t)− exp−
t
τ ∇c(0)−

∫ t

0

exp−
t−s
τ ∇∂c

∂t
(s) ds.

3.2.2. Hyperbolic model. We now turn to analyze an energy estimate for
equation (15). In order to simplify the derivation of such estimate, we con-
sider the simpler case in which no Fickian component is present, i.e., DF ≡ 0.
The reason for this simplification is related with the term vJ ·∇(∇· (DF∇c))
which does not seem easily treatable in the context of weak solutions.
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The weak formulation for the simplified hyperbolic problem reads as: given
f ∈ L2(0, T ;H1(Ω)), ∂f

∂t ∈ L
2(0, T ;L2(Ω)), c0 ∈ H2

∂Ω+(Ω) and ∇·J0 ∈ L2(Ω),

find c ∈ H1
(
0, T ;H1

∂Ω+(Ω)
)

and ∂2c
∂t2 ∈ L

2(0, T ;L2(Ω)) such that(
∂2c

∂t2
, v

)
+

(
1

τ

∂c

∂t
+ vJ · ∇

∂c

∂t
, v

)
+ (DnF∇c,∇v) = (f̃ , v) a.e. in (0, T ), ∀v ∈ H1

∂Ω+(Ω)
(20)

where f̃ = ∂f
∂t + vJ · ∇f + f

τ .
To establish an energy estimate for the weak form (20), we need first to

introduce some notation: for u ∈ H1(Ω), we define the seminorm

|u|vJ,∂Ω− =

∫
∂Ω−

u2|vJ · n|.

We can show that c verifies the following estimate:

Proposition 3. If c ∈ C(0, T ;H1
∂Ω+(Ω)) then there exists C > 0 such that∥∥∥∥∂c∂t (t)

∥∥∥∥2

0

+ αnF ‖∇c(t)‖2
0 +

∫ t

0

∣∣∣∣∂c∂t (s)
∣∣∣∣2
vJ,∂Ω−

ds

6 C

(
‖∇ · J0‖2

0 + ‖f(0)‖2
0 + ‖c0‖2

2 +

∫ t

0

||f̃(s)||20 ds
)
.

(21)

Proof : Taking v = ∂c
∂t in (20), it can be shown

1

2

d

dt

(∥∥∥∥∂c∂t
∥∥∥∥2

0

+ (DnF∇c,∇c)

)
+

1

τ

∥∥∥∥∂c∂t
∥∥∥∥2

0

+

(
vJ · ∇

∂c

∂t
,
∂c

∂t

)
=

(
f̃ ,
∂c

∂t

)
.

(22)
Attending to the boundary conditions, using integration by parts and re-

calling that vJ is constant, we can conclude that(
vJ · ∇

∂c

∂t
,
∂c

∂t

)
=

1

2

d∑
j=1

∫
∂Ω

∂c

∂t
vJ,jnj ds

=
1

2

∫
∂Ω

∂c

∂t
(vJ · n) ds

where nj denotes the j-th component of n.
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From the definition of ∂Ω−, it follows that(
vJ · ∇

∂c

∂t
,
∂c

∂t

)
6

1

2

∣∣∣∣∂c∂t
∣∣∣∣2
vJ,∂Ω−

. (23)

Combining (22) with (23) and using Cauchy-Schwarz and Young’s inequal-
ity, there exists ε > 0 such that

1

2

d

dt

(∥∥∥∥∂c∂t
∥∥∥∥2

0

+ (DnF∇c,∇c)

)
+

(
1

τ
− 1

2ε

)∥∥∥∥∂c∂t
∥∥∥∥2

0

+
1

2

∣∣∣∣∂c∂t
∣∣∣∣2
vJ,∂Ω−

6
1

ε
||f̃ ||20.

(24)
Choosing ε > τ

2 , we obtain (21).

