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This article has the following purposes: first of all, to suggest that the con-
text of pointed weakly Mal’tsev categories is still strong enough to work with
commutators, and more generally with the admissibility diagrams—which are
diagrams such as (A) below—introduced in [18]. We show that in this context
the Smith is Huq condition is still equivalent to the condition that a reflexive
graph is multiplicative if and only if the kernels of its domain and codomain
morphisms commute (Proposition 3). We also characterise Smith is Huq in
terms of the fibration of points (Proposition 2) and show that in the richer
context of semi-abelian categories, the Smith is Huq condition is equivalent
to several other conditions, relating thus many branches of categorical algebra
(Theorem 3). Finally, we explain that the concept of weighted commutativity
of Gran, Janelidze and Ursini [9] is essentially equivalent to admissibility in
the above sense and show that Smith is Huq amounts to independence of the
chosen weight for cospans of proper morphisms (Example 6, Proposition 5,
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Theorem 1 and 3). We also decompose their normal weighted commutator in
terms of binary and ternary Higgins commutators [11] (Theorem 4).

Weakly Mal’tsev categories. A category is called weakly Mal’tsev [19]
if and only if it has pullbacks of split epimorphisms along split epimorphisms
and the splittings e1 � x1A, s�fy and e2 � xr�g, 1Cy induced by the sections r
and s, respectively, are jointly epimorphic.
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In such categories, for any diagram of the shape
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with f �r � 1B � g�s and α�r � β � γ�s there exists at most one morphism
ϕ : A�B C Ñ D from the pullback of f and g to the object D such that
ϕ�e1 � α and ϕ�e2 � γ. This means that if the points (= split epimorphisms
with chosen splitting) pf, rq and pg, sq are fixed, then the existence of ϕ is a
property of the triple pα, β, γq. We shall say that pα, β, γq is admissible with
respect to pf, r, g, sq whenever such a ϕ exists [18].

Every Mal’tsev category is in particular weakly Mal’tsev. Nevertheless, there
are many examples of weakly Mal’tsev categories which do not satisfy the
Mal’tsev axiom saying that every reflexive relation is an equivalence rela-
tion [6]. The category of commutative magmas with cancellation and middle
four interchange associativity is one such example:

Example 1. We consider the quasivariety of algebras pX,�q with one binary
operation � : X �X Ñ X which satisfies$'&'%x� y � y � x,px� yq � pz � wq � px� zq � py � wq,

x� y � x1 � y ñ x � x1
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for all w, x, x1, y, z P X. In this category a triple pα, β, γq is admissible
with respect to pf, r, g, sq if and only if, for every a P A and c P C with
fpaq � b � gpcq, the equation

x� βpbq � αpaq � γpcq
has a solution. See [8] for further details on this example.

This illustrates how the notion of admissibility changes from context to con-
text and in general may not be immediately related to “commuting elements”.
However:

Example 2. A classical instance of admissibility occurs when two equivalence
relations on a given base object in a Mal’tsev category Smith-commute [30,
26, 3]. This happens when in (A) we take B � D and β � 1 and the pairspf, αq, pg, γq are jointly monomorphic. Then pα, 1, γq is admissible with respect
to pf, r, g, sq if and only if the relations pf, r, αq and pg, s, γq commute—more
details will be given later.

Example 3. In a Mal’tsev variety V , a triple pα, β, γq is admissible with respect
to pf, r, g, sq as in (A) if and only if the function ϕ : A�B C Ñ D defined by
ϕpa, cq � ppαpaq, βpbq, γpcqq is an algebra homomorphism; see [14]. Here a P A

and c P C with fpaq � b � gpcq and p is a Mal’tsev term of the theory of V .

New examples may be constructed using the following result.

Proposition 1. Let A and B be two categories with pullbacks and F : AÑ B

a pullback-preserving faithful functor. If B is weakly Mal’tsev then so is A.

Proof : Considering a diagram of the form (A) in A with f �r � 1B � g�s
and α�r � β � γ�s, we only have to prove that whenever a morphism
ϕ : A�B C Ñ D with ϕ�e1 � α and ϕ�e2 � γ exists, it is necessarily unique.
This follows immediately from the uniqueness of F pϕq because B is weakly
Mal’tsev and F is faithful.

