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AN INTRINSIC FORMULATION FOR ROLLING

PSEUDO-RIEMANNIAN MANIFOLDS

IRINA MARKINA AND FÁTIMA SILVA LEITE

Abstract: In the present work we define the rolling of one pseudo-Riemannian
manifold over another without slipping and twisting. We compare the definition of
the rolling without slipping and twisting of two manifolds isometrically embedded
into a pseudo-Euclidean space with the rolling defined only by the intrinsic data,
namely by the metric tensors on manifolds. The smooth distribution on the con-
figuration space, encoding the no-slipping and no-twisting kinematic conditions is
constructed. Some results concerning the causal character of the rolling curves are
also included. Several examples are presented along the paper to illustrate concepts
and help to understand the theoretical results.

Keywords: Pseudo-Riemannian manifold, pseudo-Euclidean space, causal charac-
ter, rolling maps, intrinsic and extrinsic rolling.

1. Introduction
Motions of systems with nonholonomic constraints can be found in the

work of great mathematicians as Newton, Euler, Bernoulli and Lagrange.
More recently, nonholonomic systems have attracted much attention in con-
trol literature due to their numerous applications in physics and engineering
problems. For instance, in a robotic system if the controllable degrees of
freedom are less than the total degrees of freedom in the configuration space,
the system is nonholonomic. Nowadays, the interest in this area is increasing
and one can find references to potential applications of nonholonomic sys-
tems, for instance, in neurobiology and economics. For a recent survey on
non-holonomic systems we refer to [2, 29].

Nonholonomic constraints can be analyzed from the point of view of sub-
Riemannian geometry. This is the case when the constraints define a com-
pletely non-integrable (or bracket generating) subbundle of the tangent bun-
dle of a Riemannian manifold (see, for instance, [3, 23, 25] for work intercon-
necting sub-Riemannian geometry and control theory). But, if the manifold
is equipped with a pseudo-Riemannian metric (the metric tensor is nonde-
generate but not positive definite), we will be in the presence of problems in
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sub-pseudo-Riemannian geometry ([5, 13, 14, 16, 17]). The term semi is also
used in some literature with the same meaning as pseudo. Such is the case
in [26], our main reference about semi-Riemannian geometry.

A pair (M, M̂) of n-dimensional pseudo-Riemannian manifolds, rolling on
each other without slipping and twisting, also form a nonholonomic system
posing many theoretical challenges and interesting control problems. To
better understanding the geometry of this motion, one needs tools from sub-
pseudo-Riemannian geometry. In a Riemannian context, rolling has been
approached from two viewpoints: either regarding the manifolds as subsets
of an Euclidean space of higher dimension, or defining rolling intrinsically.
The first viewpoint makes sense due to the work of Nash in [27] that guar-
antees the existence of a global isometric imbedding of any m-dimensional
Riemannian manifold in some Euclidean space of bigger dimension. The clas-
sical definition of rolling, as given, for instance, in [31], corresponds to this
extrinsic viewpoint. Based on this general definition, the kinematic equations
for rolling particular Riemannian manifolds have been derived for instance
in [19, 20, 34]. An intrinsic formulation of rolling is the approach taken in [1]
and [4] for 2-surfaces and generalized in [6, 10, 11, 12] for arbitrary Riemann-
ian manifolds of any dimension. We want to mention, that in [9] a rolling
without slipping or twisting of n-dimensional manifolds endowed with a con-
nection, not necessarily compatible with any kind of metric, were defined and
in [6] even more general constructions for tensors bundles were made. Our
paper develops the ideas of [12], explaining the relation between extrinsic and
intrinsic approach, and provides numerous examples illustrating main ideas
and showing new features of the presence of the pseudo-Riemannian metrics
in contrast to the Riemannian ones on rolling manifolds.

When the manifolds M and M̂ are both isometrically embedded in some
bigger pseudo-Riemannian manifold M , one can develop an extrinsic formu-
lation of rolling, as a rigid motion inside M , subject to no-slip and no-twist
constraints. This situation has been explored for some particular cases where
M is a Lorentzian sphere ([18]), M is a pseudo-hyperbolic space ([24]), and

M is a pseudo-orthogonal group ([8]). In all these cases, M̂ has been cho-
sen to be the affine tangent space of M at a point p0. It turns out that
any pseudo-Riemannian manifold has a global isometric embedding into a
pseudo-Euclidean space ([7]). So, as in the Riemannian situation, both the
extrinsic and the intrinsic approaches make sense. As far as we know, the
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rigorous intrinsic viewpoint of rolling has not been developed in the pseudo-
Riemannian case.

The structure of the present paper is the following. After introducing
the basic notations in Section 2 we present the definition of the extrinsic
rolling in Section 3. We start with the generalization of the classical defi-
nition of rolling given in [31], with some convenient adaptations as done

in [12]. At this stage we assume that M and M̂ are both isometrically
embedded in Rn

ν , the pseudo-Euclidean space of dimension n and index ν.
We then proceed with the intrinsic definition of rolling in Section 4, where
we compare the intrinsic component of the rolling map that depends only
on metric data with the extrinsic part, that involves the information about
concretely chosen isometric embedding. In Section 5 we present the smooth
distribution on the configuration space caring kinematic restrictions of no
slipping and no twisting. The causal character of the rolling map is studied
in Section 6, where we give some conditions under which the causal character
of a rolling curve is preserved. The last Section 7 reveals the idea of inclusion
of the configuration space of the rolling problem as a smooth sub-bundle to
a vector bundle. Notes that the configuration space is defined as a smooth
fiber bundle with typical fiber isomorphic to a group of pseudo-Euclidean
rotations.

2. Basic facts about pseudo-Riemannian geometry
We start with the basic background about pseudo-Riemannian geome-

try that will appear throughout the paper. For more details, we refer to
O’Neill [26]. A pseudo-Riemannian manifold is a smooth manifold M fur-
nished with a metric tensor g (a symmetric nondegenerate (0, 2) tensor
field of constant index). The common value ν of the index gx at each
point x on a pseudo-Riemannian manifold M is called the index of M and
0 ≤ ν ≤ dim (M). If ν = 0, each gx is then a (positive definite) inner product
on TxM and M is a Riemannian manifold. If ν = 1 and dim (M) ≥ 2, M is
called a Lorentz manifold.

If (M, g) is a pseudo-Riemannian manifold and v ∈ TxM , then v is spacelike
if g(v, v) > 0 or v = 0; v is timelike if g(v, v) < 0; v is null if g(v, v) = 0
and v 6= 0. Since g(v, v) may be negative, the norm |v| of a vector is defined
to be |v| := |g(v, v)|1/2. A unit vector v is a vector with norm 1, that is
g(v, v) = ±1. As usual, a set of mutually orthogonal unit vectors is said to
be orthonormal. It is known that always there is an orthonormal basis, such
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that first ν vectors are unite timelike and the rest n − ν are unite spacelike
orthogonal vectors [26].

Let M be a submanifold of a pseudo-Riemannian manifold (M, g) and
ı : M ↪→M the inclusion map. Then M is a pseudo-Riemannian submanifold
of M if the pullback metric g = ı∗(g) is a metric tensor on M . If M is
equipped with the induced metric g, then ı is an isometric embedding. In
subsequent sections, we use 〈·, ·〉 as an alternative notation for g.

Let M be a pseudo-Riemannian submanifold of M (write M ⊂ M), and
x ∈M . Each tangent space TxM is, by definition, a nondegenerate subspace
of TxM . Consequently, TxM decomposes as a direct sum

TxM = TxM ⊕ T⊥x M, ∀ x ∈M, (1)

and T⊥x M is also nondegenerate. Vectors in T⊥x M are said to be normal to
M , while those in TxM are, of course, tangent to M . Similarly, a vector field
Z on M is normal (respectively tangent) to M provided each value Zx, for
x ∈M belongs to T⊥x M (respectively TxM).

If X, Y are vector fields on M , we can extend them to M , denoting as X,
Y , apply the ambient Levi Civita connection ∇ with respect to g and then
decompose at points of M to get

∇XY =
(
∇XY

)>
+
(
∇XY

)⊥
= ∇XY +

(
∇XY

)⊥
, (2)

where ∇ is a Levi-Civita connection with respect to the induced metric on
M and the last term, given by the orthogonal projection to T⊥M , measures
the difference between the intrinsic connection ∇ on M and the ambient
connection ∇ on M .

The analogous considerations can be done for normal vector fields on M .
If X is a tangent vector field and Z is a normal vector field to M , we have

∇XZ = (∇XZ)> +∇⊥XZ, (3)

where ∇⊥ is the normal connection of M ⊂M , that is the function ∇⊥ that,
to each pair (X,Z) of smooth vector fields, X tangent to M and Z normal
to M , assigns a vector field ∇⊥XZ normal to M .

If t 7→ γ(t) is a curve in M , V is a smooth vector field tangent to M along
γ, and W is a smooth vector field normal to M along γ, then the formulas (2)
and (3) have their analogous in terms of covariant derivatives along γ:

D

dt
V =

D

dt
V +

(D
dt
V
)⊥
,

D

dt
W =

(D
dt
W
)>

+
D⊥

dt
W, (4)
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where D
dt (Ddt) denote extrinsic (intrinsic) covariant derivative along γ, D⊥

dt is

the normal covariant derivative along γ, and V , W are extensions of V and
W in a neighborhood of γ considered as a curve in M , see [22, 26].

All curves are assumed to be absolutely continuos. A tangent vector field V
along a curve γ is said to be a tangent parallel vector field along γ if DV

dt ≡ 0
for almost all t. Analogously, a normal vector field Z along γ is said to be a
normal parallel vector field along γ if D⊥Z

dt ≡ 0 for almost all t.
The following holds, both for tangent and for normal parallel vector fields

along curves in M .
Lemma 1. [22] Let [a, b] 3 t 7→ γ(t) be an absolutely continuous curve
in M ⊂M .

(1) If Y0 ∈ Tγ(a)M , then there is a unique tangent parallel vector field Y
along γ such that Y (a) = Y0.

(2) If Z0 ∈ T⊥γ(a)M , then there is a unique normal vector field Z along γ

such that Z(a) = Z0.

With the notations above, the map

P b
a(γ) : Tγ(a)M → Tγ(b)M

Y (a) 7→ Y (b)
(5)

is called the tangent parallel translation of Y0 along γ, from the point p = γ(a)
to the point q = γ(b). Similarly,

P b
a(γ) : (Tγ(a)M)⊥ → (Tγ(b)M)⊥

Z(a) 7→ Z(b)
(6)

is called the normal parallel translation of Z0 along γ.
Both, tangent and the normal parallel translations are linear isometries.