Remark 6. Estimate (21), obtained from our model, considering only non-
Fickian diffusion with memory in time and space, is a typical estimate for
wave-type equations and not similar to the estimates obtained for the standard
Fickian diffusion equation or the integro-differential approach. It is nonethe-
less interesting to notice that the presence of Neumann boundary conditions
for c induces an extra term in the left hand side,∫ t

0

∣∣∣∣∂c∂t
∣∣∣∣2
vJ,∂Ω−

.

3.3. Coupled model. The mixed weak formulation for the coupled model
reads as: f ∈ L2(0, T ;L2(Ω)), c0 ∈ L2(Ω), J0 ∈ L2(Ω) find
c ∈ L2

(
0, T ;H1

∂Ω+(Ω)
)
, J ∈ L2

(
0, T ; H1

∂Ω−(Ω)
)

such that ∂c
∂t ∈ L

2(0, T ;L2(Ω)),
∂J
∂t ∈ L

2(0, T ; L2(Ω)) and(
∂c

∂t
, v

)
+ (DF∇c,∇v)

− (J,∇v) = (f, v) a.e. in (0, T ), ∀v ∈ H1
∂Ω+(Ω)

τ

(
∂J

∂t
,w

)
+ (J,w)

+τ ((vJ · ∇)J,w) = − (DnF∇c,w) a.e. in (0, T ), ∀w ∈ H1
∂Ω−(Ω).

(25)
For system (25), the following estimate holds:



10 J. A. FERREIRA AND G. PENA

Proposition 4.

‖c(t)‖2
0 + τ ‖J(t)‖2

0 + αF

∫ t

0

‖∇c(s)‖2
0 ds

6 expεt
(
‖c(0)‖2

0 + τ ‖J(0)‖2
0 +

1

ε

∫ t

0

‖f(s)‖2
0 exp−εs ds

)
.

(26)

where ε =
1

τ

(
C

min
(
C
2 ,

αF
C

) − 2

)
and C = 1 + max

i,j=1,··· ,d
‖(DnF )ij‖∞.

Proof : We start by taking v = c in the first equation of (25). As the entries
of Df has a positive lower bound αF , it follows that

1

2

d

dt
‖c(t)‖2

0 + αF ‖∇c‖2
0 6 (J,∇c) + (f, c).

Applying Cauchy-Schwarz’s and Young’s inequality, there exists ε > 0 such
that

1

2

d

dt
‖c(t)‖2

0 + αF ‖∇c‖2
0 6

1

2ε
‖f‖2

0 +
ε

2
‖c‖2

0 + (∇c,J). (27)

On the other hand, taking w = J in the second equation of (25), we
immediately conclude that

τ

2

d

dt
‖J(t)‖2

0 + ‖J‖2
0 = − (DnF∇c,J)− τ ((vJ · ∇)J,J) . (28)

Denoting Ji and vJ,i as the i-th component of J and vJ, respectively, we
notice that the term ((vJ · ∇)J,J) can be written as

((vJ · ∇)J,J) =
d∑
i=1

d∑
j=1

(
Ji,

∂Ji
∂xj

vJ,i

)
.

Following the same reasoning as to obtain (23), we conclude that

− ((vJ · ∇)J,J) 6 0. (29)

Therefore, combining (29) and (28) we get

τ

2

d

dt
‖J(t)‖2

0 + ‖J‖2
0 . 6 − (DnF∇c,J) . (30)

Summing (27) with (30) and attending to the regularity of the entries of
DnF , Cauchy-Schwarz and Young’s inequalities, there exist constants
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C, η > 0 such that

1

2

d

dt

(
‖c(t)‖2

0 + τ ‖J‖2
0

)
+

(
αF −

Cη

2

)
‖∇c‖2

0 +

(
1− C

2η

)
‖J‖2

0 6
1

2ε
‖f‖2

0 +
ε

2
‖c‖2

0

(31)

Choosing η = min
(
C
2 ,

αF
C

)
and defining γ = C

η − 2 > 0, we arrive at

d

dt

[
‖c(t)‖2

0 + τ ‖J‖2
0

]
αF ‖∇c‖2

0 + 6
1

ε
‖f‖2

0 + ε ‖c‖2
0 + γ ‖J‖2

0 .