So when B is Mal’tsev, A will be weakly Mal’tsev. However, as soon as the
functor F is not just faithful but also full, it is conservative, so it reflects also
the Mal’tsev property.

Example 4. One simple example is obtained as follows. We consider the
category whose objects are pairs pA0, Aq where A � pA,�, 0q is an abelian
group and A0 � A is a subset of A containing the zero element. A mor-
phism f : pA0, Aq Ñ pB0, Bq is a group homomorphism f : AÑ B such that
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fpA0q � B0. Here pα, β, γq is admissible with respect to pf, r, g, sq if and only
if

αpxq � βpyq � γpzq P D0 � D

whenever x P A0 � A and z P C0 � C are such that

fpxq � gpzq � y P B0 � B.

When the category is also pointed (and hence has kernels of split epimorphisms)
it turns out that sometimes the admissibility of pα, β, γqwith respect to pf, r, g, sq
reduces to the admissibility of pα�kerpfq, 0, γ�kerpgqq with respect to p0, 0, 0, 0q.
This happens for instance in the category of groups—see Example 8—but is
far from being the case in general, even for protomodular categories:

Example 5. In the variety of algebras [13] with two binary operations x� y,
x � y, a constant 0 and satisfying x � 0 � x � 0 � x, px � yq � y � x,px� yq� y � x, a triple pα, β, γq is admissible with respect to pf, r, g, sq if and
only if��pαpxq � γpyqq � βpbq�� �pαpx1q � γpy1qq � βpb1q��� βpb� b1q� ��pαpxq � βpbqq � pαpx1q � βpb1qq�� βpb� b1q�� ��pγpyq � βpbqq � pγpy1q � βpb1qq�� βpb� b1q�,
for all x, x1 P Kerpfq, y, y1 P Kerpgq and b, b1 P B. Observe that for groups,
this condition simplifies to αpxq � γpyq � γpyq � αpxq for all x P Kerpfq and
y P Kerpgq. The example in the category of loops considered in [11] may be
used to show that in general, this latter condition on commuting kernels does
not suffice for the triple pα, β, γq to be admissible.

Another well-known counterexample, which was discovered by Janelidze, is
the category of digroups; see [1, 2].

Example 6. In the article [9] the authors consider a weighted commutator
which, depending on the chosen weight, captures several classical commutators.
In a finitely cocomplete homological category, a weighted cospan is a triple
of coterminal arrows

W

w

��

X x
,2 D Yy

lr

(B)
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in which px, yq plays the role of cospan and w is the weight. It is imme-
diately clear from the definitions that the weighted centrality of x and y

over w from [9] amounts to admissibility of
��
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In fact also the converse holds: admissibility may be expressed as weighted
centrality (Theorem 1).

Reflected admissibility. Let A be a pointed weakly Mal’tsev category with
pullbacks. In this paper we study properties of the normalisation functor

N: AdmpAq Ñ CospanpAq,
where AdmpAq is the category of admissibility diagrams in A, which are
diagrams of shape

A
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γ
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(D)

with f �r � 1B � g�s and α�r � β � γ�s. The functor N maps such a diagram
to the cospan

X � Kerpfq α�kerpfq
,2 D Kerpgq � Y

γ�kerpgq
lr (E)

in A. Note that by taking the pullback of f with g, any admissibility diagram
such as (D) may be extended to (A) in which the square is a double split
epimorphism. We say that the triple pα, β, γq is admissible with respect
to pf, r, g, sq if there is a (necessarily unique) morphism ϕ : A�B C Ñ D such
that ϕ�e1 � α and ϕ�e2 � γ. We say that α and γ Huq-commute if pα, 0, γq
is admissible with respect to p0, 0, 0, 0q. (That is to say, B is zero. This is
clearly equivalent with the definition from [12, 1].) We say that the functor N
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reflects admissibility if and only if pα, β, γq is admissible whenever α�kerpfq
and γ�kerpgq Huq-commute.

Smith-commuting reflexive graphs. Consider a pair of reflexive graphspR, Sq on a common object D as on the left

R

r0 ,2

r1
,2 D

x1D,1Dylr x1D,1Dy ,2 S,
s0

lr

s1lr

Rx1R,x1D,1Dy�r1y
z���

��
��

� r0

�$?
??

??
??