Consequently, tangent (respectively normal) parallel translation of a tan-
gent (respectively normal) frame gives a tangent (respectively normal) par-
allel frame field along γ. An absolutely continuous curve t 7→ γ(t) in M
is a geodesic if its velocity vector field is parallel along γ, i.e., ∇γ̇γ̇(t) = 0
for almost all t. In pseudo-Riemannian geometry there are three types of
geodesics, determined by the causal character of the initial velocity vector.
More specifically, γ is a spacelike geodesic (respectively, timelike or null)
if γ̇(0) is spacelike (respectively, timelike or null). The theory of pseudo-
Riemannian geometry guarantees that a geodesic starting at p0 with initial
velocity V0 is locally unique.
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3. Rolling submanifolds of pseudo-Euclidean spaces
The present section is devoted to the geometrical formulation of the rolling

of a pseudo-Riemannian manifold M over another M̂ , while both are embed-
ded into a pseudo-Euclidean space. Since any pseudo-Riemannian manifold
may be globally isometrically embedded in a pseudo-Euclidean space, see [7],

we assume that the manifolds M and M̂ are connected, have the same di-
mension m, index µ, and are both embedded in some Rn

ν , which is the vector
space Rn endowed with the pseudo-Riemannian metric induced by matrix
J = diag(−Iν, In−ν). That is, for any vectors x, y ∈ Rn, 〈x, y〉J = xtJy,

where xt is x transposed. We identify the abstract manifolds M and M̂ with

their images under this embedding. A rolling motion of M over M̂ is a rigid
motion inside M = Rn

ν and as such it is described by the action of the group
of isometries of Rn

ν , which is known (see, for instance, [26, p. 240]) to be
G = Rn

ν o Oν(n), where Oν(n) is the pseudo-orthogonal group

Oν(n) = {X ∈ GL(n)| XtJX = J}.

The group G is known as the pseudo-Euclidean group. It follows from the
definition that all matrices in Oν(n) have determinant equal to ±1. Ele-
ments in G can be represented by pairs (s, A), multiplication is defined as
(s1, A1)(s2, A2) = (s1+A1s2, A1A2) and (s, A)−1 = (−A−1s, A−1). The action
of G on Rn

ν is defined by (s, A)x = s + Ax, for any vector x ∈ Rn
ν . In the

case ν = 0, we have the Riemannian situation and the group of isometries is
the Euclidean group of rigid motions in Rn. Let us concentrate for a while
on the group Oν(n), for ν 6= 0 and an arbitrary n. A matrix A ∈ Oν(n) can
be written in block form as

A =

[
AT B
C AS

]
,

where AT and AS are invertible matrices of order ν and n − ν respectively.
An element A ∈ Oν(n) preserves (reverses) time orientation provided that
det(AT ) > 0 (< 0), and preserves (reverses) space orientation provided that
det(AS) > 0 (< 0). Oν(n) can then be split into four disjoint sets O++

ν (n),
O+−
ν (n), O−+

ν (n), and O−−ν (n), indexed by the signs of the determinants of AT

and AS, in this order. The following three disconnected subgroups of Oν(n)
play an important role in orientability of pseudo-Riemannian manifolds:

O++
ν (n) ∪O−−ν (n), O++

ν (n) ∪O+−
ν (n), O++

ν (n) ∪O−+
ν (n). (7)
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According to [26], if we denote these groups by a common G, there are three
types of G-orientation:

orientation if G = O++
ν (n) ∪O−−ν (n);

time-orientation if G = O++
ν (n) ∪O+−

ν (n);
space-orientation if G = O++

ν (n) ∪O−+
ν (n).

(8)

The connected component containing the identity is O++
ν (n) preserves time

orientation, space orientation, and the orientation of the manifold. If V is a
vector space and e = {e1, · · · , en} and f = {f1, · · · , fn} are two orthonormal
bases for V , the relation fj =

∑
i aijei, 1 ≤ j ≤ n, defines a matrix A =

(aij) ∈ Oν(n). The bases e and f are G-equivalent if A ∈ G ⊂ Oν(n). For
each G there are two possible G-orientations of V . A G-orientation of a
pseudo-Riemannian manifold is a function λM that assigns to each x ∈M a
smooth G-orientation of TxM , in the sense that there is a coordinate system
whose induced local G-orientation agrees with λM on some neighborhood of
x ∈ M . M is said to be G-orientable provided it admits a G-orientation.
More details about the orientation of pseudo-Riemannian manifolds can be
found in [26].

The Lie algebra of Oν(n), equipped with the Lie bracket defined by the
commutator, is the set

oν(n) = {A ∈ gl(n)| AtJ = −JA}.

We are now ready to generalize the classical definition of a rolling motion, as
given in [12], which is an adaptation of the Euclidean definition in [31]. In the
present case, the special Euclidean group is replaced by the pseudo-Euclidean
group, orthogonality is understood with respect to the pseudo-Riemannian
metric, and the orientability condition varies according to the choice of one
of the three subgroups of G. So, the following definition is indexed by the
choice of one of the subgroups G, in (8) above, further denoted by Gν(n).

Recall that the pseudo-Riemannian manifolds M and M̂ are assumed to have
the same dimension m and the same index µ (not necessarily the same as
the embedding space) and both of them are G-oriented.

Definition 1. A G-rolling of M on M̂ without slipping or twisting is an
absolutely continuous curve (x, g) : [0, τ ] → M × Rn

ν o Gν(n) satisfying the
following conditions:

(i) x̂(t) := g(t)x(t) ∈ M̂ for almost every t,
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(ii) dx(t)g(t)Tx(t)M = Tx̂(t)M̂ for almost every t,

(iii) dx(t)g(t)|Tx(t)M : Tx(t)M → Tx̂(t)M̂ preserves G-orientation.

(iv) No slip condition: ˙̂x(t) = dx(t)g(t) ẋ(t), for almost every t.
(v) No twist condition (tangential part):

dx(t)g(t)
D

dt
Z(t) =

D

dt
dx(t)g(t)Z(t),

for any tangent vector field Z(t) along x(t) and almost every t.
(vi) No twist condition (normal part):

dx(t)g(t)
D⊥

dt
Ψ(t) =

D⊥

dt
dx(t)g(t) Ψ(t),

for any normal vector field Ψ(t) along x(t) and almost every t.

The curve x is called the rolling curve, while x̂ is called the development of

x on M̂ . Note that, due to the splitting (1), the condition (ii) implies that

dx(t)g(t)T⊥x(t)M = T⊥x̂(t)M̂ .

The no twist conditions (v) and (vi) have an equivalent formulation involv-
ing the notion of parallel vector fields.

Proposition 1. Assume that condition (ii) holds. Then, conditions (v) and
(vi) are respectively equivalent to:

(v’) A vector field Z(t) is tangent parallel along x(t) if and only if dx(t)g(t)Z(t)
is tangent parallel along x̂(t);

(vi’) A vector field Ψ(t) is normal parallel along x(t) if and only if dx(t)g(t) Ψ(t)
is normal parallel along x̂(t).

Proof : Assume that (ii) holds. That is, dx(t)g(t) is a linear isomorphism

between Tx(t)M and Tx̂(t)M̂ . We prove the equivalence between (v) and (v’).
The proof of the equivalence of (vi) and (vi’) can be done similarly.

First, assume that (v) also holds. Then, it is obvious that D
dt Z(t) = 0 if

and only if D
dt(dx(t)g(t)Z(t)) = 0. So, (v) ⇒ (v’).

To prove that (v’) ⇒ (v), let Z(t) be any tangent vector field along x(t)
and {e1(t), · · · em(t)} a parallel tangent frame field along x(t), so that

Z(t) =
∑
i

zi(t)ei(t) and
D

dt
Z(t) =

∑
i

żi(t)ei(t).
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If êi(t) := dx(t)g(t)ei(t), then we can guarantee by assumption that the frame
{ê1(t), · · · êm(t)} is also parallel along x̂(t). So

dx(t)g(t)(
D

dt
Z(t)) =

∑
i

żi(t)dx(t)g(t)ei(t) =
∑
i

żi(t)êi(t),

and
D

dt
(dx(t)g(t)Z(t)) =

D

dt

(∑
i

zi(t)êi(t)
)

=
∑
i

żi(t)êi(t).

Consequently,

dx(t)g(t)(
D

dt
Z(t)) =

D

dt
(dx(t)g(t)Z(t)),

proving that (v’) ⇒ (v).

As a consequence of these equivalences, one can replace in Definition 1
conditions (v)-(vi) by conditions (v’)-(vi’).

We also note that for manifolds of dimension one (v’) is automatically
satisfied, while for embeddings of codimension one (vi’) holds automatically.

From now on, whenever we write “a rolling” we mean “a G-rolling without
slipping or twisting”.

The following example of rolling anm-dimensional Lorentzian sphere on the
affine tangent space at a point x0, both embedded in the pseudo-Euclidean
space Rm+1

1 , is taken from [18]. For the sake of completeness, we work the
details here using Definition 1. We also use this example as a benchmark
for several properties that will be proved in a more general context in later
sections.

3.1. A benchmark example - the Lorentzian sphere Sm1 rolling
over the affine tangent space. Let M = Rm+1

1 , M = Sm1 =
{
x ∈

Rm+1
1 : 〈x, x〉J = 1

}
, with J = diag(−I1, Im), and the affine tangent space

M̂ = T aff
x0
Sm1 , for some x0 ∈ Sm1 . The Lie algebra of the group G1(m + 1) is

denoted by g1(m+1). The following are easy to check or they are consequence
of definitions.

(1) Tx0S
m
1 =

{
v ∈ Rm+1

1 : v = Ωx0, Ω ∈ g1(m+ 1)
}

;

(2) T aff
x0
Sm1 =

{
v ∈ Rm+1

1 : v = x0 + Ωx0, Ω ∈ g1(m+ 1)
}

;

(3) T⊥x0S
m
1 = span{x0};

(4) AdR(Ω) = RΩR−1 ∈ g1(m + 1), for every R ∈ G1(m + 1) and Ω ∈
g1(m+ 1);
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(5) 〈. , .〉J is G1(m+ 1)-invariant.
(6) The Lie group G1(m + 1) acts transitively on Sm1 , consequently any

curve t 7→ x(t) satisfying x(0) = x0 is of the form x(t) = R(t)x0, for
some R(t) ∈ G1(m + 1) satisfying the conditions R(0)x0 = x0. If, in
particular, R(0) = Im+1, then R(t) is a curve in O++

1 (m+ 1).

3.1.1. Kinematic equations for rolling the Lorentzian sphere. Let
t 7→ u(t) be an absolutely continuous function satisfying 〈u(t), x0〉J = 0
and t 7→ (s(t), R(t)) ∈ G = Rm+1

1 o G1(m + 1) a curve in G, satisfying
(s(0), R(0)) = (0, Im+1), with velocity vector (whenever defined) given by

ṡ(t) = u(t),

Ṙ(t) = R(t) (u(t)xt0 − x0u
t(t)) J.