Assuming ε = γ
τ , integrating over (0, t) and applying Gronwall’s lemma, we

finally conclude (26).

Remark 7. Estimate (26) is similar to the estimates obtained for Fickian
diffusion process and the integro-differential formulation. In fact, in both
cases when we consider only Fickian flux or we consider memory in time for
the flux, the estimates are of the same type.

4. Numerical simulation
In this section we apply a finite element method to approximate the solution

of (25) in a one dimensional setting. This will serve to illustrate the behavior
of the solution of the coupled model, under different choices of parameters.

We start by introducing the numerical method. Let ∆t, h > 0. We denote
by Th a uniform grid on Ω = (0, 1) with mesh size h and Vh the space of
piecewise linear polynomials built on Th. Let x ∈ {0, 1} and

V x
h = {vh ∈ Vh : vh(x) = 0} .

Let Ph : L2(Ω) −→ Vh denote the L2 projection operator onto Vh.

4.1. Numerical method. The finite element approximation of (25) reads
as: given J0

h = PhJ0 and c0
h = Phc0, find cn+1

h ∈ V 1
h and Jn+1

h ∈ V 0
h such that(

cn+1
h , vh

)
+

(
DF

∂cn+1
h

∂x
− Jn+1

h ,
∂vh
∂x

)
= (Phf(tn+1), vh)

+ (cnh, vh) , ∀vh ∈ V 1
h( τ

∆t
+ 1
) (
Jn+1
h , wh

)
+

(
DnF

∂cn+1
h

∂x
+ τvJ

∂Jn+1
h

∂x
, wh

)
=

τ

∆t
(Jnh , wh) , ∀wh ∈ V 0

h

(32)
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Remark 8. Method (32) treats coupled problem (25) fully implicitly and we
expect that this scheme benefits from reasonable stability properties. It can be
shown that (32) satisfies a discrete version of (26).

4.2. Comparison of different flux behaviors. In order to illustrate the
effect of non Fickian flux in the evolution of c, we shall conduct a few nu-
merical simulations.

Let us consider an initial condition

c0(x) =

 1, x ∈ [0, 0.4]
1− 5(x− 0.4), x ∈ (0.4, 0.6)
0, x ∈ [0.6, 1]

and DF = DnF = 1. We start by performing two simulations: the first,
considering τ = 0; in the second, we take two nonzero values for τ . We plot
the corresponding approximate concentration profiles at time t = 0.125 on
Figure 1(a). It seems that varying the parameter τ induces a delayed effect
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(b) Total flux plot

Figure 1. Plots of concentration and flux profile at t = 0.125
for different values of τ and vJ = 0.

in the diffusion process (as compared with Fickian diffusion only). We report
also as different total flux profiles.

In Figure 2 we plot the same variables, but now fixing τ and varying the
flux velocity vJ , i.e., considering a model where only memory in time is
present, and another with memory in time and space. As in the previous
simulation, the choice of the parameter vJ has an impact on the profile of
the concentration c.
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Figure 2. Plots of concentration and total flux profile at t =
0.125 for different values of vJ and τ = 0.1.

5. Conclusions
We have considered a coupled system of equations to model a diffusion

process presenting a Fickian and non Fickian mass flux contributions. This
model introduces a memory effect in time and space for the flux.

In some special cases, we showed that the coupled problem is the same
as others already proposed in the literature. Also, the energy estimate ob-
tained for the coupled problem are consistent with the ones found for those
other equivalent formulations. A finite element method was implemented to
illustrate the different behavior of the various effects of memory in time and
space.

It is our goal to apply the model studied in this paper to model diffusion
(and advection) in porous media. In this case, this system should be coupled
with Darcy’s law for the velocity and an elliptic equation for the pressure
(for incompressible flows).
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