R�D S θ ,2 D

S
xx1D,1Dy�s0,1SyZd??????? s1

:D�������

and consider the induced pullback R �D S of r1 and s0. The pair pR, Sq
Smith-commutes when there is a (necessarily unique) morphism θ such that
the above diagram on the right is commutative. A span

D
d

z���
��

��
� c

�$?
??

??
?

D0 D1
0

(F)

is a pregroupoid when the kernel pairs of c and d Smith-commute [26, 30].

Smith versus Huq. As explained in [9], taking W � 0 in Example 6 captures
Huq (x and y are central over 0 if and only if they Huq-commute), and w �
1D captures Smith (the respective normalisations x and y of two equivalence
relations R and S on D are central over 1D if and only if R and S Smith-
commute).

It is well known that Smith-commuting equivalence relations always have
Huq-commuting normalisations [4]. However, the converse need not hold:
counterexamples exist in the category of digroups [1, 2] and in the category
of loops [11]. A pointed weakly Mal’tsev category with pullbacks satisfies the
Smith is Huq condition (SH) if and only if two equivalence relations on a
given object always commute as soon as their normalisations do.

The condition (SH) is fundamental in the study of internal categorical struc-
tures: it is shown in [23] that, for a semi-abelian category, this condition holds
if and only if every star-multiplicative graph is an internal groupoid. As explai-
ned in [15] and in [11] this is important when characterising internal crossed
modules; furthermore, the condition has immediate (co)homological consequen-
ces [29].
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Any pointed strongly protomodular exact category satisfies (SH) [4] (in par-
ticular, so does any Moore category [28]) as well as any action accessible cate-
gory [5, 7] (in particular, any category of interest [24, 25]). Well-known concrete
examples are the categories of groups, Lie algebras, associative algebras, non-
unitary rings, and (pre)crossed modules of groups.

Conditions in terms of the fibration of points. Given any object B

in A, the category PtBpAq of points over B in A is still weakly Mal’tsev by
Proposition 1.

Proposition 2. In a pointed weakly Mal’tsev category with pullbacks A, the
following conditions are equivalent:

(2.1) for every morphism p : E Ñ B in A, the pullback functor

p� : PtBpAq Ñ PtEpAq
reflects Huq-commutativity;

(2.2) for every object B of A, the kernel functor Ker: PtBpAq Ñ A reflects
Huq-commutativity;

(2.3) the normalisation functor N reflects admissibility.

Proof : Condition (2.2) is the special case of (2.1) where p is the unique mor-
phism !B : 0Ñ B. To prove that (2.2) implies (2.3) it suffices to rewrite Dia-
gram (D) in the shape
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and consider it as a cospan pxα, fy, xγ, gyq in PtBpAq. Then taking kernels
here gives the same result as taking the normalisation of the original dia-
gram (D). So condition (2.3) is an instance of the kernel functors reflecting
Huq-commutativity in the case where the point which is the codomain of the
cospan is a product.
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To see that (2.3) implies (2.2), let
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be a cospan in PtBpAq, and suppose that α�kerpfq and γ�kerpgq commute
in Kerppq. Then they certainly commute in D, and Condition (2.3) gives us
a morphism ϕ : A�B C Ñ D in A such that ϕ�e1 � α and ϕ�e2 � γ. We
only need to check that this ϕ is a morphism of points, of which the domain is
p � f �πA � g�πB : A�B C Ñ B with section β � e1�r � e2�s : B Ñ A�B C.
Now

p�ϕ�e1 � p�α � f � f �πA�e1 � p�e1
and, similarly, p�ϕ�e2 � p�e2, so that p � p�ϕ by the weak Mal’tsev property
of A. Furthermore, ϕ�β � ϕ�e1�r � α�r � β.

The following standard trick shows (2.2) ñ (2.1). For any p : E Ñ B we
have the induced inverse image functors

PtBpAq p�
,2 PtEpAq !�E ,2 Pt0pAq � A.

Clearly !�E�p� �!�B � Ker. By assumption, this functor reflects Huq-commu-
tativity. But the kernel functor !�E also preserves Huq-commutating pairs of
morphisms, and these two properties together give us (2.1).

Further conditions. In terms of internal categorical structures we have the
following basic conditions.