(9)

We prove that t 7→ (x(t), g(t)) ∈ Sm1 × G, where x(t) = R(t)x0 and g(t) =
(s(t), R−1(t)), R(t) ∈ O++

1 (m+ 1) is a rolling of Sm1 over T aff
x0
Sm1 , by showing

that the first five conditions in Definition 1 hold. Equations (9) are called
the kinematic equations for rolling the Lorentzian sphere over the affine tan-
gent space at the point x0. Condition (vi) is automatically satisfied since this
is a co-dimension one case.

Proof of (i). We have x̂(t) := g(t)x(t) = s(t) +R−1(t)x(t) = s(t) + x0. Since
ṡ(t) = u(t) ∈ Tx0Sm1 and s(0) = 0, then s(t) ∈ Tx0Sm1 and x̂(t) = s(t) + x0 ∈
T aff
x0
Sm1 .

Proof of (ii). Elements in Tx(t)S
m
1 are of the form Ω(t)x(t), with Ω(t) ∈

g1(m+ 1). So,

dx(t)g(t)(Ω(t)x(t)) = R−1(t)Ω(t)x(t)
= R−1(t)Ω(t)R(t)︸ ︷︷ ︸

∈g1(m+1)

x0 ∈ Tx0Sm1 .

Since Tx̂(t)(T
aff
x0
Sm1 ) is identified with Tx0S

m
1 , the result follows.

Proof of (iii). The map dx(t)g(t) = R−1(t) : Tx(t)S
m
1 → Tx̂(t)M̂ is linear for all

t whenever it is defined. Since R(t) is a continuous curve in G1(m + 1) and
R(0) = Im+1, R(t) and its inverse must remain in the connected component
containing the identity of G1(m + 1), which is O++

1 (m + 1), so keeping the
sign of the determinant for all t that guarantees that dx(t)g(t) is orientation
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preserving.

Proof of (iv). We now have to use constraints on velocity given by (9).

dx(t)g(t)ẋ(t) = R−1(t)ẋ(t) = R−1(t)Ṙ(t)x0

= (u(t)x>0 − x0u
>(t)) J x0

= 〈x0, x0〉Ju(t)− 〈u(t), x0〉Jx0 = u(t).

On the other hand, x̂(t) = s(t) + x0 from the proof of (i). So ˙̂x(t) = ṡ(t) =
u(t), and the identity in (iv) holds.

Proof of (v). The covariant derivative of a tangent vector field Z(t) along x(t)
is a tangent vector field along x(t) that results from orthogonal projection of
the extrinsic derivative Ż(t) on the tangent space Tx(t)S

m
1 . That is,

D

dt
Z(t) = Ż(t)− 〈Ż(t), x(t)〉J x(t).

So,

dx(t)g(t)
D

dt
Z(t) = R−1(t)

(
Ż(t)− 〈Ż(t), x(t)〉J x(t)

)
= R−1(t)Ż(t)− 〈R−1(t)Ż(t), R−1(t)x(t)〉J R−1(t)x(t)

= R−1(t)Ż(t)− 〈R−1(t)Ż(t), x0〉J x0.

On the other hand, since

dx(t)g(t)Z(t) = R−1(t)Z(t) ∈ Tx̂(t)M̂ ∼= Tx0S
m
1 ,

we have

D

dt
dx(t)g(t)Z(t) =

D

dt
R−1(t)Z(t)

= ˙R−1(t)Z(t) +R−1(t)Ż(t)− 〈 ˙R−1(t)Z(t) +R−1(t)Ż(t), x0〉Jx0

= R−1(t)Ż(t)− 〈R−1(t)Ż(t), x0〉J x0

+ ˙R−1(t)Z(t)− 〈 ˙R−1(t)Z(t), x0〉Jx0.

So, in order to prove (v) we have to show that the sum of the last two
terms in the previous expression equals 0. For this, take into consideration
that Z(t) = Ω(t)x(t) = Ω(t)R(t)x0, for some Ω(t) ∈ g1(m + 1), and ˙R−1 =
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−R−1ṘR−1, to obtain

˙R−1(t)Z(t) = −R−1(t)(u(t)xt0 − x0u
t(t))JR−1(t)Ω(t)R(t)x0

= −〈x0, R
−1(t)Ω(t)R(t)x0〉J︸ ︷︷ ︸

=0

u(t) + 〈u(t), R−1(t)Ω(t)R(t)x0〉J x0

= 〈u(t), R−1(t)Ω(t)R(t)x0〉J x0,

and, consequently,

〈 ˙R−1(t)Z(t), x0〉Jx0 = 〈u(t), R−1(t)Ω(t)R(t)x0〉J 〈x0, x0〉J x0

= 〈u(t), R−1(t)Ω(t)R(t)x0〉J x0 = ˙R−1(t)Z(t),

completing the proof of (v).

3.1.2. Rolling versus parallel translation. We show that parallel trans-
lation of a given vector Y0 along a curve in Sm1 can be realized by using the
rolling along that curve.

More precisely, we show that if x(t) = R(t)x0 is a rolling curve satisfying
the initial condition x(0) = x0, rolling map g(t) = (s(t), R−1(t)) with g(0) =(
0, Im+1

)
, and Y0 ∈ Tx0Sm1 , then Y (t) = R(t)Y0 is the unique tangent parallel

vector field along x(t) satisfying Y (0) = Y0. Similarly, if Ψ0 ∈ T⊥x0S
m
1 , then

Ψ(t) = R(t)Ψ0 is the unique normal parallel vector field along the curve x(t)
satisfying Ψ(0) = Ψ0.

To prove the first statement, we notice that if Y0 ∈ Tx0Sm1 , then

〈Y (t), x(t)〉J = 〈R(t)Y0, R(t)x0〉J = 〈Y0, x0〉J = 0, =⇒ Y (t) ∈ Tx(t)S
m
1 .

We now have to show that DY
dt = 0, where, in this case, DY (t)

dt = Ẏ (t) −
〈Ẏ (t), x(t)〉Jx(t). Using the second kinematic equation in (9) and the con-
ditions 〈Y0, x0〉J = 0, 〈x0, x0〉J = 1, we may conclude after simplifications
that

Ẏ (t) = Ṙ(t)Y0 = −〈u(t), Y0〉J R(t)x0;

and

〈Ẏ (t), x(t)〉Jx(t) = −〈u(t), Y0〉J R(t)x0.

So, DY
dt = 0, i.e. Y (t) = R(t)Y0 is the unique parallel vector field along x(t)

satisfying Y (0) = Y0.
For the second statement, notice that if Ψ0 ∈ T⊥x0S

m
1 , then Ψ0 = kx0, for

some k ∈ R, and consequently Ψ(t) = R(t)Ψ0 = kx(t) ∈ T⊥x(t)S
m
1 . So, in this
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case, using similar arguments and the fact that 〈u(t), x0〉J = 0, one has

〈Ψ̇(t), x(t)〉J = 〈Ṙ(t)Ψ0, x(t)〉J = 〈Ṙ(t)Ψ0, R(t)x0〉J = k〈u(t), x0〉J = 0.

Consequently, D⊥Ψ
dt = 〈Ψ̇(t), x(t)〉Jx(t) = 0, for almost all t, that is, Ψ is the

unique normal parallel vector field along x(t) satisfying Ψ(0) = Ψ0.

3.1.3. Causality. For the Lorentzian sphere, it can easily be shown that the
rolling curve and its development have the same causal character. Indeed,
using results from the previous subsection, namely x(t) = R(t)x0, x̂(t) =
s(t) + x0, 〈x0, x0〉J = 1, 〈u(t), x0〉J = 0, and the kinematic equations (9), we
can write

〈 ˙̂x(t), ˙̂x(t)〉J = 〈ṡ(t), ṡ(t)〉J = 〈u(t), u(t)〉J ;

〈ẋ(t), ẋ(t)〉J = 〈Ṙ(t)x0, Ṙ(t)x0〉J
= 〈(u(t)xt0 − x0u

t(t))Jx0, (u(t)xt0 − x0u
t(t))Jx0〉J

= 〈u(t), u(t)〉J .
Further we want to show that the curve t ∈ I → R(t) ∈ O1(m+1) also has

the same causal character, with respect to a scalar product in gl(n) defined
below. First, for any matrix A ∈ gl(n) and J = diag(−Iν, In−ν) the Gram
matrix, define the matrix AJ by

AJ := JAtJ.

gl(n) may be equipped with a scalar product 〈〈., .〉〉J of signature ν, defined
by 〈〈A,B〉〉J = tr (AJB). This is positive-definite only for ν = 0. We say
that non-zero element A ∈ gl(n) is timelike if 〈〈A,A〉〉J < 0, it is spacelike
if 〈〈A,A〉〉J > 0 and it is null if 〈〈A,A〉〉J = 0. The zero element is declared
to be spacelike.

Notice that for A ∈ gl(n)

(AJ)J = A, and (AB)J = BJAJ .
Moreover, if A ∈ Oν(n), then AJA = AAJ = Id, which implies AJ = A−1.

We can say that the Lie algebra oν(n) consists of (n×n) matrices satisfying
A = −AJ = −JAtJ . Consequently, for A ∈ oν(n), one has

AJA = AAJ = −A2.

Also, elements in oν(n) can be written as

A =

(
aν b
bt an−ν

)
, aν ∈ o(ν), an−ν ∈ o(n− ν).
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So,

〈〈A,A〉〉J = tr(AJA) = − tr(A2)

= tr

(
−a2

ν 0
0 −a2

n−ν

)
− 2 tr(bbt).

As we see, the first term involving the skew symmetric matrices aν and an−ν is
always positive and represents the spacelike part. The matrix b is responsible
for the timelike character of elements of the Lie algebra.

We transfer this causal structure to the curves on the group Oν(n). Let
A : I → Oν(n) be a smooth curve. We say that the curve A is spacelike,
timelike or null if the product 〈〈Ȧ, Ȧ〉〉J is positive, negative or equals zero,
respectively. It can easily be checked that the scalar product 〈〈. , .〉〉J is
Oν(n)-invariant.

So, using the same ingredients as before and the kinematic equations (9),
we conclude that for the rolling of Sm1 on the affine tangent space one get

〈〈Ṙ(t), Ṙ(t)〉〉J = 2〈u(t), u(t)〉J .

3.1.4. Controllability. We now want to introduce the issue of control-
lability for this rolling system. The vector function u(t) in the kinematic
equations (9) is a control function. The choice of the controls defines the
rolling curve. It has been proved in [21] that the kinematic equations (9) are
completely controllable in Rm+1

ν × O++
ν (m + 1). More general results about

sufficient conditions that guarantee the controllability of the rolling process
can be found in [6, 9].