Proposition 3. In a pointed weakly Mal’tsev category with pullbacks, the fol-
lowing conditions are equivalent:

(3.1) every two effective equivalence relations over the same base object
Smith-commute as soon as their normalisations Huq-commute;

(3.2) every span is a pregroupoid provided the kernels of its domain and
codomain morphisms Huq-commute;

(3.3) every reflexive graph with commuting kernels of the domain and codo-
main morphisms is an internal groupoid;

(3.4) every reflexive graph with commuting kernels of the domain and codo-
main morphisms is an internal category;
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(3.5) every reflexive graph with commuting kernels of the domain and codo-
main morphisms is a multiplicative graph.

Proof : To obtain (3.2) from (3.1) it suffices to take the kernel pairs of the
domain and codomain morphisms. (3.3) is a particular case of (3.2) where the
span has D0 � D

1
0, and d and c are split by the same morphism. (3.4) follows

from (3.3) since every internal groupoid is an internal category. Finally (3.5)
follows form (3.4) because every internal category is also a multiplicative graph.
To obtain (3.1) from (3.5) we may repeat the proof of Theorem 1.6 in [23] as
it is still valid in the present context.

Thus we see that in particular, in this context, the Smith is Huq property (3.1)
implies that internal groupoids, internal categories and multiplicative graphs
are the same (cf. [22]).

Proposition 4. In a pointed weakly Mal’tsev category with pullbacks A, each
of the following conditions implies the next one:

(4.1) the conditions (2.1)–(2.3) of Proposition 2;
(4.2) the normalisation functor N reflects admissibility for those diagrams

(D) where α and γ are regular epimorphisms;
(4.3) any two reflexive graphs over the same base object Smith-commute as

soon as their normalisations Huq-commute;
(4.4) any two reflexive relations over the same base object Smith-commute

as soon as their normalisations Huq-commute;
(4.5) any two equivalence relations over the same base object Smith-com-

mute as soon as their normalisations Huq-commute;
(4.6) the conditions (3.1)–(3.5) of Proposition 3.

Furthermore, (4.6) implies (4.5). When A is a semi-abelian category, (4.5)
implies (4.2), so that conditions (4.2)–(4.6) are equivalent.

Proof : Condition (4.3) is the particular case of condition (4.2) with B � D

and β � 1B. (4.4) is a particular case of (4.3) where the graphs are jointly
monic spans. (4.5) is a particular case of (4.4) where the reflexive relations are
also symmetric and transitive.

(4.6) ñ (4.5) is the content of Remark 1.7 in [23], but in the semi-abelian
case we can go up to (4.2) in one step as follows.

Given pα, β, γq as in (D) we define a span (F) by d � coeqpα, β�fq �
cokerpα�kerpfqq and c � coeqpβ�g, γq � cokerpγ�kerpgqq. Since the direct
image of a kernel along a regular epimorphism is a kernel, α�kerpfq � kerpdq�α1
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and γ�kerpgq � kerpcq�γ 1 where α1 and γ 1 are regular epi. Suppose that
α�kerpfq and γ�kerpgq commute. Then we have φ : X � Y Ñ D, which factors
as φ1�pα1�γ 1q where α1�γ 1 is again regular epi. It follows that kerpdq and kerpcq
Huq-commute. But this gives a pregroupoid structure on D by assumption,
so that the triple pα, β, γq is admissible. Indeed, the needed ϕ : A�B C Ñ D

is given by ϕpa, b, cq � θpαpaq, βpbq, γpcqq where R and S are the respective
kernel relations of d and c and θ : R �D S Ñ D is the pregroupoid structure
on pd, cq.

Even in the semi-abelian case, there is a gap between (4.1)—the conditions
of Proposition 2—and the formally weaker (4.2)–(4.6): the following example
in the category of Heyting semi-lattices shows that indeed, (4.1) is strictly
stronger. On the other hand, in the category of groups, condition (4.1) holds:
see Example 8.

Example 7. An exact Mal’tsev category is called arithmetical [27, 1] when
every internal groupoid is an equivalence relation. In presence of finite coli-
mits, then the Smith commutator rR, SsS of two equivalence relations R and
S on an object D is their intersection R ^ S. It is also well known that if
the category is, moreover, pointed, then the only abelian object is the zero
object, and the Huq commutator rX, Y sH of normal subobjects X, Y � D is
the intersection X^Y . Since the normalisation functor preserves intersections,
it follows that any pointed arithmetical category with finite colimits has the
Smith is Huq property.