However, nothing guarantees that the causal character of the velocity vector
remains invariant. The presence of the causal structure arises the natural
problem to describe the set Rx0 ⊂ M of points reachable by a timelike
(spacelike or null) curve from a given point x0 ∈ M . By this we mean that
the sign of 〈ẋ(t), ẋ(t)〉J remains negative (positive or zero), for those t > 0
where the velocity vector is defined. Before trying to answer this question
we analyze a slightly different but simpler issue, that of geodesic reachability
by rolling.

Definition 2. We say that a point x1 ∈ M is geodesically reachable by
rolling from another point x0 ∈ M , if there exists a geodesic x(t) = R(t)x0,
with R(t) a solution of the second kinematic equation in (9), satisfying x(0) =
x0, x(t1) = x1, for some t1 > 0.
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Instead of geodesically reachable by rolling we may simply write geodesi-
cally reachable. Since geodesics preserve their causal character it is easier
to describe the subset of Rx0 reachable by geodesics. For the Lorentzian
sphere, we characterize the set of points that can be geodesically reachable
from a generic point x0. First, we recall from [21] what are the geodesics
in Sm1 generated by A = (uxt0 − x0u

t)J with constant u from the kinematic
equations (9).

• If 〈u, u〉J = 1, then x(t) = exp(At)x0 = x0 cos(t) + u sin(t) is a space-
like geodesic satisfying x(0) = x0.
• If 〈u, u〉J = −1, then x(t) = exp(At)x0 = x0 cosh(t) + u sinh(t) is a

timelike geodesic satisfying x(0) = x0.
• If 〈u, u〉J = 0, then x(t) = exp(At)x0 = x0 + ut is a null geodesic

satisfying x(0) = x0.

Proposition 2. Let x0 be any point in Sm1 . If x1 ∈ Sm1 belongs to the set

{x ∈ Sm1 , such that 〈x0, x〉J > −1} ∪ {−x0},
then x1 is geodesically accessible from x0.

Proof : The proof is constructive, in the sense that we construct the geodesic
that realizes the job, according to the value of 〈x0, x1〉J .

(1) If 〈x0, x1〉J > 1, i.e., 〈x0, x1〉J = cosh θ, for some θ 6= 0, the timelike
geodesic x(t) = x0 cosh(t) + u sinh(t), where u = x1−x0 cosh θ

sinh θ , links x0

(at t = 0) to x1 (at t = θ). It is a simple calculation to show that, in
this case, 〈u, u〉J = −1 and we conclude that such kind of points are
timelike accessible by geodesics.

(2) If 〈x0, x1〉J = 1, the null geodesic x(t) = x0 + tu, with u = x1 − x0,
links x0 (at t = 0) to x1 (at t = 1). In this case 〈u, u〉J = 0. Here we
have example when x1 is accessible by null geodesics.

(3) If 〈x0, x1〉J ∈] − 1, 1[, i.e., 〈x0, x1〉J = cos θ, for some θ 6= kπ, the
spacelike geodesic x(t) = x0 cos(t) + u sin(t), where u = x1−x0 cos θ

sin θ ,
links x0 (at t = 0) to x1 (at t = θ). In this case, 〈u, u〉J = 1.

(4) If x1 = −x0, any spacelike geodesic x(t) = x0 cos(t) + u sin(t), with
u satisfying 〈x0, u〉J = 0, links x0 (at t = 0) to x1 = −x0 (at t = π).
The last two cases show the accessibility by spacelike geodesics.

Remark 1. We can introduce the time orientation on Sm1 by choosing a glob-
ally defined timelike vector field T . Then a timelike geodesic starting at
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x0 and having property 〈ẋ(0), T 〉J < 0 is called future directed and we in-
troduce the notion of rolling along geodesic to the future. Moreover, when
〈x0, x1〉J ≤ −1 and x1 6= −x0, it is possible to reach x1 from x0 by a broken
geodesic which change its causal character. For instance, first join x0 to −x1

by a timelike geodesic (if 〈x0, x1〉J > 1) or lightlike geodesic (if 〈x0, x1〉J = 1),
and then join −x1 to x1 by a spacelike geodesic.

Figure 1. Partition of S2
1 into causal/no-causal subsets from

x0 = (0, 0, 1).

Figure 1 shows the points that can be reached in this way from the point
x0 = (0, 0, 1) ∈ S2

1 . Only −x0 and points above the affine tangent space at
−x0 can be reached.

Based in the previous result, it is possible to give a precise geometric de-
scription of the reachable set from a point x0, using spacelike geodesics only,
and, similarly, timelike or null geodesics only. Two parallel hyperplanes in
Rm+1

1 , as in the figure above, make the correct separation, as the following
shows.

Proposition 3. Let x0 and x1 be distinct arbitrary points in Sm1 . Then,

(1) x1 is reachable from x0 by a lightlike geodesic if and only if x1 ∈
T aff
x0
Sm1 .

(2) x1 is reachable from x0 by a timelike geodesic if and only if x1 is on one
side of the hyperplane T aff

x0
Sm1 , the side that doesn’t contain 0 ∈ Rm+1

1 .
(3) x1 is reachable from x0 by a spacelike geodesic if and only if x1 lies

between the hyperplanes T aff
x0
Sm1 and T aff

−x0S
m
1 or x1 = −x0.

Proof : The proof is based on some simple facts. First, note that the hyper-
planes T aff

x0
Sm1 and T aff

−x0S
m
1 do not intersect. Otherwise, there would exist

Ω1,Ω2 ∈ o1(m+ 1) such that

x0 + Ω1x0 = −x0 + Ω2x0 ⇔ 2x0 + (Ω1 − Ω2)x0 = 0 ⇔ x0 = 0.
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Now observe that the set of points in Rm+1
1 that satisfy a constraint of

the form 〈x, x0〉J = k, for some constant k, are hyperplanes. So, using a
matching dimension argument and the fact that for any Ω ∈ o1(m + 1),
〈x0 + Ωx0, x0〉J = 1, we conclude that (1) is true. And, of course, the set
{x ∈ Sm1 : 〈x0, x〉J > 1}, that can be reached by a timelike geodesic, lies on

one side of the hyperplane M̂ = T aff
x0
Sm1 , the side that doesn’t contain the

origin, proving (2). The last part is a consequence of the first two and the
facts in Proposition 2.

The two images in Figure 2 indicate that the region accessible by spacelike
geodesics narrows as the point x0 moves away from the origin. For points at
infinity, the two hyperplanes coincide and only timelike and null geodesics
exist.

Figure 2. On the left x0 = (2, 2, 1), on the right x0 = (
√

40, 4, 5).

3.2. Hyperquadrics. In this short subsection we want to emphasize that
the results obtained for the benchmark example of Section 3.1 can be ex-
tended to hyperquadrics. More precise, let

Smν = {x ∈ Rm+1 | 〈x, x〉J = r, r ∈ R}
be a hypersurface in Rm+1 given by the level set of the scalar product func-
tion 〈· , ·〉J with J = diag(−Iν, Im+1−ν), that we call a hyperquadric. The
corresponding group of isometries is Oν(m + 1). Analogously to the sphere
in Minkowskii space, the kinematic equations of rolling, without slipping and
twisting, Smν over its affine tangent space have the form (9), as shown in [24].
Let x0 ∈ Smν , x(t) = R(t)x0 and g(t) =

(
s(t), R−1(t)

)
, where R(t) is a curve

in some subgroup of Oν(m + 1), defined by the orientation and initial value
R(0), that jointly with s(t) satisfy the kinematic equations (9). Then, the
map t 7→

(
x(t), g(t)

)
∈ Smν ×Rm+1

ν oOν(m+ 1) is a rolling of Smν over T aff
x0
Smν .
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Now we discuss the issue of the parallel translation. Let X0 ∈ Tx0Smν and
X(t) = R(t)X0. Then

〈x(t), X(t)〉J = 〈R(t)x0, R(t)X0〉J = 0

since R(t) belongs to the group of isometries and it preserves the correspond-
ing scalar product. It shows that the vector field X is a vector field along
the curve x in Smν . We used an advantage that the manifold is given as a
level set of the scalar product and therefore the tangent space is orthogonal
to the hypersurface. Then, by using the kinematic equations, we show that
D
dtX(t) = 0 as in the case of the sphere.

Again as in the case of the Lorentzian sphere we can show

〈 ˙̂x(t), ˙̂x(t)〉J = 〈ẋ(t), ẋ(t)〉J = 〈〈Ṙ(t), Ṙ(t)〉〉J = 〈u(t), u(t)〉J

on Smν and T aff
x0
Smν , that leads to the conclusion that in this case the causal

character of the rolling curve x(t), the developing curve x̂(t) and the curve
in the group of isometries R(t) coincide.

Since the geodesics on Smν defined by rolling have the same form as in
the case of the Lorentzian sphere, Proposition 2 remains true for arbitrary
hyperquadrics.

4. Intrinsic rolling

4.1. Bundles of isometries. Let V and V̂ be two oriented scalar product
spaces with the same index µ and dimension m. We denote by G(V, V̂ )

the group of all orientation preserving linear isometries between V and V̂ .
The group G can be any of three groups considered in (8) that preserve
orientation, time or space orientation of the scalar product space V . When
V = V̂ , we write G(V ) instead of G(V, V ).

For any pair M and M̂ of connected and oriented manifolds, also with
the same index µ and dimension m, we introduce the space Q of all relative

positions in which M can be tangent to M̂

Q =
{
q ∈ G(TxM,Tx̂M̂)

∣∣∣x ∈M, x̂ ∈ M̂
}
. (10)

This space is a manifold with the structure of an Gµ(m)-fiber bundle over

M × M̂ and can be considered as a part of the configuration space of the

rolling. The dimension of Q is 2m+ (m(m− 1)/2 = m(m+3)
2 .
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Let ι : M → Rn
ν = Rm+m

ν and ι̂ : M̂ → Rm+m
ν be two isometric embeddings.

Here m states for the dimension of TxM and Tx̂M̂ and µ for their index,

while m denotes the dimension of T⊥x M and T⊥x̂ M̂ and ν − µ is their index.
If m > 1, then the kinematic condition (vi) of normal no twist in Definition 1
becomes non trivial. To describe it we need a counter part of the bundle Q,
that takes care of the normal components of the embedding. Therefore, we

define a fiber bundle over M × M̂ of isometries of the normal tangent space.
We write

Pι,̂ι :=
{
p ∈ G(T⊥x M,T⊥x̂ M̂)

∣∣∣x ∈M, x̂ ∈ M̂
}
. (11)

The space Pι,̂ι is a Gν−µ(m)-fiber bundle. We notice that Q is invariant of
embeddings ι and ι̂, while Pι,̂ι is not which is reflected in notations. The

dimension of Pι,̂ι is 2m+ m(m−1)
2 .