Two examples of this situation which are relevant to us are the category HSLat

of Heyting (meet) semi-lattices and DLat of distributive lattices. The latter is
only weakly Mal’tsev [21], but it is easily seen that it fits the above picture,
hence (trivially) satisfies Smith is Huq. On the other hand, the category HSLat

is semi-abelian [16]—in fact it even is a Moore category [28]—and satisfies the
conditions (4.2)–(4.6), but nevertheless does not satisfy (4.1). This tells us that
the condition (4.1) is strictly stronger than the Smith is Huq property, while
it is not implied by strong protomodularity.
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A concrete counterexample is the diagram (D) in HSLat defined as follows:
A � D � t0, 1

2
, 1u and B � t0, 1u with the natural order, and C is

1
��

�� ??
?

a b;

0

???? ���

the tables

A 0 1

2
1

f 0 1 1

α 0 1

2
1

B 0 1

r 0 1

s 0 1

β 0 1

C 0 a b 1

g 0 0 1 1

γ 0 1 1 1

determine the morphisms between them. Let X � t1
2
, 1u and Y � tb, 1u be

the kernels of f and g, respectively. Then their direct images along α and γ

become t1
2
, 1u and t1u, which Huq-commute in D. On the other hand, the triplepα, β, γq is not admissible with respect to pf, r, g, sq. Indeed, the pullback of f

and g is given by the following diagram.p1, 1q
��

��
��

??
??

?p1, bq p1
2
, 1q

??
??

?p1
2
, bq?????

����� p0, aqp0, 0q?????

������

Hence if a function ϕ as in the definition of admissibility exists, then

ϕp0, aq � ϕprgpaq, aq � γpaq � 1

and ϕp1
2
, 1q � ϕp1

2
, sfp1

2
qq � αp1

2
q � 1

2
; but this function cannot preserve the

order.

Expressed in terms of the normalisation functor N the problem is the fol-
lowing: reflection of diagrams (D) where α and γ are regular epimorphisms
need not imply that N reflects all diagrams (D). However, the conditions of
Proposition 2 do hold in the category of groups:
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Example 8. We prove that when A is the category Gp of groups, the nor-
malisation functor does reflect admissibility for all diagrams (D). In what
follows we use additive notation, also for non-abelian groups. Consider in Gp

the diagram

X
k ,2

A
k1lr

f
,2

α
�$?

??
??

??
??

??
B

r
lr

s
,2

β

��

C
g

lr

γ
z���

��
��

��
��

� l1 ,2 Y
llr

D

in which k � kerpfq, l � kerpgq and where k1, l1 are the unique functions (not
homomorphisms) with the property that kk1 � 1A� rf and ll1 � �sg� 1C (so
that k1k � 1X and l1l � 1Y ). Note that

a � kk1paq � rfpaq and c � sgpcq � ll1pcq
for all a P A, c P C.

Assuming that αk and γl commute, we have to construct a suitable group
homomorphism ϕ : A�B C Ñ D to show that pα, β, γq are admissible. We
define

ϕpa, cq � αkk1paq � γpcq
and prove that ϕpa� a1, c� c1q � ϕpa, cq � ϕpa1, c1q. Note that

k1pa� a1q � 1Apa� a1q � rfpa� a1q� kk1paq � rfpaq � kk1pa1q � rfpa1q � rfpa� a1q� kk1paqloomoonPX � rfpaq � kk1pa1q � rfpaqloooooooooooooomoooooooooooooonPX .

Now for all x P X, b P B, we have that

αkprpbq � kpxq � rpbqq � βpbq � αkpxq � βpbq.
Hence, on the one hand,

ϕpa� a1, c� c1q� αkk1pa� a1q � γpc� c1q� αkpkk1paq � rfpaq � kk1pa1q � rfpaqq � γpcq � γpc1q� αkk1paq � αkprpbq � kk1pa1q � rpbqqq � γpsgpcq � ll1pcqq � γpc1q� αkk1paq � βpbq � αkk1pa1q � βpbq � βpbq � γll1pcq � γpc1q� αkk1paq � βpbq � αkk1pa1q � γll1pcq � γpc1q,
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where fpaq � b � gpcq, while on the other hand

ϕpa1, c1q � ϕpa1, c1q � αkk1paq � γpcq � αkk1pa1q � γpc1q� αkk1paq � βpbq � γll1pcq � αkk1pa1q � γpc1q.
Since, by assumption, γll1pcq�αkk1pa1q � αkk1pa1q�γll1pcq, these two expres-
sions are equal to each other, and ϕ is a homomorphism.