We use the notation of the fiber product or Whitney sum Q ⊕ Pι,̂ι for

the fiber bundle over M × M̂ , so that the fiber over (x, x̂) ∈ M × M̂ is

Q(x,x̂) × Pι,̂ι(x,x̂). The dimension of Q⊕ Pι,̂ι is m(m+3)+m(m−1)
2 .

4.2. Reformulation of rolling in terms of bundles. We define the rolling
by making use of the bundle Q⊕Pι,̂ι and then we show that the new definition
is equivalent to Definition 1.

Definition 3. An extrinsic rolling (without slipping or twisting) of M on M̂
along x(t) and x̂(t) is an absolutely continuous curve (q, p) : [0, τ ]→ Q⊕Pι,̂ι
such that (q(t), p(t)) satisfies

(I) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost every t,
(II) no twist condition (tangential part) : q(t)DdtZ(t) = D

dtq(t)Z(t) for any
tangent vector field Z(t) along x(t) and almost every t,

(III) no twist condition (normal part) : p(t)D
⊥

dt Ψ(t) = D⊥

dt p(t)Ψ(t) for any
normal vector field Ψ(t) along x(t) and almost every t.

The following proposition shows the equivalence of Definitions 1 and 3.

Proposition 4. If a curve (x, g) : [0, τ ]→M ×Rm+m
ν oGν(m+ m) satisfies

the conditions (i)-(vi) in Definition 1, then the mapping

t 7→ (dx(t)g(t)|Tx(t)M , dx(t)g(t)|Tx(t)M⊥) =: (q(t), p(t)) ,

defines a curve in Q⊕ Pι,̂ι satisfying the conditions (I)-(III) of Definition 3.
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Conversely, if (q, p) : [0, τ ] → Q ⊕ Pι,̂ι is an absolutely continuous curve
satisfying (I)-(III), then there exists a unique rolling

(x, g) : [0, τ ]→M × Rm+m
ν oGν(m+ m),

such that dx(t)g(t)|Tx(t)M = q(t) and dx(t)g(t)|Tx(t)M⊥ = p(t).

Proof : We sketch the proof, since details can be found in [11].
The conditions (i)-(iii) ensures that the map (q, p) preserves the group G

of the orientation and it is clear that the conditions (I)-(III) correspond to
the conditions (iv)-(vi).

Conversely, for a given curve (q(t), p(t)) in Q⊕Pι,̂ι over (x(t), x̂(t)) ∈M×M̂
the isometry g ∈ Rm+m

ν oGν(m+ m) is defined by

g(t) : x̄ 7→ Ā(t)x̄+ r̄(t), Ā(t) ∈ Gν(m+ m)

where Ā(t) = dx(t)g(t) is determined by the conditions

dx(t)g(t)|Tx(t)M = q(t)|Tx(t)M , dx(t)g(t)|Tx(t)M⊥ = p(t)|Tx(t)M⊥.

and r̄(t) = x̂(t)− Ā(t)x(t).

A purely intrinsic definition of a rolling is deduced from Definition 3, by
restricting it to the bundle Q.

Definition 4. An intrinsic rolling (without slipping or twisting) of M over

a manifold M̂ , along curves x(t) and x̂(t), is an absolutely continuous curve
q : [0, τ ]→ Q, with projections x(t) = prM q(t) and x̂(t) = pr

M̂
q(t), satisfy-

ing the following conditions:
(I’) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost all t,
(II’) no twist condition: Z(t) is a parallel tangent vector field along x(t), if
and only if q(t)Z(t) is parallel along x̂(t) for almost all t.

4.3. Expression of (q, p) in parallel frame. Since the rolling without
twisting preserves parallel vector fields, we expect that the expression of
the curve (q, p) : [0, τ ] → Q ⊕ Pι,̂ι would be simpler in parallel frames. Let

x : [0, τ ] → M and x̂ : [0, τ ] → M̂ be two fixed curves. We denote by
{ej(t)}mj=1 an orthonormal frame field of parallel tangent vector fields along x(t)
and by {ελ(t)}mλ=1 an orthonormal frame field of normal parallel vector fields
along x(t). Such vector fields can be constructed by parallel transport and
normal parallel transport along x(t). Similarly, along x̂(t), we define parallel
frames {êi}mi=1 and {ε̂κ}mκ=1.
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Lemma 2. A curve (q(t), p(t)) in Q ⊕ Pι,̂ι in the fibers over (x(t), x̂(t)),
satisfies (II) and (III) if and only if the matrices

A(t) = {aij(t)} = {〈êi, q(t)ej〉J}, B(t) = {bκλ(t)} = {〈ε̂κ(t), p(t)ελ(t)〉J},

in parallel frames are constant.

Proof : Since {q(t)ej}, j = 1, . . . ,m is a parallel frame along x̂(t), then the
coordinates of vectors {q(t)ej} in the basis {êi}, i = 1, . . . ,m, should be
constant. The precise calculation go along the same lines as those in [11] for
the Riemannian case.

Example 1. We illustrate Lemma 2 by constructing the matrices A,B for the
case of the 2-dimensional Lorentz sphere and give them a geometric meaning.

The notations are those in Section 3.1. Let x0 =
[

0 0 1
]t ∈ S2

1 ,

R(t) = exp (t

 0 0 1
0 0 0
1 0 0

) =

 cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

 ,

x(t) = R(t)x0 =

 sinh t
0

cosh t

 .
Define

e1(t) =

 cosh t
0

sinh t

 , e2(t) =

 0
1
0

 , ε1(t) =

 sinh t
0

cosh t

 .
The frame field {e1(t), e2(t)} is orthonormal parallel and tangent along x(t)
and the vector field {ε1(t)} represents the normal parallel vector field along
x(t). Note that e1(t) is timelike, while e2(t) and ε1(t) are spacelike. Now,

M̂ = T aff
x0
M , so that Tx̂(t)M̂ = Tx0S

2
1 and, consequently, {ê1(t), ê2(t)} (respec-

tively {ε̂1(t)}), defined below, form an orthonormal frame field of parallel
tangent (respectively normal) vector fields along x̂(t).

ê1(t) =

 √2
1
0

 , ê2(t) =

 1√
2

0

 , ε̂1(t) =

 0
0
1

 .
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Again, the first vector is timelike, while the last two are spacelike. To com-
pute the matrices A and B in the previous Lemma, note that

q(t)e1(t) = R−1(t)e1(t) =

 1
0
0

 , q(t)e2(t) = R−1(t)e2(t) =

 0
1
0

 ,
and because we are in codimension 1, p(t)ε1(t) = ε̂1(t). So, B = I1 and the
matrix A with entries aij = 〈êi(t), q(t)ej(t)〉J is

A =

[
−
√

2 1

−1
√

2

]
.

We emphasize that since we use the scalar product 〈· , ·〉J defined by J , then
the matrix A defers from matrix T defined by usual euclidean inner product
by the first row: all entries of the first row of T have opposite sign to the
corresponding entries of the first row of A, that is, A = JT . This is due to
the fact that ê1 is timelike. If the basis elements where all spacelike, then A
and T would coincide. We conclude that the block matrix

W =

[
A 0
0 B

]
=

 −√2 1 0

−1
√

2 0
0 0 1


is a twist which reverses time-orientation and preserves space-orientation. In
particular, W transforms the ordered orthonormal basis {ê1, ê2, ε̂1} of R3

1 into
the ordered orthonormal basis {−q(t)e1(t), q(t)e2(t), ε̂1}.

4.4. Intrinsic and extrinsic rollings along the same curves. Assume

that (x, x̂) : [0, τ ] → M × M̂ is a fixed pair of curves which are projections
of an intrinsic rolling map q(t). The following uniqueness question can be
asked: are there other intrinsic rollings along the same curve (x, x̂)?

Before giving the answer to this question, we make some observations. Let
{ej(t)}mj=1 and {êj(t)}mj=1 be orthonormal tangent parallel frames along x(t)
and x̂(t), respectively. Then

˙̂xi(t) = 〈êi, ˙̂x(t)〉J = 〈êi, qẋ(t)〉J =
n∑
j=1

ẋj(t)〈êi, qej〉J =
n∑
j=1

aijẋj(t).

If we assume that some of ẋk = 〈ek, ẋ〉J vanish, then k-columns of the matrix

{aij} can be changed without influence on the resulting ˙̂x(t) and this gives
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the freedom in the choice of the intrinsic rolling q(t). Now we introduce some
necessary definitions and formulate the result.

Recall that a tangent vector field v along an absolutely continuous curve γ
on a pseudo-Riemannian manifold is called normal to γ if 〈v(t), γ̇(t)〉J = 0 for
almost all t from the domain of the definition of the curve. We understand
that it could be confusing to use the word normal in two different meanings,
nevertheless since both meanings are classical and we use the latter sense of
normal vector field only in Theorem 1, we continue to do it.

Let q : [0, τ ]→ Q be an intrinsic rolling map with projection pr
M×M̂ q(t) =

(x(t), x̂(t)). Define the vector spaces

V =
{
v(t) is a tangent parallel vector field normal to x(t)

}
,

V̂ =
{
v̂(t) is a tangent parallel vector field normal to x̂(t)

}
.

Note that both, the inner product and the orientation, are preserved under
parallel transport. Hence, for any pair v, w ∈ V , the value of 〈v(t), w(t)〉J
remains constant for any t. Therefore, the metric on M induces a well defined
inner product on V . Similarly, the G-orientation on V is well defined, since
it does not depend on t. Analogous considerations hold for V̂ .

Theorem 1. Let q : [0, τ ] → Q be a given intrinsic rolling map without

slipping or twisting that is projected to (x(t), x̂(t)). Then dimV = dim V̂ .
Moreover,

(a) the map q is the unique intrinsic rolling of M over M̂ along x(t) and
x̂(t) if and only if dimV ≤ 1,

(b) if dimV ≥ 2, all the rolling maps along x(t) and x̂(t) differ from q by

an element in G(V̂ ).

Proof : Choose the frame of parallel vector fields {ei}ni=1 along x(t) and define
the parallel frame {êi}ni=1 along x̂(t) by q(t)ei = êi. Assume that the first k
vector fields of each frame are orthogonal to curves x(t) and x̂(t), respectively.

Notice that e1, . . . , ek is a basis for V , and ê1, . . . , êk is a basis for V̂ . By
Lemma 2 the corresponding matrix A = {aij} = 〈êi, qej〉J is the diagonal
matrix with ±1 on diagonal according to the causal character of the basic
vectors.

Writing ˙̂x =
∑n

i=1
˙̂xi(t)êi(t) and ẋ =

∑n
i=1 ẋi(t)ei(t), we get ˙̂xi(t) = ẋi(t)

for i = 1, . . . , n and ˙̂xi(t) = ẋi(t) = 0 for i = 1, . . . , k. So, if q̃ is any other
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rolling, then Ã = {ãij} = 〈êi(t), q̃(t) ej(t)〉J is clearly of the form

Ã =

(
A′ 0
0 Jm−k

)
, A′ ∈ G(Rk

ξ ), (12)

where Jm−k is the
(
(m−k)×(m−k)

)
matrix with entires ±1 on the diagonal

and 0 otherwise. The matrix A′ is unique if k is 0 or 1. If k ≥ 2, there is
more freedom, since in the equality ˙̂xi =

∑n
j=1 ãijẋj =

∑n
j=1 ãij

˙̂xj the first k

values of ˙̂xj vanish.

The converse also holds, that is, for any matrix Ã on the form (12), there
is a rolling q̃ corresponding to it.

In particular, if the curve x : [0, τ ]→M is a geodesic, we have the following
consequence of Theorem 1.

Corollary 1. Assume that x(t) is a geodesic in M . Then there exists an

intrinsic rolling of M on M̂ along (x(t), x̂(t)) if and only if x̂(t) is a geodesic

such that 〈ẋ(t), ẋ(t)〉J = 〈 ˙̂x(t), ˙̂x(t)〉J . Moreover, if m ≥ 2, and if V̂ is defined
as in Theorem 1, then

dim V̂ = m− 1,

and all the rollings along x(t) and x̂(t) differ by an element in G(V̂ ).

Proof : Calculating the covariant derivatives, and using the no-slip and no-
twist conditions (I’)-(II’), we obtain

D

dt
˙̂x(t) =

D

dt
q(t)ẋ(t) = q(t)

D

dt
ẋ(t).

Thus, the curve x(t) is a geodesic if and only if x̂(t) is also geodesic. The

property (I’) implies 〈 ˙̂x(t), ˙̂x(t)〉J = 〈ẋ(t), ẋ(t)〉J . Conversely, equal speeds

implies that ẋ(t) differs from ˙̂x(t) by an isometry q(t) : Tx(t)M → Tx̂(t)M̂
and the condition (I’) follows.

Without loss of generality we can suppose that x is a timelike geodesic.
We start the construction of rolling map by choosing the vector field em(t) =

ẋ(t)
|〈ẋ(t),ẋ(t)〉J |1/2

that is parallel along x(t). Pick the remaining m − 1 parallel

vector fields such that they form an orthonormal basis together with em(t)
along the curve x(t). We repeat the same construction for a parallel frame
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{êi(t)}mi=1 along x̂(t). Define the intrinsic rolling q(t) by

〈êm(t), q(t) ej(t)〉J = 〈êj(t), q(t) em(t)〉J = −δm,j,
A′ = {〈êi(t), q(t) ej(t)〉J}m−1

i,j=1 ,
(13)

where A′ ∈ Gµ−1(m − 1) will be a constant matrix. Conversely, we can
construct a rolling by formulas (13) starting from A′ ∈ Gµ−1(m− 1).

Remark 2. Analogously to the spaces V and V̂ in Theorem 1, let us define
the vector spaces

E = {ε(t) is a normal parallel vector field normal to x(t)} ,

Ê = {ε̂(t) is a normal parallel vector field normal to x̂(t)} ,

with inner product and orientation induced from the metrics on T⊥x M and

T⊥x̂ M̂ . Both vector spaces have dimension m. An extrinsic rolling (q, p)

extending an intrinsic rolling q is determined up to a left action of G(Ê)

or, equivalently, up to a right action of G(E). Both G(E) and G(Ê) are
isomorphic to Gν−µ(m), but not canonically.

The following theorem concerns the question of the extension of an intrinsic

rolling to the extrinsic one if the isometric imbeddings of M and M̂ into some
Rn
ν are given.

Theorem 2. Let q : [0, τ ]→ Q be an intrinsic rolling and let ι : M → Rm+m
ν

and ι̂ : M̂ → Rm+m
ν be given embeddings. Then, given an initial normal

configuration

p0 ∈ (Pι,̂ι)(x0,x̂0), where (x0, x̂0) = pr
M×M̂ q(0),

there exists a unique extrinsic rolling (q, p) : [0, τ ] → Q ⊕ Pι,̂ι satisfying
p(0) = p0.

Proof : Let B0 ∈ Gν−µ(m) be defined by B0 = (bκλ) = (〈ε̂κ(0), p0 ελ(0)〉J),
where {ελ(t)}νλ=1 and {ε̂κ(t)}νκ=1 are normal parallel frames along x(t) and
x̂(t), respectively. Then p(t) satisfies bκλ = 〈ε̂κ(t), p(t) ελ(t)〉J , by Lemma 2,
and it is uniquely determined by this.
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5. Distributions associated to intrinsic rolling
The aim of this Section is to formulate the kinematic conditions for rolling

without slipping and without twisting in terms of a distribution or subbundle
of T (Q ⊕ Pι,̂ι). In this setting, a rolling will be an absolutely continuous
curve in the configuration space Q ⊕ Pι,̂ι tangent to the distribution almost
everywhere. Namely, the kinematic conditions of no-slip and no-twist will
force this curve to be tangent to the distribution.

5.1. Local trivialization of Q⊕ Pι,̂ι and the tangent space of Gµ(m).
Let

π : Q⊕ Pι,̂ι →M × M̂ (14)

denote the bundle for the rolling map. Consider a rolling curve

γ = (q, p) : I → Q⊕ Pι,̂ι
and assume that the interval I is so small that π◦γ(I) = (x(I), x̂(I)) ∈ U×Û
and U ∈ M , Û ∈ M̂ are chosen such that the bundle (14) trivializes when

restricted to the domain U × Û . Thus there is a diffeomorphism h defining
the trivialization

Q⊕ Pι,̂ι ⊃ π−1(U × Û)
h→ U × Û ×Gµ(m)×Gν−µ(m)

(q(t), p(t)) 7→ (x(t), x̂(t), A(t), B(t)),
(15)

given by projections

x(t) = prU(q(t), p(t)), x̂(t) = prÛ(q(t), p(t)), t ∈ I,

A = (aij)
m
i,j=1 = (〈qej, êi〉J)mi,j=1 , B = (bκλ)

m
κ,λ=1 = (〈pελ, ε̂κ〉J)mκ,λ=1 .

Here {ej}mj=1, {ελ}mλ=1, {êi}mi=1 and {ε̂κ}mκ=1 are oriented orthonormal frames of

vector fields of TM |U , T⊥M |U , TM̂ |Û and T⊥M̂ |Û , respectively. Moreover,
we assume that the first µ terms of {ej}mj=1 and {êi}mi=1 are timelike. Corres-
pondingly, the first ν − µ vector fields {ελ}mλ=1 and {ε̂κ}mκ=1 are also timelike.
The groups Gµ(m) and Gν−µ(m) are chosen according to the desirable G-
orientation properties of the rolling.

The kinematic conditions (I)-(III) are written as restrictions on the velocity
vector

γ̇(t) =
(
ẋ(t), ˙̂x(t), Ȧ(t), Ḃ(t)) ∈ Tγ(t)π

−1(U × Û)

∼= Tx(t)U × Tx̂(t)Û × TA(t)Gµ(m)× TB(t)Gν−µ(m).
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We recall the description of the tangent space TGµ(m) in terms of left and
right invariant vector fields. The tangent space at the identity of Gµ(m), or
the Lie algebra gµ(m), is spanned by

{Wij =
∂

∂aij
− εiεj

∂

∂aji
, 1 ≤ i < j ≤ m}, (16)

where

εi =

{
−1 if 1 ≤ i ≤ µ,

1 if µ+ 1 ≤ i ≤ m,
, 〈ei, ej〉J = 〈êi, êj〉J = εiδij,

and δij is the Kronecker symbol. The left and right invariant vector fields
obtained by the translations of Wij(1) in (30) by A ∈ Gµ(m) are the following

A ·Wij(1) =
m∑
r=1

(
ari

∂

∂arj
− εiεjarj

∂

∂ari

)
(17)

Wij(1) · A =
m∑
r=1

(
ajs

∂

∂ais
− εiεjais

∂

∂ajs

)
. (18)

See Appendix for the details.

5.2. Distributions. Now we are ready to rewrite the kinematic conditions
(I)-(III) as a distribution over Q⊕Pι,̂ι. Consider the image of γ(t), satisfying
the conditions (I)-(III), under the trivialization. Then

γ̇(t) = ẋ(t) + ˙̂x(t) +
m∑

i,j=1

ȧij
∂

∂aij
+

m∑
κ,λ=1

ḃκλ
∂

∂bκλ
. (19)

We want to write the last two terms in (19) in the left invariant bases of
TGµ(m) and TGν−µ(m), based on conditions (II) and (III). We start from
(II) and recall that according to coordinate representation of A = {aij} =
{〈q(t)ej, êi〉J} in orthonormal bases {ej}nj=1 and {êj}nj=1 we obtain

q(t)ej =
m∑
l=1

εlalj(t)êl, and q−1(t)êi =
m∑
l=1

εlail(t)el.
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Condition (II) holds if and only if qDdtej(x(t)) = D
dtqej(x(t)), which yields

0 =

〈
q
D

dt
ej(x(t))− D

dt
qej(x(t)), êi

〉
J

=
〈
∇ẋ(t)ej, q

−1êi
〉
J
−

〈
m∑
l=1

εlȧlj êl, êi

〉
J

−

〈
m∑
l=1

εlalj∇ ˙̂x(t)êl, êi

〉
J

=
m∑
l=1

εlail
〈
∇ẋ(t)ej, el

〉
J
− ȧij −

m∑
l=1

εlalj

〈
∇ ˙̂x(t)êl, êi

〉
J
,

for every i, j = 1, . . . ,m. Hence, the third term in (19) can be written as

m∑
i,j=1

ȧij
∂

∂aij
=

m∑
i,j=1

(
m∑
l=1

εlail
〈
∇ẋ(t)ej, el

〉
J
−

m∑
l=1

εlalj
〈
∇qẋ(t)êl, êi

〉
J

)
∂

∂aij

=
m∑

j,l=1

〈
∇ẋ(t)ej, el

〉
J
εl

m∑
i=1

ail
∂

∂aij
−

m∑
i,l=1

〈
∇qẋ(t)êl, êi

〉
J
εl

m∑
j=1

alj
∂

∂aij

=
m∑

j,l=1

〈
∇ẋ(t)ej, el

〉
J
εlA ·

∂

∂alj
−

m∑
i,l=1

〈
∇qẋ(t)êl, êi

〉
J
εl

∂

∂ail
· A

=
m∑

i,j=1

〈
∇ẋ(t)ej, ei

〉
J
εiA ·

∂

∂aij
−

m∑
i,j=1

〈
∇qẋ(t)êj, êi

〉
J
εj

∂

∂aij
· A (20)

=
m∑

i,j=1

〈
∇ẋ(t)ej, ei

〉
J
εiA ·

∂

∂aij
−

m∑
i,j=1

〈
∇qẋ(t)êj, êi

〉
J
εj

m∑
r,s=1

ajsεrεiairA ·
∂

∂ars

=
m∑

i,j=1

〈
∇ẋ(t)ej, ei

〉
J
εiA ·

∂

∂aij

−
m∑

r,s=1

〈
∇qẋ(t)(

m∑
j=1

εjajsêj), (
m∑
i=1

εiairêi)

〉
J

εrA ·
∂

∂ars

=
m∑

i,j=1

〈
∇ẋ(t)ej, ei

〉
J
εiA ·

∂

∂aij
−

m∑
r,s=1

〈
∇qẋ(t)qes, qer

〉
J
εrA ·

∂

∂ars

=
m∑

i,j=1

(〈
∇ẋ(t)ej, ei

〉
J
−
〈
∇qẋ(t)qej, qei

〉
J

)
εiA ·

∂

∂aij
.