Furthermore, in any finitely cocomplete homological category the conditi-
ons (2.1)–(2.3) are equivalent to the weighed commutator being independent
of the chosen weight (Proposition 5).

Theorem 1. In a finitely cocomplete homological category, consider a dia-
gram (D) and its normalisation (E). The triple pα, β, γq is admissible with
respect to pf, r, g, sq if and only if x � α�kerpfq and y � γ�kerpgq are weighted
central over β.

Proof : It suffices to compare Diagram (D) with the induced diagram (C). In
fact there is a regular epimorphism of admissibility diagrams from the latter to
the former which keeps D fixed and makes

B �X

�
1B
0

D
,2�

r
kerpfqD

_��

B
ιB

lr
ιB

,2 B � Y

�
1B
0

D
lr �

s
kerpgqD

_��

A
f

,2
B

r
lr

s
,2 C

g
lr

commute. This already proves the “only if” in our claim. For the “if” suppose
that x and y are weighted central over β. For the induced arrow

ϕ : pB �Xq �B pB � Y q Ñ D

to factor over the regular epimorphism� r
kerpfq D�B

� s
kerpgq D : pB �Xq �B pB � Y q Ñ A�B C,
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we only need that it vanishes on Ker
�� r

kerpfq D��Ker
�� s

kerpgq D�. Indeed,

ϕ��ker�� r
kerpfq D�� ker

�� s
kerpgq D���x1, 0y� ϕ��1W�X , ιW �� 1W

0

DD�ker�� r
kerpfq D�� �

β
x

D�ker�� r
kerpfq D�� α�� r

kerpfq D�ker�� r
kerpfq D�

is trivial, and similarly for Ker
�� s

kerpgq D�.
Thus we see that in this context, the theory of admissibility diagrams is essen-

tially equivalent to weighted commutator theory. This gives a new conceptual
interpretation for admissibility of diagrams such as (D)—as a way to encode
weighted commutativity—while, on the other hand, we may analyse some of
the concepts in [9] from a different point of view. First of all we obtain new
conditions, equivalent to those of Proposition 2:

Proposition 5. In a finitely cocomplete homological category, the following
are equivalent:

(5.1) the conditions (2.1)–(2.3) of Proposition 2;
(5.2) if a cospan px, yq Huq-commutes, then x and y are weighted central

over every w which makes (B) a weighted cospan;
(5.3) weighted centrality is independent of the chosen weight.

These “strong” conditions of Proposition 2 may be expressed in terms of
binary and ternary Higgins commutators as in the following theorem. We
recall the needed definitions from [10, 17, 11].

If k : K Ñ X and l : L Ñ X are subobjects of an object X in a finitely co-
complete homological category, then the (Higgins) commutator rK,Ls ¤ X

is the image of the induced morphism

K b L
� ,2
ιK,L

,2 K � L
x kl y ,2 X,

where
K b L � Ker

��
1K 0

0 1L

D
: K � LÑ K � L

�
.

When also m : M Ñ X is a subobject of X, the ternary commutatorrK,L,Ms ¤ X is the image of the composite

K b LbM
� ,2
ιK,L,M

,2 K � L �M

B
k
l
m

F
,2 X,
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where ιK,L,M is the kernel of the morphism

K � L �M

C
iK iK 0

iL 0 iL
0 iM iM

G
,2 pK � Lq � pK �Mq � pL�Mq.

Given any diagram (D), let k : K Ñ D be the image of α�kerpfq, l : LÑ D

the image of γ�kerpgq and β : B Ñ D the image of β.

Theorem 2. In any finitely cocomplete homological category, the following are
equivalent:

(1) the conditions of Proposition 2;
(2) rK,Ls � 0 implies rK,L,Bs � 0 for every diagram such as (D).

Proof : The equivalence between (2.3) and (2) is a key result in [11].