Interchanging the indices i and j and noticing that the coefficients are skew
symmetric, we get

m∑
i,j=1

ȧji
∂

∂aji
=

m∑
i,j=1

(〈
∇ẋ(t)ej, ei

〉
J
−
〈
∇qẋ(t)qej, qei

〉
J

)
(−1)εjA · ∂

∂aji
. (21)
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Summing (20) and (21) we deduce

m∑
i,j=1

ȧij
∂

∂aij
=
∑
i<j

(〈
∇ẋ(t)ej, ei

〉
J
−
〈
∇qẋ(t)qej, qei

〉
J

)
εiA ·Wij. (22)

Written the same in a right invariant basis, we obtain

m∑
i,j=1

ȧij
∂

∂aij
=
∑
i<j

(〈
∇ẋ(t)q

−1êj, q
−1êi

〉
J
−
〈
∇qẋ(t)êj, êi

〉
J

)
εi
[
Ad(A−1)

]
A ·Wij.

Similarly, (III) holds if and only if

m∑
κ,λ=1

ḃκλ
∂

∂bκλ
=
∑
κ<λ

(〈
∇⊥ẋ(t)ελ, εκ

〉
J
−
〈
∇⊥qẋ(t)pελ, pεκ

〉
J

)
εκB ·Wκλ.

=
∑
κ<λ

(〈
∇⊥ẋ(t)p

−1ε̂λ, p
−1ε̂κ

〉
J
−
〈
∇⊥qẋ(t)ε̂λ, ε̂κ

〉
J

)
εκ
[
Ad(B−1)

]
B ·Wκλ. (23)

It may seem that all of the coefficients of Wij(A) in (22) vanish from con-
ditions (II). This is not true, however, due to the subtle difference between
the covariant derivative D

dt along the curve x̂(t) and the covariant derivative

∇ ˙̂x(t) along the vector fields ˙̂x(t). Indeed, notice that

D

dt
asj(t)ês(x̂(t)) = ȧsj(t)ês(x̂(t)) + asj(t)

D

dt
ês(x̂(t))

and since {ês}ms=1 is extendable in a neighborhood of x̂(t) we can continue
and get

= ȧsj(t)ês(x̂(t)) + asj(t)∇ ˙̂x(t)ês(x̂(t)) = ȧsj ês(x̂(t)) + asj∇qẋ(t)ês(x̂(t)).

While ∇ ˙̂x(t)asj(t)ês(x(t)) = asj(t)∇ ˙̂x(t)ês(x(t)) due to the R linearity of the

connection and the fact that the function asj(t) depends on t and is not

defined as a function on M . Similar relations hold for D⊥

dt .
Observe that, due to the expressions (22) and (23), the vector field γ̇ along

γ ∈ Q ⊕ Pι,̂ι can be considered as a ”non-twisted lift” of the vector field ẋ
along the curve x ∈M . We generalize this property on any local vector field
on M .
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Definition 5. Non-twisted lifts of a vector field X on U ⊂M are the vector
fields V(X) and V⊥(X) on π−1(U × Û) ⊂ Q⊕ Pι,̂ι satisfying

dh (V(X)(q, p)) =
∑
i<j

(
〈∇Xej, ei〉J − 〈∇qXqej, qei〉J

)
εiA ·Wij. (24)

dh
(
V⊥(X)(q, p)

)
=
∑
κ<λ

(〈
∇⊥Xελ, εκ

〉
J
−
〈
∇⊥qXpελ, pεκ

〉
J

)
εκB ·Wκλ. (25)

for any local trivialization h as in (15) and any (q, p) ∈ π−1(U × Û).

Notice that since the covariant derivative along a vector field X depends
only on the value X(x) at x ∈ U ⊂ M we conclude that if Y (x) = X(x) =
vx ∈ TxM , then the lifts V(Y )(q, p) = V(X)(q, p) for every (q, p) ∈ (Q ⊕
Pι,̂ι)x×x̂. Hence, we may define the lift V(vx)(q, p) for any vector vx ∈ TxM
and (q, p) ∈ (Q⊕Pι,̂ι)x×x̂. The no-slip conditions imply that qvx ∈ Tx̂M̂ . Also
notice that the map X 7→ V(X) is linear. The same holds for X 7→ V⊥(X).
This leads to the definition of the distributions contained in the following
propositions.

Proposition 5. A curve (q(t), p(t)) in Q ⊕ Pι,̂ι is a rolling if and only if it
is a horizontal curve with respect to the distribution E, defined by

E(q,p) =
{
vx + qvx + V(vx)(q, p) + V⊥(vx)(q, p)| vx ∈ TxM

}
,

where (q, p) ∈ (Q⊕ Pι,̂ι)x×x̂.

Proposition 6. A curve q(t) in Q is an intrinsic rolling if and only if it is
a horizontal curve with respect to the distribution D, defined by

Dq = {vx + qvx + V(vx)(q)| vx ∈ TxM} , q ∈ Qx×x̂.

6. Causal character of the rolling
The specific feature of pseudo-Riemannian manifolds is the causal struc-

ture, or division of all vectors into three classes timelike, spacelike and nullike
(or lightlike for the metric of index one). It is easy to see the following

Proposition 7. If a rolling curve x : I → M is of one of the causal types,
then the development curve x̂ is of the same type.

Proof : Since the map q : Tx(t)M → Tx̂(t)M̂ is an isometry then the no-slip

condition implies 〈 ˙̂x(t), ˙̂x(t)〉J = 〈q(t)ẋ(t), q(t)ẋ(t)〉J = 〈ẋ(t), ẋ(t)〉J .
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The pseudo-orthogonal group also admits the scalar product as was men-
tioned in Subsection 3.1.3 that we denoted by 〈〈. , .〉〉J . Under the local triv-
ialization h as in Subsection 5.1 a rolling curve takes the form h(q(t), p(t)) =
γ(t) =

(
x(t), x̂(t)), A(t), B(t)

)
, t ∈ I. We know that the curves x and x̂

have the same causal character. We ask whether the curves A ∈ Gµ(m) and
B ∈ Gν−µ(m) have the same causal character? As we saw for the benchmark
example, the Lorentzian sphere, and for the symmetric spaces it is true under
the classical rolling. In the following theorem we give a partial answer to this
question in general case.

Theorem 3. If γ(t) =
(
x(t), x̂(t), A(t), B(t)

)
is a rolling curve under the

local trivialization then the causal character of curves A(t), B(t) can be cal-
culated as follows. The curve A is timelike (spacelike or null) if the expression

m∑
i,h=1

εiεh

( m∑
k=1

[
ẋkΓikh − cih ˙̂xkΓ̂ikh

])2

,

is negative (positive or zero), respectively. Here cih =
∑m

r,s=1 εrεsarhasi. The
curve B is timelike (spacelike or null) if the expression

m∑
κ,χ=1

εκεχ

( m∑
l=1

[
ẋl
(
Γ⊥
)κ
lχ
− dκχ ˙̂xl

(
Γ̂⊥
)κ
lχ

])2

is negative (positive or zero), respectively. Here dκχ =
∑m

ρ,σ=1 ερεσbρχbσκ.

Proof : We start from the general observation. If A : I → Gµ(m) is a curve

then Ȧ(t) = A(t) · U(t), where U is a curve in the Lie algebra of Gµ(m).
Then

〈〈Ȧ(t), Ȧ(t)〉〉J = tr(ȦJȦ) = − trU 2,

since AtJA = J and JU tJ = −U .
Under the local trivialization the derivative γ̇ was presented as

γ̇(t) = ẋ(t) + ˙̂x(t) +
m∑

i,j=1

ȧij
∂

∂aij
+

m∑
κ,λ=1

ḃκλ
∂

∂bκλ
= ẋ(t) + ˙̂x(t) + Ȧ(t) + Ḃ(t).

We start from study of Ȧ. According to (22) we have Ȧ = A · U with

U =
∑
i<j

(〈
∇ẋ(t)ej, ei

〉
J
−
〈
∇qẋ(t)qej, qei

〉
J

)
εiWij(1).
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We denote the coefficients of εiWij(1) by

wij =
(〈
∇ẋ(t)ej, ei

〉
J
−
〈
∇qẋ(t)qej, qei

〉
J

)
.

Observe 〈∇ẋ(t)ej, ei〉J =
∑m

k=1 ẋ
k(t)〈∇ekej, ei〉J =

∑m
k=1 ẋ

k(t)Γikj(x(t)) and

〈∇qẋ(t)qej, qei〉J =
m∑
l=1

˙̂xl(t)〈∇êl

m∑
r=1

εrarj êj,
m∑
s=1

εsasiêi〉J

=
m∑

s,r=1

εrεsarjasi

m∑
l=1

˙̂xl(t)Γ̂ilj(x(t)),

where Γikj(x(t)) and Γ̂ilj(x(t)) are Christoffel symbols of Levi-Civita connec-

tions for M and M̂ along curves x and x̂, respectively.
Since for the trace we need only information about the diagonal terms of

U 2 we find

{U 2}ii =
m∑
h=1

{U}ih{U}hi =
m∑
h=1

εhw
2
ih for i = 1, . . . µ.

{U 2}ii =
m∑
h=1

{U}ih{U}hi =
m∑
h=1

−εhw2
ih for i = µ, . . .m.