It is explained in [11] that the Smith is Huq condition is equivalent to the
vanishing of the ternary commutator rK,L,Xs whenever K, L �X are com-
muting normal subobjects of an object X. A priori, condition (2) in Theorem 2
is stronger, as it considers the same implication but in a setting which is wider.
Indeed, K and L need not be normal in D, and the diagram (D) need not be
induced by their denormalisations. This makes us conclude that if we restrict
all conditions in Proposition 2 to the case of proper morphisms—so that the
images of these morphisms are normal monomorphisms—we should obtain an
equivalence with the standard Smith is Huq condition. This is the content
of Theorem 3. Let us first explain what we mean with “restricting to proper
morphisms.”

Recall that a morphism is called proper when it factorises as a regular epi-
morphism followed by a normal monomorphism, that is, the normalisation
of an equivalence relation—which in a homological category is the same thing
as a direct image of a kernel along regular epimorphism [17]. We shall restrict
the first two conditions in Proposition 2 and the conditions of Proposition 5 to
Huq-commutativity of cospans of proper morphisms. In the case of (2.3), we
only consider diagrams (D) for which the two arrows in the induced cospan (E)
are proper.

Theorem 3. In a finitely cocomplete homological category A, consider the
following conditions.

(1) the Smith is Huq condition;
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(2) the conditions (2.1)–(2.3) of Proposition 2, restricted to pairs of pro-
per morphisms;

(3) the conditions (3.1)–(3.5) of Proposition 3.
(4) the conditions (4.2)–(4.6) in Proposition 4;
(5) the conditions (5.1)–(5.3) of Proposition 5, restricted to pairs of pro-

per morphisms.

Always (1)–(3) are equivalent to (5), and as soon as A is semi-abelian, these
conditions are also equivalent to (4).

Proof : The implication (1) ñ (2) is again a consequence of the result in [11].
To see that (2) implies (3), consider a diagram (D) and its normalisation (E).
Condition (2.3) says that pα, β, γq is admissible with respect to pf, r, g, sq as
soon as α�kerpfq and γ�kerpgq are proper and Huq-commute. Condition (3.1)
is just a special case where B � D and β � 1B. Note that indeed, the norma-
lisation of an effective equivalence relation is a kernel.

Remark 1. Note that in the semi-abelian case, condition (4.2) is immediately
implied by the restriction of (2.3) to pairs of proper morphisms, as then the di-
rect image of a kernel (= normal monomorphism) along a regular epimorphism
is a kernel.

Remark 2. We did not investigate any further connections between the con-
ditions of Proposition 2 and the kernel reflected admissibility property, called
condition (III) in [20], but it is not difficult to observe that the latter implies
the former.

Thus in a semi-abelian category, Smith is Huq amounts to independence of
the chosen weight for weighted proper cospans. This is further refined by the
following decomposition result, a consequence of Theorem 2.

Theorem 4. Given a weighted cospan (B) in a semi-abelian category, weight-
ed centrality of normal monomorphisms x and y over w is equivalent to the
vanishing of the commutators rX, Y s and rX, Y, Impwqs. Hence the pW,wq-
weighted normal commutator

N rpX, xq, pY, yqspW,wq
of [9] is the normal closure of rX, Y s _ rX, Y, Impwqs.
Proof : By Theorem 2 it suffices to prove that x and y coincide with the images
of
�
w
x

D�ker�� 1W
0

D�
and

�
w
y

D�ker�� 1W
0

D�
, respectively, as in (C). To see this,
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we consider the diagram with short exact rows

X

ιX
��

ηWX

u}

0 ,2 W 5X
ξ

��

� ,2
κB,X

,2 W �X

�
1W
0

D
� ,2�

w
x

D
��

W

d�w
��

,2 0

0 ,2 X
� ,2

x
,2 D

d

� ,2 D0
,2 0.

It is clear that
�
1W
0

D�ιX � 0 induces the factorisation ηWX of ιX over the kernel

κB,X of
�
1W
0

D
. Similarly, since

d�� w
x

D�κB,X � d�w�� 1W
0

D�κB,X

is trivial we obtain the dotted factorisation ξ. Now

x�ξ�ηWX � �
w
x

D�κB,X�ηWX � �
w
x

D�ιX � x,

so ξ�ηWX � 1X because x is a monomorphism. In particular, ξ is a regular
epimorphism. It follows that x is the image of

�
w
x

D�κB,X .
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