Thus the trace is expressed as followed

− trU 2 = −
m∑

i,h=1

−εiεhw2
ih =

m∑
i,h=1

εiεh

( m∑
k=1

[
ẋkΓikh − cih ˙̂xkΓ̂ikh

])2

,

where cih =
∑m

r,s=1 εrεsarhasi.

Analogously for Ḃ(t) = B(t) · U(t), where B = {bκλ}mκλ=1 is a curve in the
group Gν−µ(m) and U is a curve in the Lie algebra of Gν−µ(m) we have

− trU2 = −
m∑

κ,χ=1

−εκεχw2
κχ =

m∑
κ,χ=1

εκεχ

( m∑
l=1

[
ẋl
(
Γ⊥
)κ
lχ
− dκχ ˙̂xl

(
Γ̂⊥
)κ
lχ

])2

,

where dκχ =
∑m

ρ,σ=1 ερεσbρχbσκ.
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7. Extended configuration space
In the present section we would like to describe the embedding of the

configuration spaces Q and Q ⊕ Pi,̂i into, so called, extended configuration
spaces. One of main difficulties to work with Q and Q ⊕ Pi,̂i is that these
bundles are not principal bundles, they are just a fiber bundles whose typical
fiber under the local trivialization is diffeomorphic to one of the groupsGµ(m)
or Gν−µ(m). The extended configuration spaces are the vector bundles and
the fiber bundles Q and Q ⊕ Pi,̂i form subbundles of them. This idea was

quite successfully exploit in [6]. We give necessary definitions.
We start from the configuration space Q. It is well known that the space

Hom(V,W ) of linear maps between two real vector spaces can be identified
with the tensor product V ∗ ⊗W , where V ∗ is the dual to V . Applying this

to the vector spaces V = TxM and W = Tx̂M̂ we obtain the tensor product

T ∗xM ⊗ Tx̂M̂ . Since we are interested in finding the configuration space over

the product M × M̂ , we use the coordinate independent embeddings

T ∗xM ⊂ T ∗(x,x̂)(M × M̂) ∼= T ∗xM × T ∗x̂M̂ and

Tx̂M̂ ⊂ T(x,x̂)(M × M̂) ∼= TxM × Tx̂M̂.

Therefore, the space TxM ⊗ Tx̂M̂ can be canonically included into the space

T 1
1 (M × M̂)(x,x̂) := T ∗(x,x̂)(M × M̂)⊗ T(x,x̂)(M × M̂)

of (1, 1)-tensors at point (x, x̂) ∈ M × M̂ . Taking the disjoin union over

(x, x̂) ∈M × M̂ , we can consider T ∗M ⊗ TM̂ as a vector subbundle

Π: T ∗M ⊗ TM̂ →M × M̂ (26)

of a tensor bundle T 1
1 (M × M̂). We claim that the bundle πQ : Q→M × M̂

is a subbundle of (26). Indeed since the manifolds M and M̂ are endowed
with the metric, the configuration space Q is defined as a following subset of

T ∗M ⊗ TM̂ :

Q(x,x̂) =
{

q ∈ (T ∗M ⊗ TM̂)(x,x̂) | (x, x̂) ∈M × M̂, q is an isometry

preserving the chosen (space, time or space-time) orientation
}
.
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Recall that there is a diffeomorphism hQ defining the trivialization

Q ⊃ π−1
Q (U × Û)

hQ→ U × Û ×Gµ(m)

q 7→ (x, x̂, A).
(27)

The local trivialization hQ of the bundle πQ : Q→M × M̂ can be considered
as a restriction of the local trivialization

Π−1(U × Û) −→ U × Û × gl(m).

If the metric is positive definite, then Gµ(m) is simply the group SO(m).
The same arguments as in [6, 12] shows that Q is a smooth subbundle of

T ∗M ⊗ TM̂ , and that the bundle Q is not a Gµ(m)-principle bundle in the
case m > 2.

Analogously, given the isometric embeddings ι : M → Rm+m
ν and ι̂ : M̂ →

Rm+m
ν we define the vector bundle

Π⊥ : T⊥∗M ⊗ T⊥M̂ →M × M̂. (28)

Then the disjoint union Pι,̂ι of sets of all orientation preserving isometries

p : T⊥x M → T⊥x̂ M̂ becomes the smooth subbundle of (28). The trivialization

Pι,̂ι ⊃ π−1
Pι,ι̂

(U × Û)
hQ→ U × Û ×Gν−µ(m)

p 7→ (x, x̂, B).
(29)

can be also considered as a restriction of the local trivialization

(Π⊥)−1(U × Û) −→ U × Û × gl(m).

We conclude that the fiber bundle Q ⊕ Pι,̂ι is a smooth subbundle of the
vector bundle

Π⊕ Π⊥ :
(
T ∗M ⊗ TM̂

)
⊕
(
T⊥∗M ⊗ T⊥M̂

)
→M × M̂

and the trivialization (15)

Q⊕ Pι,̂ι ⊃ π−1(U × Û)
h→ U × Û ×Gµ(m)×Gν−µ(m)

(q, p) 7→ (x, x̂, A,B).

is the restriction of the trivialization

(Π⊕ Π⊥)−1(U × Û) −→ U × Û × gl(m)× gl(m).
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8. Appendix - The tangent space of Gµ(m)
We describe the tangent space TGµ(m) in terms of left and right invariant

vector fields. Following the notation of Subsection 5.1, we use the isomor-
phism h to identify the tangent spaces under trivialization:

Tπ−1(U × Û) ∼= TU × T Û × TG(Rm
µ )× TG(Rm

ν−µ).

The tangent space at the identity of Gµ(m), or the Lie algebra gµ(m), is
spanned by the skew symmetric part

Wij =
∂

∂aij
− ∂

∂aji
, if 1 ≤ i < j ≤ µ, or µ+ 1 ≤ i < j ≤ m,

and the symmetric part

Wij =
∂

∂aij
+

∂

∂aji
, if 1 ≤ i ≤ µ < j ≤ m.

We write the basis Wij in the homogeneous form by making use of the sign
symbol given by the scalar product

〈ei, ej〉J = 〈êi, êj〉J = εiδij, εi =

{
−1 if 1 ≤ i ≤ µ,

1 if µ+ 1 ≤ i ≤ m,

where δij is the Kronecker symbol. Thus

{Wij =
∂

∂aij
− εiεj

∂

∂aji
, 1 ≤ i < j ≤ m} (30)

generates the tangent space of G(Rm
µ ) at the identity. If we write (30) in the

form εiWij = εi
∂
∂aij
− εj ∂

∂aji
, then we observe the property εiWij = −εjWji.

Since the left and right action of Gµ(m) on the tangent space TGµ(m) is
described by

A · ∂

∂aij
=

m∑
r=1

ari
∂

∂arj
,

∂

∂aij
· A =

m∑
s=1

ajs
∂

∂ais
.

then, the left and right translations by A ∈ Gµ(m) of the basis elements in
(30) defines vectors

A ·Wij(1) =
m∑
r=1

(
ari

∂

∂arj
− εiεjarj

∂

∂ari

)
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as a global left invariant basis of TGµ(m) and

Wij(1) · A =
m∑
r=1

(
ajs

∂

∂ais
− εiεjais

∂

∂ajs

)
as a global right invariant basis of TGµ(m).

We want to present the formula expressing the left invariant basis A·Wij(1)
in terms of the right invariant basis Wij(1) · A and vice versa. Recall the
notation AJ = JAtJ , and observe that the multiplication from the left by
J = diag(Iµ, Iν−µ) changes the sign of the first µ rows and the multiplication
from the right by J change the sign of the first ν − µ columns. Therefore,
for A = {aij}, we have AJ = {aJij} = {εiεjaji}. Then

{AJA}jl =
m∑
s=1

aJjsasl =
m∑
s=1

εjεsasjasl = δlj,

or

{AAJ}jl =
m∑
s=1

ajsa
J
sl =

m∑
s=1

εlεsajsals = δlj.

Thus we obtain the following formula to switch from left to right translation

A · ∂

∂aij
=

m∑
r=1

ari
∂

∂arj
=

m∑
l,r=1

ariδjl
∂

∂arl
=

m∑
l,r,s=1

εlεsariasjasl
∂

∂arl

=
m∑

r,s=1

εlεsariasj

(
∂

∂ars
· A
)
,

and the other way around,

∂

∂aij
· A =

m∑
s=1

ajs
∂

∂ais
=

m∑
l,s=1

ajsδli
∂

∂als
=

m∑
l,r,s=1

εrεiajsalrair
∂

∂als

=
m∑

r,s=1

εrεiajsair

(
A · ∂

∂ars

)
.

Moreover( ∂

∂aij
− εiεj

∂

∂aji

)
· A =

m∑
r,s=1

εiεr
(
ajsair − aisajr)

)
A · ∂

∂ars
(31)
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and from other side interchanging r and s we obtain( ∂

∂aij
− εiεj

∂

∂aji

)
· A =

m∑
r,s=1

εsεi
(
ajrais − airajs)

)
A · ∂

∂asr
. (32)

Summing (31) and (32) and observing that εiWij = −εjWji, we get for i < j

Wij(1) · A =
∑
r<s

εiεr
(
ajsair − aisajr

)
A ·Wrs(1).

We also notice that

Wij(1) · A = Ad(A−1)Wij(A), with A−1 = AJ .

Now we shall calculate the commutators of Wij based on formula

[
∂

∂aij
,
∂

∂akl
] = δjk

∂

∂ail
− δil

∂

∂akj
,

to obtain

[Wij,Wkl] = δjk(
∂
∂ail
− εiεjεkεl ∂

∂ali
)− δil( ∂

∂akj
− εiεjεkεl ∂

∂ajk
)

+δik(−εiεj ∂
∂ajl

+ εkεl
∂
∂alj

)− δjl(−εiεj ∂
∂aki

+ εkεl
∂

∂aik
).

Observe that, if εiεj = εkεl = ±1, the commutator is a skew-symmetric
matrix, in the case εiεj = −εkεl one obtains a symmetric matrix.

Each basis vector ∂
∂aij

can be written in the matrix form by using the

standard notation of (m ×m)-matrices Eij with zero entries except of 1 at
the i-row and j-column. Then

Wij(1) = Eij − εiεjEji, if 1 ≤ i < j ≤ m.

and all actions are written as a matrix multiplication

A ·Wij(1) = A(Eij − εiεjEji) and Wij(1) · A = (Eij − εiεjEji)A.

The commutation relations are written as

[Wij,Wkl] = δjk(Eil − εiεjεkεlEli)− δil(Ekj − εiεjεkεlEjk)
+δik(−εiεjEjl + εkεlElj)− δjl(−εiεjEki + εkεlEik).
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